Assignment 1: Find the Best Train Connections

AT1SysProj 2021

Topic: Search
Due on: December 15, 2021

Version from: November 1, 2021

1 Task Summary

Using a data set of Indian railway times, find the best connection between any two places
according to different cost functions. Concretely, you have to submit solutions for the con-
nection problems listed in problems.csv. The the necessary files are at https://gitlab.

rrze.fau.de/wrv/AISysProj/ws2122/search/assignment.

2 The Data Set

The train schedule is specified in the file schedule.csv. We use a slightly modified variant
of a data set from Kaggle!'. It is a CSV file with 12 columns but only the following columns
are relevant for us:

o Train No.: an identifier for the train.

« islno: what stop of the train is described (e.g. the fifth stop).

o station Code: an identifier for the train station.

e Arrival time: the arrival time at that stop.

o Departure time: the departure time at that stop.

« Distance: the total distance travelled until that stop (i.e. since the stop where islno

is 1).

For example, let us take a look at the following two entries:

Train No. islno station Code Arrival time Departure time Distance
04407 10 GD 23:30:00 23:35:00 536
04407 11 LKO 02:25:00 02:35:00 653

From this we learn that the 10th stop of train 04407 is Gonda Jn (GD) and that the next
(11th) stop is Lucknow Nr (LKO). We can also see that the train travels 653 — 536 = 117

https://www.kaggle.com/harsh16/indian-railways-time-table-for-trains-available

https://gitlab.rrze.fau.de/wrv/AISysProj/ws2122/search/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ws2122/search/assignment
https://www.kaggle.com/harsh16/indian-railways-time-table-for-trains-available

kilometers from GD to LKO, which takes 2 hours and 50 minutes. Note that 02:25:00 must
refer to the next day. In general we will always need to “add a day” if the arrival time at stop
n is smaller than the departure time at stop n — 1. We will do the same for the departure
time at any stop if it is smaller than the arrival time, which is relevant for some of the cost

functions.

3 Problems and Solutions

Aside from the schedule data, you have a file problems.csv that contains the connection
problems you have to solve. We also provide example problems (example-problems.csv)
and solutions (example-solutions.csv), which you can use for comparison. A problem file
has six columns:
e ProblemNo: the number of the problem.
o Difficulty: the difficulty of the problem (you might want to start with the easier
ones).
e From: where the connection should start.
e To: where the connection should end.
« StartTime: when the person wants to start travelling (relevant for the arrivaltime
cost function).
« CostFunction: the cost function (Section 3.2).
You may assume that From is different from To and that To is indeed reachable from From.
A solution file has three columns:
e ProblemNo: the number of the problem solved.
e Connection: a best connection (usually not unique). The format is described in
Section 3.1.

e Cost: the cost of the solution according to the cost function.

3.1 Connection Format

The train connections have to be specified in a particular format. As an example, we will
take a look at the following connection:

56502 : 57 -> B8 ; 57305 : 69 -> 72
X : y —> z means that we take train x from stop y (islno) until stop z. Semicolons

separate trains taken consecutively. So in the example, we would first take train 56502

Train No. islno station Code Arrival time Departure time Distance
56502 57 SYM 14:34:00 14:35:00 588
56502 58 VLE 14:44:00 14:45:00 596
57305 69 VLE 05:16:00 05:17:00 559
57305 70 SAB 05:22:00 05:23:00 562
57305 71 MUK 05:32:00 05:33:00 570
57305 72 NRT 06:00:00 06:02:00 578

Table 1: Relevant schedule data for connection 56502 : 57 -> 58 ; 57305 : 69 —> 72.

from stop 57 to stop 58 and then continue with train 57305 on stop 69 until stop 72. This
obviously requires that stop 58 of train 56502 is the same station as stop 69 of train 57305.
Comparing with Table 1, we can see that it is a valid connection from SYM to NRT, with a
change at VLE.

3.2 Cost Functions

In this section, discuss the different cost functions, re-using the example connection
56502 : 57 -> 58 ; 57305 : 69 -> 72
and the schedule data from Table 1.

stops
we would enter the stations VLE, SAB, MUK, NRT (i.e. we don’t count the station we started
from). The cost is thus 4.

The cost stops is the number of times we enter a station by train. In the example,

distance The total distance travelled by train. In the example, it would be (596 — 588) +

(578 — 559) = 27.

duration The total time in seconds between departure and arrival. In the example, we
would leave at 14:35:00 and arrive at 06:00: 00 the following day. Therefore, the cost would
be 55500. Note that we assume it takes 0 seconds to change trains, i.e. if the first train
arrives at the same time as the second one leaves, we assume you don’t have to wait until

the next day.

arrivaltime The arrival time (including days). Here, the StartTime specified in the
problem matters. If we use the example connection with the StartTime 11:30:00, we
would arrive at 06:00:00 on the next day. The arrival time should thus be specified as
01:06:00:00. But if we use the StartTime 15:24:00, we would miss the train and the
arrival time would be one day later (02:06:00:00).

changes The number of train changes. It corresponds to the number of semicolons in the

solution (if you put as few as possible). For our example it would be 1.

price The ticket price. We assume that you have to pay 100 for each train you enter plus
1 for every kilometer travelled in that train. For our example connection, we would thus
pay 108 for the first train and 119 for the second train, which means the total cost would
be 227.

linear ... A linear combination of the cost functions mentioned above. It has the fol-

lowing form

linearcost = "l4inear ", part, { " + ", part } ;

part ::= integer, " * ", basiccost ;

basiccost = "stops" | "distance" | "duration" |
"arrivaltime" | "changes" | "price" ;

For example, the cost
linear 100 * changes + 1 * distance
would be 100-1+1-27 = 127 for our example connection. The arrivaltime is here defined

as the number of seconds between the StartTime and the time of arrival.

4 Submission

At the deadline, we will download a snapshot of your repository. It should contain
1. all your code,
2. a readme file explaining how to run your code (in particular how to use it to solve a
problems file),
3. afile solutions.csv that lists your solutions for the problems specified in problems.csv

in the format specified in Section 3.

Random Tips

Make sure you get the handling of times right (for duration and arrivaltime), pos-
sibly by implementing tests.
Solve the problems with lower difficulty before moving to the harder ones.
Problems with difficulties 1-2 can be solved with a naive implementation of uniform
cost search. Difficulties 3 and higher will require some optimization. In particular, you
can use Dijkstra’s algorithm.
If debugging becomes too difficult, you could consider creating test cases and/or making
a small test schedule.
You will notice that efficiency matters for this problem. Nevertheless it is not necessary
to use a fast programming language (e.g. everything can be solved in Python).
If you have problems getting started, you might try to implement code that answers
the following questions first, which should get you a bit more comfortable with the
data set:

1. How many different stations are there?

2. What station is used by the fewest trains?

3. For a station X, what stations can be reached by taking a train and travelling for

exactly 1 stop?

4. How can you build a directed graph from the information of the previous question?

5. For any pair of stations (X,Y), is there any way to travel from X to Y?

6. How can you add time information and distance information to the directed

graph?

	Task Summary
	The Data Set
	Problems and Solutions
	Connection Format
	Cost Functions

	Submission
	Random Tips

