
Assignment 0 (Warm-Up, Variant A): Find Back to the
Wumpus Cave

AI-2 Systems Project (Summer Semester 2024)
Jan Frederik Schaefer

Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: Basic probabilities
Due on: June 29, 2024
Version from: April 16, 2024
Author: Jan Frederik Schaefer
Important notes: To be solved individually

Earlier deadline for first results (see your solution repository)
Do not use someone else’s solution code (even as inspiration)
Ask for help if you are stuck (office hours, assignment room, . . .)
Every assignment has a guide with tips – you can find it at [AG]

1 Task summary

The Wumpus, a mythical creature that repeatedly shows up in the AI systems project, has
left its cave and got lost. Your task is to make a travel plan that will quickly get it back
to the cave. Your implementation will get different problem instances from the AISysProj
server and has to send back its travel plan. That lets the server evaluate your agent and
can help you with debugging. The assignment repository [AR] has a script that already
implements the server interaction for you.

Didactic objectives
1. Develop an algorithm to solve a non-trivial problem,
2. implement a small software project from scratch,
3. get hands-on experience working with basic concepts from probability theory,
4. get to know the AISysProj setup and workflows.

Prerequisites and useful methods

Copyright © 2021–2024 Jan Frederik Schaefer, Michael Kohlhase.

1. The basics of probability theory: condition probabilities, independence, expected val-
ues, Bayes’ rule, . . .

2 Navigating the Wumpus world

The Wumpus got lost. Your task is to implement an AI agent that makes a plan for it to get
back to the Wumpus cave. We have a server to help evaluate your agent. It will send you
a map along with some other information and your agent will have to respond with a plan
to find back to the cave.1 The server has different environments, corresponding to different
difficulty levels. For the easier environments, not everything mentioned in this section is
relevant.

2.1 Maps

Maps of the Wumpus world are encoded as a string, where each line corresponds to a row
of cells and each character describes the properties of an individual cell. Here is an example
map:

BWCCP

BWWMM

PCPCM

MWBPM

WMMMM

We have the following cell types:
• M: Meadows.
• B: Trees (broad-leaf).
• C: Trees (coniferous).
• P: Pits.
• W: Wumpus cave entrance. Your goal is to reach one of those.

We assume that everything outside the map are meadows (M).
1The server part may seem daunting, but we provide an example implementation in Python. All you

have to then do is implement a function.

2

2.2 Observations

We do not know where the Wumpus is (after all, the Wumpus got lost). Therefore, we
assume that, a priori, the Wumpus is equally likely in any of the cells on the map. However,
the Wumpus can make some basic observations to narrow down the possibilities:

• It observes what type of cell it currently is in (M or B or . . .). Unfortunately, the
Wumpus has bad vision and misidentifies trees 20% of the time (i.e. if the Wumpus is
in a B cell, there is a 20% chance that it instead thinks it is a C cell and vice versa).

• In the more advanced environments, the Wumpus may perceive an echo if there are
pits nearby. If the Wumpus is in a pit, it will always perceive an echo. If there is
no pit anywhere, the Wumpus will never perceive an echo. Otherwise, the Wumpus
will perceive an echo with a probability of 1/d2, where d is the Euclidean distance to
the nearest pit (measured in cells, and we measure from cell center to cell center). For
example, if nearest pit is one cell east and two cells north of the Wumpus, the Wumpus
will perceive an echo with a probability of 20% as d =

√
12 + 22.

2.3 Plans

Your task is to make a plan for the Wumpus. A plan is a sequence of actions of the form
GO [north|east|south|west]. For each action, the Wumpus goes one cell in the indicated
direction. Note that the world is not limited to the map and the Wumpus can go to cells
outside the map (recall that every cell outside the map is a meadow).

Ideally, the Wumpus reaches one of the Wumpus cave entrances while following the plan.
How long it takes for the Wumpus to reach the entrance depends on the cell types. We
assume that the Wumpus starts in the center of a cell and only has to reach the edge of a
cell with a cave entrance. Usually, crossing a complete cell takes 1 hour. However, climbing
out of a pit takes 4 hours (but entering a pit does not take any time at all).

Let us consider the following map as an example:

CW

MP

If the Wumpus is initially in the M cell and follows the plan GO east, GO north, then it will
have to cross 1

2
of the M cell (as it starts in the center), which takes 0.5 hours. It will then

have to climb out of the pit to reach the edge of the W cell, which takes 4 hours. So it will
take 0.5 + 4 = 4.5 hours in total.

3

If the Wumpus is initially in the P cell and follows the plan GO north, then it will have
to climb out of the pit to reach the edge of the W cell, which takes 4 hours. So when starting
in the pit, it will still take the full 4 hours to get out (even though we start in the center of
the cell).

To make the assignment easier, we have a maximum time M for each environment. If
reaching a cave entrance takes longer than M (or the plan finishes before an entrance has
been reached), then we instead assume that the time is M .

3 Evaluation on the server

You should evaluate your implementation with the AISysProj server: https://aisysproj.
kwarc.info/. You will get JSON requests from the server and have to respond with your
plan. For example, a request could have the following content (in this assignment you can
ignore the initial-equipment):

{

"map": "BWCCP\nBWWMM\nPCPCM\nMWBPM\nWMMMM",

"observations": {"echo": true, "current-cell": "M"},

"initial-equipment": [],

"max-time": 6

}

Your agent should then respond with a plan and the expected time until a Wumpus cave is
reached:

{"actions": ["GO␣west", "GO␣north", "GO␣south"], "expected-time": 5.016129032258064}

The server remembers your last 1000 responses and computes the average expected time to
rate your agent (the lower, the better). If you submit the wrong expected-time, the server
will instead use max-time. However, afterwards you can see the problem on the server with
the correct expected time and some other information that could help you with debugging.

The server has different environments that you can use (some are easier than others).
Your repository for this assignment will contain one configuration file for each environment,
which contains, among other things, your agent name and a password. The assignment
repository [AR] contains an example implementation in Python along with instructions on
how to use it, so that you do not have to worry about the technical aspects of communicating
with the server. If you want to use a different programming language, you can find the

4

https://aisysproj.kwarc.info/
https://aisysproj.kwarc.info/

protocol specification at ??. We are happy to help you with implementing it if you are
prepared to donate your code for others.

4 What to submit

Your solution should be pushed to your git repository for this assignment. For this warm-up
assignment, we have an early deadline. At this deadline, the repository should contain all the
code you have so far. It should be enough to get at least 1 point in one of the environments
on the server. Otherwise, we might assume that you are not actually interested in the project
and give your spot to someone else.

Your grade will be based on your final submission (deadline: June 29, 2024). Concretely,
your repository should contain:

1. all your code for solving this assignment,
2. a README.md file explaining

i. dependencies (programming language, version, external libraries and how to get
them),

ii. how to run your code,
iii. the repository structure,
iv. anything else we should know,

3. a solution summary (see [SoS] for more details – it should describe the main ideas, not
document the code).

Furthoremore, you should run your code so that the server has an evaluation for your agent.

5 Points and environments

The total number of points for this assignment is 100. You can get up to 20 points for the
quality of the submission (README, evaluation, ...). Furthermore, you can get up to 80
points for the performance of your agent according to the server. Each environment allows
you to get a certain numbers of points if your agent performs well enough. When grading,
we will only consider the environment in which you would get most points (we do not add
up results from different environments). That means that you do not have to run your code
on every environment and you can get full points if you only run it on the most difficult one
where you can get up to 80 points.

5

Note: It is okay if your agent is a bit “lucky” and gets a slightly higher rating than it
usually does. We will use the best rating on the server for your grade, assuming that we can
reproduce a similar performance (i.e. if you get a 5.39 rating on the server and we get a 5.48
rating that is okay – but if you get a 5.39 rating on the server and we get a 6.79 rating when
testing it, we might ask some questions).

Below is a table that summarizes the properties of the different environments and how
many points you can get for each. For each environment, you have a config file.

Config file Map size Cells Max. time Equipment Observations Points

env-1.json 5× 5 M P 2 – current-cell


0 if rating > 1.9

20 if rating ≤ 1.9

30 if rating ≤ 1.6

env-2.json 5× 5 B M P 6 – current-cell


0 if rating > 4.5

25 if rating ≤ 4.5

40 if rating ≤ 3.5

env-3.json 5× 5 B M P 6 – current-cell, echo


0 if rating > 4.5

40 if rating ≤ 4.5

50 if rating ≤ 3.5

env-4.json 5× 5 B C M P 6 – current-cell, echo


0 if rating > 4.5

45 if rating ≤ 4.5

55 if rating ≤ 3.5

env-5.json 15× 15 B C M P 24 – current-cell, echo



0 if rating > 18.0

55 if rating ≤ 18.0

75 if rating ≤ 16.5

80 if rating ≤ 15.0

References

[AG] Guide for “Assignment 0 (Warm-Up, Variant A): Find Back to the Wumpus Cave”.
url: https://kwarc.info/teaching/AISysProj/SS24/assignment- 2.0.A-
guide.pdf.

[AR] Repository for Assignment 0 (Warm-Up, Variant A): Find Back to the Wumpus Cave.
url: https://gitlab.rrze.fau.de/wrv/AISysProj/ss24/a2.0.a-find-wumpus-
cave/assignment.

[SoS] Solution Summary. url: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/
general/-/blob/main/solution-summary.md.

6

https://kwarc.info/teaching/AISysProj/SS24/assignment-2.0.A-guide.pdf
https://kwarc.info/teaching/AISysProj/SS24/assignment-2.0.A-guide.pdf
https://gitlab.rrze.fau.de/wrv/AISysProj/ss24/a2.0.a-find-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss24/a2.0.a-find-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

	Task summary
	Navigating the Wumpus world
	Maps
	Observations
	Plans

	Evaluation on the server
	What to submit
	Points and environments

