Assignment 0 (Warm-Up, Variant B): Clean the
Wumpus Cave

AlI-1 Systems Project (Summer Semester 2025)
Jan Frederik Schaefer

Friedrich-Alexander-Universitdt Erlangen-Niirnberg, Department Informatik

Topic: Agents in Al, search

Latest submission: October 1, 2025

Version from: July 4, 2025

Author: Jan Frederik Schaefer

Important notes: Ask for help if you are stuck (office hours, assignment room, ...)

Every assignment has a guide with tips — you can find it at [AG]

This assignment has to be solved individually (not as a team).

Using someone else’s solution code, even as inspiration, is not allowed!

Sharing your solution code with other AISysProj students is not allowed.

1 Task summary

A recurring theme in the AI lecture is the Wumpus world. The Wumpus is a mysterious
creature that lives in a cave that is organized as a grid of squares. We want to clean
the Wumpus cave using a vacuum cleaner robot, which we can control with a sequence of
instructions. You have to implement two tasks:

1. Check if a sequence of instructions cleans the entire Wumpus cave.

2. Come up with a sequence of instructions yourself — the shorter, the better.
The assignment repository [AR] contains files with problem representations that you have to
solve. Your grade will largely be based on those solutions (see Section 6). The assignment

repository also contains example solutions that you can use to test your implementation.
Didactic objectives

1. Develop an algorithm to solve a non-trivial problem,

2. implement a small software project from scratch,

Copyright (© 2021-2025 Jan Frederik Schaefer, Michael Kohlhase.

3. get hands-on experience with a search problem,
4. improve the efficiency of an algorithm,

5. get to know the AISysProj setup and workflows.

Prerequisites and useful methods
1. The basics of computer science and programming,

2. Search (in a very general sense).

2 Maps

You have a map of the Wumpus cave, which consists of 18 x 12 squares. Figure 1 shows an
example map. Every square has coordinates associated with it. As is common in computer
science, the y-axis points down and the origin, (0, 0), is in the top-left square.

The properties of each square are represented by a single character:

1. Walls are marked with an X.

2. Empty squares are marked with a space.

3. The starting position of the vacuum cleaner (if it is known) is marked with an S.

The maps are stored in the problem files (see Section 4) using a text representation:
each row of the map corresponds to a line in the text representation and each square to a
character. Figure 1 shows an example map with both the text representation and a more

visual representation.

3 Plans and potentially missed squares

You can control the vacuum cleaner by making a plan, which is a sequence of instructions.
The following instructions are available:

1. n: The vacuum cleaner moves one square north (up).

2. e: The vacuum cleaner moves one square east (right).

3. s: The vacuum cleaner moves one square south (down).

4. w: The vacuum cleaner moves one square west (left).

5. ¢: The vacuum cleaner cleans the square it is currently on.
If the instruction would move the vacuum cleaner onto a wall, it will instead remain on its
current square. If the vacuum cleaner leaves the map, it will immediately reappear on the

opposite side of the map.

X X X X X X X X X
) 9.9.9.9.9.9.4 XOOKXKXX ©.0) 1,0) 200 B0 @0 (.0) (6,0) (7,00 (5,00 (9,0) (10,0) (11,0) (i2,0) (13,0 (14,0) (15,0) (16,0) (i7,0)

X X X X X X X X X X X
HOXXKXXXK HXXKXXX Gn @ a&Y Eh & ED N @Y sy e ey oLy A2 @Y @1 @5 @6 (71
XXX S XXX |89 & 89 & 85 &9 5 & X % 8

0,2 1,2) 2,20 3,2) @2 (,2) (62 (7,2) (8.2) (9.2) (10,2) (11,2) (12,2) (13,2) (14,2) (15,2) (16,2) (17,2)
XOOOOKKK X XOKXXK |85 @5 &9 & s 69 & &5 X 25 i

0,3) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (7,3) (8.3) (9,3) (10,3) (11,3) (12,3) (13,3) (14,3) (15,3) (16,3) (17,3)
XOOOKXXX XXX SRS 2SS o) o X %X X

©4) 14 @ @A) @1 G4 G4 @4 6.4 ©.4) (0.9 (11,4) (12,4) (13,4) (14,4) (i5,4) (16,4) (17,4)
XXX XHXXXXX X X X X X X X X X X X X

©5) (1L5) @5 3.5 @5 (.5 6.5 @5 6.5 (9.5 (10.5) (11.5) (12,5) (13,5) (14,5) (15,5) (16,5) (17,5)
) 9.0.0.9.9.9.0.04 HXXXXXX X X X X X X X X X X X X

0,6) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) (7.6) (5,6) (9.6) (10.6) (11.6) (12,6) (13,6) (14,6) (15,6) (16,6) (17,6)
)9.9.9.9.9.9.0.0.0.9.9.9.9.9.9.9.9:¢ X X X X X X X XX X X

on @47 @n G7 @n 61 67 @D @7 @0 Q0,7 (1,7 12,7 (13,7) (14,7 (15,7) (16,7) (17,7)
)9.9.9.9.9.9.0.0.0.0.0.0.9.9.9.9.9:¢ X X X X X X X

(0,8) (1,8) (2,8) (3,8) (4,8) (5,8) (6,8) (7,8) (8,8) (9,8) (10,8) (11,8) (12,8) (13,8) (14,8) (15,8) (16,8) (17,8)
XXXXX HXXXXXXX X X X X X X X X X

©.9) (1.9) @9 (.9) LY (.9 (6.9 (7.9 (5.9) (9.9 (10,9) (11,9 (12,9) (13,9) (14,9 (15,9) (16.9) (17,9)
XXXKXX X HKXXXXXX X X X X X X X X X X X

(0,10) (1,10) (2,10) (3,10) (4,10) (5,10) (6,10} (7,10) (8,10) (9, 10) (10, 10) (11,10) (12, 10) (13, 10) (14, 10) (15, 10) (16, 10) (17, 10)
HXXKXXXXK XAXKXXX X X X X X X X X X

{0,11) (1,11) (2,11) (3,11) (4,11) (5,11) (6,11) (7,11) (8, 11) (9, 11) (10,11) (11.11) (12,11) (13,11) (14, 11) (15, 11) (16, 11) (17,11)

Figure 1: An example map of the Wumpus cave with the starting position marked at

(9,2)The text representation (left) is used in the problem files.

Plans are either good or bad. A plan is good if every empty square (including the
starting position)will definitely be cleaned by the vacuum cleaner. However, if some empty
squares are potentially missed, the plan is bad. The idea of potentially missed squared can

be a bit tricky, so we will take a look at a few examples below.

Example: Simple cave In this example, we will explore what happens if we execute the
plan eecncsc in the cave shown in Figure 2a. We start in (2,2). After the instruction e, we
will be in (3,2). Now there is a wall to the east, which means that we will stay in (3,2)
when we try to go east again. The c instruction will now clean (3,2). Next, we go north
((3,1)), clean it, then go south ((3,2) again), and clean it a second time, which doesn’t
make a difference. So (3,2) and (3,1) get cleaned, i.e. Therefore, (1,1), (2,1) and (1,2) will

remain uncleaned.

Example: No boundary In this example, we will explore what happens if we execute
the plan cwewwennc in Figure 2b. First, the starting position (1,1) gets cleaned. Then we
go west, to (0, 1), and clean it. Going west again, we will reappear on the right side in (4, 1)
(we assume that the map has size 5 x 5 instead of the actual size 18 x 12). Going west a
third time, we reach (3, 1), which we clean, and after going north twice, we will reappear at
the bottom in (3, 4), which also gets cleaned. Therefore, the following squares will be missed
in the cleaning process: (1,2), (3,0) (3,2), (3,3), (4,1).

X X X X X X

(0,0) (1,0) (2,0) (3,0) (4,0) (0,0) (1,0) (2,0) «3,0) (4,0) (0,0) (1,0) (2,0) (3,0) (4,0)

X X S X X X X

(0,1) 41.19" 2710 (3,1) (4,1) (0,1) (1,1) [(2,1) (3,1) "(471) (0,1) (1,1) (2,1) (3,1) 41,19

X X X X X X

(0,2) (@,2)0 (22)4 (3,2) [(4,2) (0,2) (1,2) (2,2) (3.2)7 (4,2) (0,2) ((1,2) (2,2) (3,2) {42

X X X X X X X

0.3 "aBy @3 6.3 @3] |03 1,3 @3 B8 @] |03 1.3 @3 33 @3)

X X X X X

(0,4) (1,4) (2,4) (3,4) (4,4) (0,4) (1,4) (2,4) (3,4) (4,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(a) plan eecncsc (b) plan cwcwwennc (¢) plan wcecenesc

Figure 2: Example caves. The potentially missed squares are marked with diagonal lines

(7).

Example: Initial position unknown In this example, we will explore what happens if
we execute the plan wcecenesc in the cave shown in Figure 2c. If we start in position (0, 1)
or (4,1), we will clean everything except for (0,2). Similarly, if we start in (0, 2) or (4,2), we
will clean everything except for (0,1). Therefore, we will potentially miss (0, 1) and (0, 2).

4 Problem and solution files

The assignment repository [AR] contains many problem files. Your implementation is
supposed to generate a solution file for each problem file. This section describes the format

of problem and solution files.

4.1 Checking plans

The easier problem files require you to check a cleaning plan. They begin with the line
CHECK PLAN, followed by a plan as described in Section 3, followed by the text representa-
tion of a map as described in Section 2.

If there are no potentially missed squares, the solution file should contain the text GOOD
PLAN. Otherwise, the solution file should contain the text BAD PLAN, followed by a list
of the potentially missed squares (the order does not matter). For example, if the squares

(2,3) and (1,5) are potentially missed, the solution file should be

BAD PLAN
2,3
1,5

4.2 Finding plans

The more difficult problem files require you to find a cleaning plan. They begin with the
line FIND PLAN, followed by the text representation of a map. The solution file should then
contain the plan as described in Section 3.

If the format is not clear, you can take a look at the assignment repository [AR], which

contains example problems and solutions.

Important: The number of points for plan finding problems depends on the plan lengths

(see Section 6 for details).

5 What to submit

You should push your solution to your git repository for this assignment. Concretely, your
repository should contain:
1. all your code for solving this assignment,
2. a README.md file explaining
i. dependencies (programming language, version, external libraries and how to get
them),
ii. how to run your code to solve other problems,
iii. the repository structure,
iv. anything else we should know,
3. a solution summary (see [SoS| for more details — it should describe the main ideas, not
document the code),
4. solution files (as described in Section 4) for the problem files. The solution file for
problem X YZ.txt should be called solution X YZ.txt.

6 Points

The total number of points for this assignment is 100. Up to 80 points are awarded for the
solutions to the problem files. Figure 3 shows how many points can be achieved for each
part. For the FIND PLAN problems, the number of points depends on the total plan length
T of your solutions, i.e. T" is the sum of the lengths of the plans you found for that part.
Note that partial points (for solving only part of a problem range correctly) are only

awarded in exceptional cases.

The remaining 20 points are awarded for the submission quality. The points are primarily
awarded for the solution summary (see [SoS]), but it also includes the README (instructions
on how we can run your code) and the overall organization of your repository (can we find
the files? are they in the correct format? etc.) Note that we do not grade the code quality
itself.

You cannot get points for the submission quality if you don’t get points for the solutions.

If the grading scheme doesn’t seem to work well, we might adjust it later on (likely in

your favor).

Important: You get points for correct solutions. You generally do not e.g. get partial
points for code that “looks roughly correct but produces wrong results”. The assignment

repository contains a script that you can use to check your solutions for the example

problems.

References

[AG| Guide for “Assignment 0 (Warm-Up, Variant B): Clean the Wumpus Cave”. URL:
-guide.pdf.

[AR] Repository for Assignment 0 (Warm-Up, Variant B): Clean the Wumpus Cave. URL:
https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/al.0.b-clean-wumpus-

cave/assignment.

[SoS| Solution Summary. URL: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/

general/-/blob/main/solution-summary.md.

-guide.pdf
https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a1.0.b-clean-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a1.0.b-clean-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

Problems Mode Challenges points
problem a x.txt check — 10
problem b x.txt check no boundary 10
k tart iti
problem ¢ x.txt check HITEHOWH Shatt Postbion 10
- no boundary
(
15 it T" < 20000
10 if T" < 50000
problem d x.txt find —
5 if T < 70000
\() if 7' > 70000
3
15 it T" < 20000
10 if 7" < 50000
problem e *txt find no boundary
5 if T < 70000
\O if T' > 70000
(
20 if T < 20000
15 if T" < 30000
unknown start position
problem f stxt find 10 if 7" < 50000
no boundary
5 if T < 80000
\O if 7' > 80000

Figure 3: Points per part.

	Task summary
	Maps
	Plans and potentially missed squares
	Problem and solution files
	Checking plans
	Finding plans

	What to submit
	Points

