Assignment 2: Play FAUhalma

AlI-1 Systems Project (Summer Semester 2023)
Jan Frederik Schaefer

Friedrich-Alexander-Universitédt Erlangen-Niirnberg, Department Informatik

Topic: Adversarial Search
Due on: July 28, 2023

Version from: June 14, 2023
Author: Jan Frederik Schaefer

1 Task Summary

Implement an agent for a variant of the game Sternhalma/Chinese checkers [CC|, which
we will call FAUhalma. For evaluation, your agent will compete on our server at https:

//aisysproj.kwarc.info.

e'e'o'oe!e!eo'e'o'o
o v AN

(r—(—C)
vavivisieivisar

Figure 1: Starting position for a game of FAUhalma with players A, B and C' (left) and an

illustration of the move rules (right).

Copyright (© 2021-2023 Jan Frederik Schaefer, Michael Kohlhase.

https://aisysproj.kwarc.info
https://aisysproj.kwarc.info

Didactic objectives
1. Gain some experience with implementing and adapting algorithms for adversarial
search,
2. learn how to work with a non-rectilinear grid,
3. get to know the JSON format (if you do not know it already).

Prerequisites and useful methods
1. Adversarial search (as discussed in the Al lecture),

2. search in general.

2 Rules of FAUhalma

FAUhalma is a 3-player game, modified from the original game Sternhalma/Chinese check-
ers [CC]| for AISysProj. Like the original, FAUhalma is played on a star-shaped board. Each
player has several pegs, which originally reside in the player’s starting corner. The goal of
each player is to move their pegs into the opposite corner (the home) as quickly as possible.
Figure 1 illustrates the starting position and the homes (shaded areas). Players take turns
counterclockwise. When it is their turn, a player moves one of their pegs by either moving it
to an adjacent space or by hopping over other pegs (see Figure 1). Here are the move rules

in more detail:
e Simple move: Move the peg to an adjacent empty space (in any direction).

e Simple hop: If there is a peg on an adjacent space S, the peg can “jump over it” as

long as the space behind S is empty.

e Hop chain: A chain of simple hops; i.e. if a peg can hop from S; to S5 and it could
then hop from S, to S3, then it can also hop from S; to S5 in a single move. However,
at the end of a chain, the peg must land on a different space than it started from. Note

that a simple move cannot be combined with hops.

e Swap rule: Spaces in the home of the moving player that are occupied by an oppo-
nent’s peg can also be considered empty for the rules above (except for the intermediate
spaces in a hop chain). If a peg is moved from S; to Sy and S5 is occupied by an oppo-

nent’s peg, then the peg from S, is moved to Sp, i.e. the pegs are swapped. The swap

(#3,6)

(-3,5) (-2,5)
A
(-3,4) (“2,4) (“1,4)
B B B
(-6,3) (“5,3) (44,3) (“3,3) (“2,3) (1,3) (0,3) (1,3) (2,3) (3,3)
C
(-5,2) (“4,2) (“3,2) (“2,2) (“1,2) (0,2) (1,2) (2,2) (3,2)
C C C A
(-4,1) (“3,1) (2,1) (1,1) (0,1) (1,1) (2,1) (3,1)
C B
(“3,0) (%2,0) (“1,0) (1,0) (2,0) (3,0)
B A
(-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1)
B C
(-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2) (5,-2)
A
(-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3) (4,-3) (5,-3) (6,-3)
A A
(1,-4) (2,-4) (3,-4)

(2,-5) (3,-5)

(3.-6)

Figure 2: Coordinate system for FAUhalma.

rule prevents players from blocking each other by moving pegs into their opponents’

homes.

e Center rule: The center is removed from the board — you cannot go there or hop over
it.

It is theoretically possible that a player has no legal move. In that case the blocked player
loses. The first player who has moved all their pegs into their home wins. The remaining

players compete for the second place.

3 Coordinates, Positions and Moves

To test your agents, we need to have a standardized way of sharing moves and positions,

which will be discussed in this section.

3.1 Coordinate System

We will refer to the spaces using a coordinate system. Figure 2 illustrates what coordinates

correspond to which space. As you can see, every space is associated with a coordinate

pair (z,y). However, the z-axis and y-axis are not orthogonal in the normal visualization.

Working with such a grid can be somewhat tricky. Maybe you can find an elegant way?

3.2 Representation of Positions

The server sends you the position (game state) as a JSON object, indicating where each

agent has its pegs. For example, the position shown in Figure 2 would be represented as

(A" (2, 1], [3, 1], [2. 4], [-L, 4], [1, -3], [1. -4]]
"B [[2, -2, [1, 0, [-2, 3, [0, 3], [, -1], [1, 3]],
"C: [, 0, 4, 1, [2], [2, 1], [4,-2], [117}

Your agent is always player A.

3.3 Representation of Moves

Moves are represented as a JSON list of coordinate pairs, where the first coordinate pair
indicates the peg you want to move and the last one indicates what space you want to move
the peg to. If you have a hop chain, the list has to include all intermediate spaces, i.e. two
consecutive list entries should be a simple hop apart from each other. For example, these
would be valid moves for player A in Figure 2:

o [11,-3], [1, 2]

o [1, 4], [L 2], [3, 0], [3, -2]]

3.4 Simplified variants

The server also has simplified variants of FAUhalma, using either the star-shaped board of
FAUhalma or a rhombic board, which is basically a star-shaped board with some corners
cut-off (Figure 3). The variants have the same coordinate system and move rules as the
standard variant of FAUhalma.

4 Evaluation: Playing on the Server

Your agent will be evaluated by playing on our server: https://aisysproj.kwarc.info.
In a two-player game, your agent will get 1 point if it finishes first and 0 points otherwise.

In a three-player game, your agent will get 2 points for finishing first, 1 point for finishing

https://aisysproj.kwarc.info

Figure 3: The starting positions of simplified FAUhalma variants.

second and 0 points for finishing last. Your agent will be rated by taking the average points
of 50 consecutive games. The server remembers your best rating of 50 consecutive games.
The server has several environments for evaluating your agent with differing settings. See
Section 7 for more details.
You can see your agent’s ratings and games on the web interface of https://aisysproj.

kwarc.info.

4.1 Credentials and Client Implementations

For each environment on the server, your team repository will contain one configuration file
with credentials that you can use to test your agent in that environment. The assignment
repository [AR] contains an example implementation of the server protocol in Python. Es-
sentially, all you have to do is implement a function that, given a position, returns a move.
If you would like to use a different programming language, you are of course welcome to
implement the protocol (see Appendix A) yourself and we will try our best to support you.
In that case, it would be nice if you share your implementation so that other/future students

can use it as well.

5 What to submit

Your solution should be pushed to your gitlab repository for this assignment. Concretely,

the repository should contain:

https://aisysproj.kwarc.info
https://aisysproj.kwarc.info

1. all your code for solving this assignment,

2. a README.md file explaining how to run your code (including e.g. dependencies that
have to be installed),

3. a brief summary of how you solved the problem either as a PDF file (= 1 page) or as
part of your README.md.

6 Random Tips

1. Make sure you have a good representation for FAUhalma positions.

2. Make sure you get all legal moves (and only legal moves) for a FAUhalma position
(maybe implement unit tests).

3. Consider implementing and testing very simple agents before moving to more sophis-
ticated algorithms.

4. You can use the server to see how well your agent performs and visualize what moves
it chose. Nevertheless, it might be useful to have some tools to analyze and compare
different agent implementations locally. As long as you don’t share agent implementa-

tions, we don’t mind if you collaborate with other teams on that.

7 Points

The total number of points for this assignment is 100. You can get up to 20 points for
the quality of the submission (README, explanation, ...). Furthermore, you can get up
to 80 points for the strength of your agent. Each environment allows you to get a certain
numbers of points if your agent is strong enough. When grading, we will only consider the
environment in which you would get most points (we do not add up results from different
environments). That means that you do not have to run your agent on every environment
and you can get full points if you only run it on the most difficult one where you can get 80
points.

Note: It is okay if your agent is a bit “lucky” and gets a slightly higher rating than it
usually does. We will use the best rating on the server for your grade, assuming that we can
reproduce a similar performance (i.e. if you get a 1.03 rating on the server and we get a 0.94
rating that is okay — if you get a 1.03 rating on the server and we get a 0.31 rating when

testing it, we might ask some questions).

Config file Shape Players Points

30 if rating > 0.5
40 if rating > 0.5
55 if rating > 0.5
60 if rating > 0.5
55 if rating > 0.5; 65 if rating > 1.5
70 if rating > 1.0
75 if rating > 1.0
80 if rating > 1.0

$s23-2.1-rhombus.json rhombus
$823-2.2-easy-2-player.json star
$823-2.3-medium-2-player.json star
$823-2.4-difficult-2-player.json star
$s23-2.5-easy-3-player.json star
$823-2.6-medium-3-player.json star

$s23-2.7-difficult-3-player.json star

W W W W N NN NN

ss23-2.8-hardcore-3-player.json star

References

[AR] Repository for Assignment 2: Play FAUhalma. URL: https://gitlab.rrze.fau.de/
wrv/AISysProj/ss23/al.2-play-fauhalma/assignment.

[CC] Chinese checkers. URL: https://en.wikipedia.org/wiki/Chinese _checkers
(visited on 11/10/2021).

https://gitlab.rrze.fau.de/wrv/AISysProj/ss23/a1.2-play-fauhalma/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss23/a1.2-play-fauhalma/assignment
https://en.wikipedia.org/wiki/Chinese_checkers

// First request:
{"agent": "MyAgent", "pwd": "r7iUM801NLbFdkI2WmBDIdsYHD3wLwUQAKoG 2 xBcE", "actions": [|}

// First response

{"errors": [], "messages": [], "action-requests": [
{"run": "40#1", "percept": ...},
{"run": "7#3", "percept": ...}]}

// Second request
{"agent": "MyAgent", "pwd": "r7iUM8o1NLbFdklI2WmBDIdsYHD3wLwUQAKoG 2 xBcE",
"actions": [{"run": "40#1", "action": ...},
{"run": "7#3" "action": ...}]}

Figure 4: Example interaction with the server.

A The AISysProj Server Protocol

For some assignments, agents are tested by interacting with the AISysProj server. This
appendix describes the protocol and is only relevant if you want to implement the
server protocol yourself.

The protocol is rather minimal: You send an HTTP request to the server with your
credentials and actions, and the server responds either with an error message or with a list
of action requests that you should respond to in the next request. For the first request, you
will have to send an empty list of actions to get action requests from the server (see Figure 4

for an example).

Configuration files The server details and your credentials are stored in configuration
files. Usually, we will generate configuration files for you and commit them to your repository.
They are JSON files that contain the following fields:

e url: the server URL,

e env: the environment,

agent: the agent’s name, and

pwd: the agent’s password.

The request You should send a PUT request to [url]/act/[env], where [url]] and [env] are
provided by the configuration file. The request body should contain a JSON object with the
fields:

e agent: the agent’s name (from the configuration file).

e pwd: the agent’s password (from the configuration file).

e single request: true or false, indicating if a only a single action request should be sent
(can be helpful for debugging).

e actions: the actions the agent wants to do as a list. Each action is represented as an
object with two fields: run is an identifier of the action request (provided in the server
responses) and action is the action the agent wants to do — the value format depends

on the assignment.

The response If the request was accepted, you will receive a JSON response with the
fields:

e action-requests: a list of action requests that you should send actions for in the next
request. Each action request is an object with two fields: run is an identifier so that
your action can be linked to the request and percepts describes what you know about
the current state (e.g. the position in a game).

e errors: a list of error messages (e.g. if your move was invalid).

e messages: a list of other messages.

Error response In case of an error (e.g. invalid credentials), you get a JSON response
with the fields:

e errorcode: The HTTP error code.

e errorname: The name of the error.

e description: A more detailed description of the error.

	Task Summary
	Rules of FAUhalma
	Coordinates, Positions and Moves
	Coordinate System
	Representation of Positions
	Representation of Moves
	Simplified variants

	Evaluation: Playing on the Server
	Credentials and Client Implementations

	What to submit
	Random Tips
	Points
	The AISysProj Server Protocol

