
— GUIDE —
Assignment 2: Catch the Wumpus
AI-2 Systems Project (Summer Semester 2026)

Jan Frederik Schaefer
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

This document is intended to help you solve the assignment “Assignment 2: Catch the
Wumpus” [AS]. You do not have to read it, but we do recommend to at least take a look at
the tips and common issues.

1 A few tips

1. Sometimes it is better to wait with the portal creation until you have a better idea of
where the Wumpus is.

2. Use a hidden Markov model for this problem. Make sure you understand what your
hidden variables and your observations are. Make sure you understand what algorithms
you need (in the past, students often started researching and implementing all kinds
of unnecessary algorithms).

3. You can use matrices for the transition and sensor model. The advantage is that the
algorithms are then very simple. The disadvantage is that for some sensors it gets a
bit more complicated (and the matrices may get very large). Alternatively, you can
just implement a function that computes the probabilities when needed.

4. Intuitively, the problem is a second order Markov model, but it can also be modeled
as a first order Markov model, which might be easier to implement.

5. You do not have to model everything perfectly – you can still get full points if you cut
a few corners (e.g. in the sensor model).

6. If your agent decides to wait with the portal creation, you can store the filtering results
to re-use them later on and save computation time (in case that becomes a problem).

Copyright © 2021–2026 Jan Frederik Schaefer, Michael Kohlhase.



2 Common issues

1. Not modelling the problem as a hidden Markov model. This may be tempting (at least
for the easier environments), but it does not work well, unless you effectively re-invent
something equivalent to a hidden Markov model.

2. Trying to learn the probabilities/parameters. This is unnecessary because you can
compute all necessary probabilities based on the information provided in the assign-
ment.

3. Implementing unnecessary HMM algorithms. Make sure you understand what the
HMM algorithms do and which ones you actually need.

4. Subtle bugs in the sensor model/transition model that are difficult to track down. It
helps to check intermediate results where possible. The server also shows you how
likely it thinks you were to catch the Wumpus in your run (due to some optimiza-
tions, the result is only an approximation). You can compare that to your own result.
Additionally, we now have debug environments that you can use to test your agent
(see Section 3).

3 Debug environments

For the first time, we have debug environments available for this assignment. This is ex-
perimental – please provide feedback if you find it useful or if you have suggestions for
improvements. The goal is that these environments can help you debug your agent if it com-
putes the wrong probabilities. The debug environments are similar to the real environments,
but there are a few differences:

1. The initial position of the Wumpus is known (start-position field in the action request
JSON). Additionally, the previous position is also known (before-start-position).

2. In the “real” environments, the Wumpus is observed for 10 time steps before a portal
can be made. In the debug environments, this is reduced to 1 time step.

3. The server computes for each time step how likely the Wumpus is in each cell and
displays this on the website. This can help with debugging. Note that the probabilities
are only approximations.

Tips for using the debug environments:
1. Initially, make the portal right away. To see if the algorithms work over multiple time

steps, you can wait increasingly longer before making the portal.

2



2. For optimization, the server has multiple runs in parallel, which can be confusing while
debugging. This can be disabled in the client (see next paragraph).

3. You can only view a run on the server once it’s finished (i.e. once a portal has been
created).

Tips for using the Python client:
1. You can disable parallel runs by setting parallel_runs=False when calling run.
2. By default, the client keeps running indefinitely. If you use the client.py script, you can

set run_limit=1 to have only one full run. Note that previous interrupted runs will
still be completed and not counted towards the limit.

References

[AS] Assignment 2: Catch the Wumpus. url: https://kwarc.info/teaching/AISysProj/
SS26/assignment-2.2.pdf.

3

https://kwarc.info/teaching/AISysProj/SS26/assignment-2.2.pdf
https://kwarc.info/teaching/AISysProj/SS26/assignment-2.2.pdf

	A few tips
	Common issues
	Debug environments

