
Assignment 3: Solve Nonograms
AI-2 Systems Project (Summer Semester 2023)

Jan Frederik Schaefer
Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Informatik

Topic: SAT Solvers
Due on: September 15, 2023
Version from: July 21, 2023
Author: Jan Frederik Schaefer

Summary Solve picture puzzles using a SAT solver. The puzzles are a generalization
of nonograms [WN], which are NP-complete logic puzzles originating in Japan. Besides
the traditional rectangular grids, we will also cover hexagonal grids. This assignment is
more work than the other assignments and is therefore worth more points than the usual
100. Furthermore, you are supposed to also compare different approaches (see Section 3 and
Appendix B).

Objectives
1. Gain some experience with encoding a problem as a SAT problem,
2. understand that/why some encodings scale better than others.

Prerequisites and useful methods
1. SAT solving (as discussed in the AI lecture, though you should use an existing solver,

i.e. the algorithms for SAT solving are not relevant),
2. Boolean/propositional logic (De Morgan’s law, material implication, DNF, CNF, . . . ).

Copyright © 2021–2023 Jan Frederik Schaefer, Michael Kohlhase.



Contents

1 Puzzle rules 3

2 Nonogram formats and SAT solvers 5
2.1 Puzzle Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Storing, visualizing and checking the results . . . . . . . . . . . . . . . . . . 5
2.3 Using SAT solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Comparing different approaches 7

4 Submission 7

5 A few tips 8

6 Points 9

A Translating to CNF: Tips and exercises (optional) 10
A.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.2 Using helper variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

B Encoding nonograms as SAT problems 11
B.1 Approach 1: Listing possible arrangements . . . . . . . . . . . . . . . . . . . 12
B.2 Approach 2: Use variables to denote each block start . . . . . . . . . . . . . 13
B.3 Approach 3: Enclose blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B.4 Approach 4: Make an automaton . . . . . . . . . . . . . . . . . . . . . . . . 15

2



a a

b a a

b b a a

b b a

1a 1a

1b 1a 1a

2b 1a 1a

1b 1b 1a

3b

1a

1b

2a

1b 4a

(a) Rectangular grid.

b b

b a a b

a c a

a a a a

1b 1b →

1b 2a 1b →

1a 1c 1a →

4a →

→

←
1a

←
2a

1b
←
1a

1c
1a

1b

←
3a

←
2b

←
1a

←
1b

2a←
1b

1a
1c

1a

←
3a

←
2b

(b) Hexagonal grid.

Figure 1: Two example generalized nonograms (solved).

1 Puzzle rules

The goal of a (generalized) nonogram is to color the cells of a grid using clues. A clue is a
sequence n1c1 . . . nkck, where ni are numbers and ci are color references. Each element nici

indicates a continuous block of ni cells of color ci. The blocks occur in the same order as
listed in the clue. Consecutive blocks of the same color must be separated by at least one
empty cell.

As an example, let us take a look at the third row of the example nonogram in Figure 1a.
We use letters (here a and b) to refer to colors. The clue 2b 1a 1a for the third row indicates
that it starts with a 2-cell block of color b (in this case blue), which is followed by two 1-
cell blocks of color a (black). Since the last two blocks have the same color, they must be
separated by at least one empty cell.

Sometimes, clues have incomplete information: It is possible that the length of a block
is not specified. Instead, a “+” is used to indicate that the block is at least of length 1.

Simplification: To make the assignment a bit easier, we will only use nonograms with 1
or 2 colors.

3



Puzzle: ... 1a 2b ...

CNF Formula: (¬X1 ∨ ¬X2) ∧ . . .

Variable Assignment: X1 7→ T,X2 7→ F, . . .

Coloring: ...-abb--...

Picture: a b b . . .

Encoder

SAT solver

Solution extractor

Visualizer

Figure 2: A sequence of steps to solve a nonogram using a SAT solver.

rect 4 5
#ffffff #333333 #6666ff
1a 1a
1b 1a 1a
2b 1a 1a
1b 1b 1a
3b
1a 1b
2a 1b

4a

hex 3
#ffffff #333333 #999900 #3333ff
1b 1b
1b 2a 1b
1a 1c 1a
4a

1a
2a 1b
1a 1c 1a 1b
3a
2b
1a
1b 2a
1b 1a 1c 1a
3a
2b

Listing 1: Encoding of the nonograms from Figure 1a (left) and Figure 1b (right).

4



2 Nonogram formats and SAT solvers

This section describes how generalized nonograms and their solutions should be represented.
We also discuss the basics of using a SAT solver. Figure 2 sketches the pipeline of a solver:
You start with an unsolved nonogram as an input (the format is specified in Section 2.1).
The main challenge for you will be to translate it into a CNF formula that can be solved
with a SAT solver. Appendix B sketches different ways how this can be done. A SAT solver
(Section 2.3) can provide a variable assignment that satisfies the formula. If you chose a
good encoding, it should be easy to infer a solution for the nonogram (i.e. a coloring) from
the variable assignment. Section 2.2 specifies a format for storing the solution so that it
can be checked automatically. In the following sections, we will explore these steps in more
detail.

2.1 Puzzle Format

Puzzles are represented as text files. First, the grid is described:
• Rectangular grids start with the line rect <height> <width>, where <height> is the

number of rows and <width> is the number of columns.
• Hexagonal grids start with the line hex <size>, where <size> indicates the side length

of the hexagon.
The second line lists the colors, starting with the background color, followed by the colors
that are afterwards referred to as a, b, c, etc.

Each of the remaining lines corresponds to a clue. For a rectangular grid, the row clues
are listed first, followed by the column clues. In a hexagonal grid, we have clues in three
directions (see Figure 1b). The file lists them counter-clockwise, starting with the top-left
corner (1b 1b in the example). Listing 1 shows the encodings of the example nonograms.

2.2 Storing, visualizing and checking the results

The solution of a nonogram should be represented as a text file. Each line describes the
coloring of one row of cells. Uncolored cells are represented with a - and colored cells with
the name of the color (a, b, . . . ). Listing 2 shows the solutions to the example nonograms
from Figure 1.

The assignment repository [AR] contains a script that you can use to check if the solutions
are correct. It also contains a script for visualizing the solution similar to the visualizations

5



-a--a
b-a-a
bba-a
b b-a

b-b
baab
-aca-
aaaa
---

Listing 2: Solution files for the nonograms from Figure 1a (left) and Figure 1b (right).

p cnf 3 2
1 2 0
-1 3 0

-1 2 -3

Listing 3: Encoding of (X1∨X2)∧(¬X1∨X3) (left) and the solution X1 = F,X2 = T,X3 = F

(right).

in Figure 1. More details are provided in the README of the assignment repository.

2.3 Using SAT solvers

To solve the nonograms, you should translate them into a SAT problem that can be solved
by off-the-shelf SAT solvers.

We will represent SAT problems using (a subset of) the DIMACS format, which is com-
monly used for SAT competitions. Listing 3 shows the encoding of an example formula. The
first line is always of the form p cnf <nvars> <nclauses>, where <nvars> is the number
of variables used and <nclauses> is the number of clauses. Each subsequent line encodes
one clause as a list of integers. Positive integers denote variables and negative integers their
negations (i.e. the literal Xi is denoted by i and the literal ¬Xi by −i). The end of a clause
is marked by a 0. Problems in that format can be solved by many SAT solvers, including
MiniSat [MS], which is relatively easy to use and install, and Kissat [KS], which has won
recent SAT competitions (see e.g. [S22]).

Variable assignments that satisfy the problem are also encoded as a list of integers, where
positive integers indicate variables that are true and negative integers indicate variables set
to false (see Listing 3 for an example). Both MiniSat and Kissat produce solutions in that
format.

6



3 Comparing different approaches

This assignment is a bit different from the other ones. Encoding the nonograms as a SAT
problem is not easy, especially if you are not used to working with a SAT solver. In the past,
students typically came up with a very inefficient encoding, which did not scale to larger
problems, and various optimizations could not improve the efficiency on a fundamental level.
To avoid this, we sketch different approaches how the nonograms can be encoded as a SAT
problem in Appendix B. We would like you to estimate how well these approaches would
scale to larger nonograms. You do not have to indicate a very precise complexity class for
each of them (that is a bit tricky in some cases, though it is great if you manage), but you
should determine which ones would scale better (and why). You should also implement two
of the approaches (for rectangular single-color nonograms) and measure how efficient they
are. The assignment repository [AR] contains nonograms of different sizes that you can use
for the measurements. If you come up with your own approach, you can of course implement
that one instead. You are also welcome to tweak the suggested approaches in any way you
see fit.

Your complexity estimates and measurements should be part of your evaluation. As this
makes the evaluation-part of the submission longer and more work, it will also be worth
more points (see Section 6).

4 Submission

At the deadline, we will download a snapshot of your repository. It should contain:
1. All your code.
2. Solutions to all the example nonograms in the assignment repository [AR]. That means

that you should have a solution file <name>.solution as described in Section 2.2 for
every problem <name>.clues.

3. A README file explaining how to run your code to solve a new nonogram.
4. An evaluation of your solution as a PDF that describes what worked well/didn’t work

well when you tried to solve the problem. In this case, it should also include estimates
of how efficient the different approaches explained in Appendix B are and a plot with
measurements for the efficiency of two different approaches (see Section 3). A typical
evaluation should be 1–3 pages long, but it is okay if your evaluation is much longer
(it would just be more work from you than we expect).

7



5 A few tips

1. For debugging purposes, you might want to make your own, small nonograms (e.g.
2 × 2 or 2 × 3 rectangles). If the small nonograms work, but you still have problems
with the larger ones, debugging gets trickier. Here are two strategies for re-producing
bugs on a smaller problem if the nonogram is rectangular:
(a) Case 1: You do not have enough constraints, i.e. you find a solution that should

be impossible according to the clues. In this case, you can reduce the problem
to the problematic row/column. Let us assume that the issue is in a row. Then
you can make a new nonogram that only consists of that row, using the same row
clue, but enforcing the wrong solution with custom column hints. This should be
unsatisfiable, but (because of the bug), you should get a solution anyway. You can
then carefully examine the solution and find out what constraint was missing/did
not work.

(b) Case 2: You have too many constraints, i.e. you do not find any solution, even
though the problem should be solvable. This strategy requires you to know the
correct solution. You can test each row/column separately. To test a row, you
provide the row clue and use the column clues to enforce the correct solution. This
should be satisfiable, but for at least one row, or column, it should be unsatisfiable
because of the bug. Once you have identified the problematic row/column, you
can try to examine what constraint prevents the correct solution.

2. As a starting point, you could focus on classical nonograms (rectangular grid and just
one non-background color). When you have a good understanding of how to solve
them, moving on to the other nonograms should be more manageable.

3. People usually expect that the SAT solver will be the bottleneck. But for very inefficient
encodings, it is more common that the encoder becomes the bottleneck. Additionally,
it appears that SAT solvers tend to process more compact encodings faster.

4. This assignment benefits from discussion. You should ask for help, e.g. at the office
hours or in the assignment room on Matrix – especially if you are stuck at the early
stages (which happens to many students).

5. Have a lot of fun :-)

8



6 Points

This assignment is worth 120 points. 90 points are awarded for the solutions to the nonograms
in the assignment repository. Concretely, you will get ⌈18

√
n⌉ points where n is the number

of correctly solved nonograms (there are 25 in total). The remaining 30 points are awarded
for the quality of your submission, the README, and the evaluation and comparison of
approaches (see Section 3).

If the grading scheme does not seem to work well, we might adjust it later on (likely in
your favor).

References

[AR] Repository for Assignment 3: Solve Nonograms. url: https://gitlab.rrze.fau.
de/wrv/AISysProj/ss23/a1.3-solve-nonograms/assignment.

[KS] Kissat SAT Solver. url: http://fmv.jku.at/kissat/ (visited on 01/18/2022).

[MS] The MiniSat Page. url: http://minisat.se/ (visited on 01/18/2022).

[S22] SAT Competition 2022: Results. url: https://satcompetition.github.io/2022/
results.html (visited on 07/21/2023).

[WN] Nonogram. url: https://en.wikipedia.org/wiki/Nonogram (visited on 01/18/2022).

9

https://gitlab.rrze.fau.de/wrv/AISysProj/ss23/a1.3-solve-nonograms/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss23/a1.3-solve-nonograms/assignment
http://fmv.jku.at/kissat/
http://minisat.se/
https://satcompetition.github.io/2022/results.html
https://satcompetition.github.io/2022/results.html
https://en.wikipedia.org/wiki/Nonogram


A Translating to CNF: Tips and exercises (optional)

SAT solvers expect formulae in CNF. When you try to encode the nonogram as a SAT
problem, you might come up with formulae that are not in CNF. To help you get started, we
thought it might be useful if we list some formulae for you to convert to CNF as an exercise.
Your conversions should be efficient (otherwise, your nonogram encoding might not scale).

A.1 Exercises

Here are some formulae for you to convert to CNF in increasing difficulty:
1. A⇒ B

2. A⇒ (B ∨ C)
3. A⇔ B

4. (¬A) ⇒ (B ∨ ¬C ∨D)

5. A⇒ (B ∧ C)
6. A⇒ (B ∧ C ∧D ∧ E)
7. (A ∧B) ⇒ C

8. (A ∧B ∧ C ∧D) ⇒ E

9. (A ∧B ∧ C ∧D) ⇒ (E ∨ F ∨G)
For the following formulae, it helps to introduce helper variables (see also next section):

1. (A ∨B ∨ C ∨D) ⇒ (E ∧ F ∧G ∧H)

2. (A ∧B ∧ C) ∨ (D ∧ E ∧ F ) ∨ (G ∧H ∧ I)

A.2 Using helper variables

Sometimes, it is helpful to introduce further helper variables to make the translation more
efficient. For example, the formula φ := (X∧Y )∨Z could be translated to the CNF formula
ψ := (A ∨ Z) ∧ (¬A ∨X) ∧ (¬A ∨ Y ). While φ and ψ are technically not equivalent, they
are equisatisfiable. More concretely: for any assignment that satisfies φ, we can find an
assignment that also satisfies ψ. Furthermore, any assignment that satisfies ψ also satisfies
φ.

To show you a more relevant example, let us consider the formula

(X1 ∨X2 ∨X3 ∨X4) ⇒ (Y1 ∧ Y2 ∧ Y3 ∧ Y4)

We can see that whenever X1 is true, Y1 must also be true (X1 ⇒ Y1). Similarly, X1 ⇒ Y2,
X1 ⇒ Y3 and X1 ⇒ Y4. Furthermore, X2 ⇒ Y1 and so on. Since A ⇒ B is the same as

10



¬A ∨B, we can translate the formula to the following CNF formula1:

(¬X1 ∨ Y1) ∧ (¬X1 ∨ Y2) ∧ (¬X1 ∨ Y3) ∧ (¬X1 ∨ Y4)∧

(¬X2 ∨ Y1) ∧ (¬X2 ∨ Y2) ∧ (¬X2 ∨ Y3) ∧ (¬X2 ∨ Y4)∧

(¬X3 ∨ Y1) ∧ (¬X3 ∨ Y2) ∧ (¬X3 ∨ Y3) ∧ (¬X3 ∨ Y4)∧

(¬X4 ∨ Y1) ∧ (¬X4 ∨ Y2) ∧ (¬X4 ∨ Y3) ∧ (¬X4 ∨ Y4)

This is not particularly efficient: If we generalize the original formula to (X1 ∨ . . . ∨Xn) ⇒
(Y1 ∨ . . . ∨ Yn), we would get n2 clauses. We can reduce this to 2n + 1 if we introduce two
helper variables L and R, where L is intuitively the antecedent of the implication (the left
hand side) and R is the consequent (the right hand side). That lets us re-write the formula
as L ⇒ R. Now, if X1 is true, then the antecedent must be true, i.e. X1 ⇒ L. Similarly,
X2 ⇒ L and so on. And if the consequent, i.e. R, is true, then Y1 must be true (R ⇒ Y1).
Similarly, R ⇒ Y2 and so on. So we get the equisatisfiable formula2

(¬L ∨R)∧

(¬X1 ∨ L) ∧ (¬X2 ∨ L) ∧ (¬X3 ∨ L) ∧ (¬X4 ∨ L)∧

(¬R ∨ Y1) ∧ (¬R ∨ Y2) ∧ (¬R ∨ Y3) ∧ (¬R ∨ Y4)

This approach is similar to the Tseytin transformation1. EdN:1

B Encoding nonograms as SAT problems

In this appendix, we will sketch different ways how a traditional nonogram can be encoded
has a SAT problem. Some are easier to implement than others and some perform much
better than others (at least for large nonograms). For didactic reasons, we will leave the
analysis for you (see Section 3) and only sketch the approach.

As a running example, we will explore the encoding of a single clue, 2a 1a 2a for a 10-cell
row in a traditional (i.e. single-colored) nonogram. We will use the variables C1, . . . , C10 to
indicate for each cell if it should be colored. When we get a variable assignment from the
SAT solver, we can simply check what values are assigned to C1, . . . , C10 to know how we

1Actually, I only argued that the following formula must be true if the original formula is true. For
equivalence, we need the other direction as well. If you stare at it for a while, I hope that you would agree
that the other direction works as well.

2Like with the previous translation, we should make sure that the other direction works as well.
1EdNote: cite

11



2a 1a 2a C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Figure 3: Running example for demonstrating the encodings. Ci indicates if the i-th cell
should be colored.

should color the cells. For a complete nonogram, we would have to encode all clues in the
same way (but of course we have to be careful that we have a different color variable for each
cell).

B.1 Approach 1: Listing possible arrangements

This is the most obvious approach and you will find similar solutions when searching for
“SAT-based nonogram solver”. In this approach, you simply list all the possible arrangements
and state that one of them must be true. The possible arrangements for the example clue
would be:

C1 C2 C4 C6 C7C3 C5 C8 C9 C10

C1 C2 C4 C7 C8C3 C5 C6 C9 C10

C1 C2 C4 C8 C9C3 C5 C6 C7 C10

. . .

We can easily express this as a DNF formula:

(C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ ¬C5 ∧ C6 ∧ C7 ∧ ¬C8 ∧ ¬C9 ∧ ¬C10)

∨ (C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ ¬C5 ∧ ¬C6 ∧ C7 ∧ C8 ∧ ¬C9 ∧ ¬C10)

∨ (C1 ∧ C2 ∧ ¬C3 ∧ C4 ∧ ¬C5 ∧ ¬C6 ∧ ¬C7 ∧ C8 ∧ C9 ∧ ¬C10)

∨ . . .

To convert the formula to CNF, it helps to introduce one helper variable for each arrangement
(see also Appendix A.2).

12



B.2 Approach 2: Use variables to denote each block start

In the example clue, we have three blocks, which we will refer to as α, β and γ. We will
introduce variables Si

ξ for each ξ ∈ {α, β, γ} and i ∈ {1, . . . , 10} to indicate the ξ block starts
at cell i.

For example, in the arrangement

C2 C3 C6 C8 C9C1 C4 C5 C7 C10

the α block would start in cell 2, the β block in cell 6 and the γ block in cell 8. We would
therefore represent the arrangement as S2

α ∧ S6
β ∧ S8

γ (and all other Si
ξ would be false). Now

we have to do two things:
1. link the block starts to cell colors and
2. make sure that we only get valid combinations of block starts.
We can link the block starts to cell colors with simple implications. For example, if the

α block starts at position 1, then cells 1 and 2 must be colored (because, according to the
clue, it is a block of length 2), i.e. S1

α ⇒ (C1 ∧ C2). Similarly, S2
α ⇒ (C2 ∧ C3) etc. While

such constraints make sure that all cells that belong to a block are colored, we also need
additional constraints to make sure that cells are only colored if they belong to a block.

Making sure we only get valid combinations of block starts is a bit trickier. First of all,
we can use the exclusive or (⊕) to make sure that each block has exactly one start:

S1
α ⊕ S2

α ⊕ S3
α ⊕ . . .

We can do the same for β and γ. The last step is now to make sure that the blocks are
appropriately spaced. There are different several ways to achieve this.

Variant 1 Similarly to approach 1, we simply list all possible arrangements:

(S1
α ∧ S4

β ∧ S6
γ) ∨ (S1

α ∧ S4
β ∧ S7

γ) ∨ (S1
α ∧ S4

β ∧ S8
γ) ∨ (S1

α ∧ S4
β ∧ S9

γ) ∨ (S1
α ∧ S5

β ∧ S7
γ) ∨ . . .

13



Variant 2 We make sure that if one block starts at a particular position, the next block
will start sufficiently late:

(S1
α ⇒ (S4

β ∨ S5
β ∨ . . .))

∧ (S2
α ⇒ (S5

β ∨ S6
β ∨ . . .))

∧ . . .

∧ (S1
β ⇒ (S3

γ ∨ S4
γ ∨ . . .))

∧ (S2
β ⇒ (S4

γ ∨ S5
γ ∨ . . .))

∧ . . .

Note: It’s a design choice whether you want to create impossible block starts like S1
β (the

SAT solver would probably discard them very quickly).

Variant 3 We make sure that if one block starts at a particular position, the next block
will not start too early:

(S1
α ⇒ (¬S1

β ∧ ¬S2
β ∧ ¬S3

β))

∧ (S2
α ⇒ (¬S1

β ∧ ¬S2
β ∧ ¬S3

β ∧ ¬S4
β))

∧ . . .

∧ (S1
β ⇒ (¬S1

γ ∧ ¬S2
γ))

∧ (S2
β ⇒ (¬S1

γ ∧ ¬S2
γ ∧ ¬S3

γ))

∧ . . .

B.3 Approach 3: Enclose blocks

Like in approach 2, we will name the three blocks in the clue α, β and γ. For each block
ξ ∈ {α, β, γ} and each cell i ∈ {1, . . . , 10} we will now introduce two variables: Ai

ξ and Bi
ξ.

Ai
ξ indicates that the block ξ starts after cell i and Bi

ξ indicates that the block ξ ends before
cell i. For example, the arrangement

C2 C3 C6 C8 C9C1 C4 C5 C7 C10

14



would be encoded as

A1
α ∧ ¬A2

α ∧ ¬A3
α ∧ ¬A4

α ∧ ¬A5
α ∧ ¬A6

α ∧ ¬A7
α ∧ ¬A8

α ∧ ¬A9
α ∧ ¬A10

α

∧ ¬B1
α ∧ ¬B2

α ∧ ¬B3
α ∧B4

α ∧B5
α ∧B6

α ∧B7
α ∧B8

α ∧B9
α ∧B10

α

∧ A1
β ∧ A2

β ∧ A3
β¬A4

β ∧ A5
β ∧ ¬A6

β ∧ ¬A7
β ∧ ¬A8

β ∧ ¬A9
β ∧ ¬A10

β

∧ . . .

Now, cell i should be colored if and only if it belongs to one of the blocks, i.e. if one of
the blocks does not start after i and does not end before i. So, in our example, we would
e.g. have for cell 5

C5 ⇔ ((¬A5
α ∧ ¬B5

α) ∨ (¬A5
β ∧ ¬B5

β) ∨ (¬A5
γ ∧ ¬B5

γ))

We also put some basic constraints on our A and B variables. If a block starts after cell
i, it also starts after cell i− 1, i.e.

(A2
α ⇒ A1

α) ∧ (A3
α ⇒ A2

α) ∧ (A4
α ⇒ A3

α) ∧ . . . ∧ (A2
β ⇒ A1

β) ∧ (A3
β ⇒ A2

β) ∧ (A4
β ⇒ A3

β) ∧ . . .

We can treat the B variables analogously. As “⇒” is transitive, the above formula also
implies e.g. A4

α ⇒ A2
α.

At last, we also have to make sure that the blocks have the right length. For example,
the α block should have length 2 according to the clue. This means that if the block does
not start after i (i.e. it starts at i or before i), then it should end before i + 2. Concretely,
that gives us

((¬A1
α) ⇒ B3

α) ∧ ((¬A2
α) ⇒ B4

α) ∧ ((¬A3
α) ⇒ B5

α) ∧ . . .

B.4 Approach 4: Make an automaton

In this approach, we will effectively create something like a finite automaton3. The input is
a sequence of cell colors and the automaton will only accept sequences that match the clue.
Each state intuitively describes the role of the previously entered cell. For the example clue,
we would have the following states (again calling the 3 blocks α, β and γ):

3For simplicity, we do not exactly follow the traditional definition of a deterministic finite automaton. In
particular, the transition function is not total.

15



State Role of previously entered cell color
S Cell before the first (α) block
α1 First cell of the α block
α2 Second cell of the α block
Gαβ Cell in the gap between the α and the β block.
β1 First cell of the β block
Gβγ Cell in the gap between the β and the γ block.
γ1 First cell of the γ block
γ2 Second cell of the γ block
E Cell after the γ block

Writing c for a colored cell and ¬c for an uncolored cell, the full automaton is:

S α1 α2 Gαβ β1 Gβγ γ1 γ2 E

¬c

c c ¬c

¬c

c ¬c

¬c

c c ¬c

¬c

The automaton starts in state S and accepts the input if it ends up in state γ2 or E. It
would, for example, accept the sequence ¬c, c, c,¬c,¬c, c,¬c, c, c,¬c, which corresponds to
the arrangement

C2 C3 C6 C8 C9C1 C4 C5 C7 C10

The state sequence for that input is S, α1, α2, Gαβ, Gαβ, β1, Gβγ, γ1, γ2, E. An input start-
ing with c, c, c (which is not allowed according to the clue) would get rejected because a c
input is not allowed in state α2.

To represent the automaton in propositional logic, we will introduce variables Σi indi-
cating that we are in state Σ after processing the input until (and including) cell i. For
example, if the first cell is colored (C1 is true), then we will be in state α1 after processing it.
If it is not colored, on the other hand, we will remain in state S. That gives us the following
formulae:

C1 ⇒ α1
1

¬C1 ⇒ S1

If we are now in state S (i.e. S1 is true), then, depending on the next cell color, we will either

16



end up in state S or α1:

(S1 ∧ ¬C2) ⇒ S2

(S1 ∧ C2) ⇒ α1
2

But if we were in state α1 (i.e. α1
1 is true), then the next cell has to be colored (C2 must be

true) and we will end up in state α2:

α1
1 ⇒ C2 ∧ α2

2

Here are the formulae for cell 3:

(S2 ∧ ¬C3) ⇒ S3

(S2 ∧ C3) ⇒ α1
3

α1
2 ⇒ (C3 ∧ α2

3)

α2
2 ⇒ (¬C3 ∧Gαβ

3 )

We can do the same for the remaining cells. However, we must ensure that, after processing
the last cell (cell 10), we are in state γ2 or E, so we should add one more constraint:

γ210 ∨ E10

17


	Puzzle rules
	Nonogram formats and SAT solvers
	Puzzle Format
	Storing, visualizing and checking the results
	Using SAT solvers

	Comparing different approaches
	Submission
	A few tips
	Points
	Translating to CNF: Tips and exercises (optional)
	Exercises
	Using helper variables

	Encoding nonograms as SAT problems
	Approach 1: Listing possible arrangements
	Approach 2: Use variables to denote each block start
	Approach 3: Enclose blocks
	Approach 4: Make an automaton


