
Assignment 0 (Warm-Up, Variant A): Clean the
Wumpus Cave

AI-1 Systems Project (Summer Semester 2024)
Jan Frederik Schaefer

Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: Agents in AI, search
Due on: June 29, 2023
Version from: April 15, 2024
Author: Jan Frederik Schaefer
Important notes: To be solved individually

Earlier deadline for first results (see your solution repository)
Do not use someone else’s solution code (even as inspiration)
Ask for help if you are stuck (office hours, assignment room, . . .)
Every assignment has guide with tips – you can find it at [AG]

1 Task summary

A recurring theme in the AI lecture is the Wumpus world. The Wumpus is a mystical creature
that lives in a cave that is organized as a grid of squares. We want to clean the Wumpus
cave using a vacuum cleaner robot, which we can control with a sequence of instructions.
You have to implement two tasks:

1. Check if a sequence of instructions cleans the entire Wumpus cave.
2. Come up with a sequence of instructions yourself – the shorter, the better.

The assignment repository [AR] contains files with problem representations that you have to
solve. Your grade will largely be based on those solutions (see Section 6). The assignment
repository also contains example solutions that you can use to test your implementation.

Didactic objectives
1. Develop an algorithm to solve a non-trivial problem,
2. implement a small software project from scratch,
3. get hands-on experience with a search problem,
4. improve the efficiency of an algorithm,

Copyright © 2021–2024 Jan Frederik Schaefer, Michael Kohlhase.

XXXXXXXXXXXXXXXXXX
XXXXXXX XXXXXXXXX
XXX XX XXXXXXXXX
XX XXXXXX
X X P XXXX
X S XXXX
XX XX XXXX
XX XXX P XXXX
XXX X XXX XXXX
XXXXX XXXXXXXX
XXXXX XXXXXXXXXXX
XXXXXXXXXXXXXXXXXX

X
⟨0, 0⟩

X
⟨0, 1⟩

X
⟨0, 2⟩

X
⟨0, 3⟩

X
⟨0, 4⟩

X
⟨0, 5⟩

X
⟨0, 6⟩

X
⟨0, 7⟩

X
⟨0, 8⟩

X
⟨0, 9⟩

X
⟨0, 10⟩

X
⟨0, 11⟩

X
⟨1, 0⟩

X
⟨1, 1⟩

X
⟨1, 2⟩

X
⟨1, 3⟩

⟨1, 4⟩

⟨1, 5⟩

X
⟨1, 6⟩

X
⟨1, 7⟩

X
⟨1, 8⟩

X
⟨1, 9⟩

X
⟨1, 10⟩

X
⟨1, 11⟩

X
⟨2, 0⟩

X
⟨2, 1⟩

X
⟨2, 2⟩

⟨2, 3⟩

⟨2, 4⟩

⟨2, 5⟩

⟨2, 6⟩

⟨2, 7⟩

X
⟨2, 8⟩

X
⟨2, 9⟩

X
⟨2, 10⟩

X
⟨2, 11⟩

X
⟨3, 0⟩

X
⟨3, 1⟩

⟨3, 2⟩

⟨3, 3⟩

X
⟨3, 4⟩

⟨3, 5⟩

⟨3, 6⟩

⟨3, 7⟩

⟨3, 8⟩

X
⟨3, 9⟩

X
⟨3, 10⟩

X
⟨3, 11⟩

X
⟨4, 0⟩

X
⟨4, 1⟩

X
⟨4, 2⟩

⟨4, 3⟩

⟨4, 4⟩

⟨4, 5⟩

⟨4, 6⟩

⟨4, 7⟩

X
⟨4, 8⟩

X
⟨4, 9⟩

X
⟨4, 10⟩

X
⟨4, 11⟩

X
⟨5, 0⟩

X
⟨5, 1⟩

X
⟨5, 2⟩

⟨5, 3⟩

⟨5, 4⟩

⟨5, 5⟩

⟨5, 6⟩

⟨5, 7⟩

⟨5, 8⟩

⟨5, 9⟩

⟨5, 10⟩

X
⟨5, 11⟩

X
⟨6, 0⟩

X
⟨6, 1⟩

⟨6, 2⟩

⟨6, 3⟩

⟨6, 4⟩

⟨6, 5⟩

X
⟨6, 6⟩

X
⟨6, 7⟩

X
⟨6, 8⟩

⟨6, 9⟩

⟨6, 10⟩

X
⟨6, 11⟩

X
⟨7, 0⟩

⟨7, 1⟩

⟨7, 2⟩

⟨7, 3⟩

⟨7, 4⟩

⟨7, 5⟩

X
⟨7, 6⟩

X
⟨7, 7⟩

X
⟨7, 8⟩

⟨7, 9⟩

X
⟨7, 10⟩

X
⟨7, 11⟩

X
⟨8, 0⟩

⟨8, 1⟩

⟨8, 2⟩

⟨8, 3⟩

P
⟨8, 4⟩

⟨8, 5⟩

⟨8, 6⟩

X
⟨8, 7⟩

X
⟨8, 8⟩

⟨8, 9⟩

X
⟨8, 10⟩

X
⟨8, 11⟩

X
⟨9, 0⟩

X
⟨9, 1⟩

X
⟨9, 2⟩

⟨9, 3⟩

⟨9, 4⟩

⟨9, 5⟩

⟨9, 6⟩

⟨9, 7⟩

⟨9, 8⟩

⟨9, 9⟩

X
⟨9, 10⟩

X
⟨9, 11⟩

X
⟨10, 0⟩

X
⟨10, 1⟩

X
⟨10, 2⟩

⟨10, 3⟩

⟨10, 4⟩

⟨10, 5⟩

⟨10, 6⟩

⟨10, 7⟩

⟨10, 8⟩

X
⟨10, 9⟩

X
⟨10, 10⟩

X
⟨10, 11⟩

X
⟨11, 0⟩

X
⟨11, 1⟩

X
⟨11, 2⟩

⟨11, 3⟩

⟨11, 4⟩

⟨11, 5⟩

⟨11, 6⟩

P
⟨11, 7⟩

⟨11, 8⟩

X
⟨11, 9⟩

X
⟨11, 10⟩

X
⟨11, 11⟩

X
⟨12, 0⟩

X
⟨12, 1⟩

X
⟨12, 2⟩

X
⟨12, 3⟩

⟨12, 4⟩

S
⟨12, 5⟩

⟨12, 6⟩

⟨12, 7⟩

⟨12, 8⟩

X
⟨12, 9⟩

X
⟨12, 10⟩

X
⟨12, 11⟩

X
⟨13, 0⟩

X
⟨13, 1⟩

X
⟨13, 2⟩

X
⟨13, 3⟩

⟨13, 4⟩

⟨13, 5⟩

⟨13, 6⟩

⟨13, 7⟩

⟨13, 8⟩

X
⟨13, 9⟩

X
⟨13, 10⟩

X
⟨13, 11⟩

X
⟨14, 0⟩

X
⟨14, 1⟩

X
⟨14, 2⟩

X
⟨14, 3⟩

X
⟨14, 4⟩

X
⟨14, 5⟩

X
⟨14, 6⟩

X
⟨14, 7⟩

X
⟨14, 8⟩

X
⟨14, 9⟩

X
⟨14, 10⟩

X
⟨14, 11⟩

X
⟨15, 0⟩

X
⟨15, 1⟩

X
⟨15, 2⟩

X
⟨15, 3⟩

X
⟨15, 4⟩

X
⟨15, 5⟩

X
⟨15, 6⟩

X
⟨15, 7⟩

X
⟨15, 8⟩

X
⟨15, 9⟩

X
⟨15, 10⟩

X
⟨15, 11⟩

X
⟨16, 0⟩

X
⟨16, 1⟩

X
⟨16, 2⟩

X
⟨16, 3⟩

X
⟨16, 4⟩

X
⟨16, 5⟩

X
⟨16, 6⟩

X
⟨16, 7⟩

X
⟨16, 8⟩

X
⟨16, 9⟩

X
⟨16, 10⟩

X
⟨16, 11⟩

X
⟨17, 0⟩

X
⟨17, 1⟩

X
⟨17, 2⟩

X
⟨17, 3⟩

X
⟨17, 4⟩

X
⟨17, 5⟩

X
⟨17, 6⟩

X
⟨17, 7⟩

X
⟨17, 8⟩

X
⟨17, 9⟩

X
⟨17, 10⟩

X
⟨17, 11⟩

Figure 1: An example map of the Wumpus cave with the starting position marked at ⟨12, 5⟩
and two portals marked with Ps. The text representation (left) is used in the problem files.

5. get to know the AISysProj setup and workflows.

Prerequisites and useful methods
1. The basics of computer science and programming,
2. Search (in a very general sense).

2 Maps

You have a map of the Wumpus cave, which consists of 18× 12 squares. Figure 1 shows an
example map. Every square has coordinates associated with it. As is common in computer
science, the y-axis points down and the origin, ⟨0, 0⟩, is in the top-left square.

The properties of each square are represented by a single character:
1. Walls are marked with an X.
2. Empty squares are marked with a space.
3. The starting position of the vacuum cleaner (if it is known) is marked with an S.
4. Portals (if they exist) are marked with P.
The maps are stored in the problem files (see Section 4) using a text representation:

each row of the map corresponds to a line in the text representation and each square to a
character. Figure 1 shows an example map with both the text representation and a more
visual representation.

2

3 Plans and potentially missed squares

You can control the vacuum cleaner by making a plan, which is a sequence of instructions.
The following instructions are available:

1. N: The vacuum cleaner moves one square north (up).
2. E: The vacuum cleaner moves one square east (right).
3. S: The vacuum cleaner moves one square south (down).
4. W: The vacuum cleaner moves one square west (left).

We assume that the vacuum cleaner cleans every square it is on. If the instruction would
move the vacuum cleaner onto a wall, it will instead remain on its current square. If the
vacuum cleaner gets moved onto a portal square, it will immediately get teleported to the
other portal square (there should always be exactly 0 or 2 portals). Note that portals do not
have to get cleaned by the vacuum cleaner.

A good plan for the vacuum cleaner makes sure that everything gets cleaned. More
concretely, we are interested in the potentially missed squares, which might still be dirty
after executing the cleaning plan. To illustrate this, we will take a look at a few examples.

Example: Simple cave In this example, we will explore what happens if we execute the
plan EENS in the cave shown in Figure 2a. We start in ⟨2, 2⟩. After the instruction E, we
will be in ⟨3, 2⟩. Now there is a wall to the east, which means that we will stay in ⟨3, 2⟩ when
we try to go east again. Next, we go north (⟨3, 1⟩) and then south (⟨3, 2⟩ again). Therefore,
we will not have cleaned ⟨1, 1⟩, ⟨2, 1⟩ and ⟨1, 2⟩.

Example: Portals In this example, we will explore what happens if we execute the plan
EENSS in the cave shown in Figure 2b. We start at ⟨1, 2⟩. Going east, we land on the portal
at ⟨2, 2⟩, which immediately teleports us to ⟨3, 3⟩. Now there is a wall in the east, which
means that we will stay at ⟨3, 3⟩ for the next action. Then we go north (⟨3, 2⟩) and south
again, which means we will teleport from ⟨3, 3⟩ to ⟨2, 2⟩. Going south again, we land on
⟨2, 3⟩. Therefore, we will clean ⟨1, 2⟩, ⟨2, 3⟩ and ⟨3, 2⟩. We will miss the squares ⟨1, 3⟩ and
⟨3, 1⟩ (the portals do not have to be cleaned).

Example: Portals and unknown initial position In this example, we will explore
what happens if we execute the plan NS in the cave shown in Figure 2c. If we start at ⟨2, 3⟩,
we will miss ⟨3, 3⟩. If we start at ⟨3, 2⟩, we will also miss ⟨3, 3⟩. But if we start at ⟨3, 3⟩, we
will miss ⟨2, 3⟩. Therefore, the potentially missed squares are ⟨2, 3⟩ and ⟨3, 3⟩.

3

X
⟨0, 0⟩

X
⟨0, 1⟩

X
⟨0, 2⟩

X
⟨0, 3⟩

X
⟨0, 4⟩

X
⟨1, 0⟩

⟨1, 1⟩

⟨1, 2⟩

⟨1, 3⟩

X
⟨1, 4⟩

X
⟨2, 0⟩

⟨2, 1⟩

S
⟨2, 2⟩

X
⟨2, 3⟩

X
⟨2, 4⟩

X
⟨3, 0⟩

⟨3, 1⟩

⟨3, 2⟩

X
⟨3, 3⟩

X
⟨3, 4⟩

X
⟨4, 0⟩

X
⟨4, 1⟩

X
⟨4, 2⟩

X
⟨4, 3⟩

X
⟨4, 4⟩

(a) plan EENS

X
⟨0, 0⟩

X
⟨0, 1⟩

X
⟨0, 2⟩

X
⟨0, 3⟩

X
⟨0, 4⟩

X
⟨1, 0⟩

X
⟨1, 1⟩

S
⟨1, 2⟩

⟨1, 3⟩

X
⟨1, 4⟩

X
⟨2, 0⟩

X
⟨2, 1⟩

P
⟨2, 2⟩

⟨2, 3⟩

X
⟨2, 4⟩

X
⟨3, 0⟩

⟨3, 1⟩

⟨3, 2⟩

P
⟨3, 3⟩

X
⟨3, 4⟩

X
⟨4, 0⟩

X
⟨4, 1⟩

X
⟨4, 2⟩

X
⟨4, 3⟩

X
⟨4, 4⟩

(b) plan EENSS

X
⟨0, 0⟩

X
⟨0, 1⟩

X
⟨0, 2⟩

X
⟨0, 3⟩

X
⟨0, 4⟩

X
⟨1, 0⟩

X
⟨1, 1⟩

X
⟨1, 2⟩

X
⟨1, 3⟩

X
⟨1, 4⟩

X
⟨2, 0⟩

X
⟨2, 1⟩

P
⟨2, 2⟩

⟨2, 3⟩

X
⟨2, 4⟩

X
⟨3, 0⟩

P
⟨3, 1⟩

⟨3, 2⟩

⟨3, 3⟩

X
⟨3, 4⟩

X
⟨4, 0⟩

X
⟨4, 1⟩

X
⟨4, 2⟩

X
⟨4, 3⟩

X
⟨4, 4⟩

(c) plan NS

Figure 2: Example caves. The potentially missed squares are marked with diagonal lines
().

4 Problem and solution files

The assignment repository [AR] contains many problem files. Your implementation is
supposed to generate a solution file for each problem file. This section describes the format
of problem and solution files.

4.1 Checking plans

The easier problem files require you to check a cleaning plan. They begin with the line
CHECK PLAN, followed by a plan as described in Section 3, followed by the text representa-
tion of a map as described in Section 2.

If there are no potentially missed squares, the solution file should contain the text GOOD
PLAN. Otherwise, the solution file should contain the text BAD PLAN, followed by a list
of the potentially missed squares (the order does not matter). For example, if the squares
⟨2, 3⟩ and ⟨1, 5⟩ are potentially missed, the solution file should be

BAD PLAN
2, 3
1, 5

4.2 Finding plans

The more difficult problem files require you to find a cleaning plan. They begin with the
line FIND PLAN, followed by the text representation of a map. The solution file should then

4

contain the plan as described in Section 3.
If the format is not clear, you can take a look at the assignment repository [AR], which

contains example problems and solutions.

Important: The number of points for plan finding problems depends on the plan lengths
(see Section 6 for details).

5 What to submit

Your solution should be pushed to your git repository for this assignment. For this warm-up
assignment, we have an early deadline, which should be stated in the README of your
repository. At this deadline, the repository should contain:

1. all the code you have so far,
2. solutions to the problem_a_∗.txt files.

Otherwise, we might assume that you are not actually interested in the project and give
your spot to someone else.

Your grade will be based on your final submission (deadline: June 29, 2023). Concretely,
your repository should contain:

1. all your code for solving this assignment,
2. a README.md file explaining

i. dependencies how to run your code (programming language, version, external li-
braries and how to get them),

ii. the repository structure,
iii. how to run your code to solve other problems,
iv. anything else we should know,

3. a solution summary (see [SoS] for more details – it should describe the main ideas, not
document the code),

4. solution files (as described in Section 4) for the problem files. The solution file for
problem_X_YZ.txt should be called solution_X_YZ.txt.

6 Points

The total number of points for this assignment is 100.
Up to 80 points are awarded for the solutions to the problem files. Figure 3 shows how

many points can be achieved for each part. For the FIND PLAN problems, the number of

5

points depends on the total plan length T of your solutions, i.e. T is the sum of the lengths
of the plans you found for that part.

Note that partial points (for solving only part of a problem range correctly) are only
awarded in exceptional cases.

The remaining 20 points are awarded for the submission quality. The points are primarily
awarded for the solution summary (see [SoS]), but it also includes the README (instructions
on how we can run your code) and the overall organization of your repository (can we find
the files? are they in the correct format? etc.) Note that we do not grade the code quality
itself.

If the grading scheme doesn’t seem to work well, we might adjust it later on (likely in
your favor).

Important: You get points for correct solutions. You generally do not e.g. get partial
points for code that “looks roughly correct but produces wrong results”. The assignment
repository contains a script that you can use to check your solutions for the example
problems.

References

[AG] Guide for “Assignment 0 (Warm-Up, Variant A): Clean the Wumpus Cave”. url:
https://kwarc.info/teaching/AISysProj/SS24/assignment-1.0.A-guide.pdf.

[AR] Repository for Assignment 0 (Warm-Up, Variant A): Clean the Wumpus Cave. url:
https://gitlab.rrze.fau.de/wrv/AISysProj/ss24/a1.0.a-clean-wumpus-

cave/assignment.

[SoS] Solution Summary. url: https://gitlab.rrze.fau.de/wrv/AISysProj/admin/
general/-/blob/main/solution-summary.md.

6

https://kwarc.info/teaching/AISysProj/SS24/assignment-1.0.A-guide.pdf
https://gitlab.rrze.fau.de/wrv/AISysProj/ss24/a1.0.a-clean-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss24/a1.0.a-clean-wumpus-cave/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md
https://gitlab.rrze.fau.de/wrv/AISysProj/admin/general/-/blob/main/solution-summary.md

Problems Mode Challenges points
problem_a_∗.txt check — 10

problem_b_∗.txt check portals 10

problem_c_∗.txt check
unknown start position
portals

10

problem_d_∗.txt find —

15 if T ≤ 10000

10 if T ≤ 25000

5 if T ≤ 40000

0 if T > 40000

problem_e_∗.txt find portals

15 if T ≤ 15000

10 if T ≤ 25000

5 if T ≤ 40000

0 if T > 40000

problem_f_∗.txt find
unknown start position
portals

20 if T ≤ 10000

15 if T ≤ 15000

10 if T ≤ 25000

5 if T ≤ 40000

0 if T > 40000

Figure 3: Points per part.

7

	Task summary
	Maps
	Plans and potentially missed squares
	Problem and solution files
	Checking plans
	Finding plans

	What to submit
	Points

