
— GUIDE —
Assignment 3: Solve Nonograms

AI-1 Systems Project (Summer Semester 2024)
Jan Frederik Schaefer

Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

This document is intended to help you solve the assignment “Assignment 3: Solve Nono-
grams” [AS]. You do not have to read it, but we do recommend to at least take a look at the
tips and common issues.

1 A few tips

1. As a starting point, you can focus on classical nonograms (rectangular grid and just
one non-background color). That should also get you many points already. When you
have a good understanding of how to solve them, moving on to the other nonograms
should be more manageable.

2. This assignment benefits from discussion. You should ask for help, e.g. at the office
hours or in the assignment room on Matrix – especially if you are stuck at the early
stages (which happens to many students).

3. Converting formulae to CNF efficiently takes a bit of practice. We have included some
tips and exercises in Section 4 to help you get started.

4. For debugging purposes, you might want to make your own, small nonograms (e.g.
2 × 2 or 2 × 3 rectangles). If the small nonograms work, but you still have problems
with the larger ones, debugging gets trickier. Here are two strategies for re-producing
bugs on a smaller problem if the nonogram is rectangular:
(a) Case 1: You do not have enough constraints, i.e. you find a solution that should

be impossible according to the clues. In this case, you can reduce the problem
to the problematic row/column. Let us assume that the issue is in a row. Then
you can make a new nonogram that only consists of that row, using the same row
clue, but enforcing the wrong solution with custom column hints. This should be
unsatisfiable, but (because of the bug), you should get a solution anyway. You can

Copyright © 2021–2024 Jan Frederik Schaefer, Michael Kohlhase.



then carefully examine the solution and find out what constraint was missing/did
not work.

(b) Case 2: You have too many constraints, i.e. you do not find any solution, even
though the problem should be solvable. This strategy requires you to know the
correct solution. You can test each row/column separately. To test a row, you
provide the row clue and use the column clues to enforce the correct solution. This
should be satisfiable, but for at least one row, or column, it should be unsatisfiable
because of the bug. Once you have identified the problematic row/column, you
can try to examine what constraint prevents the correct solution.

2 Common issues and misconceptions

1. For some approaches, it is very important that the conversion to CNF is efficient.
Section 4 contains some tips and exercises to help you get started. If you use a library,
it may use a less efficient conversion, which can lead to severe performance issues.

2. People usually expect that the SAT solver will be the bottleneck. But for very inefficient
encodings, it is more common that the encoder becomes the bottleneck. Additionally,
it appears that SAT solvers tend to process more compact encodings faster.

3. Section 3 sketches four very different approaches. A common misconception is that
approaches 2–4 are just different ways to generate the possible combinations for ap-
proach 1. That is not true: approaches 2–4 do not require to explicitly list all possible
combinations.

3 Encoding nonograms as SAT problems

In this section, we will sketch different ways how a traditional nonogram can be encoded has
a SAT problem. Some are easier to implement than others and some perform much better
than others (at least for large nonograms). For didactic reasons, we will leave the analysis
for you (see the assignment sheet) and only sketch the approaches.

As a running example, we will explore the encoding of a single clue, 2a 1a 2a for a 10-cell
row in a traditional (i.e. single-colored) nonogram. We will use the variables C1, . . . , C10 to
indicate for each cell if it should be colored. When we get a variable assignment from the
SAT solver, we can simply check what values are assigned to C1, . . . , C10 to know how we
should color the cells. The challenge is now to find a CNF formula that only allows variable

2



2a 1a 2a C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Figure 1: Running example for demonstrating the encodings. Ci indicates if the i-th cell
should be colored.

assignments that are compatible with the clue. The following subsections will sketch different
approaches to achieve this.

For a complete nonogram, we would have to encode all clues in the same way. (but of
course we have to be careful that we have a different color variable for each cell).

3.1 Approach 1: Listing possible arrangements

This is the most obvious approach and you will find similar solutions when searching for
“SAT-based nonogram solver” in the internet. In this approach, you simply list all the
possible arrangements and state that one of them must be true. The possible arrangements
for the example clue would be:

C1 C2 C4 C6 C7C3 C5 C8 C9 C10

C1 C2 C4 C7 C8C3 C5 C6 C9 C10

C1 C2 C4 C8 C9C3 C5 C6 C7 C10

etc.

We can easily express this as a DNF formula:

(C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ ¬C5 ∧ C6 ∧ C7 ∧ ¬C8 ∧ ¬C9 ∧ ¬C10)

∨ (C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ ¬C5 ∧ ¬C6 ∧ C7 ∧ C8 ∧ ¬C9 ∧ ¬C10)

∨ (C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ ¬C5 ∧ ¬C6 ∧ ¬C7 ∧ C8 ∧ C9 ∧ ¬C10)

∨ . . .

To convert the formula to CNF, it helps to introduce one helper variable for each arrangement
(see also Section 4.2).

3



3.2 Approach 2: Use variables to denote each block start

In the example clue, we have three blocks, which we will refer to as α, β and γ. We will
introduce variables Si

ξ for each ξ ∈ {α, β, γ} and i ∈ {1, . . . , 10} to indicate the ξ block starts
at cell i.

For example, in the arrangement

C2 C3 C6 C8 C9C1 C4 C5 C7 C10

the α block would start in cell 2, the β block in cell 6 and the γ block in cell 8. We would
therefore represent the arrangement as S2

α ∧ S6
β ∧ S8

γ (and all other Si
ξ would be false).

Now we have to do two things:
1. link the block starts to cell colors and
2. make sure that we only get valid combinations of block starts.

Linking block starts to cell colors We can link the block starts to cell colors with
simple implications. For example, if the α block starts at position 1, then cells 1 and 2 must
be colored (because, according to the clue, it is a block of length 2), i.e. S1

α ⇒ (C1 ∧ C2).
Similarly, S2

α ⇒ (C2 ∧ C3) etc. While such constraints make sure that all cells that belong
to a block are colored, we also need additional constraints to make sure that cells are only
colored if they belong to a block. For example, if cell 7 is colored, then it must be be part
of the the α block, the β block or the γ block1, which means that either the α block starts
at 6 or 7, or the β block starts at 7 or the γ block starts at 7:

(C7 ⇒ (S6
α ∨ S7

α ∨ S7
β ∨ S7

γ))

Valid combinations of block starts Making sure we only get valid combinations of
block starts is a bit trickier. First of all, we can use the exclusive or (⊕) to make sure that
each block has exactly one start:

S1
α ⊕ S2

α ⊕ S3
α ⊕ . . .

We can do the same for β and γ. The last step is now to make sure that the blocks are
appropriately spaced. There are different ways to do this, and we will sketch three variants.
You only need to implement one of them.

1Technically, it cannot be part of the α block. It is up to you whether you want to include “impossible”
block starts in your encoding or not.

4



Variant 1 – do not use Similarly to approach 1, we simply list all possible arrangements:

(S1
α ∧ S4

β ∧ S6
γ) ∨ (S1

α ∧ S4
β ∧ S7

γ) ∨ (S1
α ∧ S4

β ∧ S8
γ) ∨ (S1

α ∧ S4
β ∧ S9

γ) ∨ (S1
α ∧ S5

β ∧ S7
γ) ∨ . . .

Do not use this variant because it is basically the same as approach 1.

Variant 2 We make sure that if one block starts at a particular position, the next block
will start sufficiently late. For example, if the α block starts at position 1, then the β block
should start at position 4 or 5 or . . . :

(S1
α ⇒ (S4

β ∨ S5
β ∨ . . .))

∧ (S2
α ⇒ (S5

β ∨ S6
β ∨ . . .))

∧ . . .

∧ (S1
β ⇒ (S3

γ ∨ S4
γ ∨ . . .))

∧ (S2
β ⇒ (S4

γ ∨ S5
γ ∨ . . .))

∧ . . .

Note: It’s a design choice whether you want to create impossible block starts like S1
β (the

SAT solver would probably discard them very quickly).

Variant 3 We make sure that if one block starts at a particular position, the next block
will not start too early. For example, if the α block starts at position 1, then the β block
should not start at position 1 or 2 or 3:

(S1
α ⇒ (¬S1

β ∧ ¬S2
β ∧ ¬S3

β))

∧ (S2
α ⇒ (¬S1

β ∧ ¬S2
β ∧ ¬S3

β ∧ ¬S4
β))

∧ . . .

∧ (S1
β ⇒ (¬S1

γ ∧ ¬S2
γ))

∧ (S2
β ⇒ (¬S1

γ ∧ ¬S2
γ ∧ ¬S3

γ))

∧ . . .

5



3.3 Approach 3: Enclose blocks

Like in approach 2, we will name the three blocks in the clue α, β and γ. For each block
ξ ∈ {α, β, γ} and each cell i ∈ {1, . . . , 10} we will now introduce two variables: Ai

ξ and Bi
ξ.

Ai
ξ indicates that the block ξ starts after cell i and Bi

ξ indicates that the block ξ ends before
cell i. For example, the arrangement

C2 C3 C6 C8 C9C1 C4 C5 C7 C10

would be encoded as

A1
α ∧ ¬A2

α ∧ ¬A3
α ∧ ¬A4

α ∧ ¬A5
α ∧ ¬A6

α ∧ ¬A7
α ∧ ¬A8

α ∧ ¬A9
α ∧ ¬A10

α

∧ ¬B1
α ∧ ¬B2

α ∧ ¬B3
α ∧B4

α ∧B5
α ∧B6

α ∧B7
α ∧B8

α ∧B9
α ∧B10

α

∧ A1
β ∧ A2

β ∧ A3
β¬A4

β ∧ A5
β ∧ ¬A6

β ∧ ¬A7
β ∧ ¬A8

β ∧ ¬A9
β ∧ ¬A10

β

∧ . . .

Now, cell i should be colored if and only if it belongs to one of the blocks, i.e. if one of
the blocks does not start after i and does not end before i. So, in our example, we would
e.g. have for cell 5

C5 ⇔ ((¬A5
α ∧ ¬B5

α) ∨ (¬A5
β ∧ ¬B5

β) ∨ (¬A5
γ ∧ ¬B5

γ))

We also put some basic constraints on our A and B variables. If a block starts after cell
i, it also starts after cell i− 1, i.e.

(A2
α ⇒ A1

α) ∧ (A3
α ⇒ A2

α) ∧ (A4
α ⇒ A3

α) ∧ . . . ∧ (A2
β ⇒ A1

β) ∧ (A3
β ⇒ A2

β) ∧ (A4
β ⇒ A3

β) ∧ . . .

We can treat the B variables analogously. As “⇒” is transitive, the above formula also
implies e.g. A4

α ⇒ A2
α.

At last, we also have to make sure that the blocks have the right length. For example,
the α block should have length 2 according to the clue. This means that if the block does
not start after i (i.e. it starts at i or before i), then it should end before i + 2. Concretely,
that gives us

((¬A1
α) ⇒ B3

α) ∧ ((¬A2
α) ⇒ B4

α) ∧ ((¬A3
α) ⇒ B5

α) ∧ . . .

6



3.4 Approach 4: Make an automaton

In this approach, we will effectively create something like a finite automaton2. The input is
a sequence of cell colors and the automaton will only accept sequences that match the clue.
Each state intuitively describes the role of the previously entered cell. For the example clue,
we would have the following states (again calling the 3 blocks α, β and γ):

State Role of previously entered cell
S Cell before the first (α) block
α1 First cell of the α block
α2 Second cell of the α block
Gαβ Cell in the gap between the α and the β block.
β1 First cell of the β block
Gβγ Cell in the gap between the β and the γ block.
γ1 First cell of the γ block
γ2 Second cell of the γ block
E Cell after the γ block

Writing c for a colored cell and ¬c for an uncolored cell, the full automaton is:

S α1 α2 Gαβ β1 Gβγ γ1 γ2 E

¬c

c c ¬c

¬c

c ¬c

¬c

c c ¬c

¬c

The automaton starts in state S and accepts the input if it ends up in state γ2 or E. It
would, for example, accept the sequence ¬c, c, c,¬c,¬c, c,¬c, c, c,¬c, which corresponds to
the arrangement

C2 C3 C6 C8 C9C1 C4 C5 C7 C10

The state sequence for that input is S, α1, α2, Gαβ, Gαβ, β1, Gβγ, γ1, γ2, E. An input start-
ing with c, c, c (which is not allowed according to the clue) would get rejected because a c
input is not allowed in state α2.

To represent the automaton in propositional logic, we will introduce variables Σi indi-
cating that we are in state Σ after processing the input until (and including) cell i. For

2For simplicity, we do not exactly follow the traditional definition of a deterministic finite automaton. In
particular, the transition function is not total.

7



example, if the first cell is colored (C1 is true), then we will be in state α1 after processing it.
If it is not colored, on the other hand, we will remain in state S. That gives us the following
formulae:

C1 ⇒ α1
1

¬C1 ⇒ S1

If we are now in state S (i.e. S1 is true), then, depending on the next cell color, we will either
end up in state S or α1:

(S1 ∧ ¬C2) ⇒ S2

(S1 ∧ C2) ⇒ α1
2

But if we were in state α1 (i.e. α1
1 is true), then the next cell has to be colored (C2 must be

true) and we will end up in state α2:

α1
1 ⇒ C2 ∧ α2

2

Here are the formulae for cell 3:

(S2 ∧ ¬C3) ⇒ S3

(S2 ∧ C3) ⇒ α1
3

α1
2 ⇒ (C3 ∧ α2

3)

α2
2 ⇒ (¬C3 ∧Gαβ

3 )

We can do the same for the remaining cells. However, we must ensure that, after processing
the last cell (cell 10), we are in state γ2 or E, so we should add one more constraint:

γ210 ∨ E10

Note: If you also support impossible states in your encoding (e.g. γ11), you might have
to add additional constraints to make sure that the automaton will only be in one state

8



at each cell. Otherwise, your automaton might end up in two states simultaneously for a
cell (one valid and one impossible), and then continue with the impossible state to reach an
impossible terminal state. A better approach would be to exclude any impossible states in
the first place.

4 Translating to CNF: Tips and exercises

SAT solvers expect formulae in CNF. When you try to encode the nonogram as a SAT
problem, you might come up with formulae that are not in CNF. To help you get started, we
thought it might be useful if we list some formulae for you to convert to CNF as an exercise.
Your conversions should be efficient (otherwise, your nonogram encoding might not scale).

4.1 Exercises

Here are some formulae for you to convert to CNF in increasing difficulty:
1. A⇒ B

2. A⇒ (B ∨ C)
3. A⇔ B

4. (¬A) ⇒ (B ∨ ¬C ∨D)

5. A⇒ (B ∧ C)
6. A⇒ (B ∧ C ∧D ∧ E)
7. (A ∧B) ⇒ C

8. (A ∧B ∧ C ∧D) ⇒ E

9. (A ∧B ∧ C ∧D) ⇒ (E ∨ F ∨G)
For the following formulae, it helps to introduce helper variables (see also next section):

1. (A ∨B ∨ C ∨D) ⇒ (E ∧ F ∧G ∧H)

2. (A ∧B ∧ C) ∨ (D ∧ E ∧ F ) ∨ (G ∧H ∧ I)

4.2 Using helper variables

Sometimes, it is helpful to introduce further helper variables to make the translation more
efficient. For example, the formula φ := (X∧Y )∨Z could be translated to the CNF formula
ψ := (A ∨ Z) ∧ (¬A ∨X) ∧ (¬A ∨ Y ). While φ and ψ are technically not equivalent, they
are equisatisfiable. More concretely: for any assignment that satisfies φ, we can find an

9



assignment that also satisfies ψ. Furthermore, any assignment that satisfies ψ also satisfies
φ.

To show you a more relevant example, let us consider the formula

(X1 ∨X2 ∨X3 ∨X4) ⇒ (Y1 ∧ Y2 ∧ Y3 ∧ Y4)

We can see that whenever X1 is true, Y1 must also be true (X1 ⇒ Y1). Similarly, X1 ⇒ Y2,
X1 ⇒ Y3 and X1 ⇒ Y4. Furthermore, X2 ⇒ Y1 and so on. Since A ⇒ B is the same as
¬A ∨B, we can translate the formula to the following CNF formula3:

(¬X1 ∨ Y1) ∧ (¬X1 ∨ Y2) ∧ (¬X1 ∨ Y3) ∧ (¬X1 ∨ Y4)∧

(¬X2 ∨ Y1) ∧ (¬X2 ∨ Y2) ∧ (¬X2 ∨ Y3) ∧ (¬X2 ∨ Y4)∧

(¬X3 ∨ Y1) ∧ (¬X3 ∨ Y2) ∧ (¬X3 ∨ Y3) ∧ (¬X3 ∨ Y4)∧

(¬X4 ∨ Y1) ∧ (¬X4 ∨ Y2) ∧ (¬X4 ∨ Y3) ∧ (¬X4 ∨ Y4)

This is not particularly efficient: If we generalize the original formula to (X1 ∨ . . . ∨Xn) ⇒
(Y1 ∧ . . . ∧ Yn), we would get n2 clauses. We can reduce this to 2n + 1 if we introduce two
helper variables, L and R, where L is intuitively the antecedent of the implication (the left
hand side) and R is the consequent (the right hand side). That lets us re-write the formula
as L ⇒ R. Now, if X1 is true, then the antecedent must be true, i.e. X1 ⇒ L. Similarly,
X2 ⇒ L and so on. And if the consequent, i.e. R, is true, then Y1 must be true (R ⇒ Y1).
Similarly, R ⇒ Y2 and so on. So we get the equisatisfiable formula4

(¬L ∨R)∧

(¬X1 ∨ L) ∧ (¬X2 ∨ L) ∧ (¬X3 ∨ L) ∧ (¬X4 ∨ L)∧

(¬R ∨ Y1) ∧ (¬R ∨ Y2) ∧ (¬R ∨ Y3) ∧ (¬R ∨ Y4)

This approach is similar to the Tseytin transformation (see e.g. [TT]).

3Actually, I only argued that the following formula must be true if the original formula is true. For
equivalence, we need the other direction as well. If you stare at it for a while, I hope that you would agree
that the other direction works as well.

4Like with the previous translation, we should make sure that the other direction works as well.

10


	A few tips
	Common issues and misconceptions
	Encoding nonograms as SAT problems
	Approach 1: Listing possible arrangements
	Approach 2: Use variables to denote each block start
	Approach 3: Enclose blocks
	Approach 4: Make an automaton

	Translating to CNF: Tips and exercises
	Exercises
	Using helper variables


