
Assignment 4: Guess the Word
AI-2 Systems Project (Summer Semester 2025)

Jan Frederik Schaefer
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: Information gain/decision trees
Due on: September 1, 2025
Version from: July 2, 2025
Author: Jan Frederik Schaefer

Make sure you sign up before working on this assignment.a

Using someone else’s solution code, even as inspiration, is not allowed!
aYou can still decide to postpone the assignment. Signing up includes an elligibility check, which

avoids situations where you invest work into an assignment that you are not supposed to take.

1 Task summary

Implement an agent for a word guessing game. You can test your agent by competing on the
server.

Didactic objectives
1. Gain hands-on experience with decision-making based on information gain,
2. solve various challenges involving probabilistic reasoning.

Prerequisites and useful methods
1. Basics of working with probabilities,
2. information gain and its use in making decision trees.

Note that the problem does not exactly match the definition of decision trees as discussed
in the lecture. Nevertheless, understanding how information gain is used in decision trees
should help with this assignment.

Copyright © 2021–2025 Jan Frederik Schaefer, Michael Kohlhase.



-------

Guess: E
doesn’t occur
Guess: A
doesn’t occur
Guess: I
doesn’t occur
Guess: O
-O-O---

Guess: N
-O-ON--

Guess: HOMONYM
wrong word
Guess: COCONUT
Correct − 7 guesses

--------------------

Guess: E
-E------------------

Guess: T
doesn’t occur
Guess: R
-E---R--------------

Guess: E
doesn’t occur
Guess: O
-E--OR--------------

Guess: S
-E-SOR--------------

Guess: SENSOR
Correct − 7 guesses

Figure 1: Example games with the standard rules (left) and the advanced rules (right).

2 Rules

The rules are inspired by the popular word-guessing game hangman [WH]. The player has
to guess a word by repeatedly making letter guesses or word guesses. After each guess, the
player gets feedback (e.g. about the positions of the guessed letter). The goal is to use as few
guesses as possible to find the right word. In this assignment we will use two different sets of
rules: standard rules and advanced rules.

2.1 Standard rules

The word is initially represented by dashes, where each dash replaces a letter of the word. If
the player makes a letter guess, all occurrences of that letter in the word are revealed. The
game ends if the player correctly guesses the word. See Figure 1 (left) for an example game.

2.2 Advanced rules

There are two changes in the advanced rule:

2



• Only a single letter location is revealed at a time (it is picked uniformly randomly
among all unrevealed positions of that letter).

• The length of the word is disguised by appending more dashes in the feedback.
Figure 1 (right) shows an example game with the advanced rules.

2.3 How the word is chosen

The words are picked from a list of nouns from [GNL]. The assignment repository [AR]
contains a copy of that list (you should use the copy because the original might get modified).
The words are picked in a somewhat unusual way: half of the time, a word containing the
letter “X” is picked from the list (each one is equally likely), and the other half of the time, a
word without the letter “X” is picked (again, each one is equally likely). Words that contain
diacritics, hyphens or spaces are ignored.

3 Guessing words on the server

You should test and evaluate your agent by competing on the server. The rating of your
agent is the lowest average number of guesses in 1000 consecutive games – the lower your
rating, the better. Your agent can communicate with the server via HTTP requests. A
Python implementation of the protocol is provided in the assignment repository. That means
that you just have to implement the agent function – all the server interaction is already
implemented for you.

The details of the protocol are described in [CSP], but you will only need them if you
want to create your own implementation (e.g. in a different programming language). Reach
out if you need help with that.

3.1 Action requests

The server will send you action requests, which contain an identifier for the request and
a JSON object describing the current state of your word-guessing endeavour. Here is an
example state description:

{
"feedback": "-O-ON--",
"guesses": ["E", "A", "I", "O", "N", "HOMONYM"]

}

3



3.2 Sending Actions

Your agent should respond to an action request by sending an action as a string:
1. For word guesses, the agent should send the word (in capital letters) as a string.
2. For letter guesses, the agent should send the letter as a string (again capitalized). As

there are no single-letter words in this game, the server can distinguish letter guesses
from word guesses.

4 What to submit

Your solution should be submitted to your team’s repository. It should contain:
1. All your code for solving this assignment.
2. A README.md file explaining

i. dependencies (programming language, version, external libraries and how to get
them),

ii. how to run your code,
iii. the repository structure,
iv. anything else we should know.

3. A solution summary (see [SoS] for more details – it should describe the main ideas, not
document the code).

5 Points

You can get up to 80 points for the rating (average number of guesses in 1000 games) of
your agent according to the server (assuming it is reproducible). Concretely, you will get the
following points for the standard rules:

• 20 points if the rating is ≤ 7.
• 30 points if the rating is ≤ 6.
• 35 points if the rating is ≤ 5.
• 40 points if the rating is ≤ 4.5.

For the advanced rules, you will get additionally
• 20 points if the rating is ≤ 9.
• 30 points if the rating is ≤ 8.
• 35 points if the rating is ≤ 7.

4



• 40 points if the rating is ≤ 6.5.
Assuming you have at least a partial solution, you can additionally get up to 20 points for
the quality of the submission (README, solution summary, ...). The maximum number of
points is therefore 100. If the grading scheme doesn’t seem to work well, we might adjust it
later on (likely in your favor).

References

[AR] Repository for Assignment 4: Guess the Word. url: https://gitlab.rrze.fau.
de/wrv/AISysProj/ss25/a2.4-guess-the-word/assignment.

[CSP] Jan Frederik Schaefer. AISysProj server – Clients and server protocol. url: https:
//aisysprojserver.readthedocs.io/en/latest/clients.html.

[GNL] The Great Noun List. url: http://www.desiquintans.com/nounlist (visited on
07/06/2022).

[SoS] Solution Summary. url: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/
general/-/blob/main/solution-summary.md.

[WH] Hangman (game). url: https://en.wikipedia.org/wiki/Hangman_(game)

(visited on 07/27/2022).

5

https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a2.4-guess-the-word/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a2.4-guess-the-word/assignment
https://aisysprojserver.readthedocs.io/en/latest/clients.html
https://aisysprojserver.readthedocs.io/en/latest/clients.html
http://www.desiquintans.com/nounlist
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://en.wikipedia.org/wiki/Hangman_(game)

	Task summary
	Rules
	Standard rules
	Advanced rules
	How the word is chosen

	Guessing words on the server
	Action requests
	Sending Actions

	What to submit
	Points

