
— GUIDE —
Assignment 0 (Warm-Up, Variant B): Clean the

Wumpus Cave
AI-1 Systems Project (Summer Semester 2025)

Jan Frederik Schaefer
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

This document is intended to help you solve the assignment “Assignment 0 (Warm-Up,
Variant B): Clean the Wumpus Cave” [AS]. You do not have to read it, but we do recommend
to at least take a look at the tips and common issues.

1 A few tips

1. If you do not really understand what you are supposed to do, please consider asking
about it in the office hours. This is fairly common and it would be a pity if you drop
out just because you are a bit lost in the beginning. The project is probably quite
different from the courses you are used to.

2. If you do not really know where to start, you might want to read the “How to get
started”-section (Section 3).

3. Start with the simpler problems (in particular, the plan checking).
4. The assignment repository [AR] contains example files and example solutions that

you can use to test your implementation. It also contains a script for checking your
solutions for the example problems.

5. Finding plans is not easy. Here are a few tips to help you get started:
(a) Do not try to find optimal (shortest) plans. It is too difficult for the larger caves.
(b) A very simple starting point is to make a random plan: if you have a long sequence

of randomly selected instructions, it is probably a valid plan. Then you can try
to think of ways to make the generated plan shorter. You can also try to modify
the random generation in a way that it tends to select instructions that will lead
to a shorter plan. How could you identify “good instructions” to continue your
plan?

Copyright © 2021–2025 Jan Frederik Schaefer, Michael Kohlhase.



(c) Another starting point is to build up a plan step by step and always try to do
something that gets you a little closer to the goal (e.g. clean one more square).

(d) For problems with unknown initial states, you can start by finding a plan that
works for one particular initial state. Then you can add more actions to make it
work for another possible initial state and so on. Typically, a plan that works for
one initial state, will already clean many squares for other possible initial states.

6. Use your tools for checking plans to make sure that the plans you find are correct.
7. Efficiency matters for these problems, but you do not have to use an extremely fast

programming language (e.g. Python is completely sufficient). What really matters is
the asymptotic time complexity.

8. Implement a loop for solving all problem files (instead of manually changing the file
name in the code).

2 Common issues

Common problems in the submissions
1. The repository does not contain the solution files.
2. The repository does not contain the solution summary (see [SoS]).
3. The solution files are not in the correct format/have wrong file names.
4. The solution files contain mistakes (you generally do not get points for these).

Clarifications on common misconceptions
1. For problems where the initial state is unknown, the plan has to work for every possible

initial state.
2. We do not require your code to be very efficient. If it takes an hour to compute all the

solutions, that is okay with us.

3 How to get started (optional)

The “How to get started”-section is a new attempt to support students with less programming
experience. Concretely, we want to guide you with a series of comments and questions
towards a (partial) solution and give you an idea how larger programming problems can be
tackled. If you think that you do not need it, you can simply ignore it.

2



Please let us know if you find this section useful (then we might provide it in future
assignments as well)! We also appreciate if you suggest improvements.

3.1 How to use this section?

This section poses a lot of questions. You should try to think about them for yourself and
implement some code for it – our hope is that that process will help you get started.

For example, if there is a question “what squares are adjacent to ⟨3, 5⟩?” you could create
the following (Python) code:

def get_neighbours(x, y):
return [(x+1, y), (x-1, y), (x, y-1), (x, y+1)]

print(get_neighbours(3, 5))

Of course there are many other ways (e.g. creating a Square class with a get_neighbours
method). However, doing

print([(4, 5), (2, 5), (3, 4), (3, 6)]

or

print([(3+1, 5), (3-1, 5), (3, 5-1), (3, 5+1)])

would not be enough because it does not solve the problem of finding adjacent squares in
general.

Usually, it is a good idea to test your implementations with more examples to make sure
that you cover all the cases. We tend to intentionally skip over special cases so that you will
discover them at some point yourself, which we consider a valuable teaching moment.

3.2 Overall approach

There are different ways to approach an assignment like this one. Here, we will first load the
data from a problem file and afterwards try to work on the actual problem solving.

Another option would be to hard-code a map and a plan in the source code and implement
the problem solving part before trying to actually load problem files.

3.3 Loading a problem file

Goal: load the data from a problem file into a representation that is easy to work with. The
format of a problem file is described in the assignment sheet. “Inspirational” questions and

3



comments for you to think about and write some code for (see also Section 3.1):
1. Does problem_a_04.txt1 require you to check a plan or to find one? (check the first

line, and remember that you should create code for answering the question)
2. What is the plan that has to be checked in problem_a_03.txt?
3. What is the text representation of the map in problem_a_03.txt? (This could e.g. be

a string or a list of strings.)
4. Try to think of a good way to represent the map. There are many ways to do this.

You could even keep it as a string.
5. Load the map from problem_a_05.txt into that representation.
6. Is square ⟨4, 2⟩ from problem_a_05.txt blocked? (Test this thoroughly by checking

more squares – if you make a mistake, it might get very confusing later on.)
7. Design your code in a way that it is very easy to check if a square ⟨x, y⟩ is blocked (we

might have to do that a lot).
8. Does problem_a_08.txt have a starting position?
9. What are the coordinates of the starting position in problem_a_08.txt?
At this point you should be able to load a problem file with your code and access the

map data conveniently. With that in place, we can try to solve the first problem files.

3.4 Solving part a

Goal: solve the first problems. “Inspirational” questions and comments:
1. What square do I land on of if I walk N (north) from square ⟨2, 8⟩? (Try this with

other directions and make sure there are no bugs.)
2. Answer the same question for different squares, but this time use a map (e.g. from

problem_a_00.txt) and only change the position if the new square is free.
3. Make sure that everything from Section 3.3 is ready:

(a) What is the plan in problem_a_00.txt?
(b) What is the starting position in problem_a_00.txt?

4. What is the first instruction of the plan in problem_a_00.txt?
5. What happens after executing the first action of the plan in problem_a_00.txt?
6. What squares do you cover when following all the instructions of problem_a_00.txt?
7. What are the free squares in problem_a_00.txt?
8. Are all the free squares covered by the instructions in problem_a_00.txt?
1There is nothing special about problem_a_04.txt – it is just an example. Try out different problem files

and see if your code works for all of them. Same with all the other problems mentioned in this guide.

4



9. What squares are not covered by the instructions in problem_a_00.txt?
10. Create a solution file solution_a_00.txt for problem_a_00.txt (make sure you precisely

follow the specification for solution files from the assignment).

3.5 Automation

You should now be able to create solution files for the first problem files. If you haven’t done
so yet, it is a good idea to automate everything as much as possible. Basically, you want to
have code that will automatically create all the solution files. You should not have to change
file paths in your script to solve different problems or manually copy-paste the output into
a solution file.

The assignment repository contains example problems files with their solutions. You can
use that for debugging and testing your code. It also has a script for checking whether
solutions for the example problems are correct. We strongly recommend that you use your
code to create solutions for the example problems and check them with the script.

3.6 Continuing

We will not provide detailed instructions for the next problems, but we hope that the previous
sections helped you get started. Section 1 might contain some helpful tips. If you feel like
you need some more guidance, you are invited to come to the office hours or ask in the
matrix room for this assignment.

References

[AR] Repository for Assignment 0 (Warm-Up, Variant B): Clean the Wumpus Cave. url:
https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a1.0.b-clean-wumpus-

cave/assignment.

[AS] Assignment 0 (Warm-Up, Variant B): Clean the Wumpus Cave. url: .pdf.

[SoS] Solution Summary. url: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/
general/-/blob/main/solution-summary.md.

5

https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a1.0.b-clean-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss25/a1.0.b-clean-wumpus-cave/assignment
.pdf
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

	A few tips
	Common issues
	How to get started (optional)
	How to use this section?
	Overall approach
	Loading a problem file
	Solving part a
	Automation
	Continuing


