
Assignment 3: Guess the word

AI2SysProj 2022

Topic: Decision trees/information gain

Due on: September 13, 2022

Version from: August 29, 2022

1 Task summary

Implement an agent for a word guessing game. You can test your agent by competing on

the server.

Objectives

1. Gain hands-on experience with decision-making based on information gain,

2. solve various challenges involving probabilistic reasoning.

Prerequisites and useful methods

1. Basics of working with probabilities,

2. decision trees/information gain (Sections 25.3–25.4 in the lecture notes).

2 Rules

The rules are inspired by the popular word-guessing game hangman [WH]. The player has

to guess a randomly chosen word by repeatedly making letter guesses or word guesses. After

each guess, the player gets feedback (e.g. about the positions of the guessed letter). The

goal is to use as few guesses as possible to find the right word. In this assignment we will

use two different sets of rules: standard rules and advanced rules.

2.1 Standard rules

The word is initially represented by dashes, where each dash replaces a letter of the word. If

the player makes a letter guess, all occurrences of that letter in the word are revealed. The

game ends if the player correctly guesses the word. See Figure 1 (left) for an example game.

Copyright © 2021–2022 Jan Frederik Schaefer, Michael Kohlhase.



-------

Guess: E

doesn’t occur

Guess: A

doesn’t occur

Guess: I

doesn’t occur

Guess: O

-O-O---

Guess: N

-O-ON--

Guess: HOMONYM

wrong word

Guess: COCONUT

Correct − 7 guesses

--------------------

Guess: E

-E------------------

Guess: T

doesn’t occur

Guess: R

-E---R--------------

Guess: E

doesn’t occur

Guess: O

-E--OR--------------

Guess: S

-E-SOR--------------

Guess SENSOR

Correct − 7 guesses

Figure 1: Example games with the standard rules (left) and the advanced rules (right).

2



2.2 Advanced rules

There are two changes in the advanced rule:

• Only a single letter location is revealed at a time (it is picked uniformly random among

all unrevealed positions of that letter).

• The length of the word is disguised by appending more dashes in the feedback.

Figure 1 (right) shows an example game with the advanced rules.

2.3 Word list

The words are picked uniformly random from a list of nouns from [GNL]. The assignment

repository [A3] contains a copy of that list (you should use the copy because the original

might get modified). Words that contain diacritics, hyphens or spaces are ignored.

3 Guessing words on the server

You should test and evaluate your agent by competing on the server. The rating of your

agent is the lowest total number of guesses in 1000 consecutive games – the lower your

rating, the better. Your agent can communicate with the server via HTTP requests. A

Python implementation of the protocol is provided in the assignment repository. The details

of the protocol are described in Appendix A, but you will only need them if you want to

create your own implementation (e.g. in a different programming language).

3.1 Action requests

The server will send you action requests, which contain an identifier for the request and

a JSON object describing the current state of your word-guessing endeavour. Here is an

example state description:

{
”feedback”: ”-O-ON--”,

”guesses”: [”E”, ”A”, ”I”, ”O”, ”N”, ”HOMONYM”],

”advanced-rules”: false

}

3



3.2 Sending Actions

Your agent should respond to an action request by sending an action as a string:

1. For word guesses, the agent should send the word (in capital letters) as a string.

2. For letter guesses, the agent should send the letter as a string (again capitalized). As

there are no single-letter words in this game, the server can distinguish letter guesses

from word guesses.

4 What to submit

Your solution should be submitted to your team’s repository. It should contain:

1. all your code,

2. a README.md file explaining how to run your code to compete on the server (including

how to install dependencies),

3. a brief summary of how you solved the problem either as a PDF file (≈ 1 page) or as

part of your README.md.

5 A few tips

1. Make sure you understand the idea of using the expected information gain for decision

making in decision trees.

2. The standard rules are noticably simpler than the advanced rules, which have hidden

complexities. For example, consider a game with only two (equally likely) words: DOG

and DAD. After the letter guess D, the feedback is D--. Given this feedback, the word

is now more likely to be DOG than DAD.

3. You can improve the performance by caching results (e.g. the best initial guess for

each word length).

6 Points

You can get up to 80 points for the rating (number of guesses in 1000 games) of your agent

according to the server (assuming it is reproducible). Concretely, you will get the following

points for the standard rules:

• 20 points if the rating is ≤ 8 000.

4



• 30 points if the rating is ≤ 6 000.

• 40 points if the rating is ≤ 5 500.

For the advanced rules, you will get additionally

• 20 points if the rating is ≤ 10 000.

• 30 points if the rating is ≤ 8 000.

• 40 points if the rating is ≤ 7 500.

Assuming you have at least a partial solution, you can additionally get up to 20 points for

the quality of the submission (README, explanation, ...). The maximum number of points

is therefore 100. If the grading scheme doesn’t seem to work well, we might adjust it later

on (likely in your favor).

References

[A3] Assignment 3. url: https://gitlab.rrze.fau.de/wrv/AISysProj/ss22/a3-

guess-the-word/assignment (visited on 07/27/2022).

[GNL] The Great Noun List. url: http://www.desiquintans.com/nounlist (visited on

07/06/2022).

[WH] Hangman (game). url: https://en.wikipedia.org/wiki/Hangman_(game)

(visited on 07/27/2022).

5

https://gitlab.rrze.fau.de/wrv/AISysProj/ss22/a3-guess-the-word/assignment
https://gitlab.rrze.fau.de/wrv/AISysProj/ss22/a3-guess-the-word/assignment
http://www.desiquintans.com/nounlist
https://en.wikipedia.org/wiki/Hangman_(game)


A The AISysProj Server Protocol

For some assignments, agents are tested by interacting with the AISysProj server. This

appendix describes the protocol and is only relevant if you want to implement the

server protocol yourself.

The protocol is rather minimal: You send an HTTP request to the server with your

credentials and actions, and the server responds either with an error message or with a list

of action requests that you should respond to in the next request. For the first request, you

will have to send an empty list of actions to get action requests from the server (see Figure 2

for an example).

Please try to avoid flooding the server with requests. In particular, respond with an

empty list of action requests if there is nothing to do for you. In that case, please wait for

one second before sending another request.

Configuration files The server details and your credentials are stored in configuration

files. Usually, we will generate configuration files for you and commit them to your repository.

They are JSON files that contain the following fields:

• url: the server URL,

• tournament: the name of the tournament1,

• name: the agent’s name,

• pwd: the agent’s password, and

• single-request: indicating whether the server should send only one actiona request at

a time rather than sending multiple action requests in parallel for efficiency (optional

boolean property, default: false).

The request You should send a PUT request to [url]/act/[tournament], where [url] and

[tournament] are provided by the configuration file. The request body should contain a

JSON object with the fields:

• name: the agent’s name (from the configuration file).

• pwd: the agent’s password (from the configuration file).

• actions: the actions the agent wants to do as a list. Each action is represented as an

object with two fields: id is an identifier of the action request (provided in the server

1The name “tournament” comes from the idea of agents competing in a game. In general, a “tournament”

is one specific way of evaluating your agent. For some assignments, there might be multiple “tournaments”

that allow you to e.g. evaluate your agent in a simplified setting.

6



// First request:

{”name”: ”MyAgent”, ”pwd”: ”r7iUM8o1NLbFdkI2WmBDldsYHD3wLwUQAKoG 2 xBcE”, ”actions”: []}

// First response

{”errors”: [], ”messages”: [], ”action-requests”: [

{”id”: ”40#1”, ”content”: ...},
{”id”: ”7#3”, ”content”: ...}]}

// Second request

{”name”: ”MyAgent”, ”pwd”: ”r7iUM8o1NLbFdkI2WmBDldsYHD3wLwUQAKoG 2 xBcE”,

”actions”: [{”id”: ”40#1”, ”action”: ...},
{”id”: ”7#3”, ”action”: ...}]}

Figure 2: Example interaction with the server.

responses) and action is the action the agent wants to do – the value format depends

on the assignment.

The response If the request was accepted, you will receive a JSON response with the

fields:

• action-requests: a list of action requests that you should send actions for in the next

request. Each action request is an object with two fields: id is an identifier so that your

action can be linked to the request and content is the content of the action request

(e.g. the state of a game).

• errors: a list of error messages (e.g. if your move was invalid).

• messages: a list of other messages.

Error response In case of an error (e.g. invalid credentials), you get a JSON response

with the fields:

• errorcode: The HTTP error code.

• errorname: The name of the error.

• description: A more detailed description of the error.

7


	Task summary
	Rules
	Standard rules
	Advanced rules
	Word list

	Guessing words on the server
	Action requests
	Sending Actions

	What to submit
	A few tips
	Points
	The AISysProj Server Protocol

