Assignment 2: Play FAUhalma

AlI-1 Systems Project (Summer Semester 2026)
Jan Frederik Schaefer

Friedrich-Alexander-Universitéit Erlangen-Niirnberg, Department Informatik

Topic: Adversarial Search
Due on: July 18, 2026

Version from: February 12, 2026
Author: Jan Frederik Schaefer

Make sure you sign up before working on this assignment.
Using someone else’s solution code, even as inspiration, is not allowed!

Sharing your solution code with other AISysProj students is not allowed.

“You can still decide to postpone the assignment. Signing up includes an elligibility check, which

avoids situations where you invest work into an assignment that you are not supposed to take.

1 Task Summary

Implement an agent for a variant of the game Sternhalma/Chinese checkers [CC]|, which
we will call FAUhalma. For evaluation, your agent will compete on our server at https:

//aisysproj.kwarc.info.

Didactic objectives
1. Gain some experience with implementing and adapting algorithms for adversarial
search,
2. learn how to work with a non-rectilinear grid,

3. get to know the JSON format (if you do not know it already).
Prerequisites and useful methods

1. Adversarial search (as discussed in the Al lecture),

2. search in general.

Copyright (© 2021-2026 Jan Frederik Schaefer, Michael Kohlhase.

https://aisysproj.kwarc.info
https://aisysproj.kwarc.info

'.'.'.'."'.'.' \
KRR 2
Q'Q'.'l'l'l'. A

A'Q'Q'A'.'Q'Q'A

Figure 1: Starting position for a game of FAUhalma with players A, B and C' (left) and an

illustration of the move rules (right).

2 Rules of FAUhalma

FAUhalma is a 3-player game, modified from the original game Sternhalma/Chinese check-
ers [CC] for AISysProj. Like the original, FAUhalma is played on a star-shaped board. Each
player has several pegs, which originally reside in the player’s starting corner. The goal of
each player is to move their pegs into the opposite corner (the home) as quickly as possible.
Figure 1 illustrates the starting position and the homes (shaded areas). Players take turns
counterclockwise. When it is their turn, a player moves one of their pegs by either moving it
to an adjacent space or by hopping over other pegs (see Figure 1). Here are the move rules

in more detail:
e Simple move: Move the peg to an adjacent empty space (in any direction).

e Simple hop: If there is a peg on an adjacent space S, the peg can “jump over it” as

long as the space behind S is empty.

e Hop chain: A chain of simple hops; i.e. if a peg can hop from S; to S5 and it could

then hop from S5 to S3, then it can also hop from S; to S; in a single move. However,

at the end of a chain, the peg must land on a different space than it started from. Note

that a simple move cannot be combined with hops.

e Center rule: Four spaces in the center are permanently blocked as shown Figure 1
(it is always those four spaces). You cannot move your pegs into those spaces, but you

can hop over them like over pegs.

e Swap rule: Spaces in the home of the moving player that are occupied by an oppo-
nent’s peg can also be considered empty for the rules above (except for the intermediate
spaces in a hop chain). If a peg is moved from S; to Sy and S, is occupied by an oppo-
nent’s peg, then the peg from Sy is moved to Sy, i.e. the pegs are swapped. The swap
rule prevents players from blocking each other by moving pegs into their opponents’

homes. In practice, this rule is rarely used.

It is theoretically possible that a player has no legal move. In that case the blocked player
loses. The first player who has moved all their pegs into their home wins. The remaining

players compete for the second place.

3 Coordinates, Positions and Moves

To test your agents, we need to have a standardized way of sharing moves and positions,

which will be discussed in this section.

3.1 Coordinate System

We will refer to the spaces using a coordinate system. Figure 2 illustrates what coordinates
correspond to which space. As you can see, every space is associated with a coordinate
pair (x,y). However, the z-axis and y-axis are not orthogonal in the normal visualization.

Working with such a grid can be somewhat tricky. Maybe you can find an elegant way?

3.2 Representation of Positions

The server sends you the position (game state) as a JSON object, indicating where each

agent has its pegs. For example, the position shown in Figure 2 would be represented as

{"A"[[-1. 0], [, 0], [2, 2], [1, -2], [1, -3], [0, -2},
"B": {[-1,-3], 3, 0], [-2, 1], [1, 3], [1, 1], [-2, O]},

(-3,6)

(-35) (-2,5)

(3:4) (24) (1.4)

c B
63) (53 (a3 @33 (23 (3 03 (3 (23 (33)
c [) A
52 (a2 (32 (22 (1.2 (02 (12 22 (32
B B C

A B 2 G o0 AN @21 G
B A @ B
@0 (20) (1,00 (00 1,0, (20, (30
c ® c
@E) (20) (A 0 @A) @) BA) G
AR —(c
(@2) (22) (A2) (02 (-2 (32 (B2 G2 (52
B A
(33) (273) (13) (0/3) (1,3 (33 (33 @43) (-3 (63
(8 G4 (G4
2:5) (3.5

(3.-6)

Figure 2: Coordinate system for FAUhalma.

" 12, -2, 2, 11, [0, -1], [2, 3], [4, 11, [3, 20T}

Your agent is always player A.

3.3 Representation of Moves

Moves are represented as a JSON list of coordinate pairs, where the first coordinate pair
indicates the peg you want to move and the last one indicates what space you want to move
the peg to. If you have a hop chain, the list has to include all intermediate spaces, i.e. two
consecutive list entries should be a simple hop apart from each other. For example, these
would be valid moves for player A in Figure 2:

e 12, 0], [0, 1]

e [[2,2]]2, 0], [0, 2], [-2, 2]]

3.4 Simplified variants

The server also has two-player variants of FAUhalma, using either the star-shaped board of
FAUhalma or a rhombic board, which is basically a star-shaped board with some corners

cut-off (Figure 3). The variants have the same coordinate system and move rules as the

.A'Q'A'A'A'A'A'A
A'A'A'A'A'A'A'A'A
O QO O

Figure 3: The starting positions of simplified FAUhalma variants.

standard variant of FAUhalma. You do not have to support these environments, but they

might be easier for getting started and give partial points (see Section 6).

4 Evaluation: Playing on the Server

Your agent will be evaluated by playing on our server: https://aisysproj.kwarc.info. In
a two-player game, your agent will get 1 point if it finishes first and 0 points otherwise. In a
three-player game, your agent will get 2 points for finishing first, 1 point for finishing second
and 0 points for finishing last. Your agent will be rated by taking the average points of 50
consecutive games. The server remembers your best rating of 50 consecutive games. You can
see your agent’s ratings and games on the web interface of https://aisysproj.kwarc.info.

The server has several environments for evaluating your agent with differing settings.
Section 6 provides an overview of the environments. For each environment on the server,
your team repository will contain one configuration file with credentials that you can use to
test your agent in that environment.

The assignment repository [AR] has a Python script that takes care of the server interac-
tion. Essentially, all you have to do is implement a function that, given a position, returns a
move. The script will get the positions from the server and send back the moves returned by
your function. If you would like to use a different programming language, you are of course
welcome to implement the protocol (see [(SP]) yourself and we will try support you. In that
case, it would be nice if you share your implementation so that other/future students can

use it as well.

https://aisysproj.kwarc.info
https://aisysproj.kwarc.info

5 What to submit

Your solution should be pushed to your gitlab repository for this assignment. Concretely,
the repository should contain:
1. all your code for solving this assignment,
2. a README.md file explaining
i. dependencies (programming language, version, external libraries and how to get
them),
ii. how to run your code for a server environment,
iii. the repository structure,
iv. anything else we should know,
3. a solution summary (see [S0S| for more details — it should describe the main ideas, not

document the code).

6 Points

The total number of points for this assignment is 100. You can get up to 20 points for the
quality of the submission (README, solution summary, ...). Furthermore, you can get up
to 80 points for the strength of your agent. Each environment allows you to get a certain
numbers of points if your agent is strong enough. When grading, we will only consider the
environment in which you would get most points (we do not add up results from different
environments). That means that you do not have to run your agent on every environment
and you can get full points if you only run it on the most difficult one where you can get 80
points.

Note: It is okay if your agent is a bit “lucky” and gets a slightly higher rating than it
usually does. We will use the best rating on the server for your grade, assuming that we can
reproduce a similar performance (i.e. if you get a 1.03 rating on the server and we get a 0.94
rating that is okay — if you get a 1.03 rating on the server and we get a 0.31 rating when

testing it, we might ask some questions).

Config file Shape Players Points

$s26.1.2.1.json rhombus 2 30 if rating > 0.5

$s26.1.2.2.json star 2 40 if rating > 0.5

$826.1.2.3.json star 2 b5 if rating > 0.5

$s26.1.2.4.json star 2 60 if rating > 0.5

$s26.1.2.5.json star 3 55 if rating > 0.5; 65 if rating > 1.5
$826.1.2.6.json star 3 70 if rating > 1.0

$s26.1.2.7.json star 3 75 if rating > 1.0

$526.1.2.8.json star 3 80 if rating > 1.0

References

[AR] Repository for Assignment 2: Play FAUhalma. URL: https://gitlab.rrze.fau.

de/wrv/AISysProj/ss26/al.2-play-fauhalma/assignment.

[CC] Chinese checkers. URL: https://en.wikipedia.org/wiki/Chinese _checkers

(visited on 11/10/2021).

[CSP| Jan Frederik Schaefer. AISysProj server — Clients and server protocol. URL: https:

//aisysprojserver.readthedocs.io/en/latest/clients.html.

[SoS| Solution Summary. URL: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/

general/-/blob/main/solution-summary.md.

https://gitlab.rrze.fau.de/wrv/AISysProj/ss26/a1.2-play-fauhalma/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss26/a1.2-play-fauhalma/assignment
https://en.wikipedia.org/wiki/Chinese_checkers
https://aisysprojserver.readthedocs.io/en/latest/clients.html
https://aisysprojserver.readthedocs.io/en/latest/clients.html
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

	Task Summary
	Rules of FAUhalma
	Coordinates, Positions and Moves
	Coordinate System
	Representation of Positions
	Representation of Moves
	Simplified variants

	Evaluation: Playing on the Server
	What to submit
	Points

