
Artificial Intelligence 2
Summer Semester 2025

– Lecture Notes –

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2025-05-14

Michael Kohlhase: Artificial Intelligence 2 687 2025-05-14

Michael.Kohlhase@FAU.de

Chapter 20
Preliminaries

: 687 2025-05-14

What you should learn here...

▶ What you should learn in AI-2:
▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models, first

and foremost)

▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)
▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing when

they are adequate!), and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough to

implement them)
▶ Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.

(They already exist)
▶ But you might get payed to recognize that some given problem can be represented as a Bayesian network!
▶ Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to

develop new specialized tools.

: 688 2025-05-14

What you should learn here...

▶ What you should learn in AI-2:
▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models, first

and foremost)
▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)

▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing when
they are adequate!), and

▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough to
implement them)

▶ Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.
(They already exist)

▶ But you might get payed to recognize that some given problem can be represented as a Bayesian network!
▶ Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to

develop new specialized tools.

: 688 2025-05-14

What you should learn here...

▶ What you should learn in AI-2:
▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models, first

and foremost)
▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)
▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing when

they are adequate!),

and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough to

implement them)
▶ Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.

(They already exist)
▶ But you might get payed to recognize that some given problem can be represented as a Bayesian network!
▶ Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to

develop new specialized tools.

: 688 2025-05-14

What you should learn here...

▶ What you should learn in AI-2:
▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models, first

and foremost)
▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)
▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing when

they are adequate!), and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough to

implement them)
▶ Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.

(They already exist)
▶ But you might get payed to recognize that some given problem can be represented as a Bayesian network!
▶ Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to

develop new specialized tools.

: 688 2025-05-14

Compare two employees

▶ “We have the following problem and we need a solution: . . . ”

▶ Employee 1 – Deep Learning can do everything: “I just need ≈1.5 million labeled examples of
potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

▶ Employee 2 – AI-2 Alumna: “...while you were talking, I quickly built a custom UI for an
off-the-shelve <problem> solver that runs on a medium-sized potato and returns a provably correct
result in a few milliseconds. For inputs longer than 1000unit, you might need a slightly bigger potato
though...”

▶ Moral of the story: Know your tools well enough to select the right one for the job.

: 689 2025-05-14

Compare two employees

▶ “We have the following problem and we need a solution: . . . ”
▶ Employee 1 – Deep Learning can do everything: “I just need ≈1.5 million labeled examples of

potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

▶ Employee 2 – AI-2 Alumna: “...while you were talking, I quickly built a custom UI for an
off-the-shelve <problem> solver that runs on a medium-sized potato and returns a provably correct
result in a few milliseconds. For inputs longer than 1000unit, you might need a slightly bigger potato
though...”

▶ Moral of the story: Know your tools well enough to select the right one for the job.

: 689 2025-05-14

Compare two employees

▶ “We have the following problem and we need a solution: . . . ”
▶ Employee 1 – Deep Learning can do everything: “I just need ≈1.5 million labeled examples of

potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

▶ Employee 2 – AI-2 Alumna: “...while you were talking, I quickly built a custom UI for an
off-the-shelve <problem> solver that runs on a medium-sized potato and returns a provably correct
result in a few milliseconds. For inputs longer than 1000unit, you might need a slightly bigger potato
though...”

▶ Moral of the story: Know your tools well enough to select the right one for the job.

: 689 2025-05-14

Compare two employees

▶ “We have the following problem and we need a solution: . . . ”
▶ Employee 1 – Deep Learning can do everything: “I just need ≈1.5 million labeled examples of

potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

▶ Employee 2 – AI-2 Alumna: “...while you were talking, I quickly built a custom UI for an
off-the-shelve <problem> solver that runs on a medium-sized potato and returns a provably correct
result in a few milliseconds. For inputs longer than 1000unit, you might need a slightly bigger potato
though...”

▶ Moral of the story: Know your tools well enough to select the right one for the job.

: 689 2025-05-14

20.1 Administrative Ground Rules

: 689 2025-05-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

▶ Weak Prerequisites for AI-2: (if you do not have them, study up as needed)
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic programming)

▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (aka. calculus) (primarily: (partial) derivatives)
▶ Meaning: I will assume you know these things, but some of them we will recap, and what you don’t

know will make things slightly harder for you, but by no means prohibitively difficult.

: 690 2025-05-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)
▶ Weak Prerequisites for AI-2: (if you do not have them, study up as needed)
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic programming)
▶ (very) elementary complexity theory. (big Oh and friends)

▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (aka. calculus) (primarily: (partial) derivatives)

▶ Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

: 690 2025-05-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)
▶ Weak Prerequisites for AI-2: (if you do not have them, study up as needed)
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)

▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (aka. calculus) (primarily: (partial) derivatives)
▶ Meaning: I will assume you know these things, but some of them we will recap, and what you don’t

know will make things slightly harder for you, but by no means prohibitively difficult.

: 690 2025-05-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)
▶ Weak Prerequisites for AI-2: (if you do not have them, study up as needed)
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)

▶ basic real analysis (aka. calculus) (primarily: (partial) derivatives)
▶ Meaning: I will assume you know these things, but some of them we will recap, and what you don’t

know will make things slightly harder for you, but by no means prohibitively difficult.

: 690 2025-05-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)
▶ Weak Prerequisites for AI-2: (if you do not have them, study up as needed)
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (aka. calculus) (primarily: (partial) derivatives)

▶ Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

: 690 2025-05-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)
▶ Weak Prerequisites for AI-2: (if you do not have them, study up as needed)
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (aka. calculus) (primarily: (partial) derivatives)
▶ Meaning: I will assume you know these things, but some of them we will recap, and what you don’t

know will make things slightly harder for you, but by no means prohibitively difficult.

: 690 2025-05-14

“Strict” Prerequisites

▶ Most crucially – Mathematical Literacy: Mathematics is the language that computer scientists
express their ideas in! (“A search problem is a tuple (N,S ,G , ...) such that...”)
▶ Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this

skill will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay
off, not only in this course.

▶ But also: Motivation, interest, curiosity, hard work. (AI-2 is non-trivial)
▶ Note: Grades correlate significantly with invested effort; including, but not limited to:
▶ time spent on exercises, (learning is 80% perspiration, only 20% inspiration)

▶ being here in presence, (humans are social animals ⇝mirror neurons)
▶ asking questions, (Q/A dialogues activate brains)
▶ talking to your peers, (pool your insights, share your triumphs/frustrations). . .

All of these we try to support with the ALeA system. (which also gives us the data to prove this)

: 691 2025-05-14

“Strict” Prerequisites

▶ Most crucially – Mathematical Literacy: Mathematics is the language that computer scientists
express their ideas in! (“A search problem is a tuple (N,S ,G , ...) such that...”)
▶ Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this

skill will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay
off, not only in this course.
▶ But also: Motivation, interest, curiosity, hard work. (AI-2 is non-trivial)

▶ Note: Grades correlate significantly with invested effort; including, but not limited to:
▶ time spent on exercises, (learning is 80% perspiration, only 20% inspiration)
▶ being here in presence, (humans are social animals ⇝mirror neurons)

▶ asking questions, (Q/A dialogues activate brains)
▶ talking to your peers, (pool your insights, share your triumphs/frustrations). . .

All of these we try to support with the ALeA system. (which also gives us the data to prove this)

: 691 2025-05-14

“Strict” Prerequisites

▶ Most crucially – Mathematical Literacy: Mathematics is the language that computer scientists
express their ideas in! (“A search problem is a tuple (N,S ,G , ...) such that...”)
▶ Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this

skill will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay
off, not only in this course.
▶ But also: Motivation, interest, curiosity, hard work. (AI-2 is non-trivial)
▶ Note: Grades correlate significantly with invested effort; including, but not limited to:
▶ time spent on exercises, (learning is 80% perspiration, only 20% inspiration)
▶ being here in presence, (humans are social animals ⇝mirror neurons)
▶ asking questions, (Q/A dialogues activate brains)

▶ talking to your peers, (pool your insights, share your triumphs/frustrations). . .

All of these we try to support with the ALeA system. (which also gives us the data to prove this)

: 691 2025-05-14

“Strict” Prerequisites

▶ Most crucially – Mathematical Literacy: Mathematics is the language that computer scientists
express their ideas in! (“A search problem is a tuple (N,S ,G , ...) such that...”)
▶ Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this

skill will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay
off, not only in this course.
▶ But also: Motivation, interest, curiosity, hard work. (AI-2 is non-trivial)
▶ Note: Grades correlate significantly with invested effort; including, but not limited to:
▶ time spent on exercises, (learning is 80% perspiration, only 20% inspiration)
▶ being here in presence, (humans are social animals ⇝mirror neurons)
▶ asking questions, (Q/A dialogues activate brains)
▶ talking to your peers, (pool your insights, share your triumphs/frustrations). . .

All of these we try to support with the ALeA system. (which also gives us the data to prove this)

: 691 2025-05-14

Assessment, Grades

▶ Overall (Module) Grade:
▶ Grade via the exam (Klausur) ; 100% of the grade.
▶ Up to 10% bonus on-top for an exam with ≥ 50% points. (< 50% ; no bonus)
▶ Bonus points =̂ percentage sum of the best 10 prepquizzes divided by 100.

▶ Exam: exam conducted in presence on paper! (∼ Oct. 10. 2025)
▶ Retake Exam: 90 minutes exam six months later. (∼ April 10. 2026)

▶ You have to register for exams in https://campo.fau.de in the first month of classes.
▶ Note: You can de-register from an exam on https://campo.fau.de up to three working days

before exam. (do not miss that if you are not prepared)

: 692 2025-05-14

https://campo.fau.de
https://campo.fau.de

Assessment, Grades

▶ Overall (Module) Grade:
▶ Grade via the exam (Klausur) ; 100% of the grade.
▶ Up to 10% bonus on-top for an exam with ≥ 50% points. (< 50% ; no bonus)
▶ Bonus points =̂ percentage sum of the best 10 prepquizzes divided by 100.
▶ Exam: exam conducted in presence on paper! (∼ Oct. 10. 2025)
▶ Retake Exam: 90 minutes exam six months later. (∼ April 10. 2026)

▶ You have to register for exams in https://campo.fau.de in the first month of classes.
▶ Note: You can de-register from an exam on https://campo.fau.de up to three working days

before exam. (do not miss that if you are not prepared)

: 692 2025-05-14

https://campo.fau.de
https://campo.fau.de

Preparedness Quizzes

▶ PrepQuizzes: Before every lecture we offer a 10 min online quiz – the PrepQuiz – about the
material from the previous week. (16:15-16:25; starts in week 2)
▶ Motivations: We do this to
▶ keep you prepared and working continuously. (primary)
▶ bonus points if the exam has ≥ 50% points (potential part of your grade)
▶ update the ALeA learner model. (fringe benefit)
▶ The prepquizes will be given in the ALeA system

▶ https://courses.voll-ki.fau.de/quiz-dash/ai-2
▶ You have to be logged into ALeA! (via FAU IDM)
▶ You can take the prepquiz on your laptop or phone, . . .
▶ . . . in the lecture or at home . . .
▶ . . . via WLAN or 4G Network. (do not overload)
▶ Prepquizzes will only be available 16:15-16:25!

: 693 2025-05-14

https://courses.voll-ki.fau.de/quiz-dash/ai-2

Special Admin Conditions

▶ Some degree programs do not “import” the course Artificial Intelligence 1, and thus you may not be
able to register for the exam via https://campo.fau.de.
▶ Just send me an e-mail and come to the exam, (we do the necessary admin)
▶ Tell your program coordinator about AI-1/2 so that they remedy this situation
▶ In “Wirtschafts-Informatik” you can only take AI-1 and AI-2 together in the “Wahlpflichtbereich”.
▶ ECTS credits need to be divisible by five ⇝7.5 + 7.5 = 15.

: 694 2025-05-14

https://campo.fau.de

20.2 Getting Most out of AI-2

: 694 2025-05-14

AI-2 Homework Assignments

▶ Goal: Homework assignments reinforce what was taught in lectures.
▶ Homework Assignments: Small individual problem/programming/proof task
▶ but take time to solve (at least read them directly ; questions)
▶ Didactic Intuition: Homework assignments give you material to test your understanding and show

you how to apply it.
▶ Homeworks give no points, but without trying you are unlikely to pass the exam.
▶ Our Experience: Doing your homework is probably even more important (and predictive of exam

success) than attending the lecture in person!

▶ Homeworks will be mainly peer-graded in the ALeA system.
▶ Didactic Motivation: Through peer grading students are able to see mistakes in their thinking and

can correct any problems in future assignments. By grading assignments, students may learn how to
complete assignments more accurately and how to improve their future results.(not just us being lazy)

: 695 2025-05-14

AI-2 Homework Assignments

▶ Goal: Homework assignments reinforce what was taught in lectures.
▶ Homework Assignments: Small individual problem/programming/proof task
▶ but take time to solve (at least read them directly ; questions)
▶ Didactic Intuition: Homework assignments give you material to test your understanding and show

you how to apply it.
▶ Homeworks give no points, but without trying you are unlikely to pass the exam.
▶ Our Experience: Doing your homework is probably even more important (and predictive of exam

success) than attending the lecture in person!
▶ Homeworks will be mainly peer-graded in the ALeA system.
▶ Didactic Motivation: Through peer grading students are able to see mistakes in their thinking and

can correct any problems in future assignments. By grading assignments, students may learn how to
complete assignments more accurately and how to improve their future results.(not just us being lazy)

: 695 2025-05-14

AI-2 Homework Assignments – Howto

▶ Homework Workflow: in ALeA (see below)
▶ Homework assignments will be published on thursdays: see https://courses.voll-ki.fau.de/hw/ai-1
▶ Submission of solutions via the ALeA system in the week after
▶ Peer grading/feedback (and master solutions) via answer classes.
▶ Quality Control: TAs and instructors will monitor and supervise peer grading.

▶ Experiment: Can we motivate enough of you to make peer assessment self-sustaining?
▶ I am appealing to your sense of community responsibility here . . .
▶ You should only expect other’s to grade your submission if you grade their’s

(cf. Kant’s “Moral Imperative”)
▶ Make no mistake: The grader usually learns at least as much as the gradee.
▶ Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study groups help)
▶ Humans will be trying to understand the text/code/math when grading it.
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

: 696 2025-05-14

https://courses.voll-ki.fau.de/hw/ai-1

AI-2 Homework Assignments – Howto

▶ Homework Workflow: in ALeA (see below)
▶ Homework assignments will be published on thursdays: see https://courses.voll-ki.fau.de/hw/ai-1
▶ Submission of solutions via the ALeA system in the week after
▶ Peer grading/feedback (and master solutions) via answer classes.
▶ Quality Control: TAs and instructors will monitor and supervise peer grading.
▶ Experiment: Can we motivate enough of you to make peer assessment self-sustaining?
▶ I am appealing to your sense of community responsibility here . . .
▶ You should only expect other’s to grade your submission if you grade their’s

(cf. Kant’s “Moral Imperative”)
▶ Make no mistake: The grader usually learns at least as much as the gradee.

▶ Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study groups help)
▶ Humans will be trying to understand the text/code/math when grading it.
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

: 696 2025-05-14

https://courses.voll-ki.fau.de/hw/ai-1

AI-2 Homework Assignments – Howto

▶ Homework Workflow: in ALeA (see below)
▶ Homework assignments will be published on thursdays: see https://courses.voll-ki.fau.de/hw/ai-1
▶ Submission of solutions via the ALeA system in the week after
▶ Peer grading/feedback (and master solutions) via answer classes.
▶ Quality Control: TAs and instructors will monitor and supervise peer grading.
▶ Experiment: Can we motivate enough of you to make peer assessment self-sustaining?
▶ I am appealing to your sense of community responsibility here . . .
▶ You should only expect other’s to grade your submission if you grade their’s

(cf. Kant’s “Moral Imperative”)
▶ Make no mistake: The grader usually learns at least as much as the gradee.
▶ Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study groups help)
▶ Humans will be trying to understand the text/code/math when grading it.
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

: 696 2025-05-14

https://courses.voll-ki.fau.de/hw/ai-1

Tutorials for Artificial Intelligence 1

▶ Approach: Weekly tutorials and homework assignments (first one in week two)
▶ Goal 1: Reinforce what was taught in the lectures. (you need practice)
▶ Goal 2: Allow you to ask any question you have in a protected environment.

▶ Instructor/Lead TA: Florian Rabe (KWARC Postdoc, Privatdozent)
▶ Room: 11.137 @ Händler building, florian.rabe@fau.de
▶ Tutorials: One each taught by Florian Rabe (lead); Primula Mukherjee, Ilhaam Shaikh, Praveen

Kumar Vadlamani, and Shreya Rajesh More.
▶ Tutorials will start in week 3. (before there is nothing to do)
▶ Details (rooms, times, etc) will be announced in time (i.e. not now) on the forum and matrix channel.
▶ Life-saving Advice: Go to your tutorial, and prepare for it by having looked at the slides and the

homework assignments!

: 697 2025-05-14

florian.rabe@fau.de

Tutorials for Artificial Intelligence 1

▶ Approach: Weekly tutorials and homework assignments (first one in week two)
▶ Goal 1: Reinforce what was taught in the lectures. (you need practice)
▶ Goal 2: Allow you to ask any question you have in a protected environment.
▶ Instructor/Lead TA: Florian Rabe (KWARC Postdoc, Privatdozent)
▶ Room: 11.137 @ Händler building, florian.rabe@fau.de
▶ Tutorials: One each taught by Florian Rabe (lead); Primula Mukherjee, Ilhaam Shaikh, Praveen

Kumar Vadlamani, and Shreya Rajesh More.
▶ Tutorials will start in week 3. (before there is nothing to do)
▶ Details (rooms, times, etc) will be announced in time (i.e. not now) on the forum and matrix channel.
▶ Life-saving Advice: Go to your tutorial, and prepare for it by having looked at the slides and the

homework assignments!

: 697 2025-05-14

florian.rabe@fau.de

Collaboration

▶ Definition 2.1. Collaboration (or cooperation) is the process of groups of agents acting together for
common, mutual benefit, as opposed to acting in competition for selfish benefit. In a collaboration,
every agent contributes to the common goal and benefits from the contributions of others.
▶ In learning situations, the benefit is “better learning”.
▶ Observation: In collaborative learning, the overall result can be significantly better than in

competitive learning.
▶ Good Practice: Form study groups. (long- or short-term)

1. Those learners who work/help most, learn most!
2. Freeloaders – individuals who only watch – learn very little!
▶ It is OK to collaborate on homework assignments in AI-2! (no bonus points)
▶ Choose your study group well! (ALeA helps via the study buddy feature)

: 698 2025-05-14

Do I need to attend the AI-2 Lectures

▶ Attendance is not mandatory for the AI-2 course. (official version)
▶ Note: There are two ways of learning: (both are OK, your mileage may vary)
▶ Approach B: Read a book/papers (here: lecture notes)
▶ Approach I: come to the lectures, be involved, interrupt the instructor whenever you have a question.

The only advantage of I over B is that books/papers do not answer questions
▶ Approach S: come to the lectures and sleep does not work!
▶ The closer you get to research, the more we need to discuss!

: 699 2025-05-14

20.3 Learning Resources for AI-2

: 699 2025-05-14

Textbooks and supplementary Literature

▶ Textbook: Russel/Norvig: Artificial Intelligence, A modern Approach [RusNor:AIMA09].
▶ basically “broad but somewhat shallow”
▶ great to get intuitions on the basics of AI

Make sure that you read the edition ≥ 3 ⇝vastly improved over ≤ 2.

: 700 2025-05-14

Course Notes, Forum, Matrix

▶ Lecture notes will be posted at https://kwarc.info/teaching/AI
▶ We mostly prepare/update them as we go along (semantically preloaded ; research resource)
▶ Please report any errors/shortcomings you notice. (improve for the group/successors)
▶ StudOn Forum: For announcements –

https://www.studon.fau.de/studon/goto.php?target=lcode_70Bjcaxg

▶ Matrix Channel: https://matrix.to/#/#ai-12:fau.de for questions, discussion with
instructors and among your fellow students. (your channel, use it!)
Login via FAU IDM ; instructions
▶ Course Videos are at at https://fau.tv/course/id/4225.
▶ Do not let the videos mislead you: Coming to class is highly correlated with passing the exam!

: 701 2025-05-14

https://kwarc.info/teaching/AI
https://www.studon.fau.de/studon/goto.php?target=lcode_70Bjcaxg
https://matrix.to/#/#ai-12:fau.de
https://www.anleitungen.rrze.fau.de/serverdienste/matrix-an-der-fau/erste-schritte/
https://fau.tv/course/id/4225

Practical recommendations on Lecture Videos
▶ Excellent Guide: [NorKueRob:lcprs18] (German version at [NorKueRob:vnas18])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture
recordings:
A guide for students

: 702 2025-05-14

NOT a Resource for : LLMs – AI-based tools like ChatGPT
▶ Definition 3.1. A large language model (LLM) is a computational model capable of language

generation or other natural language processing tasks.
▶ Example 3.2. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.

▶ Definition 3.3. A chatbot is a software application or web interface that is designed to mimic human
conversation through text or voice interactions. Modern chatbots are usually based on LLMs.
▶ Example 3.4 (ChatGPT talks about AI-1). (but remains vague)
▶ Note: LLM-based chatbots invent every word! (suprpisingly often correct)
▶ Example 3.5 (In the AI-1 exam). ChatGPT scores ca. 50% of the points.
▶ ChatGPT can almost pass the exam . . . (We could award it a Master’s degree)
▶ But can you? (the AI-1 exams will be in person on paper)
You will only pass the exam, if you can do AI-1 yourself!
▶ Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [Shein:iacse24])
▶ can help you solve problems, (valuable tools in production situations)
▶ hinders learning if used for homeworks/quizzes, etc. (like driving instead of jogging)
▶ What (not) to do: (to get most of the brave new AI-supported world)
▶ try out these tools to get a first-hand intuition what they can/cannot do
▶ challenge yourself while learning so that you can also do it (mind over matter!)

: 703 2025-05-14

NOT a Resource for : LLMs – AI-based tools like ChatGPT
▶ Definition 3.6. A large language model (LLM) is a computational model capable of language

generation or other natural language processing tasks.
▶ Example 3.7. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.
▶ Definition 3.8. A chatbot is a software application or web interface that is designed to mimic human

conversation through text or voice interactions. Modern chatbots are usually based on LLMs.
▶ Example 3.9 (ChatGPT talks about AI-1). (but remains vague)

▶ Note: LLM-based chatbots invent every word! (suprpisingly often correct)
▶ Example 3.10 (In the AI-1 exam). ChatGPT scores ca. 50% of the points.
▶ ChatGPT can almost pass the exam . . . (We could award it a Master’s degree)
▶ But can you? (the AI-1 exams will be in person on paper)
You will only pass the exam, if you can do AI-1 yourself!
▶ Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [Shein:iacse24])
▶ can help you solve problems, (valuable tools in production situations)
▶ hinders learning if used for homeworks/quizzes, etc. (like driving instead of jogging)
▶ What (not) to do: (to get most of the brave new AI-supported world)
▶ try out these tools to get a first-hand intuition what they can/cannot do
▶ challenge yourself while learning so that you can also do it (mind over matter!)

: 703 2025-05-14

NOT a Resource for : LLMs – AI-based tools like ChatGPT
▶ Definition 3.11. A large language model (LLM) is a computational model capable of language

generation or other natural language processing tasks.
▶ Example 3.12. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.
▶ Definition 3.13. A chatbot is a software application or web interface that is designed to mimic

human conversation through text or voice interactions. Modern chatbots are usually based on LLMs.
▶ Example 3.14 (ChatGPT talks about AI-1). (but remains vague)
▶ Note: LLM-based chatbots invent every word! (suprpisingly often correct)
▶ Example 3.15 (In the AI-1 exam). ChatGPT scores ca. 50% of the points.
▶ ChatGPT can almost pass the exam . . . (We could award it a Master’s degree)
▶ But can you? (the AI-1 exams will be in person on paper)
You will only pass the exam, if you can do AI-1 yourself!

▶ Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [Shein:iacse24])
▶ can help you solve problems, (valuable tools in production situations)
▶ hinders learning if used for homeworks/quizzes, etc. (like driving instead of jogging)
▶ What (not) to do: (to get most of the brave new AI-supported world)
▶ try out these tools to get a first-hand intuition what they can/cannot do
▶ challenge yourself while learning so that you can also do it (mind over matter!)

: 703 2025-05-14

NOT a Resource for : LLMs – AI-based tools like ChatGPT
▶ Definition 3.16. A large language model (LLM) is a computational model capable of language

generation or other natural language processing tasks.
▶ Example 3.17. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.
▶ Definition 3.18. A chatbot is a software application or web interface that is designed to mimic

human conversation through text or voice interactions. Modern chatbots are usually based on LLMs.
▶ Example 3.19 (ChatGPT talks about AI-1). (but remains vague)
▶ Note: LLM-based chatbots invent every word! (suprpisingly often correct)
▶ Example 3.20 (In the AI-1 exam). ChatGPT scores ca. 50% of the points.
▶ ChatGPT can almost pass the exam . . . (We could award it a Master’s degree)
▶ But can you? (the AI-1 exams will be in person on paper)
You will only pass the exam, if you can do AI-1 yourself!
▶ Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [Shein:iacse24])
▶ can help you solve problems, (valuable tools in production situations)
▶ hinders learning if used for homeworks/quizzes, etc. (like driving instead of jogging)

▶ What (not) to do: (to get most of the brave new AI-supported world)
▶ try out these tools to get a first-hand intuition what they can/cannot do
▶ challenge yourself while learning so that you can also do it (mind over matter!)

: 703 2025-05-14

NOT a Resource for : LLMs – AI-based tools like ChatGPT
▶ Definition 3.21. A large language model (LLM) is a computational model capable of language

generation or other natural language processing tasks.
▶ Example 3.22. OpenAI’s GPT, Google’s Bard, and Meta’s Llama.
▶ Definition 3.23. A chatbot is a software application or web interface that is designed to mimic

human conversation through text or voice interactions. Modern chatbots are usually based on LLMs.
▶ Example 3.24 (ChatGPT talks about AI-1). (but remains vague)
▶ Note: LLM-based chatbots invent every word! (suprpisingly often correct)
▶ Example 3.25 (In the AI-1 exam). ChatGPT scores ca. 50% of the points.
▶ ChatGPT can almost pass the exam . . . (We could award it a Master’s degree)
▶ But can you? (the AI-1 exams will be in person on paper)
You will only pass the exam, if you can do AI-1 yourself!
▶ Intuition: AI tools like GhatGPT, CoPilot, etc. (see also [Shein:iacse24])
▶ can help you solve problems, (valuable tools in production situations)
▶ hinders learning if used for homeworks/quizzes, etc. (like driving instead of jogging)
▶ What (not) to do: (to get most of the brave new AI-supported world)
▶ try out these tools to get a first-hand intuition what they can/cannot do
▶ challenge yourself while learning so that you can also do it (mind over matter!)

: 703 2025-05-14

ALeA in AI-2
▶ We assume that you already know the ALeA system from last semester

▶ Use it for
▶ lecture notes (notes- vs slides-oriented)
▶ flashcards (drill yourself on the AI-2 jargon/concepts)
▶ course forum (questions, discussions and error reporting)
▶ solving and peer-grading homework assignments
▶ finding study groups (you need not endure AI-2 alone)
▶ practicing with targeted problems (e.g. from old exams)
▶ doing the prepquizzes (before each lecture)

: 704 2025-05-14

ALeA in AI-2

▶ We assume that you already know the ALeA system from last semester
▶ Use it for
▶ lecture notes (notes- vs slides-oriented)
▶ flashcards (drill yourself on the AI-2 jargon/concepts)
▶ course forum (questions, discussions and error reporting)
▶ solving and peer-grading homework assignments
▶ finding study groups (you need not endure AI-2 alone)
▶ practicing with targeted problems (e.g. from old exams)
▶ doing the prepquizzes (before each lecture)

: 704 2025-05-14

Chapter 21
Overview over AI and Topics of AI-II

: 704 2025-05-14

21.1 What is Artificial Intelligence?

: 704 2025-05-14

What is Artificial Intelligence? Definition

▶ Definition 1.1 (According to Wikipedia).
Artificial Intelligence (AI) is intelligence
exhibited by machines
▶ Definition 1.2 (also). Artificial Intelligence

(AI) is a sub-field of CS that is concerned
with the automation of intelligent behavior.
▶ BUT: it is already difficult to define

intelligence precisely.
▶ Definition 1.3 (Elaine Rich). artificial

intelligence (AI) studies how we can make
the computer do things that humans can still
do better at the moment.

: 705 2025-05-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

the ability to learn

: 706 2025-05-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

Inference

: 706 2025-05-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

Perception

: 706 2025-05-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

Language understanding

: 706 2025-05-14

What is Artificial Intelligence? Components
▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at

the moment.
▶ This needs a combination of

Emotion

: 706 2025-05-14

21.2 Artificial Intelligence is here today!

: 706 2025-05-14

Artificial Intelligence is here today!

▶ in outer space
▶ in outer space systems need

autonomous control:
▶ remote control impossible due

to time lag

▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ for safety/security

: 707 2025-05-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ the user controls the prosthesis

via existing nerves, can e.g.
grip a sheet of paper.

▶ in household appliances
▶ in hospitals
▶ for safety/security

: 707 2025-05-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ The iRobot Roomba vacuums,

mops, and sweeps in corners,
. . . , parks, charges, and
discharges.

▶ general robotic household help
is on the horizon.

▶ in hospitals
▶ for safety/security

: 707 2025-05-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ in the USA 90% of the

prostate operations are carried
out by RoboDoc

▶ Paro is a cuddly robot that
eases solitude in nursing homes.

▶ for safety/security

: 707 2025-05-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ for safety/security
▶ e.g. Intel verifies correctness of

all chips after the “Pentium 5
disaster”

: 707 2025-05-14

The AI Conundrum

▶ Observation: Reserving the term “artificial intelligence” has been quite a land grab!
▶ But: researchers at the Dartmouth Conference (1956) really thought they would solve/reach AI in

two/three decades.
▶ Consequence: AI still asks the big questions. (and still promises answers soon)
▶ Another Consequence: AI as a field is an incubator for many innovative technologies.
▶ AI Conundrum: Once AI solves a subfield it is called “CS”. (becomes a separate subfield of CS)
▶ Example 2.1. Functional/Logic Programming, automated theorem proving, Planning, machine

learning, Knowledge Representation, . . .
▶ Still Consequence: AI research was alternatingly flooded with money and cut off brutally.

: 708 2025-05-14

The current AI Hype — Part of a longer Story
▶ The history of AI as a discipline has been very much tied to the amount of funding – that allows us to

do research and development.

▶ Funding levels are tied to public perception of success (especially for AI)
▶ Definition 2.2. An AI winter is a time period of low public perception and funding for AI,

mostly because AI has failed to deliver on its – sometimes overblown – promises
An AI summer is a time period of high public perception and funding for AI
▶ A potted history of AI (AI summers and summers)

AI becomes
scarily effective,
ubiquitous

Excitement fades;
some applications
profit a lot

AI-bubble bursts,
the next AI winter
comes

1950 1960 1970 1980 1990 2000 2010 2021

Turing Test
Dartmouth Conference

Lighthill report

AI Winter 1
1974-1980

AI Winter 2
1987-1994

WWW ;
Data/-
Computing
Explosion

AI-conse-
quences,
Biases,
Regulation

: 709 2025-05-14

The current AI Hype — Part of a longer Story
▶ The history of AI as a discipline has been very much tied to the amount of funding – that allows us to

do research and development.
▶ Funding levels are tied to public perception of success (especially for AI)

▶ Definition 2.3. An AI winter is a time period of low public perception and funding for AI,
mostly because AI has failed to deliver on its – sometimes overblown – promises
An AI summer is a time period of high public perception and funding for AI
▶ A potted history of AI (AI summers and summers)

AI becomes
scarily effective,
ubiquitous

Excitement fades;
some applications
profit a lot

AI-bubble bursts,
the next AI winter
comes

1950 1960 1970 1980 1990 2000 2010 2021

Turing Test
Dartmouth Conference

Lighthill report

AI Winter 1
1974-1980

AI Winter 2
1987-1994

WWW ;
Data/-
Computing
Explosion

AI-conse-
quences,
Biases,
Regulation

: 709 2025-05-14

The current AI Hype — Part of a longer Story
▶ The history of AI as a discipline has been very much tied to the amount of funding – that allows us to

do research and development.
▶ Funding levels are tied to public perception of success (especially for AI)
▶ Definition 2.4. An AI winter is a time period of low public perception and funding for AI,

mostly because AI has failed to deliver on its – sometimes overblown – promises
An AI summer is a time period of high public perception and funding for AI

▶ A potted history of AI (AI summers and summers)
AI becomes
scarily effective,
ubiquitous

Excitement fades;
some applications
profit a lot

AI-bubble bursts,
the next AI winter
comes

1950 1960 1970 1980 1990 2000 2010 2021

Turing Test
Dartmouth Conference

Lighthill report

AI Winter 1
1974-1980

AI Winter 2
1987-1994

WWW ;
Data/-
Computing
Explosion

AI-conse-
quences,
Biases,
Regulation

: 709 2025-05-14

The current AI Hype — Part of a longer Story
▶ The history of AI as a discipline has been very much tied to the amount of funding – that allows us to

do research and development.
▶ Funding levels are tied to public perception of success (especially for AI)
▶ Definition 2.5. An AI winter is a time period of low public perception and funding for AI,

mostly because AI has failed to deliver on its – sometimes overblown – promises
An AI summer is a time period of high public perception and funding for AI
▶ A potted history of AI (AI summers and summers)

AI becomes
scarily effective,
ubiquitous

Excitement fades;
some applications
profit a lot

AI-bubble bursts,
the next AI winter
comes

1950 1960 1970 1980 1990 2000 2010 2021

Turing Test
Dartmouth Conference

Lighthill report

AI Winter 1
1974-1980

AI Winter 2
1987-1994

WWW ;
Data/-
Computing
Explosion

AI-conse-
quences,
Biases,
Regulation

: 709 2025-05-14

21.3 Ways to Attack the AI Problem

: 709 2025-05-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.1. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.

▶ Definition 3.2. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all
concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.
▶ Definition 3.3. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that

posits that intelligence is inherently tied to brains, where information is represented by a simple
sequence pulses that are processed in parallel via simple calculations realized by neurons, and thus
concentrates on neural computing.
▶ Definition 3.4. Embodied AI posits that intelligence cannot be achieved by reasoning about the

state of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in
the world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

: 710 2025-05-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.5. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.
▶ Definition 3.6. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all

concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.

▶ Definition 3.7. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that
posits that intelligence is inherently tied to brains, where information is represented by a simple
sequence pulses that are processed in parallel via simple calculations realized by neurons, and thus
concentrates on neural computing.
▶ Definition 3.8. Embodied AI posits that intelligence cannot be achieved by reasoning about the

state of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in
the world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

: 710 2025-05-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.9. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.
▶ Definition 3.10. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all

concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.
▶ Definition 3.11. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that

posits that intelligence is inherently tied to brains, where information is represented by a simple
sequence pulses that are processed in parallel via simple calculations realized by neurons, and thus
concentrates on neural computing.

▶ Definition 3.12. Embodied AI posits that intelligence cannot be achieved by reasoning about the
state of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in
the world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

: 710 2025-05-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.13. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.
▶ Definition 3.14. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all

concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.
▶ Definition 3.15. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that

posits that intelligence is inherently tied to brains, where information is represented by a simple
sequence pulses that are processed in parallel via simple calculations realized by neurons, and thus
concentrates on neural computing.
▶ Definition 3.16. Embodied AI posits that intelligence cannot be achieved by reasoning about the

state of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in
the world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

: 710 2025-05-14

Two ways of reaching Artificial Intelligence?

▶ We can classify the AI approaches by their coverage and the analysis depth (they are complementary)

Deep symbolic not there yet
AI-1 cooperation?

Shallow no-one wants this statistical/sub symbolic
AI-2

Analysis ↑
vs. Narrow Wide

Coverage →
▶ This semester we will cover foundational aspects of symbolic AI (deep/narrow processing)
▶ next semester concentrate on statistical/subsymbolic AI. (shallow/wide-coverage)

: 711 2025-05-14

Environmental Niches for both Approaches to AI
▶ Observation: There are two kinds of applications/tasks in AI
▶ Consumer tasks: consumer grade applications have tasks that must be fully generic and wide coverage. (

e.g. machine translation like Google Translate)
▶ Producer tasks: producer grade applications must be high-precision, but can be domain-specific (e.g.

multilingual documentation, machinery-control, program verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage
after Aarne Ranta [Ranta:atcp17].

▶ General Rule: Subsymbolic AI is well suited for consumer tasks, while symbolic AI is better suited
for producer tasks.
▶ A domain of producer tasks I am interested in: mathematical/technical documents.

: 712 2025-05-14

https://translate.google.com/

21.4 AI in the KWARC Group

: 712 2025-05-14

The KWARC Research Group

▶ Observation: The ability to represent knowledge about the world and to draw logical inferences is
one of the central components of intelligent behavior.
▶ Thus: reasoning components of some form are at the heart of many AI systems.
▶ KWARC Angle: Scaling up (web-coverage) without dumbing down (too much)
▶ Content markup instead of full formalization (too tedious)
▶ User support and quality control instead of “The Truth” (elusive anyway)
▶ use Mathematics as a test tube (Mathematics =̂ Anything Formal)
▶ care more about applications than about philosophy (we cannot help getting this right anyway as logicians)
▶ The KWARC group was established at Jacobs Univ. in 2004, moved to FAU Erlangen in 2016
▶ See http://kwarc.info for projects, publications, and links

: 713 2025-05-14

http://kwarc.info

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Active Learning, Semantic Spread-
sheets/CAD/CAM, Change Mangagement, Global Digital Math Library, Math
Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games,
. . .
Foundations of Math:
▶ MathML, OpenMath

▶ advanced Type Theories
▶ Mmt: Meta Meta Theory
▶ Logic Morphisms/Atlas
▶ Theorem Prover/CAS

Interoperability
▶ Mathematical

Models/Simulation

KM & Interaction:
▶ Semantic Interpretation

(aka. Framing)
▶ math-literate interaction
▶ MathHub: math archives

& active docs
▶ Active documents:

embedded semantic
services

▶ Model-based Education

Semantization:
▶ LATEXML: LATEX ; XML
▶ STEX: Semantic LATEX
▶ invasive editors
▶ Context-Aware IDEs
▶ Mathematical Corpora
▶ Linguistics of Math
▶ ML for Math Semantics

Extraction

Foundations: Computational Logic, Web Technologies, OMDoc/Mmt

: 714 2025-05-14

Research Topics in the KWARC Group

▶ We are always looking for bright, motivated KWARCies.
▶ We have topics in for all levels! (Enthusiast, Bachelor, Master, Ph.D.)
▶ List of current topics: https://gl.kwarc.info/kwarc/thesis-projects/
▶ Automated Reasoning: Maths Representation in the Large
▶ Logics development, (Meta)n-Frameworks
▶ Math Corpus Linguistics: Semantics Extraction
▶ Serious Games, Cognitive Engineering, Math Information Retrieval, Legal Reasoning, . . .
▶ . . . last but not least: KWARC is the home of ALeA!
▶ We always try to find a topic at the intersection of your and our interests.
▶ We also sometimes have positions!. (HiWi, Ph.D.: 1

2 E-13, PostDoc: full E-13)

: 715 2025-05-14

https://gl.kwarc.info/kwarc/thesis-projects/

21.5 Agents and Environments in AI2

: 715 2025-05-14

21.5.1 Recap: Rational Agents as a Conceptual Framework

: 715 2025-05-14

Agents and Environments
▶ Definition 5.1. An agent is anything that
▶ perceives its environment via sensors (a means of sensing the environment)
▶ acts on it with actuators (means of changing the environment).
Any recognizable, coherent employment of the actuators of an agent is called an action.

▶ Example 5.2. Agents include humans, robots, softbots, thermostats, etc.
▶ Remark: The notion of an agent and its environment is intentionally designed to be inclusive. We

will classify and discuss subclasses of both later.
: 716 2025-05-14

Agent Schema: Visualizing the Internal Agent Structure

▶ Agent Schema: We will use the following kind of agent schema to visualize the internal structure of
an agent:
Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Different agents differ on the contents of the white box in the center.

: 717 2025-05-14

Rationality

▶ Idea: Try to design agents that are successful! (aka. “do the right thing”)
▶ Problem: What do we mean by “successful”, how do we measure “success”?
▶ Definition 5.3. A performance measure is a function that evaluates a sequence of environments.
▶ Example 5.4. A performance measure for a vacuum cleaner could
▶ award one point per “square” cleaned up in time T?
▶ award one point per clean “square” per time step, minus one per move?
▶ penalize for > k dirty squares?
▶ Definition 5.5. An agent is called rational, if it chooses whichever action maximizes the expected

value of the performance measure given the percept sequence to date.
▶ Critical Observation: We only need to maximize the expected value, not the actual value of the

performance measure!
▶ Question: Why is rationality a good quality to aim for?

: 718 2025-05-14

Consequences of Rationality: Exploration, Learning, Autonomy

▶ Note: A rational agent need not be perfect:
▶ It only needs to maximize expected value (rational ̸= omniscient)
▶ need not predict e.g. very unlikely but catastrophic events in the future

▶ Percepts may not supply all relevant information (rational ̸= clairvoyant)
▶ if we cannot perceive things we do not need to react to them.
▶ but we may need to try to find out about hidden dangers (exploration)

▶ Action outcomes may not be as expected (rational ̸= successful)
▶ but we may need to take action to ensure that they do (more often) (learning)

▶ Note: Rationality may entail exploration, learning, autonomy (depending on the environment / task)
▶ Definition 5.6. An agent is called autonomous, if it does not rely on the prior knowledge about the

environment of the designer.
▶ Autonomy avoids fixed behaviors that can become unsuccessful in a changing environment. (anything

else would be irrational)
▶ The agent may have to learn all relevant traits, invariants, properties of the environment and actions.

: 719 2025-05-14

PEAS: Describing the Task Environment

▶ Observation: To design a rational agent, we must specify the task environment in terms of
performance measure, environment, actuators, and sensors, together called the PEAS components.
▶ Example 5.7. When designing an automated taxi:
▶ Performance measure: safety, destination, profits, legality, comfort, . . .
▶ Environment: US streets/freeways, traffic, pedestrians, weather, . . .
▶ Actuators: steering, accelerator, brake, horn, speaker/display, . . .
▶ Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .
▶ Example 5.8 (Internet Shopping Agent). The task environment:
▶ Performance measure: price, quality, appropriateness, efficiency
▶ Environment: current and future WWW sites, vendors, shippers
▶ Actuators: display to user, follow URL, fill in form
▶ Sensors: HTML pages (text, graphics, scripts)

: 720 2025-05-14

Environment types

▶ Observation 5.9. Agent design is largely determined by the type of environment it is intended for.
▶ Problem: There is a vast number of possible kinds of environments in AI.
▶ Solution: Classify along a few “dimensions”. (independent characteristics)
▶ Definition 5.10. For an agent a we classify the environment e of a by its type, which is one of the

following. We call e
1. fully observable, iff the a’s sensors give it access to the complete state of the environment at any point in

time, else partially observable.
2. deterministic, iff the next state of the environment is completely determined by the current state and a’s

action, else stochastic.
3. episodic, iff a’s experience is divided into atomic episodes, where it perceives and then performs a single

action. Crucially, the next episode does not depend on previous ones. Non-episodic environments are called
sequential.

4. dynamic, iff the environment can change without an action performed by a, else static. If the environment
does not change but a’s performance measure does, we call e semidynamic.

5. discrete, iff the sets of e’s state and a’s actions are countable, else continuous.
6. single-agent, iff only a acts on e; else multi-agent (when must we count parts of e as agents?)

: 721 2025-05-14

Reflex Agents
▶ Definition 5.11. An agent ⟨P ,A, f ⟩ is called a reflex agent, iff it only takes the last percept into

account when choosing an action, i .e. f (p1, . . ., pk) = f (pk) for all p1, . . ., pk ∈ P.
▶ Agent Schema:

Section 2.4. The Structure of Agents 49

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

▶ Example 5.12 (Agent Program).
procedure Reflex−Vacuum−Agent [location,status] returns an action

if status = Dirty then . . .
: 722 2025-05-14

Model-based Reflex Agents: Idea

▶ Idea: Keep track of the state of the world we cannot see in an internal model.
▶ Agent Schema:

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

: 723 2025-05-14

Model-based Reflex Agents: Definition

▶ Definition 5.13. A model-based agent ⟨P ,A,S , T , s0 , S , a⟩ is an agent ⟨P ,A, f ⟩ whose actions
depend on
1. a world model: a set S of possible states, and a start state s0 ∈ S.
2. a transition model T , that predicts a new state T (s, a) from a state s and an action a.
3. a sensor model S that given a state s and a percept p determine a new state S(s, p).
4. an action function a : S →A that given a state selects the next action.

If the world model of a model-based agent A is in state s and A has last taken action a, and now
perceives p, then A will transition to state s ′ = S(p, T (s, a)) and take action a′ = a(s ′).
So, given a sequence p1, . . ., pn of percepts, we recursively define states sn = S(T (sn−1, a(sn−1)), pn)
with s1 = S(s0, p1). Then f (p1, . . ., pn) = a(sn).
▶ Note: As different percept sequences lead to different states, so the agent function f () : P∗→A no

longer depends only on the last percept.
▶ Example 5.14 (Tail Lights Again). Model-based agents can do the ??? if the states include a

concept of tail light brightness.

: 724 2025-05-14

21.5.2 Sources of Uncertainty

: 724 2025-05-14

Sources of Uncertainty in Decision-Making

Where’s that d. . . Wumpus?
And where am I, anyway??

▶ Non-deterministic actions:
▶ “When I try to go forward in this dark cave, I might actually go forward-left or forward-right.”

▶ Partial observability with unreliable sensors:
▶ “Did I feel a breeze right now?”;
▶ “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”
▶ “According to the heat scanner, the Wumpus is probably in cell [2,3].”
▶ Uncertainty about the domain behavior:
▶ “Are you sure the Wumpus never moves?”

: 725 2025-05-14

Sources of Uncertainty in Decision-Making

Where’s that d. . . Wumpus?
And where am I, anyway??

▶ Non-deterministic actions:
▶ “When I try to go forward in this dark cave, I might actually go forward-left or forward-right.”
▶ Partial observability with unreliable sensors:
▶ “Did I feel a breeze right now?”;
▶ “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”
▶ “According to the heat scanner, the Wumpus is probably in cell [2,3].”

▶ Uncertainty about the domain behavior:
▶ “Are you sure the Wumpus never moves?”

: 725 2025-05-14

Sources of Uncertainty in Decision-Making

Where’s that d. . . Wumpus?
And where am I, anyway??

▶ Non-deterministic actions:
▶ “When I try to go forward in this dark cave, I might actually go forward-left or forward-right.”
▶ Partial observability with unreliable sensors:
▶ “Did I feel a breeze right now?”;
▶ “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”
▶ “According to the heat scanner, the Wumpus is probably in cell [2,3].”
▶ Uncertainty about the domain behavior:
▶ “Are you sure the Wumpus never moves?”

: 725 2025-05-14

Unreliable Sensors

▶ Robot Localization: Suppose we want to support localization using landmarks to narrow down the
area.
▶ Example 5.15. “If you see the Eiffel tower, then you’re in Paris.”

▶ Difficulty: Sensors can be imprecise.
▶ Even if a landmark is perceived, we cannot conclude with certainty that the robot is at that location.
▶ “This is the half-scale Las Vegas copy, you dummy.”
▶ Even if a landmark is not perceived, we cannot conclude with certainty that the robot is not at that

location.
▶ “Top of Eiffel tower hidden in the clouds.”
▶ Only the probability of being at a location increases or decreases.

: 726 2025-05-14

Unreliable Sensors

▶ Robot Localization: Suppose we want to support localization using landmarks to narrow down the
area.
▶ Example 5.16. “If you see the Eiffel tower, then you’re in Paris.”
▶ Difficulty: Sensors can be imprecise.
▶ Even if a landmark is perceived, we cannot conclude with certainty that the robot is at that location.
▶ “This is the half-scale Las Vegas copy, you dummy.”
▶ Even if a landmark is not perceived, we cannot conclude with certainty that the robot is not at that

location.
▶ “Top of Eiffel tower hidden in the clouds.”
▶ Only the probability of being at a location increases or decreases.

: 726 2025-05-14

21.5.3 Agent Architectures based on Belief States

: 726 2025-05-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!

▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.17. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in,
▶ a sensor model that updates the belief state based on sensor information, and
▶ a transition model that updates the belief state based on actions.
▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ Thus the belief state is a singleton (we call its sole member the world state) and the transition model is a

function from states and actions to states: a transition function.

: 727 2025-05-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.18. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in,
▶ a sensor model that updates the belief state based on sensor information, and
▶ a transition model that updates the belief state based on actions.

▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ Thus the belief state is a singleton (we call its sole member the world state) and the transition model is a

function from states and actions to states: a transition function.

: 727 2025-05-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.19. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in,
▶ a sensor model that updates the belief state based on sensor information, and
▶ a transition model that updates the belief state based on actions.
▶ Idea: The agent environment determines what the world model can be.

▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ Thus the belief state is a singleton (we call its sole member the world state) and the transition model is a

function from states and actions to states: a transition function.

: 727 2025-05-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.20. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in,
▶ a sensor model that updates the belief state based on sensor information, and
▶ a transition model that updates the belief state based on actions.
▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ Thus the belief state is a singleton (we call its sole member the world state) and the transition model is a

function from states and actions to states: a transition function.

: 727 2025-05-14

World Models by Agent Type in AI-1

▶ Search-based Agents: In a fully observable, deterministic environment
▶ goal-based agent with world state =̂ “current state”
▶ no inference. (goal =̂ goal state from search problem)
▶ CSP-based Agents: In a fully observable, deterministic environment
▶ goal-based agent withworld state =̂ constraint network,
▶ inference =̂ constraint propagation. (goal =̂ satisfying assignment)
▶ Logic-based Agents: In a fully observable, deterministic environment
▶ model-based agent with world state =̂ logical formula
▶ inference =̂ e.g. DPLL or resolution.
▶ Planning Agents: In a fully observable, deterministic, environment
▶ goal-based agent with world state =̂ PL0, transition model =̂ STRIPS,
▶ inference =̂ state/plan space search. (goal: complete plan/execution)

: 728 2025-05-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.

▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when
we want to optimize utility)
▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

: 729 2025-05-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.
▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when

we want to optimize utility)

▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

: 729 2025-05-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.
▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when

we want to optimize utility)
▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.

▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

: 729 2025-05-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.
▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when

we want to optimize utility)
▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

: 729 2025-05-14

Preview: New World Models (Belief) ; new Agent Types

▶ Probabilistic Agents: In a partially observable environment
▶ belief state =̂ Bayesian networks,
▶ inference =̂ probabilistic inference.

▶ Decision-Theoretic Agents: In a partially observable, stochastic environment
▶ belief state + transition model =̂ decision networks,
▶ inference =̂ maximizing expected utility.
▶ We will study them in detail this semester.

: 730 2025-05-14

Preview: New World Models (Belief) ; new Agent Types

▶ Probabilistic Agents: In a partially observable environment
▶ belief state =̂ Bayesian networks,
▶ inference =̂ probabilistic inference.
▶ Decision-Theoretic Agents: In a partially observable, stochastic environment
▶ belief state + transition model =̂ decision networks,
▶ inference =̂ maximizing expected utility.
▶ We will study them in detail this semester.

: 730 2025-05-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)

▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal
reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

: 731 2025-05-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)

▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

: 731 2025-05-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)

▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,
Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

: 731 2025-05-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions

▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

: 731 2025-05-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

: 731 2025-05-14

Part 1
Reasoning with Uncertain Knowledge

: 731 2025-05-14

Chapter 22
Quantifying Uncertainty

: 731 2025-05-14

22.1 Probability Theory

: 731 2025-05-14

22.1.1 Prior and Posterior Probabilities

: 731 2025-05-14

Probabilistic Models

▶ Definition 1.1 (Mathematically (slightly simplified)). A probability space or (probability model) is
a pair ⟨Ω,P ⟩ such that:
▶ Ω is a set of outcomes (called the sample space),
▶ P is a function P(Ω)→ [0,1], such that:
▶ P (Ω) = 1 and
▶ P (

⋃
iAi) =

∑
i P (Ai) for all pairwise disjoint Ai ∈ P(Ω).

P is called a probability measure.

These properties are called the Kolmogorov axioms.
▶ Intuition: We run some experiment, the outcome of which is any ω ∈ Ω.
▶ For X ⊆ Ω, P (X) is the probability that the result of the experiment is any one of the outcomes in X .
▶ Naturally, the probability that any outcome occurs is 1 (hence P(Ω) = 1).
▶ The probability of pairwise disjoint sets of outcomes should just be the sum of their probabilities.
▶ Example 1.2 (Dice throws). Assume we throw a (fair) die two times. Then the sample space Ω is
{(i , j) | 1 ≤ i , j ≤ 6}. We define P by letting P ({A}) = 1

36 for every A ∈ Ω.
Since the probability of any outcome is the same, we say P is uniformly distributed.

: 732 2025-05-14

Random Variables

▶ In practice, we are rarely interested in the specific outcome of an experiment, but rather in some
property of the outcome. This is especially true in the very common situation where we don’t even
know the precise probabilities of the individual outcomes.
▶ Example 1.3. The probability that the sum of our two dice throws is 7 is
P ({(i , j) ∈ Ω | i + j = 7}) = P ({(6, 1), (1, 6), (5, 2), (2, 5), (4, 3), (3, 4)}) = 6

36 = 1
6 .

▶ Definition 1.4 (Again, slightly simplified). Let D be a set. A random variable is a function
X : Ω→ D. We call D (somewhat confusingly) the domain of X , denoted dom(X).
For x ∈ D, we define the probability of x as P (X = x) := P ({ω ∈ Ω |X (ω) = x}).
▶ Definition 1.5. We say that a random variable X is finite domain, iff its domain dom(X) is finite

and Boolean, iff dom(X) = {T,F}.
For a Boolean random variable, we will simply write P (X) for P (X = T) and P (¬X) for P (X = F).

: 733 2025-05-14

Some Examples

▶ Example 1.6. Summing up our two dice throws is a random variable S : Ω→ [2,12] with
S((i , j)) = i + j . The probability that they sum up to 7 is written as P (S = 7) = 1

6 .
▶ Example 1.7. The first and second of our two dice throws are random variables

First, Second : Ω→ [1,6] with First((i , j)) = i and Second((i , j)) = j .
▶ Remark 1.8. Note, that the identity Ω→ Ω is a random variable as well.
▶ Example 1.9. We can model toothache, cavity and gingivitis as Boolean random variables, with the

underlying probability space being...??
▶ Example 1.10. We can model tomorrow’s weather as a random variable with domain
{sunny, rainy, foggy, warm, cloudy, humid, ...}, with the underlying probability space being...??

⇒ This is why probabilistic reasoning is necessary: We can rarely reduce probabilistic scenarios down to
clearly defined, fully known probability spaces and derive all the interesting things from there.

But: The definitions here allow us to reason about probabilities and random variables in a
mathematically rigorous way, e.g. to make our intuitions and assumptions precise, and prove our
methods to be sound.

: 734 2025-05-14

Propositions

▶ This is nice and all, but in practice we are interested in “compound” probabilities like:
“What is the probability that the sum of our two dice throws is 7, but neither of the two dice is a 3?”

▶ Idea: Reuse the syntax of propositional logic and define the logical connectives for random variables!
▶ Example 1.11. We can express the above as: P (¬(First = 3) ∧ ¬(Second = 3) ∧ (S = 7))
▶ Definition 1.12. Let X1,X2 be random variables, x1 ∈ dom(X1) and x2 ∈ dom(X2). We define:

1. P (X1 ̸= x1):=P (¬(X1 = x1)) := P ({ω ∈ Ω |X1(ω) ̸= x1})=1 − P (X1 = x1).
2. P ((X1 = x1) ∧ (X2 = x2)) := P ({ω ∈ Ω | (X1(ω) = x1) ∧ (X2(ω) = x2)})

=P ({ω ∈ Ω |X1(ω) = x1} ∩ {ω ∈ Ω |X2(ω) = x2}).
3. P ((X1 = x1) ∨ (X2 = x2)) := P ({ω ∈ Ω | (X1(ω) = x1) ∨ (X2(ω) = x2)})

=P ({ω ∈ Ω |X1(ω) = x1} ∪ {ω ∈ Ω |X2(ω) = x2}).
It is also common to write P (A,B) for P (A ∧ B)

▶ Example 1.13. P ((First ̸= 3) ∧ (Second ̸= 3) ∧ (S = 7)) = P ({(1, 6), (6, 1), (2, 5), (5, 2)}) = 1
9

: 735 2025-05-14

Events

▶ Definition 1.14 (Again slightly simplified). Let ⟨Ω,P ⟩ be a probability space. An event is a subset
of Ω.
▶ Definition 1.15 (Convention). We call an event (by extension) anything that represents a subset of
Ω: any statement formed from the logical connectives and values of random variables, on which P (·)
is defined.
▶ Problem 1.1

Remember: We can define A∨B := ¬(¬A∧¬B), T := A∨¬A and F := ¬T – is this compatible with
the definition of probabilities on propositional formulae? And why is P (X1 ̸= x1) = 1− P (X1 = x1)?

▶ Problem 1.2 (Inclusion-Exclusion-Principle)
Show that P (A ∨ B) = P (A) + P (B)− P (A ∧ B).

▶ Problem 1.3
Show that P (A) = P (A ∧ B) + P (A ∧ ¬B)

: 736 2025-05-14

Conditional Probabilities
▶ Observation: As we gather new information, our beliefs (should) change, and thus our probabilities!
▶ Example 1.16. Your “probability of missing the connection train” increases when you are informed

that your current train has 30 minutes delay.
▶ Example 1.17. The “probability of cavity” increases when the doctor is informed that the patient

has a toothache.
▶ Example 1.18. The probability that S = 3 is clearly higher if I know that First = 1 than otherwise –

or if I know that First = 6!
▶ Definition 1.19. Let A and B be events where P (B) ̸= 0. The conditional probability of A given B

is defined as:
P(A | B):=P (A ∧ B)

P (B)

We also call P (A) the prior probability of A, and P(A | B) the posterior probability.
▶ Intuition: If we assume B to hold, then we are only interested in the “part” of Ω where A is true

relative to B.
▶ Alternatively: We restrict our sample space Ω to the subset of outcomes where B holds. We then

define a new probability space on this subset by scaling the probability measure so that it sums to 1 –
which we do by dividing by P (B). (We “update our beliefs based on new evidence”)

: 737 2025-05-14

Examples

▶ Example 1.20. If we assume First = 1, then P(S = 3 | (First = 1)) should be precisely
P (Second = 2) = 1

6 . We check:

P(S = 3 | (First = 1)) =
P ((S = 3) ∧ (First = 1))

P (First = 1)
=

1/36
1/6

=
1
6

▶ Example 1.21. Assume the prior probability P (cavity) is 0.122. The probability that a patient has
both a cavity and a toothache is P (cavity ∧ toothache) = 0.067. The probability that a patient has a
toothache is P (toothache) = 0.15.
If the patient complains about a toothache, we can update our estimation by computing the posterior
probability:

P(cavity | toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.067
0.15

= 0.45.

▶ Note: We just computed the probability of some underlying disease based on the presence of a
symptom!
▶ More Generally: We computed the probability of a cause from observing its effect.

: 738 2025-05-14

Some Rules

▶ Equations on unconditional probabilities have direct analogues for conditional probabilities.
▶ Problem 1.4

Convince yourself of the following:
▶ P(A | C) = 1 − P(¬A | C).
▶ P(A | C) = P(A ∧ B | C) + P(A ∧ ¬B | C).
▶ P(A ∨ B | C) = P(A | C) + P(B | C)− P(A ∧ B | C).

▶ But not on the right hand side!
▶ Problem 1.5

Find counterexamples for the following (false) claims:
▶ P(A | C) = 1 − P(A | ¬C)
▶ P(A | C) = P(A | (B ∧ C)) + P(A | (B ∧ ¬C)).
▶ P(A | (B ∨ C)) = P(A | B) + P(A | C)− P(A | (B ∧ C)).

: 739 2025-05-14

Bayes’ Rule

▶ Note: By definition, P(A | B) = P (A∧B)
P (B) . In practice, we often know the conditional probability

already, and use it to compute the probability of the conjunction instead:
P (A ∧ B) = P(A | B) · P (B) = P(B | A) · P (A).

▶ Theorem 1.22 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and P (B) ̸= 0, we
have:

P(A | B) = P(B | A) · P (A)

P (B)

▶ Proof:
1. P(A | B) = P (A∧B)

P (B) = P(B | A)·P (A)
P (B)

□

...okay, that was straightforward... what’s the big deal?

▶ (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a single
equation!
▶ This is an extreme overstatement, but there is a grain of truth in it.

: 740 2025-05-14

Bayes’ Rule

▶ Note: By definition, P(A | B) = P (A∧B)
P (B) . In practice, we often know the conditional probability

already, and use it to compute the probability of the conjunction instead:
P (A ∧ B) = P(A | B) · P (B) = P(B | A) · P (A).

▶ Theorem 1.23 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and P (B) ̸= 0, we
have:

P(A | B) = P(B | A) · P (A)

P (B)

▶ Proof:
1. P(A | B) = P (A∧B)

P (B) = P(B | A)·P (A)
P (B)

□

...okay, that was straightforward... what’s the big deal?

▶ (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a single
equation!
▶ This is an extreme overstatement, but there is a grain of truth in it.

: 740 2025-05-14

Bayes’ Rule

▶ Note: By definition, P(A | B) = P (A∧B)
P (B) . In practice, we often know the conditional probability

already, and use it to compute the probability of the conjunction instead:
P (A ∧ B) = P(A | B) · P (B) = P(B | A) · P (A).

▶ Theorem 1.24 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and P (B) ̸= 0, we
have:

P(A | B) = P(B | A) · P (A)

P (B)

▶ Proof:
1. P(A | B) = P (A∧B)

P (B) = P(B | A)·P (A)
P (B)

□

...okay, that was straightforward... what’s the big deal?

▶ (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a single
equation!
▶ This is an extreme overstatement, but there is a grain of truth in it.

: 740 2025-05-14

Bayes’ Theorem - Why the Hype?

▶ Say we have a hypothesis H about the world. (e.g. “The universe had a beginning”)
▶ We have some prior belief P (H).
▶ We gather evidence E . (e.g. “We observe a cosmic microwave background at 2.7K everywhere”)
▶ Bayes’ Rule tells us how to update our belief in H based on H’s ability to predict E (the likelihood
P(E | H)) – and, importantly, the ability of competing hypotheses to predict the same evidence. (This
is actually how scientific hypotheses should be evaluated)

P(H | E)︸ ︷︷ ︸
posterior

=
P(E | H) · P (H)

P (E)
=

likelihood︷ ︸︸ ︷
P(E | H) ·

prior︷ ︸︸ ︷
P (H)

P(E | H)︸ ︷︷ ︸
likelihood

P (H)︸ ︷︷ ︸
prior

+P(E | ¬H)P (¬H)︸ ︷︷ ︸
competition

. . . if I keep gathering evidence and update, ultimately the impact of the prior belief will diminish.
“You’re entitled to your own priors, but not your own likelihoods”

: 741 2025-05-14

22.1.2 Independence

: 741 2025-05-14

Independence
▶ Question: What is the probability that S = 7 and the patient has a toothache?

Or less contrived: What is the probability that the patient has a gingivitis and a cavity?
▶ Definition 1.25. Two events A and B are called independent, iff P (A ∧ B) = P (A) · P (B).

Two random variables X1,X2 are called independent, iff for all x1 ∈ dom(X1) and x2 ∈ dom(X2), the
events X1 = x1 and X2 = x2 are independent. We write A ⊥ B or X1 ⊥ X2, respectively.
▶ Theorem 1.26. Equivalently: Given events A and B with P (B) ̸= 0, then A and B are independent

iff P(A | B) = P (A) (equivalently: P(B | A) = P (B)).
▶ Proof:

1. ⇒
By definition, P(A | B) = P (A∧B)

P (B) = P (A)·P (B)
P (B) = P (A),

3. ⇐
Assume P(A | B) = P (A).
Then P (A ∧ B) = P(A | B) · P (B) = P (A) · P (B).

□
▶ Note: Independence asserts that two events are “not related” – the probability of one does not

depend on the other.
Mathematically, we can determine independence by checking whether P (A ∧ B) = P (A) · P (B).
In practice, this is impossible to check. Instead, we assume independence based on domain knowledge,
and then exploit this to compute P (A ∧ B).: 742 2025-05-14

Independence (Examples)

▶ Example 1.27.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72

▶ But: P ((First = a) ∧ (S = 7)) = 1
36 = 1

6 · 1
6 = P (First = a) · P (S = 7) – so the events First = a and

S = 7 are independent. (Why?)
▶ Example 1.28.
▶ Are cavity and toothache independent?

. . . since cavities can cause a toothache, that would probably be a bad design decision . . .
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
▶ Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is

thus more likely to have gingivitis as well.
▶ ; cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally

related.

: 743 2025-05-14

Independence (Examples)

▶ Example 1.29.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.30.
▶ Are cavity and toothache independent?

. . . since cavities can cause a toothache, that would probably be a bad design decision . . .
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
▶ Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is

thus more likely to have gingivitis as well.
▶ ; cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally

related.

: 743 2025-05-14

Independence (Examples)

▶ Example 1.31.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.32.
▶ Are cavity and toothache independent?

. . . since cavities can cause a toothache, that would probably be a bad design decision . . .
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
▶ Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is

thus more likely to have gingivitis as well.
▶ ; cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally

related.

: 743 2025-05-14

Independence (Examples)

▶ Example 1.33.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.34.
▶ Are cavity and toothache independent?

. . . since cavities can cause a toothache, that would probably be a bad design decision . . .

▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause
cavities, so... yes... right? (...as far as I know. I’m not a dentist.)

▶ Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.

▶ ; cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

: 743 2025-05-14

Independence (Examples)

▶ Example 1.35.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.36.
▶ Are cavity and toothache independent?

. . . since cavities can cause a toothache, that would probably be a bad design decision . . .
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)

▶ Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.

▶ ; cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

: 743 2025-05-14

Independence (Examples)

▶ Example 1.37.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.38.
▶ Are cavity and toothache independent?

. . . since cavities can cause a toothache, that would probably be a bad design decision . . .
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
▶ Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is

thus more likely to have gingivitis as well.
▶ ; cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally

related.

: 743 2025-05-14

g

: 744 2025-05-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache | cavity) = 0.6,
P(toothache | ¬cavity) = 0.1, P(catch | cavity) = 0.9, and P(catch | ¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity | (toothache ∧ catch))?

▶ Idea: Use Bayes’ rule:

P(cavity | (toothache ∧ catch)) =
P(toothache ∧ catch | cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch | cavity) · P (cavity) + P(toothache ∧ catch | ¬cavity) · P (¬cavity)

▶ Problem: Now we’re only missing P(toothache ∧ catch | (cavity = b)) for b ∈ {T,F}. . . . Now
what?
▶ Are toothache and catch independent, maybe? No: Both have a common (possible) cause, cavity.

Also, there’s this pesky P(· | cavity) in the way.wait a minute...

: 744 2025-05-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache | cavity) = 0.6,
P(toothache | ¬cavity) = 0.1, P(catch | cavity) = 0.9, and P(catch | ¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity | (toothache ∧ catch))?

▶ Idea: Use Bayes’ rule:

P(cavity | (toothache ∧ catch)) =
P(toothache ∧ catch | cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch | cavity) · P (cavity) + P(toothache ∧ catch | ¬cavity) · P (¬cavity)

▶ Problem: Now we’re only missing P(toothache ∧ catch | (cavity = b)) for b ∈ {T,F}. . . . Now
what?

▶ Are toothache and catch independent, maybe? No: Both have a common (possible) cause, cavity.
Also, there’s this pesky P(· | cavity) in the way.wait a minute...

: 744 2025-05-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache | cavity) = 0.6,
P(toothache | ¬cavity) = 0.1, P(catch | cavity) = 0.9, and P(catch | ¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity | (toothache ∧ catch))?

▶ Idea: Use Bayes’ rule:

P(cavity | (toothache ∧ catch)) =
P(toothache ∧ catch | cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch | cavity) · P (cavity) + P(toothache ∧ catch | ¬cavity) · P (¬cavity)

▶ Problem: Now we’re only missing P(toothache ∧ catch | (cavity = b)) for b ∈ {T,F}. . . . Now
what?
▶ Are toothache and catch independent, maybe?

No: Both have a common (possible) cause, cavity.
Also, there’s this pesky P(· | cavity) in the way.wait a minute...

: 744 2025-05-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache | cavity) = 0.6,
P(toothache | ¬cavity) = 0.1, P(catch | cavity) = 0.9, and P(catch | ¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity | (toothache ∧ catch))?

▶ Idea: Use Bayes’ rule:

P(cavity | (toothache ∧ catch)) =
P(toothache ∧ catch | cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch | cavity) · P (cavity) + P(toothache ∧ catch | ¬cavity) · P (¬cavity)

▶ Problem: Now we’re only missing P(toothache ∧ catch | (cavity = b)) for b ∈ {T,F}. . . . Now
what?
▶ Are toothache and catch independent, maybe? No: Both have a common (possible) cause, cavity.

Also, there’s this pesky P(· | cavity) in the way.wait a minute...

: 744 2025-05-14

Conditional Independence – Definition
▶ Assuming the patient has (or does not have) a cavity, the events toothache and catch are

independent: Both are caused by a cavity, but they don’t influence each other otherwise.
i.e. cavity “contains all the information” that links toothache and catch in the first place.

▶ Definition 1.39. Given events A,B,C with P (C) ̸= 0, then A and B are called conditionally
independent given C , iff P(A ∧ B | C) = P(A | C) · P(B | C).
Equivalently: iff P(A | (B ∧ C)) = P(A | C), or P(B | (A ∧ C)) = P(B | C).

Let Y be a random variable. We call two random variables X1,X2 conditionally independent given Y ,
iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y), the events X1 = x1 and X2 = x2 are
conditionally independent given Y = y .

▶ Example 1.40. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:
P(cavity | (toothache ∧ catch)) = P(toothache∧catch | cavity)·P (cavity)

P (toothache∧catch)

= P(toothache | cavity)·P(catch | cavity)·P (cavity)
P(toothache | cavity)·P(catch | cavity)·P (cavity)+P(toothache | ¬cavity)·P(catch | ¬cavity)·P (¬cavity)

= 0.6·0.9·0.2
0.6·0.9·0.2+0.1·v0.2·0.8=0.87

: 745 2025-05-14

Conditional Independence – Definition
▶ Assuming the patient has (or does not have) a cavity, the events toothache and catch are

independent: Both are caused by a cavity, but they don’t influence each other otherwise.
i.e. cavity “contains all the information” that links toothache and catch in the first place.

▶ Definition 1.41. Given events A,B,C with P (C) ̸= 0, then A and B are called conditionally
independent given C , iff P(A ∧ B | C) = P(A | C) · P(B | C).
Equivalently: iff P(A | (B ∧ C)) = P(A | C), or P(B | (A ∧ C)) = P(B | C).

Let Y be a random variable. We call two random variables X1,X2 conditionally independent given Y ,
iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y), the events X1 = x1 and X2 = x2 are
conditionally independent given Y = y .

▶ Example 1.42. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:
P(cavity | (toothache ∧ catch)) = P(toothache∧catch | cavity)·P (cavity)

P (toothache∧catch)

= P(toothache | cavity)·P(catch | cavity)·P (cavity)
P(toothache | cavity)·P(catch | cavity)·P (cavity)+P(toothache | ¬cavity)·P(catch | ¬cavity)·P (¬cavity)

= 0.6·0.9·0.2
0.6·0.9·0.2+0.1·v0.2·0.8=0.87

: 745 2025-05-14

Conditional Independence – Definition
▶ Assuming the patient has (or does not have) a cavity, the events toothache and catch are

independent: Both are caused by a cavity, but they don’t influence each other otherwise.
i.e. cavity “contains all the information” that links toothache and catch in the first place.

▶ Definition 1.43. Given events A,B,C with P (C) ̸= 0, then A and B are called conditionally
independent given C , iff P(A ∧ B | C) = P(A | C) · P(B | C).
Equivalently: iff P(A | (B ∧ C)) = P(A | C), or P(B | (A ∧ C)) = P(B | C).

Let Y be a random variable. We call two random variables X1,X2 conditionally independent given Y ,
iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y), the events X1 = x1 and X2 = x2 are
conditionally independent given Y = y .

▶ Example 1.44. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:
P(cavity | (toothache ∧ catch)) = P(toothache∧catch | cavity)·P (cavity)

P (toothache∧catch)

= P(toothache | cavity)·P(catch | cavity)·P (cavity)
P(toothache | cavity)·P(catch | cavity)·P (cavity)+P(toothache | ¬cavity)·P(catch | ¬cavity)·P (¬cavity)

= 0.6·0.9·0.2
0.6·0.9·0.2+0.1·v0.2·0.8=0.87

: 745 2025-05-14

Conditional Independence
▶ Lemma 1.45. If A and B are conditionally independent given C , then P(A | (B ∧ C)) = P(A | C)

Proof:
P(A | (B ∧ C)) = P (A∧B∧C)

P (B∧C) = P(A∧B | C)·P (C)
P (B∧C) = P(A | C)·P(B | C)·P (C)

P (B∧C) = P(A | C)·P (B∧C)
P (B∧C) = P(A | C)

□

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent?

No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

: 746 2025-05-14

Conditional Independence
▶ Lemma 1.46. If A and B are conditionally independent given C , then P(A | (B ∧ C)) = P(A | C)

Proof:
P(A | (B ∧ C)) = P (A∧B∧C)

P (B∧C) = P(A∧B | C)·P (C)
P (B∧C) = P(A | C)·P(B | C)·P (C)

P (B∧C) = P(A | C)·P (B∧C)
P (B∧C) = P(A | C)

□

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C?

No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

: 746 2025-05-14

Conditional Independence
▶ Lemma 1.47. If A and B are conditionally independent given C , then P(A | (B ∧ C)) = P(A | C)

Proof:
P(A | (B ∧ C)) = P (A∧B∧C)

P (B∧C) = P(A∧B | C)·P (C)
P (B∧C) = P(A | C)·P(B | C)·P (C)

P (B∧C) = P(A | C)·P (B∧C)
P (B∧C) = P(A | C)

□

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.

▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally
independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

: 746 2025-05-14

Conditional Independence
▶ Lemma 1.48. If A and B are conditionally independent given C , then P(A | (B ∧ C)) = P(A | C)

Proof:
P(A | (B ∧ C)) = P (A∧B∧C)

P (B∧C) = P(A∧B | C)·P (C)
P (B∧C) = P(A | C)·P(B | C)·P (C)

P (B∧C) = P(A | C)·P (B∧C)
P (B∧C) = P(A | C)

□

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now?

Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

: 746 2025-05-14

Conditional Independence
▶ Lemma 1.49. If A and B are conditionally independent given C , then P(A | (B ∧ C)) = P(A | C)

Proof:
P(A | (B ∧ C)) = P (A∧B∧C)

P (B∧C) = P(A∧B | C)·P (C)
P (B∧C) = P(A | C)·P(B | C)·P (C)

P (B∧C) = P(A | C)·P (B∧C)
P (B∧C) = P(A | C)

□

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?

We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

: 746 2025-05-14

Conditional Independence
▶ Lemma 1.50. If A and B are conditionally independent given C , then P(A | (B ∧ C)) = P(A | C)

Proof:
P(A | (B ∧ C)) = P (A∧B∧C)

P (B∧C) = P(A∧B | C)·P (C)
P (B∧C) = P(A | C)·P(B | C)·P (C)

P (B∧C) = P(A | C)·P (B∧C)
P (B∧C) = P(A | C)

□

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

: 746 2025-05-14

22.1.3 Conclusion

: 746 2025-05-14

Summary

▶ Probability spaces serve as a mathematical model (and hence justification) for everything related to
probabilities.
▶ The “atoms” of any statement of probability are the random variables. (Important special cases:

Boolean and finite domain)
▶ We can define probabilities on compund (propositional logical) statements, with (outcomes of)

random variables as “propositional variables”.
▶ Conditional probabilities represent posterior probabilities given some observed outcomes.
▶ Independence and conditional independence are strong assumptions that allow us to simplify

computations of probabilities
▶ Bayes’ Theorem (can be used between “causal” and “diagnostic” conditional probabilities)

: 747 2025-05-14

So much about the math...

▶ We now have a mathematical setup for probabilities.
▶ But: The math does not tell us what probabilities are:
▶ Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3.

What does this even mean?

▶ Frequentist Answer: The probability of an event is the limit of its relative frequency in a large
number of trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”
▶ Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%”

– does this mean anything, if I only take the exam once? Am I comparable to “similar students”?
What counts as sufficiently “similar”?
▶ Bayesian Answer: Probabilities are degrees of belief. It means you should be 30% confident that it

will rain tomorrow.
▶ Objection: And why should I? Is this not purely subjective then?

: 748 2025-05-14

So much about the math...

▶ We now have a mathematical setup for probabilities.
▶ But: The math does not tell us what probabilities are:
▶ Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3.

What does this even mean?
▶ Frequentist Answer: The probability of an event is the limit of its relative frequency in a large

number of trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”

▶ Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%”
– does this mean anything, if I only take the exam once? Am I comparable to “similar students”?
What counts as sufficiently “similar”?
▶ Bayesian Answer: Probabilities are degrees of belief. It means you should be 30% confident that it

will rain tomorrow.
▶ Objection: And why should I? Is this not purely subjective then?

: 748 2025-05-14

So much about the math...

▶ We now have a mathematical setup for probabilities.
▶ But: The math does not tell us what probabilities are:
▶ Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3.

What does this even mean?
▶ Frequentist Answer: The probability of an event is the limit of its relative frequency in a large

number of trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”
▶ Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%”

– does this mean anything, if I only take the exam once? Am I comparable to “similar students”?
What counts as sufficiently “similar”?

▶ Bayesian Answer: Probabilities are degrees of belief. It means you should be 30% confident that it
will rain tomorrow.
▶ Objection: And why should I? Is this not purely subjective then?

: 748 2025-05-14

So much about the math...

▶ We now have a mathematical setup for probabilities.
▶ But: The math does not tell us what probabilities are:
▶ Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3.

What does this even mean?
▶ Frequentist Answer: The probability of an event is the limit of its relative frequency in a large

number of trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”
▶ Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%”

– does this mean anything, if I only take the exam once? Am I comparable to “similar students”?
What counts as sufficiently “similar”?
▶ Bayesian Answer: Probabilities are degrees of belief. It means you should be 30% confident that it

will rain tomorrow.

▶ Objection: And why should I? Is this not purely subjective then?

: 748 2025-05-14

So much about the math...

▶ We now have a mathematical setup for probabilities.
▶ But: The math does not tell us what probabilities are:
▶ Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3.

What does this even mean?
▶ Frequentist Answer: The probability of an event is the limit of its relative frequency in a large

number of trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”
▶ Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%”

– does this mean anything, if I only take the exam once? Am I comparable to “similar students”?
What counts as sufficiently “similar”?
▶ Bayesian Answer: Probabilities are degrees of belief. It means you should be 30% confident that it

will rain tomorrow.
▶ Objection: And why should I? Is this not purely subjective then?

: 748 2025-05-14

Pragmatics

▶ Pragmatically both interpretations amount to the same thing: I should act as if I’m 30% confident
that it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases, it rained.)
▶ Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary

Kolmogorov axioms?

▶ [deFinetti:sssdp31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a
combination of “bets” on propositions so that the agent always loses money.
▶ In other words: If your beliefs are not consistent with the mathematics, and you act in accordance

with your beliefs, there is a way to exploit this inconsistency to your disadvantage.
▶ . . . and, more importantly, the AI agents you design! ,
▶ I (and my agents) do not bet: That is not true, in a partially observable or non-deterministic

world, every action choice is a necessarily bet: The outcome is not sure.

: 749 2025-05-14

Pragmatics

▶ Pragmatically both interpretations amount to the same thing: I should act as if I’m 30% confident
that it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases, it rained.)
▶ Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary

Kolmogorov axioms?
▶ [deFinetti:sssdp31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a

combination of “bets” on propositions so that the agent always loses money.
▶ In other words: If your beliefs are not consistent with the mathematics, and you act in accordance

with your beliefs, there is a way to exploit this inconsistency to your disadvantage.

▶ . . . and, more importantly, the AI agents you design! ,
▶ I (and my agents) do not bet: That is not true, in a partially observable or non-deterministic

world, every action choice is a necessarily bet: The outcome is not sure.

: 749 2025-05-14

Pragmatics

▶ Pragmatically both interpretations amount to the same thing: I should act as if I’m 30% confident
that it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases, it rained.)
▶ Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary

Kolmogorov axioms?
▶ [deFinetti:sssdp31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a

combination of “bets” on propositions so that the agent always loses money.
▶ In other words: If your beliefs are not consistent with the mathematics, and you act in accordance

with your beliefs, there is a way to exploit this inconsistency to your disadvantage.
▶ . . . and, more importantly, the AI agents you design! ,
▶ I (and my agents) do not bet: That is not true, in a partially observable or non-deterministic

world, every action choice is a necessarily bet: The outcome is not sure.

: 749 2025-05-14

22.2 Probabilistic Reasoning Techniques

: 749 2025-05-14

Okay, now how do I implement this?

▶ This is a CS course. We need to implement this stuff.

▶ Do we... implement random variables as functions? Is a probability space a... class maybe?

▶ No: As mentioned, we rarely know the probability space entirely. Instead we will use probability
distributions, which are just arrays (of arrays of...) of probabilities.
▶ And then we represent those as sparsely as possible, by exploiting independence, conditional

independence, . . .

: 750 2025-05-14

Okay, now how do I implement this?

▶ This is a CS course. We need to implement this stuff.

▶ Do we... implement random variables as functions? Is a probability space a... class maybe?

▶ No: As mentioned, we rarely know the probability space entirely. Instead we will use probability
distributions, which are just arrays (of arrays of...) of probabilities.
▶ And then we represent those as sparsely as possible, by exploiting independence, conditional

independence, . . .

: 750 2025-05-14

22.2.1 Probability Distributions

: 750 2025-05-14

Probability Distributions

▶ Definition 2.1. The probability distribution for a random variable X , written P(X), is the vector of
probabilities for the (ordered) domain of X .
▶ Note: The values in a probability distribution are all positive and sum to 1. (Why?)
▶ Example 2.2. P(First) = P(Second) = ⟨ 16 , 1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ⟩. (Both First and Second are uniformly

distributed)
▶ Example 2.3. The probability distribution P(S) is ⟨ 1

36 ,
1
18 ,

1
12 ,

1
9 ,

5
36 ,

1
6 ,

5
36 ,

1
9 ,

1
12 ,

1
18 ,

1
36 ⟩. Note the

symmetry, with a “peak” at 7 – the random variable is (approximately, because our domain is discrete
rather than continuous) normally distributed (or gaussian distributed, or follows a bell-curve,...).
▶ Example 2.4. Probability distributions for Boolean random variables are naturally pairs (probabilities

for T and F), e.g.:

P(toothache) = ⟨0.15, 0.85⟩
P(cavity) = ⟨0.122, 0.878⟩

▶ More generally:
▶ Definition 2.5. A probability distribution is a vector v of values vi ∈ [0,1] such that

∑
i vi = 1.

: 751 2025-05-14

The Full Joint Probability Distribution
▶ Definition 2.6. Given random variables X 1, . . .,X n with domains D1, . . .,Dn, the full joint

probability distribution, denoted P(X 1, . . .,X n), is the n-dimensional array of size |D1 × . . .×Dn| that
lists the probabilities of all conjunctions of values of the random variables.
▶ Example 2.7. P(cavity, toothache, gingivitis) could look something like this:

toothache ¬toothache
gingivitis ¬gingivitis gingivitis ¬gingivitis

cavity 0.007 0.06 0.005 0.05
¬cavity 0.08 0.003 0.045 0.75

▶ Example 2.8. P(First,S)
First \ S 2 3 4 5 6 7 8 9 10 11 12

1 1
36

1
36

1
36

1
36

1
36

1
36 0 0 0 0 0

2 0 1
36

1
36

1
36

1
36

1
36

1
36 0 0 0 0

3 0 0 1
36

1
36

1
36

1
36

1
36

1
36 0 0 0

4 0 0 0 1
36

1
36

1
36

1
36

1
36

1
36 0 0

5 0 0 0 0 1
36

1
36

1
36

1
36

1
36

1
36 0

6 0 0 0 0 0 1
36

1
36

1
36

1
36

1
36

1
36

Note that if we know the value of First, the value of S is completely determined by the value of
Second.

: 752 2025-05-14

Conditional Probability Distributions
▶ Definition 2.9. Given random variables X and Y , the conditional probability distribution of X given
Y , written P(X |Y) is the table of all conditional probabilities of values of X given values of Y .
▶ For sets of variables analogously: P(X 1, . . .,X n|Y 1, . . .,Ym).
▶ Example 2.10. P(cavity|toothache):

toothache ¬toothache
cavity P(cavity | toothache) = 0.45 P(cavity | ¬toothache) = 0.065
¬cavity P(¬cavity | toothache) = 0.55 P(¬cavity | ¬toothache) = 0.935

▶ Example 2.11. P(First|S)
First \ S 2 3 4 5 6 7 8 9 10 11 12

1 1 1
2

1
3

1
4

1
5

1
6 0 0 0 0 0

2 0 1
2

1
3

1
4

1
5

1
6

1
5 0 0 0 0

3 0 0 1
3

1
4

1
5

1
6

1
5

1
4 0 0 0

4 0 0 0 1
4

1
5

1
6

1
5

1
4

1
3 0 0

5 0 0 0 0 1
5

1
6

1
5

1
4

1
3

1
2 0

6 0 0 0 0 0 1
6

1
5

1
4

1
3

1
2 1

▶ Note: Every “column” of a conditional probability distribution is itself a probability distribution.
(Why?)

: 753 2025-05-14

Convention

▶ We now “lift” multiplication and division to the level of whole probability distributions:
▶ Definition 2.12. Whenever we use P in an equation, we take this to mean a system of equations, for

each value in the domains of the random variables involved.
Example 2.13.
▶ P(X ,Y) = P(X |Y) · P(Y) represents the system of equations
P (X = x ∧ Y = y) = P(X = x | Y = y) · P (Y = y) for all x , y in the respective domains.

▶ P(X |Y) := P(X ,Y)
P(Y) represents the system of equations P(X = x | (Y = y)) := P ((X=x)∧(Y=y))

P (Y=y)

▶ Bayes’ Theorem: P(X |Y) = P(Y |X)·P(X)
P(Y) represents the system of equations

P(X = x | (Y = y)) = P(Y=y | (X=x))·P (X=x)
P (Y=y)

: 754 2025-05-14

So, what’s the point?

▶ Obviously, the probability distribution contains all the information about a specific random variable
we need.
▶ Observation: The full joint probability distribution of variables X 1, . . .,X n contains all the

information about the random variables and their conjunctions we need.
▶ Example 2.14. We can read off the probability P (toothache) from the full joint probability

distribution as 0.007 + 0.06 + 0.08 + 0.003=0.15, and the probability P (toothache ∧ cavity) as
0.007 + 0.06 = 0.067
▶ We can actually implement this! (They’re just (nested) arrays)

▶ But: just as we often don’t have a fully specified probability space to work in, we often don’t have a
full joint probability distribution for our random variables either.
▶ Also: Given random variables X 1, . . .,X n, the full joint probability distribution has

∏n
i=1 |dom(X i)|

entries! (P(First,S) already has 60 entries!)
▶ So: The rest of this section deals with keeping things small, by computing probabilities instead of

storing them all.

: 755 2025-05-14

Probabilistic Reasoning

▶ Probabilistic reasoning refers to inferring probabilities of events from the probabilities of other
events
as opposed to determining the probabilities e.g. empirically, by gathering (sufficient amounts of
representative) data and counting.
▶ Note: In practice, we are primarily interested in, and have access to, conditional probabilities rather

than the unconditional probabilities of conjunctions of events:
▶ We don’t reason in a vacuum: Usually, we have some evidence and want to infer the posterior probability of

some related event. (e.g. infer a plausible cause given some symptom)
; we are interested in the conditional probability P(hypothesis | observation).

▶ “80% of patients with a cavity complain about a toothache” (i.e. P(toothache | cavity)) is more the kind
of data people actually collect and publish than “1.2% of the general population have both a cavity and a
toothache” (i.e. P (cavity ∧ toothache)).

▶ Consider the probe catching in a cavity. The probe is a diagnostic tool, which is usually evaluated in terms
of its sensitivity P(catch | cavity) and specificity P(¬catch | ¬cavity). (You have probably heard these
words a lot since 2020...)

: 756 2025-05-14

22.2.2 Naive Bayes

: 756 2025-05-14

Naive Bayes Models

▶ Consider again the dentistry example with random variables cavity, toothache, and catch. We
assume cavity causes both toothache and catch, and that toothache and catch are conditionally
independent given cavity:

Toothache Catch

Cavity

▶ We likely know the sensitivity P(catch | cavity) and specificity P(¬catch | ¬cavity), which jointly
give us P(catch|cavity), and from medical studies, we should be able to determine P (cavity) (the
prevalence of cavities in the population) and P(toothache|cavity).

▶ This kind of situation is surprisingly common, and therefore deserves a name.

: 757 2025-05-14

Naive Bayes Models

Toothache Catch

Cavity

▶ Definition 2.15. A naive Bayes model (or, less accurately, Bayesian classifier, or, derogatorily, idiot
Bayes model) consists of:
1. random variables C ,E 1, . . .,E n such that all the E 1, . . .,E n are conditionally independent given C ,
2. the probability distribution P(C), and
3. the conditional probability distributions P(E i |C).

We call C the cause and the E 1, . . .,E n the effects of the model.
▶ Convention: Whenever we draw a graph of random variables, we take the arrows to connect causes

to their direct effects, and assert that unconnected nodes are conditionally independent given all their
ancestors. We will make this more precise later.
▶ Can we compute the full joint probability distribution P(cavity, toothache, catch) from this

information?

: 758 2025-05-14

Recovering the Full Joint Probability Distribution
▶ Lemma 2.16 (Product rule). P(X ,Y) = P(X |Y) · P(Y).

▶ We can generalize this to more than two variables, by repeatedly applying the product rule:
▶ Lemma 2.17 (Chain rule). For any sequence of random variables X 1, . . .,X n:

P(X 1, . . .,X n) = P(X 1|X 2, . . .,X n) · P(X 2|X 3, . . .X n) · . . . · P(X n−1|X n) · P (X n)

Hence:
▶ Theorem 2.18. Given a naive Bayes model with effects E 1, . . .,E n and cause C , we have

P(C ,E 1, . . .,E n) = P(C) · (
n∏

i=1

P(E i |C)).

▶ Proof: Using the chain rule:
1. P(E 1, . . .,E n,C) = P(E 1|E 2, . . .,E n,C) · . . . · P(E n|C) · P(C)
2. Since all the E i are conditionally independent, we can drop them on the right hand sides of the
P(E j |...,C)

□

: 759 2025-05-14

Marginalization
▶ Great, so now we can compute P(C |E 1, . . .,E n) =

P(C ,E1,...,E n)
P(E1,...,E n)

...
...except that we don’t know P(E 1, . . .,E n) :-/
...except that we can compute the full joint probability distribution, so we can recover it:
▶ Lemma 2.19 (Marginalization). Given random variables X 1, . . .,X n and Y 1, . . .,Ym, we have
P(X 1, . . .,X n) =

∑
y1∈dom(Y 1),...,ym∈dom(Ym)

P(X 1, . . .,X n,Y 1 = y1, . . .,Ym = ym).
(This is just a fancy way of saying “we can add the relevant entries of the full joint probability

distribution”)
▶ Example 2.20. Say we observed toothache = T and catch = T. Using marginalization, we can

compute

P(cavity | (toothache ∧ catch))=
P (cavity ∧ toothache ∧ catch)

P (toothache ∧ catch)

=
P (cavity ∧ toothache ∧ catch)∑

c∈{cavity,¬cavity} P (c ∧ toothache ∧ catch)

=
P (cavity) · P(toothache | cavity) · P(catch | cavity)∑
c∈{cavity,¬cavity} P (c) · P(toothache | c) · P(catch | c)

: 760 2025-05-14

Unknowns

▶ What if we don’t know catch? (I’m not a dentist, I don’t have a probe...)
▶ We split our effects into {E 1, . . .,E n} = {O1, . . .,OnO} ∪ {U1, . . .,UnU} – the observed and unknown

random variables.
▶ Let DU := dom(U1)× . . .× dom(Unu). Then

P(C |O1, . . .,OnO)=
P(C ,O1, . . .,OnO)

P(O1, . . .,OnO)

=

∑
u∈DU

P(C ,O1, . . .,OnO ,U1 = u1, . . .,Unu = unu)∑
c∈dom(C)

∑
u∈DU

P(O1, . . .,OnO ,C = c,U1 = u1, . . .,Unu = unu)

=

∑
u∈DU

P(C) · (∏nO
i=1 P(O i |C)) · (∏nU

j=1 P(U j = uj |C))
∑

c∈dom(C)

∑
u∈DU

P (C = c) · (∏nO
i=1 P(O i |C = c)) · (∏nU

j=1 P(U j = uj | (C = c)))

=
P(C) · (∏nO

i=1 P(O i |C)) · (∑u∈DU

∏nU
j=1 P(U j = uj |C))

∑
c∈dom(C) P (C = c) · (∏nO

i=1 P(O i |C = c)) · (∑u∈DU

∏nU
j=1 P(U j = uj | (C = c)))

...oof...

: 761 2025-05-14

Unknowns

▶ Continuing from above:

P(C |O1, . . .,OnO) =
P(C) · (∏nO

i=1 P(O i |C)) · (∑u∈DU

∏nU
j=1 P(U j = uj |C))

∑
c∈dom(C) P (C = c) · (∏nO

i=1 P(O i |C = c)) · (∑u∈DU

∏nU
j=1 P(U j = uj | (C = c)))

▶ First, note that
∑

u∈DU

∏nU
j=1 P(U j = uj | (C = c)) = 1 (We’re summing over all possible events on

the (conditionally independent) U1, . . .,UnU given C = c)
▶

P(C |O1, . . .,OnO) =
P(C) · (∏nO

i=1 P(O i |C))∑
c∈dom(C) P (C = c) · (∏nO

i=1 P(O i |C = c))

▶ Secondly, note that the denominator is
1. the same for any given observations O1, . . .,OnO , independent of the value of C , and
2. the sum over all the numerators in the full distribution.

That is: The denominator only serves to scale what is almost already the distribution
P(C |O1, . . .,OnO) to sum up to 1.

: 762 2025-05-14

Normalization
▶ Definition 2.21 (Normalization). Given a vector w := ⟨w1, . . .,wk⟩ of numbers in [0,1] where∑k

i=1 w i ≤ 1.
Then the normalized vector α(w) is defined (component-wise) as

(α(w))i :=
w i∑k
j=1 w j

.

Note that
∑k

i=1 α(w)i = 1, i.e. α(w) is a probability distribution.
▶ This finally gives us:

Theorem 2.22 (Inference in a Naive Bayes model). Let C ,E 1, . . .,E n a naive Bayes model and
E 1, . . .,E n = O1, . . .,OnO ,U1, . . .,UnU .
Then

P(C |O1 = o1, . . .,OnO = onO) = α(P(C) · (
nO∏

i=1

P(O i = oi |C)))

▶ Note, that this is entirely independent of the unknown random variables U1, . . .,UnU !
▶ Also, note that this is just a fancy way of saying “first, compute all the numerators, then divide all of

them by their sums”.

: 763 2025-05-14

Dentistry Example

▶ Putting things together, we get:

P(cavity|toothache = T)=α(P(cavity) · P(toothache = T|cavity))
=α(⟨P (cavity) · P(toothache | cavity),P (¬cavity) · P(toothache | ¬cavity)⟩)

▶ Say we have P (cavity) = 0.1, P(toothache | cavity) = 0.8, and P(toothache | ¬cavity) = 0.05.
Then

P(cavity|toothache = T) = α(⟨0.1 · 0.8, 0.9 · 0.05⟩) = α(⟨0.08, 0.045⟩)
0.08 + 0.045 = 0.125, hence

P(cavity|toothache = T) = ⟨ 0.08
0.125

,
0.045
0.125

⟩ = ⟨0.64, 0.36⟩

: 764 2025-05-14

Naive Bayes Classification

We can use a naive Bayes model as a very simple classifier:
▶ Assume we want to classify newspaper articles as one of the categories politics, sports, business, fluff,

etc. based on the words they contain.
▶ Given a large set of articles, we can determine the relevant probabilities by counting the occurrences

of the categories P(category), and of words per category – i.e. P(wordi |category) for some (huge) list
of words (wordi)

n
i=1.

▶ We assume that the occurrence of each word is conditionally independent of the occurrence of any
other word given the category of the document. (This assumption is clearly wrong, but it makes the
model simple and often works well in practice.) (; “Idiot Bayes model”)
▶ Given a new article, we just count the occurrences ki of the words in it and compute

P(category|word1 = k1, . . .,wordn = kn) = α(P(category) · (
n∏

i=1

P(wordi = ki |category)))

▶ We then choose the category with the highest probability.

: 765 2025-05-14

22.2.3 Inference by Enumeration

: 765 2025-05-14

Inference by Enumeration

▶ The rules we established for naive Bayes models, i.e. Bayes’s theorem, the product rule and chain
rule, marginalization and normalization, are general techniques for probabilistic reasoning, and their
usefulness is not limited to the naive Bayes models.
▶ More generally:
▶ Theorem 2.23. Let Q,E 1, . . .,E nE ,U1, . . .,UnU be random variables and
D := dom(U1)× . . .× dom(UnU). Then

P(Q|E 1 = e1, . . .,E nE = ene) = α(
∑

u∈D

P(Q,E 1 = e1, . . .,E nE = ene ,U1 = u1, . . .,UnU = unU))

.
We call Q the query variable, E 1, . . .,E nE the evidence, and U1, . . .,UnU the unknown (or hidden)
variables, and computing a conditional probability this way enumeration.

▶ Note that this is just a “mathy” way of saying we
1. sum over all relevant entries of the full joint probability distribution of the variables, and
2. normalize the result to yield a probability distribution.

: 766 2025-05-14

22.2.4 Example – The Wumpus is Back

: 766 2025-05-14

Example: The Wumpus is Back

▶ We have a maze where
▶ Every cell except [1, 1] possibly contains a pit, with 20% probability.
▶ pits cause a breeze in neighboring cells (we forget the wumpus and the gold

for now)
▶ Where should the agent go, if there is a breeze at [1, 2] and [2, 1]?
▶ Pure logical inference can conclude nothing about which square is most

likely to be safe!

We can model this using the Boolean random variables:
▶ P i,j for i , j ∈ {1, 2, 3, 4}, stating there is a pit at square [i , j], and
▶ B i,j for (i , j) ∈ {(1, 1), (1, 2), (2, 1)}, stating there is a breeze at square [i , j]

⇒ let’s apply our machinery!

: 767 2025-05-14

Wumpus: Probabilistic Model

▶ First: Let’s try to compute the full joint probability distribution
P(P1,1, . . .,P4,4,B1,1,B1,2,B2,1).
1. By the product rule, this is equal to

P(B1,1,B1,2,B2,1|P1,1, . . .,P4,4) · P(P1,1, . . .,P4,4).
2. Note that P(B1,1,B1,2,B2,1|P1,1, . . .,P4,4) is either 1 (if all the B i,j are

consistent with the positions of the pits Pk,l) or 0 (otherwise).
3. Since the pits are spread independently, we have

P(P1,1, . . .,P4,4) =
∏4,4

i,j=1,1 P(P i,j)

▶ ; We know all of these probabilities.
▶ ; We can now use enumeration to compute
P(P i,j | < known >) = α(

∑
<unknowns> P(P i,j , < known >,< unknowns >))

: 768 2025-05-14

Wumpus Continued

▶ Problem: We only know P i,j for three fields. If we want to compute e.g. P1,3 via enumeration, that
leaves 242−4 = 4096 terms to sum over!
▶ Let’s do better.
▶ Let b := ¬B1,1 ∧ B1,2 ∧ B2,1 (All the breezes we know about)
▶ Let p := ¬P1,1 ∧ ¬P1,2 ∧ ¬P2,1. (All the pits we know about)
▶ Let F := {P3,1 ∧ P2,2,¬P3,1 ∧ P2,2,P3,1 ∧ ¬P2,2,¬P3,1 ∧ P2,2} (the current

“frontier”)
▶ Let O be (the set of assignments for) all the other variables P i,j . (i.e. except

p, F and our query P1,3)

Then the observed breezes b are conditionally independent of O given p and
F . (Whether there is a pit anywhere else does not influence the breezes we
observe.)
▶ ⇒ P(b | P1,3,p,O,F) = P(b | P1,3,p,F). Let’s exploit this!

: 769 2025-05-14

Optimized Wumpus
▶ In particular:

P(P1,3|p, b)=α(
∑

o∈O,f∈F

P(P1,3, b, p, f , o))=α(
∑

o∈O,f∈F

P(b | P1,3,p,o,f) · P(P1,3, p, f , o))

=α(
∑

f∈F

∑

o∈O

P(b | P1,3,p,f) · P(P1,3, p, f , o))=α(
∑

f∈F

P(b | P1,3,p,f) · (
∑

o∈O

P(P1,3, p, f , o)))

=α(
∑

f∈F

P(b | P1,3,p,f) · (
∑

o∈O

P(P1,3) · P (p) · P (f) · P (o)))

=α(P(P1,3) · P (p) · (
∑

f∈F

P(b | P1,3,p,f)︸ ︷︷ ︸
∈{0,1}

·P (f) · (
∑

o∈O

P (o))

︸ ︷︷ ︸
=1

))

; this is just a sum over the frontier, i.e. 4 terms ,
▶ So: P(P1,3|p, b) =

α(⟨0.2 · (0.8)3 · (1 · 0.04+ 1 · 0.16+ 1 · 0.16+ 0), 0.8 · (0.8)3 · (1 · 0.04+ 1 · 0.16+ 0+ 0)⟩) ≈ ⟨0.31, 0.69⟩
▶ Analogously: P(P3,1|p, b) = ⟨0.31, 0.69⟩ and P(P2,2|p, b) = ⟨0.86, 0.14⟩ (⇒ avoid [2, 2]!)

: 770 2025-05-14

Cooking Recipe

▶ In general, when you want to reason probabilistically, a good heuristic is:
1. Try to frame the full joint probability distribution in terms of the probabilities you know. Exploit product

rule/chain rule, independence, conditional independence, marginalization and domain knowledge (as e.g.
P(b|p, f) ∈ {0, 1})
; the problem can be solved at all!

2. Simplify: Start with the equation for enumeration:

P(Q|E1, ...) = α(
∑
u∈U

P(Q,E1, ...,U1 = u1, ...))

3. Substitute by the result of 1., and again, exploit all of our machinery
4. Implement the resulting (system of) equation(s)
5. ???
6. Profit

: 771 2025-05-14

Summary

▶ Probability distributions and conditional probability distributions allow us to represent random
variables as convenient datastructures in an implementation (Assuming they are finite domain...)
▶ The full joint probability distribution allows us to compute all probabilities of statements about the

random variables contained (But possibly inefficient)
▶ Marginalization and normalization are the specific techniques for extracting the specific probabilities

we are interested in from the full joint probability distribution.
▶ The product and chain rule, exploiting (conditional) independence, Bayes’ Theorem, and of course

domain specific knowledge allow us to do so much more efficiently.
▶ Naive Bayes models are one example where all these techniques come together.

: 772 2025-05-14

Chapter 23
Probabilistic Reasoning: Bayesian Networks

: 772 2025-05-14

23.1 Introduction

: 772 2025-05-14

John, Mary, and My Brand-New Alarm

▶ Example 1.1 (From Russell/Norvig).
▶ I got very valuable stuff at home. So I bought an alarm. Unfortunately, the alarm just rings at home,

doesn’t call me on my mobile.
▶ I’ve got two neighbors, Mary and John, who’ll call me if they hear the alarm.
▶ The problem is that, sometimes, the alarm is caused by an earthquake.
▶ Also, John might confuse the alarm with his telephone, and Mary might miss the alarm altogether because

she typically listens to loud music.

; Random variables: Burglary, Earthquake, Alarm, John, Mary. Given that both John and Mary

call me, what is the probability of a burglary?
▶ ; This is almost a naive Bayes model, but with multiple causes (Burglary and Earthquake) for the
Alarm, which in turn may cause John and/or Mary.

: 773 2025-05-14

John, Mary, and My Alarm: Assumptions

We assume:
▶ We (should) know P(Alarm|Burglary, Earthquake),
P(John|Alarm), and P(Mary|Alarm).
▶ Burglary and Earthquake are independent.
▶ John and Mary are conditionally independent given Alarm.
▶ Moreover: Both John and Mary are conditionally

independent of any other random variables in the graph
given Alarm. (Only Alarm causes them, and everything else
only causes them indirectly through Alarm)

Burglary Earthquake

Alarm

John Mary

▶ First Step: Construct the full joint probability distribution,
▶ Second Step: Use enumeration to compute P(Burglary|John = T, Mary = T).

: 774 2025-05-14

John, Mary, and My Alarm: The Distribution

▶

P(John, Mary, Alarm, Burglary, Earthquake)
=P(John|Mary, Alarm, Burglary, Earthquake) · P(Mary|Alarm, Burglary, Earthquake)
· P(Alarm|Burglary, Earthquake) · P(Burglary|Earthquake) · P(Earthquake)

=P(John|Alarm) · P(Mary|Alarm) · P(Alarm|Burglary, Earthquake) · P(Burglary) · P(Earthquake)

▶ We plug into the equation for enumeration:

P(Burglary|John = T, Mary = T)=α(P(Burglary)
∑

a∈{T,F}
P(John | Alarm = a) · P(Mary | Alarm = a)

·
∑

q∈{T,F}
P(Alarm = a|Burglary, Earthquake = q)P (Earthquake = q))

▶ ; Now let’s scale things up to arbitrarily many variables!

: 775 2025-05-14

Bayesian Networks: Definition

▶ Definition 1.2. A Bayesian network consists of
1. a directed acyclic graph ⟨X ,E⟩ of random variables X = {X 1, . . .,X n}, and
2. a conditional probability distribution P(X i |Parents(X i)) for every X i ∈ X (also called the CPT for

conditional probability table)

such that every X i is conditionally independent of any conjunctions of non-descendents of X i given
Parents(X i).
▶ Definition 1.3. Let ⟨X ,E ⟩ be a directed acyclic graph, X ∈ X , and E∗ the reflexive transitive

closure of E . The non-descendents of X are the elements of the set
NonDesc(X) := {Y | (X ,Y) ̸∈ E∗}\Parents(X).
▶ Note that the roots of the graph are conditionally independent given the empty set; i.e. they are

independent.
▶ Theorem 1.4. The full joint probability distribution of a Bayesian network ⟨X ,E ⟩ is given by

P(X 1, . . .,X n) =
∏

X i∈X
P(X i |Parents(X i))

: 776 2025-05-14

Some Applications

▶ A ubiquitous problem: Observe “symptoms”, need to infer “causes”.
Medical Diagnosis Face Recognition

Self-Localization Nuclear Test Ban

: 777 2025-05-14

23.2 Constructing Bayesian Networks

: 777 2025-05-14

Compactness of Bayesian Networks
▶ Definition 2.1. Given random variables X 1, . . .,X n with finite domains D1, . . .,Dn, the size of
B := ⟨{X 1, . . .,X n},E ⟩ is defined as

size(B):=
n∑

i=1

|D i | · (
∏

X j∈Parents(X i)

|D j |)

▶ Note: size(B) =̂ The total number of entries in the conditional probability distributions.

▶ Note: Smaller BN ; need to assess less probabilities, more efficient inference.
▶ Observation 2.2. Explicit full joint probability distribution has size

∏n
i=1 |D i |.

▶ Observation 2.3. If |Parents(X i)| ≤ k for every X i , and Dmax is the largest random variable
domain, then size(B) ≤ n|Dmax|k+1.
▶ Example 2.4. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a Bayesian

network of size ≤ 20 · 25 = 640 . . . !
▶ In the worst case, size(B) = n · (∏1

·=i n)|D i |, namely if every variable depends on all its predecessors
in the chosen variable ordering.
▶ Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only by few of

its predecessor variables.

: 778 2025-05-14

Compactness of Bayesian Networks
▶ Definition 2.5. Given random variables X 1, . . .,X n with finite domains D1, . . .,Dn, the size of
B := ⟨{X 1, . . .,X n},E ⟩ is defined as

size(B):=
n∑

i=1

|D i | · (
∏

X j∈Parents(X i)

|D j |)

▶ Note: size(B) =̂ The total number of entries in the conditional probability distributions.
▶ Note: Smaller BN ; need to assess less probabilities, more efficient inference.
▶ Observation 2.6. Explicit full joint probability distribution has size

∏n
i=1 |D i |.

▶ Observation 2.7. If |Parents(X i)| ≤ k for every X i , and Dmax is the largest random variable
domain, then size(B) ≤ n|Dmax|k+1.

▶ Example 2.8. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a Bayesian
network of size ≤ 20 · 25 = 640 . . . !
▶ In the worst case, size(B) = n · (∏1

·=i n)|D i |, namely if every variable depends on all its predecessors
in the chosen variable ordering.
▶ Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only by few of

its predecessor variables.

: 778 2025-05-14

Compactness of Bayesian Networks
▶ Definition 2.9. Given random variables X 1, . . .,X n with finite domains D1, . . .,Dn, the size of
B := ⟨{X 1, . . .,X n},E ⟩ is defined as

size(B):=
n∑

i=1

|D i | · (
∏

X j∈Parents(X i)

|D j |)

▶ Note: size(B) =̂ The total number of entries in the conditional probability distributions.
▶ Note: Smaller BN ; need to assess less probabilities, more efficient inference.
▶ Observation 2.10. Explicit full joint probability distribution has size

∏n
i=1 |D i |.

▶ Observation 2.11. If |Parents(X i)| ≤ k for every X i , and Dmax is the largest random variable
domain, then size(B) ≤ n|Dmax|k+1.
▶ Example 2.12. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a Bayesian

network of size ≤ 20 · 25 = 640 . . . !
▶ In the worst case, size(B) = n · (∏1

·=i n)|D i |, namely if every variable depends on all its predecessors
in the chosen variable ordering.
▶ Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only by few of

its predecessor variables.

: 778 2025-05-14

Keeping Networks Small

▶ To keep our Bayesian networks small, we can:
1. Reduce the number of edges: ⇒ Order the variables to allow for exploiting conditional independence

(causes before effects), or
2. represent the conditional probability distributions efficiently:

2.1 For Boolean random variables X , we only need to store P(X = T|Parents(X))
(P(X = F|Parents(X)) = 1− P(X = T|Parents(X))) (Cuts the number of entries in half!)

2.2 Introduce different kinds of nodes exploiting domain knowledge; e.g. deterministic and noisy disjunction nodes.

: 779 2025-05-14

Reducing Edges: Variable Order Matters

▶ Given a set of random variables X 1, . . .,X n, consider the following (impractical, but illustrative)
pseudo-algorithm for constructing a Bayesian network:
▶ Definition 2.13 (BN construction algorithm).

1. Initialize BN := ⟨{X 1, . . .,X n},E⟩ where E = ∅.
2. Fix any variable ordering, X 1, . . .,X n.
3. for i := 1, . . . , n do

a. Choose a minimal set Parents(X i) ⊆ {X 1, . . . ,X i−1} such that

P(X i |X i−1, . . . ,X 1) = P(X i |Parents(X i))

b. For each X j ∈ Parents(X i), insert (X j ,X i) into E .
c. Associate X i with P(X i |Parents(X i)).

▶ Attention: Which variables we need to include into Parents(X i) depends on what “{X 1, . . . ,X i−1}”
is . . . !
▶ Thus: The size of the resulting BN depends on the chosen variable ordering X 1, . . .,X n.
▶ In Particular: The size of a Bayesian network is not a fixed property of the domain. It depends on

the skill of the designer.

: 780 2025-05-14

John and Mary Depend on the Variable Order!

▶ Example 2.14. Mary, John, Alarm, Burglary, Earthquake.

Burglary

Earthquake

Alarm

John

Mary

: 781 2025-05-14

John and Mary Depend on the Variable Order!

▶ Example 2.15. Mary, John, Alarm, Burglary, Earthquake.

Burglary

Earthquake

Alarm

John

Mary

: 781 2025-05-14

John and Mary Depend on the Variable Order! Ctd.

▶ Example 2.16. Mary, John, Earthquake, Burglary, Alarm.

Burglary

Earthquake

Alarm

John

Mary

: 782 2025-05-14

John and Mary Depend on the Variable Order! Ctd.

▶ Example 2.17. Mary, John, Earthquake, Burglary, Alarm.

Burglary

Earthquake

Alarm

John

Mary

: 782 2025-05-14

John and Mary, What Went Wrong?

Burglary Earthquake

Alarm

John Mary Burglary

Earthquake

Alarm

John

Mary

▶ Intuition: These BNs link from effects to their causes!
⇒ Even though Mary and John are conditionally independent given Alarm, this is not exploited, since
Alarm is not ordered before Mary and John!
⇒ Rule of Thumb: We should order causes before symptoms.

: 783 2025-05-14

John and Mary, What Went Wrong?

Burglary Earthquake

Alarm

John Mary Burglary

Earthquake

Alarm

John

Mary

▶ Intuition: These BNs link from effects to their causes!
⇒ Even though Mary and John are conditionally independent given Alarm, this is not exploited, since
Alarm is not ordered before Mary and John!

⇒ Rule of Thumb: We should order causes before symptoms.

: 783 2025-05-14

John and Mary, What Went Wrong?

Burglary Earthquake

Alarm

John Mary Burglary

Earthquake

Alarm

John

Mary

▶ Intuition: These BNs link from effects to their causes!
⇒ Even though Mary and John are conditionally independent given Alarm, this is not exploited, since
Alarm is not ordered before Mary and John!
⇒ Rule of Thumb: We should order causes before symptoms.

: 783 2025-05-14

Representing Conditional Distributions: Deterministic Nodes

▶ Definition 2.18. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

▶ Example 2.19. The sum of two dice throws S is entirely determined by the values of the two dice
First and Second .
▶ Example 2.20. In the Wumpus example, the breezes are entirely determined by the pits
▶ ; Deterministic nodes model direct, causal relationships.
▶ ; If X is deterministic, then µ(X | Parents(X)) ∈ {0, 1}
▶ ; we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

: 784 2025-05-14

Representing Conditional Distributions: Deterministic Nodes

▶ Definition 2.21. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).
▶ Example 2.22. The sum of two dice throws S is entirely determined by the values of the two dice
First and Second .

▶ Example 2.23. In the Wumpus example, the breezes are entirely determined by the pits
▶ ; Deterministic nodes model direct, causal relationships.
▶ ; If X is deterministic, then µ(X | Parents(X)) ∈ {0, 1}
▶ ; we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

: 784 2025-05-14

Representing Conditional Distributions: Deterministic Nodes

▶ Definition 2.24. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).
▶ Example 2.25. The sum of two dice throws S is entirely determined by the values of the two dice
First and Second .
▶ Example 2.26. In the Wumpus example, the breezes are entirely determined by the pits

▶ ; Deterministic nodes model direct, causal relationships.
▶ ; If X is deterministic, then µ(X | Parents(X)) ∈ {0, 1}
▶ ; we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

: 784 2025-05-14

Representing Conditional Distributions: Deterministic Nodes

▶ Definition 2.27. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).
▶ Example 2.28. The sum of two dice throws S is entirely determined by the values of the two dice
First and Second .
▶ Example 2.29. In the Wumpus example, the breezes are entirely determined by the pits
▶ ; Deterministic nodes model direct, causal relationships.
▶ ; If X is deterministic, then µ(X | Parents(X)) ∈ {0, 1}

▶ ; we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

: 784 2025-05-14

Representing Conditional Distributions: Deterministic Nodes

▶ Definition 2.30. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).
▶ Example 2.31. The sum of two dice throws S is entirely determined by the values of the two dice
First and Second .
▶ Example 2.32. In the Wumpus example, the breezes are entirely determined by the pits
▶ ; Deterministic nodes model direct, causal relationships.
▶ ; If X is deterministic, then µ(X | Parents(X)) ∈ {0, 1}
▶ ; we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

: 784 2025-05-14

Representing Conditional Distributions: Noisy Nodes

▶ Sometimes, values of nodes are “almost deterministic”:
▶ Example 2.33 (Inhibited Causal Dependencies).
Assume the network on the right contains all possible causes of fever.(Or add
a dummy-node for “other causes”)
If there is a fever, then one of them (at least) must be the cause, but none of
them necessarily cause a fever: The causal relation between parent and child
is inhibited.

Cold

Flu

Malaria

Fever

; We can model the inhibitions by individual inhibition factors qd .
▶ Definition 2.34. The conditional probability distribution of a noisy disjunction node X with

Parents(X) = X 1, . . .,X n in a Bayesian network is given by P(X | X 1, . . .,X n) = 1− (
∏

{j |X j=T} qj),
where the qi are the inhibition factors of X i ∈ Parents(X), defined as
qi := P(¬X | ¬X 1,. . .,¬X i−1,X i ,¬X i+1,. . .,¬X n)

▶ ; Instead of a distribution with 2k parameters, we only need k parameters!

: 785 2025-05-14

Representing Conditional Distributions: Noisy Nodes
▶ Example 2.35. Assume the following inhibition factors for ??:

qcold = P(¬fever | cold,¬flu,¬malaria) = 0.6
qflu = P(¬fever | ¬cold,flu,¬malaria) = 0.2

qmalaria = P(¬fever | ¬cold,¬flu,malaria) = 0.1

If we model Fever as a noisy disjunction node, then the general rule
P(X i | Parents(X i)) =

∏
{j |X j=T} qj for the CPT gives the following table:

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2 · 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 · 0.1
T T F 0.88 0.12 = 0.6 · 0.2
T T T 0.988 0.012 = 0.6 · 0.2 · 0.1

: 786 2025-05-14

Representing Conditional Distributions: Summary

▶ Note that deterministic nodes and noisy disjunction nodes are just two examples of “specialized” kinds
of nodes in a Bayesian network.
▶ In general, noisy logical relationships in which a variable depends on k parents can be described by
O(k) parameters instead of O(2k) for the full conditional probability table. This can make assessment
(and learning) tractable.
▶ Example 2.36. The CPCS network [PraProMid:kelbn94] uses noisy-OR and noisy-MAX

distributions to model relationships among diseases and symptoms in internal medicine. With 448
nodes and 906 links, it requires only 8,254 values instead of 133,931,430 for a network with full
conditional probability distributions.

: 787 2025-05-14

23.3 Inference in Bayesian Networks

: 787 2025-05-14

Probabilistic Inference Tasks in Bayesian Networks
▶ Remember:
▶ Definition 3.1 (Probabilistic Inference Task). Let
X 1, . . .,X n = Q1, . . .,QnQ ,E 1, . . .,E nE ,U1, . . .,UnU be a set of random variables, a probabilistic
inference task.
We wish to compute the conditional probability distribution P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE).
We call
▶ a Q1, . . .,QnQ the query variables,
▶ a E 1, . . .,E nE the evidence variables, and
▶ U1, . . .,UnU the hidden variables.
▶ We know the full joint probability distribution: P(X 1, . . .,X n) =

∏n
i=1 P(X i |Parents(X i))

▶ And we know about enumeration:

P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE)=

α(
∑

u∈DU

P(Q1, . . .,QnQ ,E 1 = e1, . . .,E nE = enE ,U1 = u1, . . .,UnU = unU))

(where DU = dom(U1)× . . .× dom(UnU))

: 788 2025-05-14

Enumeration: The Alarm-Example

▶ Remember our example: P(Burglary|John, Mary)
(hidden variables: Alarm, Earthquake)

=α(
∑

ba,be∈{T,F} P (John, Mary, Alarm = ba, Earthquake = be , Burglary))
=α(

∑
ba,be∈{T,F} P(John | Alarm = ba) · P(Mary | Alarm = ba)

·P(Alarm = ba|Earthquake = be , Burglary) · P (Earthquake = be) · P(Burglary))
▶ ; These are 5 factors in 4 summands (ba, be ∈ {T,F}) over two cases (Burglary ∈ {T,F}),
▶ ; 38 arithmetic operations (+3 for α)

▶ General worst case: O(n2n)

▶ Let’s do better!

: 789 2025-05-14

Enumeration: First Improvement

▶ Some abbreviations: j := John,m := Mary, a := Alarm, e := Earthquake, b := Burglary,
▶

P(b|j ,m) = α(
∑

ba,be∈{T,F}
P(j | a = ba) · P(m | a = ba) · P(a = ba|e = be , b) · P (e = be) · P(b))

▶ Let’s “optimize”:

P(b|j ,m) = α(P(b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

; 3 factors in 2 summand + 2 factors in 2 summands + two factors in the outer product, over two
cases = 28 arithmetic operations (+3 for α)

: 790 2025-05-14

Second Improvement: Variable Elimination 1

▶ Consider P(j |b = T).
▶ Using enumeration:

=α(P (b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ae∈{T,F}
P(a = ae | e = be ,b) · P(j |a = ae) · (

∑

am∈{T,F}
P(m = am | a = ae))

︸ ︷︷ ︸
=1

)))

; P(John|Burglary = T) does not depend on Mary (duh...)
▶ More generally:
▶ Lemma 3.2. Given a query P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE), we can ignore (and remove) all

hidden leaves of the Bayesian network.
▶ ...doing so yields new leaves, which we can then ignore again, etc., until:
▶ Lemma 3.3. Given a query P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE), we can ignore (and remove) all

hidden variables that are not ancestors of any of the Q1, . . .,QnQ or E 1, . . .,E nE .

: 791 2025-05-14

Enumeration: First Algorithm

▶ Assume the X 1, . . .,X n are topologically sorted (causes before effects)

function Enumerate-Query(Q,⟨E1 = e1, . . .,EnE = enE ⟩)
P := ⟨⟩ /* = P(Q|E i = e i) */
X 1, . . .,X n:= variables filtered according to ??, topologically sorted
for all q ∈ dom(Q) do

Pi :=EnumAll(⟨X 1, . . .,X n⟩,⟨E1 = e1, . . .,EnE = enE ,Q = q⟩)
return α(P)

function EnumAll(⟨Y 1, . . .,Y nY ⟩,⟨A1 = a1, . . .,AnA = anA ⟩)
/* By construction, Parents(Y 1)⊂{A1, . . .,AnA} */

if ny = 0 then return 1.0
else if Y 1 = Aj then return P(Aj = aj | Parents(Aj))·EnumAll(⟨Y 2, . . .,Y nY ⟩,⟨A1 = a1, . . .,AnA = anA ⟩)
else return

∑
y∈dom(Y 1)

P(Y 1 = y | Parents(Y 1))·EnumAll(⟨Y 2, . . .,Y nY ⟩,⟨A1 = a1, . . .,AnA =

anA ,Y 1 = y⟩)

▶ General worst case Complexity: O(2n) – better, but still not great

: 792 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

Enumerate-Query(b, ⟨j = T,m = T⟩)

P(b|j = T,m = T) =

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

Enumerate-Query(b, ⟨j = T,m = T⟩)

P(b|j = T,m = T) =

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)
▶ P1 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α()

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)︸ ︷︷ ︸
=P (b)·EnumAll(⟨e,a,j,m⟩,⟨j=T,m=T,b=T⟩)

▶ P1 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)︸ ︷︷ ︸
=P (¬b)·EnumAll(⟨e,a,j,m⟩,⟨j=T,m=T,b=F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b)·)

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)
▶ P1 := P (¬b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b)·)

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)︸ ︷︷ ︸
=(

∑
be∈{T,F} P (e=be)·EnumAll(⟨a,j,m⟩·⟨j=T,m=T,b=T,e=be⟩))

▶ P1 := P (¬b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)︸ ︷︷ ︸
=(

∑
be∈{T,F} P (e=be)·EnumAll(⟨a,j,m⟩·⟨j=T,m=T,b=F,e=be⟩))

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be)·))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·
[
+

P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = T⟩)
P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = F⟩)

▶ P1 := P (¬b) ·
[
+

P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = T⟩)
P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be)·))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+
P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = T⟩)︸ ︷︷ ︸

=(
∑

ba∈{T,F} P(a=ba | b,e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=T,e=T,a=ba⟩))

P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = F⟩)︸ ︷︷ ︸
=(

∑
ba∈{T,F} P(a=ba | b,¬e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=T,e=F,a=ba⟩))

▶ P1 := P (¬b) ·

+
P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = T⟩)︸ ︷︷ ︸

=(
∑

ba∈{T,F} P(a=ba | ¬b,e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=F,e=T,a=ba⟩))

P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = F⟩)︸ ︷︷ ︸
=(

∑
ba∈{T,F} P(a=ba | ¬b,¬e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=F,e=F,a=ba⟩))

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · ·)))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a | b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a | b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a | b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a | ¬b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a | ¬b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | ¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a | ¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · ·)))

: 793 2025-05-14

Enumeration: Example
▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·


+

P (e) ·

+
P(a | b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)︸ ︷︷ ︸

=P(j | a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=T,a=T⟩)
P(¬a | b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)︸ ︷︷ ︸

=P(j | ¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=T,a=F⟩)

P (¬e) ·

+
P(a | b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)︸ ︷︷ ︸

=P(j | a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=F,a=T⟩)
P(¬a | b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)︸ ︷︷ ︸

=P(j | ¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=F,a=F⟩)

▶ P1 := P (¬b) ·


+

P (e) ·

+
P(a | ¬b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)︸ ︷︷ ︸

=P(j | a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=T,a=T⟩)
P(¬a | ¬b,e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)︸ ︷︷ ︸

=P(j | ¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=T,a=F⟩)

P (¬e) ·

+
P(a | ¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)︸ ︷︷ ︸

=P(j | a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=F,a=T⟩)
P(¬a | ¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)︸ ︷︷ ︸

=P(j | ¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=F,a=F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba)·)))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 :=

P (b) ·

+ P (e) ·
[
+

P(a | b,e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a | b,e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | b,¬e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a | b,¬e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 := P (¬b) ·+ P (e) ·
[
+

P(a | ¬b,e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a | ¬b,e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | ¬b,¬e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a | ¬b,¬e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba)·)))

: 793 2025-05-14

Enumeration: Example
▶ Variable order: b, e, a, j ,m

▶ P0 :=

P (b) ·


+

P (e) ·

+
P(a | b,e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)︸ ︷︷ ︸

=P(m | a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=T,a=T⟩)
P(¬a | b,e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)︸ ︷︷ ︸

=P(m | ¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=T,a=F⟩)

P (¬e) ·

+
P(a | b,¬e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)︸ ︷︷ ︸

=P(m | a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=F,a=T⟩)
P(¬a | b,¬e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)︸ ︷︷ ︸

=P(m | ¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=F,a=F⟩)
▶ P1 := P (¬b) ·

+

P (e) ·

+
P(a | ¬b,e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)︸ ︷︷ ︸

=P(m | a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=T,a=T⟩)
P(¬a | ¬b,e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)︸ ︷︷ ︸

=P(m | ¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=T,a=F⟩)

P (¬e) ·

+
P(a | ¬b,¬e) · P(j | a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)︸ ︷︷ ︸

=P(m | a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=F,a=T⟩)
P(¬a | ¬b,¬e) · P(j | ¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)︸ ︷︷ ︸

=P(m | ¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=F,a=F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·+ P (e) ·
[
+

P(a | b,e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a | b,e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | b,¬e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a | b,¬e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 := P (¬b) ·+ P (e) ·
[
+

P(a | ¬b,e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a | ¬b,e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | ¬b,¬e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a | ¬b,¬e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·+ P (e) ·
[
+

P(a | b,e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a | b,e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | b,¬e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a | b,¬e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 := P (¬b) ·+ P (e) ·
[
+

P(a | ¬b,e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a | ¬b,e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a | ¬b,¬e) · P(j | a) · P(m | a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a | ¬b,¬e) · P(j | ¬a) · P(m | ¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a | b,e) · P(j | a) · P(m | a) · 1.0
P(¬a | b,e) · P(j | ¬a) · P(m | ¬a) · 1.0

P (¬e) ·
[
+

P(a | b,¬e) · P(j | a) · P(m | a) · 1.0
P(¬a | b,¬e) · P(j | ¬a) · P(m | ¬a) · 1.0

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a | ¬b,e) · P(j | a) · P(m | a) · 1.0
P(¬a | ¬b,e) · P(j | ¬a) · P(m | ¬a) · 1.0

P (¬e) ·
[
+

P(a | ¬b,¬e) · P(j | a) · P(m | a) · 1.0
P(¬a | ¬b,¬e) · P(j | ¬a) · P(m | ¬a) · 1.0

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a | b,e) · P(j | a) · P(m | a) · 1.0
P(¬a | b,e) · P(j | ¬a) · P(m | ¬a) · 1.0

P (¬e) ·
[
+

P(a | b,¬e) · P(j | a) · P(m | a) · 1.0
P(¬a | b,¬e) · P(j | ¬a) · P(m | ¬a) · 1.0

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a | ¬b,e) · P(j | a) · P(m | a) · 1.0
P(¬a | ¬b,e) · P(j | ¬a) · P(m | ¬a) · 1.0

P (¬e) ·
[
+

P(a | ¬b,¬e) · P(j | a) · P(m | a) · 1.0
P(¬a | ¬b,¬e) · P(j | ¬a) · P(m | ¬a) · 1.0

⇐ α(⟨P0,P1⟩)︸ ︷︷ ︸
=⟨ P0

P0+P1
,

P1
P0+P1

⟩

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

: 793 2025-05-14

Enumeration: Example

▶ Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a | b,e) · P(j | a) · P(m | a) · 1.0
P(¬a | b,e) · P(j | ¬a) · P(m | ¬a) · 1.0

P (¬e) ·
[
+

P(a | b,¬e) · P(j | a) · P(m | a) · 1.0
P(¬a | b,¬e) · P(j | ¬a) · P(m | ¬a) · 1.0

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a | ¬b,e) · P(j | a) · P(m | a) · 1.0
P(¬a | ¬b,e) · P(j | ¬a) · P(m | ¬a) · 1.0

P (¬e) ·
[
+

P(a | ¬b,¬e) · P(j | a) · P(m | a) · 1.0
P(¬a | ¬b,¬e) · P(j | ¬a) · P(m | ¬a) · 1.0

⇐ ⟨ P0
P0+P1

, P1
P0+P1

⟩

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

: 793 2025-05-14

The Evaluation of P(b | j ,m) as a “Search Tree”

P(b|j ,m) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

Note: Enumerate-Query corresponds to depth-first traversal of an arithmetic expression-tree:

: 794 2025-05-14

The Evaluation of P(b | j ,m) as a “Search Tree”

P(b|j ,m) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

Note: Enumerate-Query corresponds to depth-first traversal of an arithmetic expression-tree:

: 794 2025-05-14

Variable Elimination 2

▶

P(b|j ,m) = α(P(b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba))))

The last two factors P(j | a = ba),P(m | a = ba) only depend on a, but are “trapped” behind the
summation over e, hence computed twice in two distinct recursive calls to EnumAll
▶ Idea: Instead of left-to-right (top-down DFS), operate right-to-left (bottom-up) and store

intermediate “factors” along with their “dependencies”:

α(P(b)︸︷︷︸
f7(b)

· (
∑

be∈{T,F}
P (e = be)︸ ︷︷ ︸

f5(e)

· (
∑

ba∈{T,F}
P(a = ba|e = be , b)︸ ︷︷ ︸

f3(a,b,e)

·P(j | a = ba)︸ ︷︷ ︸
f2(a)

·P(m | a = ba)︸ ︷︷ ︸
f1(a)

)

︸ ︷︷ ︸
f4(b,e)

)

︸ ︷︷ ︸
f6(b)

)

: 795 2025-05-14

Variable Elimination: Example

▶ We only show variable elimination by example: (implementation details get tricky, but the idea is
simple)
P(b) · (∑be∈{T,F} P (e = be) · (

∑
ba∈{T,F} P(a = ba|e = be , b) · P(j | a = ba) · P(m | a = ba)))

▶ Assume reverse topological order of variables: m, j , a, e, b

▶ m is an evidence variable with value T and dependency a, which is a hidden variable. We introduce a
new “factor” f(a):=f1(a) := ⟨P(m | a),P(m | ¬a)⟩.

▶ j works analogously, f2(a) := ⟨P(j | a),P(j | ¬a)⟩. We “multiply” with the existing factor, yielding
f(a) := ⟨f1(a) · f2(a), f1(¬a) · f2(¬a)⟩=⟨P(m | a) · P(j | a),P(m | ¬a) · P(j | ¬a)⟩

▶ a is a hidden variable with dependencies e (hidden) and b (query).
1. We introduce a new “factor” f3(a, e, b), a 2× 2× 2 table with the relevant conditional probabilities P(a|e, b).
2. We multiply each entry of f3 with the relevant entries of the existing factor f, yielding f(a, e, b).
3. We “sum out” the resulting factor over a, yielding a new factor f(e, b) = f(a, e, b) + f(¬a, e, b).

▶ ...

▶ ; can speed things up by a factor of 1000! (or more, depending on the order of variables!)

: 796 2025-05-14

The Complexity of Exact Inference

▶ Definition 3.4. A graph G is called singly connected, or a polytree (otherwise multiply connected), if
there is at most one undirected path between any two nodes in G .
▶ Theorem 3.5 (Good News). On singly connected Bayesian networks, variable elimination runs in

polynomial time.

▶ Is our BN for Mary & John a polytree? (Yes.)
▶ Theorem 3.6 (Bad News). For multiply connected Bayesian networks, probabilistic inference is
#P-hard. (#P is harder than NP, i.e. NP ⊆ #P)
▶ So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds and

approximate.
▶ Example 3.7. Sampling techniques as in MCTS.

: 797 2025-05-14

The Complexity of Exact Inference

▶ Definition 3.8. A graph G is called singly connected, or a polytree (otherwise multiply connected), if
there is at most one undirected path between any two nodes in G .
▶ Theorem 3.9 (Good News). On singly connected Bayesian networks, variable elimination runs in

polynomial time.
▶ Is our BN for Mary & John a polytree? (Yes.)

▶ Theorem 3.10 (Bad News). For multiply connected Bayesian networks, probabilistic inference is
#P-hard. (#P is harder than NP, i.e. NP ⊆ #P)
▶ So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds and

approximate.
▶ Example 3.11. Sampling techniques as in MCTS.

: 797 2025-05-14

The Complexity of Exact Inference

▶ Definition 3.12. A graph G is called singly connected, or a polytree (otherwise multiply connected),
if there is at most one undirected path between any two nodes in G .
▶ Theorem 3.13 (Good News). On singly connected Bayesian networks, variable elimination runs in

polynomial time.
▶ Is our BN for Mary & John a polytree? (Yes.)
▶ Theorem 3.14 (Bad News). For multiply connected Bayesian networks, probabilistic inference is
#P-hard. (#P is harder than NP, i.e. NP ⊆ #P)
▶ So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds and

approximate.
▶ Example 3.15. Sampling techniques as in MCTS.

: 797 2025-05-14

23.4 Conclusion

: 797 2025-05-14

Summary

▶ Bayesian networks (BN) are a wide-spread tool to model uncertainty, and to reason about it. A BN
represents conditional independence relations between random variables. It consists of a graph
encoding the variable dependencies, and of conditional probability tables (CPTs).
▶ Given a variable ordering, the BN is small if every variable depends on only a few of its predecessors.
▶ Probabilistic inference requires to compute the probability distribution of a set of query variables,

given a set of evidence variables whose values we know. The remaining variables are hidden.
▶ Inference by enumeration takes a BN as input, then applies Normalization+Marginalization, the chain

rule, and exploits conditional independence. This can be viewed as a tree search that branches over all
values of the hidden variables.
▶ Variable elimination avoids unnecessary computation. It runs in polynomial time for poly-tree BNs. In

general, exact probabilistic inference is #P-hard. Approximate probabilistic inference methods exist.

: 798 2025-05-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.

▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

: 799 2025-05-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.

▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model
counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

: 799 2025-05-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).

▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over
time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

: 799 2025-05-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.

▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

: 799 2025-05-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.

▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language
developed by Stuart Russel and co-workers.

: 799 2025-05-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

: 799 2025-05-14

Chapter 24
Making Simple Decisions Rationally

: 799 2025-05-14

24.1 Introduction

: 799 2025-05-14

Overview
▶ We now know how to update our world model, represented as (a set of) random variables, given

observations. Now we need to act.

▶ For that we need to answer two questions:
▶ Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

▶ Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we can
model/query P(X |A = ai).

▶ Assign numerical values to the possible outcomes of actions (i.e. a function u : dom(X)→ R) indicating
their desirability.

▶ Choose the action that maximizes the expected value of u

Definition 1.1. Decision theory investigates decision problems, i.e. how a utility-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function U on states s ∈ S : i.e. U : S → R.
▶

: 800 2025-05-14

Overview
▶ We now know how to update our world model, represented as (a set of) random variables, given

observations. Now we need to act.

▶ For that we need to answer two questions:
▶ Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

▶ Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we can
model/query P(X |A = ai).

▶ Assign numerical values to the possible outcomes of actions (i.e. a function u : dom(X)→ R) indicating
their desirability.

▶ Choose the action that maximizes the expected value of u

Definition 1.2. Decision theory investigates decision problems, i.e. how a utility-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function U on states s ∈ S : i.e. U : S → R.
▶

: 800 2025-05-14

Overview
▶ We now know how to update our world model, represented as (a set of) random variables, given

observations. Now we need to act.

▶ For that we need to answer two questions:
▶ Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

▶ Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we can
model/query P(X |A = ai).

▶ Assign numerical values to the possible outcomes of actions (i.e. a function u : dom(X)→ R) indicating
their desirability.

▶ Choose the action that maximizes the expected value of u

Definition 1.3. Decision theory investigates decision problems, i.e. how a utility-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function U on states s ∈ S : i.e. U : S → R.
▶

: 800 2025-05-14

Overview
▶ We now know how to update our world model, represented as (a set of) random variables, given

observations. Now we need to act.

▶ For that we need to answer two questions:
▶ Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

▶ Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we can
model/query P(X |A = ai).

▶ Assign numerical values to the possible outcomes of actions (i.e. a function u : dom(X)→ R) indicating
their desirability.

▶ Choose the action that maximizes the expected value of u

Definition 1.4. Decision theory investigates decision problems, i.e. how a utility-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function U on states s ∈ S : i.e. U : S → R.
▶

: 800 2025-05-14

Decision Theory
▶ If our states are random variables, then we obtain a random variable for the utility function:
▶ Observation: Let X i : Ω→ D i random variables on a probability model ⟨Ω,P⟩ and
f : D1 × . . .× Dn→ E . Then F (x) := f (X 0(x), . . .,X n(x)) is a random variable Ω→ E .

▶ Definition 1.5. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→ D with D ⊆ R,
then E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X . (Assuming the

sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en is
defined as E (X |e1, . . ., en):=

∑
x∈D µ(X = x | e1, . . ., en) · x .

▶ Putting things together:
▶ Definition 1.6. Let A : Ω→ D a random variable (where D is a set of actions) X i : Ω→ D i random

variables (the state), and U : D1 × . . .× Dn→ R a utility function. Then the expected utility of the
action a ∈ D is the expected value of U (interpreted as a random variable) given A = a ; i.e.

EU(a) :=
∑

⟨x1,...,xn⟩∈D1×...×Dn

µ(X 1 = x1, . . .,X n = xn | A = a) · U(x1, . . ., xn)

: 801 2025-05-14

Decision Theory
▶ If our states are random variables, then we obtain a random variable for the utility function:
▶ Observation: Let X i : Ω→ D i random variables on a probability model ⟨Ω,P⟩ and
f : D1 × . . .× Dn→ E . Then F (x) := f (X 0(x), . . .,X n(x)) is a random variable Ω→ E .

▶ Definition 1.7. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→ D with D ⊆ R,
then E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X . (Assuming the

sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en is
defined as E (X |e1, . . ., en):=

∑
x∈D µ(X = x | e1, . . ., en) · x .

▶ Putting things together:
▶ Definition 1.8. Let A : Ω→ D a random variable (where D is a set of actions) X i : Ω→ D i random

variables (the state), and U : D1 × . . .× Dn→ R a utility function. Then the expected utility of the
action a ∈ D is the expected value of U (interpreted as a random variable) given A = a ; i.e.

EU(a) :=
∑

⟨x1,...,xn⟩∈D1×...×Dn

µ(X 1 = x1, . . .,X n = xn | A = a) · U(x1, . . ., xn)

: 801 2025-05-14

Decision Theory
▶ If our states are random variables, then we obtain a random variable for the utility function:
▶ Observation: Let X i : Ω→ D i random variables on a probability model ⟨Ω,P⟩ and
f : D1 × . . .× Dn→ E . Then F (x) := f (X 0(x), . . .,X n(x)) is a random variable Ω→ E .

▶ Definition 1.9. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→ D with D ⊆ R,
then E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X . (Assuming the

sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en is
defined as E (X |e1, . . ., en):=

∑
x∈D µ(X = x | e1, . . ., en) · x .

▶ Putting things together:
▶ Definition 1.10. Let A : Ω→D a random variable (where D is a set of actions) X i : Ω→D i random

variables (the state), and U : D1 × . . .× Dn→ R a utility function. Then the expected utility of the
action a ∈ D is the expected value of U (interpreted as a random variable) given A = a ; i.e.

EU(a) :=
∑

⟨x1,...,xn⟩∈D1×...×Dn

µ(X 1 = x1, . . .,X n = xn | A = a) · U(x1, . . ., xn)

: 801 2025-05-14

Utility-based Agents
▶ Definition 1.11. A utility-based agent uses a world model along with a utility function that models

its preferences among the states of that world. It chooses the action that leads to the best expected
utility.
▶ Agent Schema:

54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

: 802 2025-05-14

Maximizing Expected Utility (Ideas)

▶ Definition 1.12 (MEU principle for Rationality). We call an action rational if it maximizes
expected utility (MEU). An utility-based agent is called rational, iff it always chooses a rational action.
▶ Hooray: This solves all of AI. (in principle)
▶ Problem: There is a long, long way towards an operationalization ;)
▶ Note: An agent can be entirely rational (consistent with MEU) without ever representing or

manipulating utilities and probabilities.
▶ Example 1.13. A reflex agent for tic tac toe based on a perfect lookup table is rational if we take

(the negative of) “winning/drawing in n steps” as the utility function.
▶ Example 1.14 (AI1). Heuristics in tree search (greedy search, A∗) and game-play (minimax,

alpha-beta pruning) maximize “expected” utility.
⇒ In fully observable, deterministic environments, “expected utility” reduces to a specific determined
utility value:
EU(a) = U(T (S(s, e), a)), where e the most recent percept, s the current state, S the sensor
function and T the transition function.
▶ Now let’s figure out how to actually assign utilities!

: 803 2025-05-14

24.2 Decision Networks

: 803 2025-05-14

Decision networks

Definition 2.1. A decision network is a Bayesian network with two
additional kinds of nodes:
▶ ▶ action nodes, representing a set of possible actions, and (square nodes)
▶ A single utility node (also called value node). (diamond node)

▶ General Algorithm: Given evidence E j = e j , and action nodes A1, . . .,Ak , compute the expected
utility of each action, given the evidence, i.e. return the sequence of actions

argmax a1, . . ., ak

=expected utility of a1, . . ., ak︷ ︸︸ ︷∑

⟨x1,...,xn⟩
µ(X i = x i | A1 = a1,. . .,Ak = ak ,E j = e j)︸ ︷︷ ︸

usual Bayesian Network inference

·U(X i = x i)

▶ Note the sheer amount of summands in the sum above in the general case! (⇒ We will simplify
where possible later)

: 804 2025-05-14

Decision Networks: Example
▶ Example 2.2 (A Decision-Network for Aortic Coarctation). from [Lucas:kadtes96]

: 805 2025-05-14

24.3 Preferences and Utilities

: 805 2025-05-14

Preferences in Deterministic Environments

▶ Problem: How do we determine the utility of a state? (We cannot directly measure our
satisfaction/happiness in a possibly future state...) (What unit would we even use?)
▶ Example 3.1. I have to decide whether to go to class today (or sleep in). What is the utility of this

lecture? (obviously 42)
▶ Idea: We can let people/agents choose between two states (subjective preference) and derive a

utility from these choices.
▶ Example 3.2. “Give me your cell-phone or I will give you a bloody nose”. ;

To make a decision in a deterministic environment, the agent must determine whether it prefers a
state without phone to one with a bloody nose?
▶ Definition 3.3. Given states A and B (we call them prizes) an agent can express preferences of the

form
▶ A≻B A prefered over B
▶ A∼B indifference between A and B
▶ A⪰B B not prefered over A

i.e. Given a set S (of states), we define binary relations ≻ and ∼ on S.

: 806 2025-05-14

Preferences in Non-Deterministic Environments

▶ Problem: In nondeterministic environments we do not have full information about the states we
choose between.
▶ Example 3.4 (Airline Food). “Do you want chicken or pasta” (but we cannot see through the tin

foil)

▶ Definition 3.5.

Let S a set of states. We call a random variable X with domain {A1, . . .,An} ⊆ S
a lottery and write [p1,A1 ; . . . ; pn,An], where pi = P(X = Ai).

L

A

B

p

1− p

▶ Idea: A lottery represents the result of a nondeterministic action that can have outcomes Ai with
prior probability pi . For the binary case, we use [p,A;1−p,B]. We can then extend preferences to
include lotteries, as a measure of how strongly we prefer one prize over another.
▶ Convention: We assume S to be closed under lotteries, i.e. lotteries themselves are also states.

That allows us to consider lotteries such as [p,A;1−p,[q,B;1−q,C]].

: 807 2025-05-14

Rational Preferences

▶ Note: Preferences of a rational agent must obey certain constraints – An agent with rational
preferences can be described as an MEU-agent.
▶ Definition 3.6. We call a set ≻ of preferences rational, iff the following constraints hold:

Orderability A≻B ∨ B≻A ∨ A∼B
Transitivity A≻B ∧ B≻C ⇒ A≻C
Continuity A ≻ B ≻ C ⇒ (∃p.[p,A;1−p,C]∼B)
Substitutability A∼B⇒ [p,A;1−p,C]∼[p,B;1−p,C]
Monotonicity A≻B⇒ ((p > q)⇔ [p,A;1−p,B]≻[q,A;1−q,B])
Decomposability [p,A;1−p,[q,B;1−q,C]]∼[p,A ; ((1− p)q),B ; ((1− p)(1− q)),C]

▶ From a set of rational preferences, we can obtain a meaningful utility function.

: 808 2025-05-14

Rational preferences contd.

▶ Violating the rationality constraints from ??? leads to self-evident irrationality.
▶ Example 3.7. An agent with intransitive preferences can be induced to give away all its money:
▶ If B≻C , then an agent who has C would pay (say) 1 cent to get B
▶ If A≻B, then an agent who has B would pay (say) 1 cent to get A
▶ If C≻A, then an agent who has A would pay (say) 1 cent to get C

: 809 2025-05-14

24.4 Utilities

: 809 2025-05-14

Ramseys Theorem and Value Functions

▶ Theorem 4.1. (Ramsey, 1931; von Neumann and Morgenstern, 1944)
Given a rational set of preferences there exists a real valued function U such that U(A) ≥ U(B), iff
A⪰B and U([p1,S1 ; . . . ; pn,Sn]) =

∑
i piU(Si)

▶ This is an existence theorem, uniqueness not guaranteed.
▶ Note: Agent behavior is invariant w.r.t. positive linear transformations, i.e. an agent with utility

function U ′(x) = k1U(x) + k2 where k1 > 0 behaves exactly like one with U.
▶ Observation: With deterministic prizes only (no lottery choices), only a total ordering on prizes can

be determined.
▶ Definition 4.2. We call a total ordering on states a value function or ordinal utility function. (If we

don’t need to care about relative utilities of states, e.g. to compute non-trivial expected utilities,
that’s all we need anyway!)

: 810 2025-05-14

Utilities

▶ Intuition: Utilities map states to real numbers.
▶ Question: Which numbers exactly?
▶ Definition 4.3 (Standard approach to assessment of human utilities). Compare a given state A

to a standard lottery Lp that has
▶ “best possible prize” u⊤ with probability p
▶ “worst possible catastrophe” u⊥ with probability 1 − p

adjust lottery probability p until A∼Lp. Then U(A) = p.
▶ Example 4.4. Choose u⊤ =̂ current state, u⊥ =̂ instant death

pay $30∼L
continue as before

instant death

0.999999

0.000001

: 811 2025-05-14

Popular Utility Functions

▶ Definition 4.5. Normalized utilities: u⊤ = 1, u⊥ = 0.
(Not very meaningful, but at least it’s independent of the specific problem...)

▶ Obviously: Money (Very intuitive, often easy to determine, but actually not well-suited as a utility
function (see later))
▶ Definition 4.6. Micromorts: one millionth chance of instant death.

(useful for Russian roulette, paying to reduce product risks, etc.)
▶ But: Not necessarily a good measure of risk, if the risk is “merely” severe injury or illness. . .
▶ The following measure is better (more informative)
▶ Definition 4.7. QALYs: quality adjusted life years

QALYs are useful for medical decisions involving substantial risk.

: 812 2025-05-14

Popular Utility Functions

▶ Definition 4.8. Normalized utilities: u⊤ = 1, u⊥ = 0.
(Not very meaningful, but at least it’s independent of the specific problem...)

▶ Obviously: Money (Very intuitive, often easy to determine, but actually not well-suited as a utility
function (see later))

▶ Definition 4.9. Micromorts: one millionth chance of instant death.
(useful for Russian roulette, paying to reduce product risks, etc.)

▶ But: Not necessarily a good measure of risk, if the risk is “merely” severe injury or illness. . .
▶ The following measure is better (more informative)
▶ Definition 4.10. QALYs: quality adjusted life years

QALYs are useful for medical decisions involving substantial risk.

: 812 2025-05-14

Popular Utility Functions

▶ Definition 4.11. Normalized utilities: u⊤ = 1, u⊥ = 0.
(Not very meaningful, but at least it’s independent of the specific problem...)

▶ Obviously: Money (Very intuitive, often easy to determine, but actually not well-suited as a utility
function (see later))
▶ Definition 4.12. Micromorts: one millionth chance of instant death.

(useful for Russian roulette, paying to reduce product risks, etc.)
▶ But: Not necessarily a good measure of risk, if the risk is “merely” severe injury or illness. . .

▶ The following measure is better (more informative)
▶ Definition 4.13. QALYs: quality adjusted life years

QALYs are useful for medical decisions involving substantial risk.

: 812 2025-05-14

Popular Utility Functions

▶ Definition 4.14. Normalized utilities: u⊤ = 1, u⊥ = 0.
(Not very meaningful, but at least it’s independent of the specific problem...)

▶ Obviously: Money (Very intuitive, often easy to determine, but actually not well-suited as a utility
function (see later))
▶ Definition 4.15. Micromorts: one millionth chance of instant death.

(useful for Russian roulette, paying to reduce product risks, etc.)
▶ But: Not necessarily a good measure of risk, if the risk is “merely” severe injury or illness. . .
▶ The following measure is better (more informative)
▶ Definition 4.16. QALYs: quality adjusted life years

QALYs are useful for medical decisions involving substantial risk.

: 812 2025-05-14

Comparing Utilities

▶ Problem: What is the monetary value of a micromort?

▶ Just ask people: What would you pay to avoid playing Russian roulette with a million-barrelled
revolver? (Usually: quite a lot!)
▶ But their behavior suggests a lower price:
▶ Driving in a car for 370km incurs a risk of one micromort;
▶ Over the life of your car – say, 150, 000km that’s 400 micromorts.
▶ People appear to be willing to pay about 10, 000€ more for a safer car that halves the risk of death. (;

25€ per micromort)

This figure has been confirmed across many individuals and risk types.
▶ Of course, this argument holds only for small risks. Most people won’t agree to kill themselves for

25M€. (Also: People are pretty bad at estimating and comparing risks, especially if they are small.)
(Various cognitive biases and heuristics are at work here!)

: 813 2025-05-14

Comparing Utilities

▶ Problem: What is the monetary value of a micromort?
▶ Just ask people: What would you pay to avoid playing Russian roulette with a million-barrelled

revolver? (Usually: quite a lot!)

▶ But their behavior suggests a lower price:
▶ Driving in a car for 370km incurs a risk of one micromort;
▶ Over the life of your car – say, 150, 000km that’s 400 micromorts.
▶ People appear to be willing to pay about 10, 000€ more for a safer car that halves the risk of death. (;

25€ per micromort)

This figure has been confirmed across many individuals and risk types.
▶ Of course, this argument holds only for small risks. Most people won’t agree to kill themselves for

25M€. (Also: People are pretty bad at estimating and comparing risks, especially if they are small.)
(Various cognitive biases and heuristics are at work here!)

: 813 2025-05-14

Comparing Utilities

▶ Problem: What is the monetary value of a micromort?
▶ Just ask people: What would you pay to avoid playing Russian roulette with a million-barrelled

revolver? (Usually: quite a lot!)
▶ But their behavior suggests a lower price:
▶ Driving in a car for 370km incurs a risk of one micromort;
▶ Over the life of your car – say, 150, 000km that’s 400 micromorts.
▶ People appear to be willing to pay about 10, 000€ more for a safer car that halves the risk of death. (;

25€ per micromort)

This figure has been confirmed across many individuals and risk types.

▶ Of course, this argument holds only for small risks. Most people won’t agree to kill themselves for
25M€. (Also: People are pretty bad at estimating and comparing risks, especially if they are small.)
(Various cognitive biases and heuristics are at work here!)

: 813 2025-05-14

Comparing Utilities

▶ Problem: What is the monetary value of a micromort?
▶ Just ask people: What would you pay to avoid playing Russian roulette with a million-barrelled

revolver? (Usually: quite a lot!)
▶ But their behavior suggests a lower price:
▶ Driving in a car for 370km incurs a risk of one micromort;
▶ Over the life of your car – say, 150, 000km that’s 400 micromorts.
▶ People appear to be willing to pay about 10, 000€ more for a safer car that halves the risk of death. (;

25€ per micromort)

This figure has been confirmed across many individuals and risk types.
▶ Of course, this argument holds only for small risks. Most people won’t agree to kill themselves for

25M€. (Also: People are pretty bad at estimating and comparing risks, especially if they are small.)
(Various cognitive biases and heuristics are at work here!)

: 813 2025-05-14

Money vs. Utility
▶ Money does not behave as a utility function should.
▶ Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people

are risk averse.
▶ Utility curve: For what probability p am I indifferent between a prize x and a lottery [p,M$;1−p,0$]

for large numbers M?
▶ Typical empirical data, extrapolated with risk prone behavior for debitors:

▶ Empirically: Comes close to the logarithm on the natural numbers.

: 814 2025-05-14

24.5 Multi-Attribute Utility

: 814 2025-05-14

Utility Functions on Attributes

▶ Recap: So far we understand how to obtain utility functions u : S → R on states s ∈ S from
(rational) preferences.
▶ But in practice, our actions often impact multiple distinct “attributes” that need to be weighed

against each other.
⇒ Lotteries become complex very quickly
▶ Definition 5.1. Let X 1, . . .,X n be random variables with domains D1, . . .,Dn. Then we call a

function u : D1 × . . .× Dn→ R a (multi-attribute) utility function on attributes X 1, . . .,X n.

▶ Note: In the general (worst) case, a multi-attribute utility function on n random variables with
domain sizes k each requires kn parameters to represent.
▶ But: A utility function on multiple attributes often has “internal structure” that we can exploit to

simplify things.
For example, the distinct attributes are often “independent” with respect to their utility (a
higher-quality product is better than a lower-quality one that costs the same, and a cheaper product is
better than an expensive one of the same quality)

: 815 2025-05-14

Multi-Attribute Utility: Example

▶ Example 5.2 (Assessing an Airport Site).

Construction

Litigation

Air Traffic Deaths

Noise

Cost

▶ Attributes: Deaths,
Noise, Cost.

▶ Question: What is
U(Deaths,Noise,Cost)
for a projected airport?

▶ How can complex utility function be assessed from preference behaviour?
▶ Idea 1: Identify conditions under which decisions can be made without complete identification of
U(X 1, . . .,X n).
▶ Idea 2: Identify various types of independence in preferences and derive consequent canonical forms

for U(X 1, . . .,X n).

: 816 2025-05-14

Strict Dominance

▶ First Assumption: U is often monotone in each argument. (wlog. growing)
▶ Definition 5.3. (Informally) An action B strictly dominates an action A, iff every possible outcome

of B is at least as good as every possible outcome of A,

▶ If A strictly dominates B, we can just ignore B entirely.

▶ Observation: Strict dominance seldom holds in practice (life is difficult) but is useful for narrowing
down the field of contenders.

: 817 2025-05-14

Strict Dominance

▶ First Assumption: U is often monotone in each argument. (wlog. growing)
▶ Definition 5.4. (Informally) An action B strictly dominates an action A, iff every possible outcome

of B is at least as good as every possible outcome of A,

▶ If A strictly dominates B, we can just ignore B entirely.
▶ Observation: Strict dominance seldom holds in practice (life is difficult) but is useful for narrowing

down the field of contenders.

: 817 2025-05-14

Stochastic Dominance

▶ Definition 5.5. Let X1,X2 distributions with domains ⊆ R.
X1 stochastically dominates X2 iff for all t ∈ R, we have P(X1 ≥ t) ≥ P(X2 ≥ t), and for some t, we
have P(X1 ≥ t) > P(X2 ≥ t).
▶ Observation 5.6. If U is monotone in X1, and P(X1|a) stochastically dominates P(X1|b) for actions
a, b, then a is always the better choice than b, with all other attributes Xi being equal.
⇒ If some action P(Xi |a) stochastically dominates P(Xi |b) for all attributes Xi , we can ignore b.

▶ Observation: Stochastic dominance can often be determined without exact distributions using
qualitative reasoning.
▶ Example 5.7 (Construction cost increases with distance). If airport location S1 is closer to the

city than S2 ; S1 stochastically dominates S2 on cost.q

: 818 2025-05-14

Stochastic Dominance

▶ Definition 5.8. Let X1,X2 distributions with domains ⊆ R.
X1 stochastically dominates X2 iff for all t ∈ R, we have P(X1 ≥ t) ≥ P(X2 ≥ t), and for some t, we
have P(X1 ≥ t) > P(X2 ≥ t).
▶ Observation 5.9. If U is monotone in X1, and P(X1|a) stochastically dominates P(X1|b) for actions
a, b, then a is always the better choice than b, with all other attributes Xi being equal.
⇒ If some action P(Xi |a) stochastically dominates P(Xi |b) for all attributes Xi , we can ignore b.
▶ Observation: Stochastic dominance can often be determined without exact distributions using

qualitative reasoning.
▶ Example 5.10 (Construction cost increases with distance). If airport location S1 is closer to the

city than S2 ; S1 stochastically dominates S2 on cost.q

: 818 2025-05-14

Preference structure: Deterministic

▶ Recall: In deterministic environments an agent has a value function.
▶ Definition 5.11. X 1 and X 2 preferentially independent of X 3 iff preference between ⟨x1, x2, z⟩ and
⟨x ′1, x ′2, z⟩ does not depend on z . (i.e. the tradeoff between x1 and x2 is independent of z)
▶ Example 5.12. E.g., ⟨Noise,Cost,Safety⟩: are preferentially independent
⟨20,000 suffer, 4.6 G$, 0.06 deaths/mpm⟩ vs.⟨70,000 suffer, 4.2 G$, 0.06 deaths/mpm⟩
▶ Theorem 5.13 (Leontief, 1947). If every pair of attributes is preferentially independent of its

complement, then every subset of attributes is preferentially independent of its complement: mutual
preferential independence.
▶ Theorem 5.14 (Debreu, 1960). Mutual preferential independence implies that there is an additive

value function: V (S) =
∑

i Vi (Xi (S)), where Vi is a value function referencing just one variable Xi .
▶ Hence assess n single-attribute functions. (often a good approximation)
▶ Example 5.15. The value function for the airport decision might be

V (noise, cost, deaths) = −noise · 104 − cost − deaths · 1012

: 819 2025-05-14

Preference structure: Stochastic

▶ Definition 5.16. X is utility independent of Y iff preferences over lotteries in X do not depend on
particular values in Y
▶ Definition 5.17. A set X is mutually utility independent (MUI), iff each subset is utility independent

of its complement.

▶ Theorem 5.18. For a MUI set of attributes X , there is a multiplicative utility function of the form:
[Keeney:muf74]

U =
∑

({X0,...,X k}⊆X)

k∏

i=1

Ui (X i = x i)

⇒ U can be represented using n single-attribute utility functions.
▶ System Support: Routine procedures and software packages for generating preference tests to

identify various canonical families of utility functions.

: 820 2025-05-14

Preference structure: Stochastic

▶ Definition 5.19. X is utility independent of Y iff preferences over lotteries in X do not depend on
particular values in Y
▶ Definition 5.20. A set X is mutually utility independent (MUI), iff each subset is utility independent

of its complement.
▶ Theorem 5.21. For a MUI set of attributes X , there is a multiplicative utility function of the form:

[Keeney:muf74]

U =
∑

({X0,...,X k}⊆X)

k∏

i=1

Ui (X i = x i)

⇒ U can be represented using n single-attribute utility functions.
▶ System Support: Routine procedures and software packages for generating preference tests to

identify various canonical families of utility functions.

: 820 2025-05-14

Decision networks - Improvements

▶ There are multiple ways to improve inference in decision networks:
▶ Exploit “inner structure” of the utility function to simplify the computation,
▶ eliminate dominated actions,
▶ label pairs of nodes with stochastic dominance: If (the utility of) some attribute dominates (the

utility of) another attribute, focus on the dominant one (e.g. if price is always more important than
quality, ignore quality whenever the price between two choices differs)
▶ various techniques for variable elimination,
▶ policy iteration (more on that when we talk about Markov decision procedures)

: 821 2025-05-14

24.6 The Value of Information

: 821 2025-05-14

What if we do not have all information we need?

▶ We now know how to exploit the information we have to make decisions. But if we knew more, we
might be able to make even better decisions in the long run - potentially at the cost of gaining utility.
(exploration vs. exploitation)
▶ Example 6.1 (Medical Diagnosis).
▶ We do not expect a doctor to already know the results of the diagnostic tests when the patient comes in.
▶ Tests are often expensive, and sometimes hazardous. (directly or by delaying treatment)
▶ Therefore: Only test, if
▶ knowing the results lead to a significantly better treatment plan,
▶ information from test results is not drowned out by a-priori likelihood.

▶ Definition 6.2. Information value theory is concerned with agent making decisions on information
gathering rationally.

: 822 2025-05-14

Value of Information by Example

▶ Idea: Compute the expected gain in utility from acquring information.
▶ Example 6.3 (Buying Oil Drilling Rights). There are n blocks of drilling rights available, exactly

one block actually has oil worth k€, in particular:
▶ The prior probability of a block having oil is 1

n
each (mutually exclusive).

▶ The current price of each block is k
n
€.

▶ A “consultant” offers an accurate survey of block (say) 3. How much should we be willing to pay for the
survey?

▶ Solution: Compute the expected value of the best action given the information, minus the expected
value of the best action without information.
▶ Example 6.4 (Oil Drilling Rights contd.).
▶ Survey may say “oil in block 3 with probability 1

n
” ; we buy block 3 for k

n
€ and make a profit of (k − k

n
)€.

▶ Survey may say “no oil in block 3 with probability n−1
n

” ; we buy another block, and make an expected
profit of k

n−1 − k
n
€.

▶ Without the survery, the expected profit is 0
▶ Expected profit is 1

n
· (n−1)k

n
+ n−1

n
· k
n(n−1) =

k
n
.

▶ So, we should pay up to k
n
€ for the information. (as much as block 3 is worth!)

: 823 2025-05-14

Value of Information by Example

▶ Idea: Compute the expected gain in utility from acquring information.
▶ Example 6.5 (Buying Oil Drilling Rights). There are n blocks of drilling rights available, exactly

one block actually has oil worth k€, in particular:
▶ The prior probability of a block having oil is 1

n
each (mutually exclusive).

▶ The current price of each block is k
n
€.

▶ A “consultant” offers an accurate survey of block (say) 3. How much should we be willing to pay for the
survey?

▶ Solution: Compute the expected value of the best action given the information, minus the expected
value of the best action without information.
▶ Example 6.6 (Oil Drilling Rights contd.).
▶ Survey may say “oil in block 3 with probability 1

n
” ; we buy block 3 for k

n
€ and make a profit of (k − k

n
)€.

▶ Survey may say “no oil in block 3 with probability n−1
n

” ; we buy another block, and make an expected
profit of k

n−1 − k
n
€.

▶ Without the survery, the expected profit is 0
▶ Expected profit is 1

n
· (n−1)k

n
+ n−1

n
· k
n(n−1) =

k
n
.

▶ So, we should pay up to k
n
€ for the information. (as much as block 3 is worth!)

: 823 2025-05-14

General formula (VPI)

▶ Definition 6.7. Let A the set of available actions and F a random variable. Given evidence E i = e i ,
let α be the action that maximizes expected utility a priori, and αf the action that maximizes expected
utility given F = f , i.e.: α = argmax

a∈A
EU(a|E i = e i) and αf = argmax

a∈A
EU(a|E i = e i ,F = f)

The value of perfect information (VPI) on F given evidence E i = e i is defined as

VPIE i=e i (F):=(
∑

f∈dom(F)

P(F = f | E i = e i) · EU(αf |E i = e i ,F = f))− EU(α|E i = e i)

▶ Intuition: The VPI is the expected gain from knowing the value of F relative to the current
expected utility, and considering the relative probabilities of the possible outcomes of F .

: 824 2025-05-14

Properties of VPI

▶ Observation 6.8 (VPI is Non-negative).
VPIE (F) ≥ 0 for all j and E (in expectation, not post hoc)
▶ Observation 6.9 (VPI is Non-additive).

VPIE (F ,G) ̸= VPIE (F) + VPIE (G) (consider, e.g., obtaining F twice)
▶ Observation 6.10 (VPI is Order-independent).

VPIE (F ,G) = VPIE (F) + VPIE ,F (G) = VPIE (G) + VPIE ,G (F)

▶ Note: When more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
; evidence-gathering becomes a sequential decision problem.

: 825 2025-05-14

Qualitative behavior of VPI

▶ Question: Say we have three distributions for P(U | Ej)

Qualitatively: What is the value of information (VPI) in these three cases?

▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little
b) Choice is non-obvious (unclear) ; information worth a lot

c) Choice is non-obvious (unclear) but makes little difference ; information worth little

: 826 2025-05-14

Qualitative behavior of VPI

▶ Question: Say we have three distributions for P(U | Ej)

Qualitatively: What is the value of information (VPI) in these three cases?
▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little

b) Choice is non-obvious (unclear) ; information worth a lot
c) Choice is non-obvious (unclear) but makes little difference ; information worth little

: 826 2025-05-14

Qualitative behavior of VPI

▶ Question: Say we have three distributions for P(U | Ej)

Qualitatively: What is the value of information (VPI) in these three cases?
▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little
b) Choice is non-obvious (unclear) ; information worth a lot

c) Choice is non-obvious (unclear) but makes little difference ; information worth little

: 826 2025-05-14

Qualitative behavior of VPI
▶ Question: Say we have three distributions for P(U | Ej)

Qualitatively: What is the value of information (VPI) in these three cases?
▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little
b) Choice is non-obvious (unclear) ; information worth a lot
c) Choice is non-obvious (unclear) but makes little difference ; information worth little
Note two things
▶ The difference between (b) and (c) is the width of the distribution, i.e. how close the possible outcomes are

together
▶ The fact that U2 has a high peak in (c) means that its expected value is known with higher certainty than

U1. (irrelevant to the argument)
: 826 2025-05-14

A simple Information-Gathering Agent

▶ Definition 6.11. A simple information gathering agent. (gathers info before acting)

function Information−Gathering−Agent (percept) returns an action
persistent: D, a decision network
integrate percept into D
j := argmax

k
VPIE (Ek)/Cost(Ek)

if VPIE (Ej) > Cost(Ej) return Request(Ej)
else return the best action from D

The next percept after Request(Ej) provides a value for Ej .
▶ Problem: The information gathering implemented here is myopic, i.e. only acquires a single

evidence variable, or acts immediately. (cf. greedy search)
▶ But it works relatively well in practice. (e.g. outperforms humans for selecting diagnostic tests)
▶ Strategies for nonmyopic information gathering exist (Not discussed in this course)

: 827 2025-05-14

Summary

▶ An MEU agent maximizes expected utility.
▶ Decision theory provides a framework for rational decision making.
▶ Decision networks augment Bayesian networks with action nodes and a utility node.
▶ rational preferences allow us to obtain a utility function (orderability, transitivity, continuity,

substitutability, monotonicity, decomposability)
▶ multi-attribute utility functions can usually be “destructured” to allow for better inference and

representation (can be monotone, attributes may dominate others, actions may dominate others, may
be multiplicative,...)
▶ information value theory tells us when to explore rather than exploit, using
▶ VPI (value of perfect information) to determine how much to “pay” for information.

: 828 2025-05-14

Chapter 25
Temporal Probability Models

: 828 2025-05-14

25.1 Modeling Time and Uncertainty

: 828 2025-05-14

Stochastic Processes
The world changes in stochastically predictable ways.
Example 1.1.
▶ The weather changes, but the weather tomorrow is somewhat predictable given today’s weather and

other factors, (which in turn (somewhat) depends on yesterday’s weather, which in turn...)
▶ the stock market changes, but the stock price tomorrow is probably related to today’s price,
▶ A patient’s blood sugar changes, but their blood sugar is related to their blood sugar 10 minutes ago

(in particular if they didn’t eat anything in between)

How do we model this?

Definition 1.2. Let ⟨Ω,P ⟩ a probability space and ⟨S ,⪯⟩ a (not necessarily totally) ordered set.
A sequence of random variables (X t)t∈S with dom(X t) = D is called a stochastic process over the time
structure S .
Intuition: X t models the outcome of the random variable X at time step t. The sample space Ω
corresponds to the set of all possible sequences of outcomes.
Note: We will almost exclusively use ⟨S ,⪯⟩ = ⟨N,≤⟩.
Definition 1.3. Given a stochastic process X t over S and a, b ∈ S with a ⪯ b, we write Xa:b for the
sequence X a,X a+1, . . .,X b−1,X b and E=e

a:b for E a = ea, . . .,E b = eb.

: 829 2025-05-14

Stochastic Processes
The world changes in stochastically predictable ways.
Example 1.4.
▶ The weather changes, but the weather tomorrow is somewhat predictable given today’s weather and

other factors, (which in turn (somewhat) depends on yesterday’s weather, which in turn...)
▶ the stock market changes, but the stock price tomorrow is probably related to today’s price,
▶ A patient’s blood sugar changes, but their blood sugar is related to their blood sugar 10 minutes ago

(in particular if they didn’t eat anything in between)

How do we model this?

Definition 1.5. Let ⟨Ω,P ⟩ a probability space and ⟨S ,⪯⟩ a (not necessarily totally) ordered set.
A sequence of random variables (X t)t∈S with dom(X t) = D is called a stochastic process over the time
structure S .
Intuition: X t models the outcome of the random variable X at time step t. The sample space Ω
corresponds to the set of all possible sequences of outcomes.
Note: We will almost exclusively use ⟨S ,⪯⟩ = ⟨N,≤⟩.
Definition 1.6. Given a stochastic process X t over S and a, b ∈ S with a ⪯ b, we write Xa:b for the
sequence X a,X a+1, . . .,X b−1,X b and E=e

a:b for E a = ea, . . .,E b = eb.

: 829 2025-05-14

Stochastic Processes (Running Example)

Example 1.7 (Umbrellas). You are a security guard in a secret underground facility, want to know it if
is raining outside. Your only source of information is whether the director comes in with an umbrella.
▶ We have a stochastic process Rain0, Rain1, Rain2, . . . of hidden variables, and
▶ a related stochastic process Umbrella0, Umbrella1, Umbrella2, . . . of evidence variables.
...and a combined stochastic process ⟨Rain0, Umbrella0⟩, ⟨Rain1, Umbrella1⟩, . . .
Note that Umbrellat only depends on Raint , not on e.g. Umbrellat−1 (except indirectly through Raint
/ Raint−1).

Definition 1.8. We call a stochastic process of hidden variables a state variable.

: 830 2025-05-14

Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)
...without everything exploding in size...?

Definition 1.9. Let (X t)t∈S a stochastic process. X has the (nth order) Markov property iff X t only
depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have
P(X t |X 0, . . .X t−1) = P(X t |X t−n, . . .X t−1) for some n ∈ S .
A stochastic process with the Markov property for some n is called a (nth order) Markov process.

Important special cases:
Definition 1.10.
▶ First-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.
▶ Second-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

: 831 2025-05-14

Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)
...without everything exploding in size...?

Definition 1.11. Let (X t)t∈S a stochastic process. X has the (nth order) Markov property iff X t only
depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have
P(X t |X 0, . . .X t−1) = P(X t |X t−n, . . .X t−1) for some n ∈ S .
A stochastic process with the Markov property for some n is called a (nth order) Markov process.

Important special cases:
Definition 1.12.
▶ First-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.
▶ Second-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

: 831 2025-05-14

Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)
...without everything exploding in size...?

Definition 1.13. Let (X t)t∈S a stochastic process. X has the (nth order) Markov property iff X t only
depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have
P(X t |X 0, . . .X t−1) = P(X t |X t−n, . . .X t−1) for some n ∈ S .
A stochastic process with the Markov property for some n is called a (nth order) Markov process.

Important special cases:
Definition 1.14.
▶ First-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.
▶ Second-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

: 831 2025-05-14

Markov Process Example: The Umbrella

Example 1.15 (Umbrellas continued). We model the situation in a Bayesian network:

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Problem: This network does not actually have the First-order Markov property...

Possible fixes: We have two ways to fix this:
1. Increase the order of the Markov process. (more dependencies ⇒ more complex inference)
2. Add more state variables, e.g., Tempt , Pressuret . (more information sources)

: 832 2025-05-14

Markov Process Example: The Umbrella

Example 1.16 (Umbrellas continued). We model the situation in a Bayesian network:

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Problem: This network does not actually have the First-order Markov property...

Possible fixes: We have two ways to fix this:
1. Increase the order of the Markov process. (more dependencies ⇒ more complex inference)
2. Add more state variables, e.g., Tempt , Pressuret . (more information sources)

: 832 2025-05-14

Markov Process Example: Robot Motion
Example 1.17 (Random Robot Motion). Assume we want to track a robot wandering randomly on
the X/Y plane, whose position we can only observe roughly (e.g. by approximate GPS coordinates:)
Markov chain

Vt−1 Vt Vt+1

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

▶ the velocity V i may change unpredictably.
▶ the exact position X i depends on previous position X i−1 and velocity V i−1

▶ the position X i influences the observed position Z i .

Example 1.18 (Battery Powered Robot). If the robot has a battery, the Markov property is violated!
▶ Battery exhaustion has a systematic effect on the change in velocity.
▶ This depends on how much power was used by all previous manoeuvres.

: 833 2025-05-14

Markov Process Example: Robot Motion
Idea: We can restore the Markov property by including a state variable for the charge level B t . (Better
still: Battery level sensor)
Example 1.19 (Battery Powered Robot Motion).

Mt−1 Mt Mt+1

Bt−1 Bt Bt+1

Vt−1 Vt Vt+1

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

▶ Battery level B i is influenced by previous level B i−1and velocity V i−1.
▶ Velocity V i is influenced by previous level B i−1and velocity V i−1.
▶ Battery meter M i is only influenced by Battery level B i .

: 834 2025-05-14

Stationary Markov Processes as Transition Models
Remark 1.20. Given a stochastic process with state variables X t and evidence variables E t , then
P(X t |X0:t) is a transition model and P(E t |X0:t ,E1:t−1) a sensor model in the sense of a model-based
agent.
Note that we assume that the X t do not depend on the E t .
Also note that with the Markov property, the transition model simplifies to P(Xt |Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)

Definition 1.21. A Markov chain is called stationary if the transition model is independent of time, i.e.
P(X t |X t−1) is the same for all t.

Example 1.22 (Umbrellas are stationary). P(Raint |Raint−1) does not depend on t. (need only one
table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.

: 835 2025-05-14

Stationary Markov Processes as Transition Models
Remark 1.23. Given a stochastic process with state variables X t and evidence variables E t , then
P(X t |X0:t) is a transition model and P(E t |X0:t ,E1:t−1) a sensor model in the sense of a model-based
agent.
Note that we assume that the X t do not depend on the E t .
Also note that with the Markov property, the transition model simplifies to P(Xt |Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)
Definition 1.24. A Markov chain is called stationary if the transition model is independent of time, i.e.
P(X t |X t−1) is the same for all t.

Example 1.25 (Umbrellas are stationary). P(Raint |Raint−1) does not depend on t. (need only one
table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.

: 835 2025-05-14

Stationary Markov Processes as Transition Models
Remark 1.26. Given a stochastic process with state variables X t and evidence variables E t , then
P(X t |X0:t) is a transition model and P(E t |X0:t ,E1:t−1) a sensor model in the sense of a model-based
agent.
Note that we assume that the X t do not depend on the E t .
Also note that with the Markov property, the transition model simplifies to P(Xt |Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)
Definition 1.27. A Markov chain is called stationary if the transition model is independent of time, i.e.
P(X t |X t−1) is the same for all t.

Example 1.28 (Umbrellas are stationary). P(Raint |Raint−1) does not depend on t. (need only one
table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.

: 835 2025-05-14

Markov Sensor Models

Recap: The sensor model P(E t |X0:t ,E1:t−1) allows us (using Bayes rule et al) to update our belief state
about X t given the observations E0:t .
Problem: The evidence variables E t could depend on any of the variables X0:t ,E1:t−1...

Definition 1.29. We say that a sensor model has the sensor Markov property, iff
P(E t |X0:t ,E1:t−1) = P(E t |X t) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(E t |X t) is fixed for all t.

Definition 1.30 (Note).
▶ If a Markov chain X is stationary and discrete, we can represent the transition model as a matrix

Tij := P(X t = j | X t−1 = i).
▶ If a sensor model has the sensor Markov property, we can represent each observation E t = et at time
t as the diagonal matrix Ot with Ot ii := P(E t = et | X t = i).
▶ A pair ⟨X ,E ⟩ where X is a (stationary) Markov chains, E i only depends on X i , and E has the sensor

Markov property is called a (stationary) Hidden Markov Model (HMM). (X and E are single variables)

: 836 2025-05-14

Markov Sensor Models

Recap: The sensor model P(E t |X0:t ,E1:t−1) allows us (using Bayes rule et al) to update our belief state
about X t given the observations E0:t .
Problem: The evidence variables E t could depend on any of the variables X0:t ,E1:t−1...

Definition 1.31. We say that a sensor model has the sensor Markov property, iff
P(E t |X0:t ,E1:t−1) = P(E t |X t) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(E t |X t) is fixed for all t.

Definition 1.32 (Note).
▶ If a Markov chain X is stationary and discrete, we can represent the transition model as a matrix

Tij := P(X t = j | X t−1 = i).
▶ If a sensor model has the sensor Markov property, we can represent each observation E t = et at time
t as the diagonal matrix Ot with Ot ii := P(E t = et | X t = i).
▶ A pair ⟨X ,E ⟩ where X is a (stationary) Markov chains, E i only depends on X i , and E has the sensor

Markov property is called a (stationary) Hidden Markov Model (HMM). (X and E are single variables)

: 836 2025-05-14

Markov Sensor Models

Recap: The sensor model P(E t |X0:t ,E1:t−1) allows us (using Bayes rule et al) to update our belief state
about X t given the observations E0:t .
Problem: The evidence variables E t could depend on any of the variables X0:t ,E1:t−1...

Definition 1.33. We say that a sensor model has the sensor Markov property, iff
P(E t |X0:t ,E1:t−1) = P(E t |X t) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(E t |X t) is fixed for all t.

Definition 1.34 (Note).
▶ If a Markov chain X is stationary and discrete, we can represent the transition model as a matrix

Tij := P(X t = j | X t−1 = i).
▶ If a sensor model has the sensor Markov property, we can represent each observation E t = et at time
t as the diagonal matrix Ot with Ot ii := P(E t = et | X t = i).
▶ A pair ⟨X ,E ⟩ where X is a (stationary) Markov chains, E i only depends on X i , and E has the sensor

Markov property is called a (stationary) Hidden Markov Model (HMM). (X and E are single variables)

: 836 2025-05-14

Umbrellas, the full Story

Example 1.35 (Umbrellas, Transition & Sensor Models).

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3 Rt P(Ut)

T 0.9
F 0.2

This is a hidden Markov model
Observation 1.36. If we know the initial prior probabilities P(X 0) (=̂ time t = 0), then we can compute
the full joint probability distribution as

P(X0:t ,E1:t) = P(X 0) · (
t∏

i=1

P(X i |X i−1) · P(E i |X i))

: 837 2025-05-14

25.2 Inference: Filtering, Prediction, and Smoothing

: 837 2025-05-14

Inference tasks
Definition 2.1. Given a Markov process with state variables X t and evidence variables E t , we are
interested in the following Markov inference tasks:

▶ Filtering (or monitoring) P(X t |E=e
1:t): Given the sequence of observations up until time t, compute the

likely state of the world at current time t.

▶ Prediction (or state estimation) P(X t+k |E=e
1:t) for k > 0: Given the sequence of observations up until

time t, compute the likely future state of the world at time t + k .

▶ Smoothing (or hindsight) P(X t−k |E=e
1:t) for 0 < k < t: Given the sequence of observations up until

time t, compute the likely past state of the world at time t − k.

▶ Most likely explanation argmax
x1:t

(P(X=x
1:t | E=e

1:t)): Given the sequence of observations up until time t,

compute the most likely sequence of states that led to these observations.

Note: The most likely sequence of states is not (necessarily) the sequence of most likely states ;-)
In this section, we assume X and E to represent multiple variables, where X jointly forms a Markov
chain and the E jointly have the sensor Markov property.
In the case where X and E are stationary single variables, we have a stationary hidden Markov model
and can use the matrix forms.

: 838 2025-05-14

Filtering (Computing the Belief State given Evidence)

Note:
▶ Using the full joint probability distribution, we can compute any conditional probability we want, but

not necessarily efficiently.
▶ We want to use filtering to update our ‘‘world model” P(X t) based on a new observation E t = et and

our previous world model P(X t−1).
⇒ We want a function P(X t |E=e

1:t) = F (et ,P(X t−1|E=e
1:t−1)︸ ︷︷ ︸

F (et−1,...)

)

Spoiler:
F (et ,P(X t−1|E=e

1:t−1)) = α(Ot · TT · P(X t−1|E=e
1:t−1))

: 839 2025-05-14

Filtering (Computing the Belief State given Evidence)

Note:
▶ Using the full joint probability distribution, we can compute any conditional probability we want, but

not necessarily efficiently.
▶ We want to use filtering to update our ‘‘world model” P(X t) based on a new observation E t = et and

our previous world model P(X t−1).
⇒ We want a function P(X t |E=e

1:t) = F (et ,P(X t−1|E=e
1:t−1)︸ ︷︷ ︸

F (et−1,...)

)

Spoiler:
F (et ,P(X t−1|E=e

1:t−1)) = α(Ot · TT · P(X t−1|E=e
1:t−1))

: 839 2025-05-14

Filtering Derivation

P(X t |E=e
1:t) = P(X t |E t = et ,E

=e
1:t−1) (dividing up evidence)

= α(P(E t = et |X t ,E
=e
1:t−1) · P(X t |E=e

1:t−1)) (using Bayes’ rule)
= α(P(E t = et |X t) · P(X t |E=e

1:t−1)) (sensor Markov property)
= α(P(E t = et |X t) · (

∑

x∈dom(X)

P(X t |X t−1 = x ,E=e
1:t−1) · P(X t−1 = x | E=e

1:t−1))) (marginalization)

= α(P(E t = et |X t)︸ ︷︷ ︸
sensor model

·(
∑

x∈dom(X)

P(X t |X t−1 = x)︸ ︷︷ ︸
transition model

·P(X t−1 = x | E=e
1:t−1)︸ ︷︷ ︸

recursive call

)) (conditional independence)

Reminder: In a stationary HMM, we have the matrices Tij = P(X t = j | X t−1 = i) and
Ot ii = P(E t = et | X t = i).
Then interpreting P(X t−1|E=e

1:t−1) as a vector, the above corresponds exactly to the matrix multiplication
α(Ot · TT · P(X t−1|E=e

1:t−1))

Definition 2.2. We call the inner part of the above expression the forward algorithm, i.e.
P(X t |E=e

1:t) = α(FORWARD(et ,P(X t−1|E=e
1:t−1))) =: f1:t .

: 840 2025-05-14

Filtering Derivation

P(X t |E=e
1:t) = P(X t |E t = et ,E

=e
1:t−1) (dividing up evidence)

= α(P(E t = et |X t ,E
=e
1:t−1) · P(X t |E=e

1:t−1)) (using Bayes’ rule)
= α(P(E t = et |X t) · P(X t |E=e

1:t−1)) (sensor Markov property)
= α(P(E t = et |X t) · (

∑

x∈dom(X)

P(X t |X t−1 = x ,E=e
1:t−1) · P(X t−1 = x | E=e

1:t−1))) (marginalization)

= α(P(E t = et |X t)︸ ︷︷ ︸
sensor model

·(
∑

x∈dom(X)

P(X t |X t−1 = x)︸ ︷︷ ︸
transition model

·P(X t−1 = x | E=e
1:t−1)︸ ︷︷ ︸

recursive call

)) (conditional independence)

Reminder: In a stationary HMM, we have the matrices Tij = P(X t = j | X t−1 = i) and
Ot ii = P(E t = et | X t = i).
Then interpreting P(X t−1|E=e

1:t−1) as a vector, the above corresponds exactly to the matrix multiplication
α(Ot · TT · P(X t−1|E=e

1:t−1))

Definition 2.3. We call the inner part of the above expression the forward algorithm, i.e.
P(X t |E=e

1:t) = α(FORWARD(et ,P(X t−1|E=e
1:t−1))) =: f1:t .

: 840 2025-05-14

Filtering the Umbrellas
Example 2.4. Let’s assume:
▶ P(R0) = ⟨0.5, 0.5⟩, (Note that with growing t (and evidence), the impact of the prior at t = 0

vanishes anyway)
▶ P(Rt+1 | Rt) = 0.6, P(¬Rt+1 | ¬Rt) = 0.8, P(Ut | Rt) = 0.9 and P(¬Ut | ¬Rt) = 0.85

⇒ T =

(
0.6 0.4
0.2 0.8

)

▶ The director carries an umbrella on days 1 and 2, and not on day 3.

⇒ O1 = O2 =

(
0.9 0
0 0.15

)
and O3 =

(
0.1 0
0 0.85

)
.

Then:
▶ f1:1 := P(R1|U1 = T) = α(P(U1 = T|R1) · (

∑

b∈{T,F}
P(R1|R0 = b) · P (R0 = b)))

=α(⟨0.9, 0.15⟩ · (⟨0.6, 0.4⟩ · 0.5 + ⟨0.2, 0.8⟩ · 0.5)) = α(⟨0.36, 0.09⟩) = ⟨0.8, 0.2⟩
▶ Using matrices: α(O1 · TT ·

(
0.5
0.5

)
) = α(

(
0.9 0
0 0.15

)
·
(

0.6 0.2
0.4 0.8

)
·
(

0.5
0.5

)
)

=α(

(
0.9 · 0.6 0.9 · 0.2
0.15 · 0.4 0.15 · 0.8

)
·
(

0.5
0.5

)
) = α(

(
0.9 · 0.6 · 0.5 + 0.9 · 0.2 · 0.5

0.15 · 0.4 · 0.5 + 0.15 · 0.8 · 0.5

)
) = α(

(
0.36
0.09

)
)

: 841 2025-05-14

Filtering the Umbrellas (Continued)

Example 2.5. f1:1 := P(R1|U1 = T) = ⟨0.8, 0.2⟩
▶ f1:2 := P(R2|U2 = T, U1 = T) = α(O2 · TT · f1:1) = α(P(U2 = T|R2) · (

∑

b∈{T,F}
P(R2|R1 = b) · f1:1(b)))

=α(⟨0.9, 0.15⟩ · (⟨0.6, 0.4⟩ · 0.8 + ⟨0.2, 0.8⟩ · 0.2)) = α(⟨0.468, 0.072⟩) = ⟨0.87, 0.13⟩
▶ f1:3 := P(R3|U3 = F, U2 = T, U1 = T) = α(O3 · TT · f1:2)
=α(P(U3 = F|R3) · (

∑

b∈{T,F}
P(R3|R2 = b) · f1:2(b)))

=α(⟨0.1, 0.85⟩ · (⟨0.6, 0.4⟩ · 0.87 + ⟨0.2, 0.8⟩ · 0.13)) = α(⟨0.0547, 0.3853⟩) = ⟨0.12, 0.88⟩

: 842 2025-05-14

Prediction in Markov Chains

Prediction: P(X t+k |E=e
1:t) for k > 0.

Intuition: Prediction is filtering without new evidence – i.e. we can use filtering until t, and then
continue as follows:
Lemma 2.6. By the same reasoning as filtering:

P(X t+k+1|E=e
1:t) =

∑

x∈dom(X)

P(X t+k+1|X t+k = x)︸ ︷︷ ︸
transition model

·P(X t+k = x | E=e
1:t)︸ ︷︷ ︸

recursive call

=TT · P(X t+k = x |E=e
1:t)︸ ︷︷ ︸

HMM

Observation 2.7. As k →∞, P(X t+k |E=e
1:t) converges towards a fixed point called the stationary

distribution of the Markov chain. (which we can compute from the equation S = TT · S)
; the impact of the evidence vanishes.
; The stationary distribution only depends on the transition model.
; There is a small window of time (depending on the transition model) where the evidence has enough
impact to allow for prediction beyond the mere stationary distribution, called the mixing time of the
Markov chain.
; Predicting the future is difficult, and the further into the future, the more difficult it is (Who knew...)

: 843 2025-05-14

Prediction in Markov Chains

Prediction: P(X t+k |E=e
1:t) for k > 0.

Intuition: Prediction is filtering without new evidence – i.e. we can use filtering until t, and then
continue as follows:
Lemma 2.8. By the same reasoning as filtering:

P(X t+k+1|E=e
1:t) =

∑

x∈dom(X)

P(X t+k+1|X t+k = x)︸ ︷︷ ︸
transition model

·P(X t+k = x | E=e
1:t)︸ ︷︷ ︸

recursive call

=TT · P(X t+k = x |E=e
1:t)︸ ︷︷ ︸

HMM

Observation 2.9. As k →∞, P(X t+k |E=e
1:t) converges towards a fixed point called the stationary

distribution of the Markov chain. (which we can compute from the equation S = TT · S)
; the impact of the evidence vanishes.
; The stationary distribution only depends on the transition model.
; There is a small window of time (depending on the transition model) where the evidence has enough
impact to allow for prediction beyond the mere stationary distribution, called the mixing time of the
Markov chain.
; Predicting the future is difficult, and the further into the future, the more difficult it is (Who knew...)

: 843 2025-05-14

Smoothing

Smoothing: P(X t−k |E=e
1:t) for k > 0.

Intuition: Use filtering to compute P(X t |E=e
1:t−k), then recurse backwards from t until t − k.

P(X t−k |E=e
1:t) = P(X t−k |E=e

t−(k−1):t ,E
=e
1:t−k) (Divide the evidence)

= α(P(E=e
t−(k−1):t |X t−k ,E

=e
1:t−k) · P(X t−k |E=e

1:t−k)) (Bayes Rule)
= α(P(E=e

t−(k−1):t |X t−k)︸ ︷︷ ︸
=:bt−(k−1):t

·P(X t−k |E=e
1:t−k)︸ ︷︷ ︸

=f1:t−k

) (cond. independence)

= α(f1:t−k × bt−(k−1):t)

(where × denotes component-wise multiplication)

: 844 2025-05-14

Smoothing (continued)
Definition 2.10 (Backward message). bt−k:t = P(E=e

t−k:t |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t |X t−k = x ,X t−(k+1)) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t | X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k ,E
=e
t−(k−1):t | X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k | X t−k = x)︸ ︷︷ ︸
sensor model

·P(E=e
t−(k−1):t | X t−k = x)

︸ ︷︷ ︸
=bt−(k−1):t

·P(X t−k = x |X t−(k+1))︸ ︷︷ ︸
transition model

Note: in a stationary hidden Markov model, we get the matrix formulation bt−k:t = T ·Ot−k ·bt−(k−1):t

Definition 2.11. We call the associated algorithm the backward algorithm, i.e.
P(X t−k |E=e

1:t) = α(FORWARD(et−k , f1:t−(k+1))︸ ︷︷ ︸
f1:t−k

×BACKWARD(et−(k−1), bt−(k−2):t)︸ ︷︷ ︸
bt−(k−1):t

).

As a starting point for the recursion, we let bt+1:t the uniform vector with 1 in every component.

: 845 2025-05-14

Smoothing (continued)
Definition 2.12 (Backward message). bt−k:t = P(E=e

t−k:t |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t |X t−k = x ,X t−(k+1)) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t | X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k ,E
=e
t−(k−1):t | X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k | X t−k = x)︸ ︷︷ ︸
sensor model

·P(E=e
t−(k−1):t | X t−k = x)

︸ ︷︷ ︸
=bt−(k−1):t

·P(X t−k = x |X t−(k+1))︸ ︷︷ ︸
transition model

Note: in a stationary hidden Markov model, we get the matrix formulation bt−k:t = T ·Ot−k ·bt−(k−1):t

Definition 2.13. We call the associated algorithm the backward algorithm, i.e.
P(X t−k |E=e

1:t) = α(FORWARD(et−k , f1:t−(k+1))︸ ︷︷ ︸
f1:t−k

×BACKWARD(et−(k−1), bt−(k−2):t)︸ ︷︷ ︸
bt−(k−1):t

).

As a starting point for the recursion, we let bt+1:t the uniform vector with 1 in every component.
: 845 2025-05-14

Smoothing example
Example 2.14 (Smoothing Umbrellas). Reminder: We assumed P(R0) = ⟨0.5, 0.5⟩,
P(Rt+1 | Rt) = 0.6, P(¬Rt+1 | ¬Rt) = 0.8, P(Ut | Rt) = 0.9, P(¬Ut | ¬Rt) = 0.85

⇒ T =

(
0.6 0.4
0.2 0.8

)
, O1 = O2 =

(
0.9 0
0 0.15

)
and O3 =

(
0.1 0
0 0.85

)
. (The director carries an

umbrella on days 1 and 2, and not on day 3)
f1:1 = ⟨0.8, 0.2⟩, f1:2 = ⟨0.87, 0.13⟩ and f1:3 = ⟨0.12, 0.88⟩
Let’s compute

P(R1|U1 = T, U2 = T, U3 = F) = α(f1:1 × b2:3)

▶ We need to compute b2:3 and b3:3:

▶ b3:3 = T · O3 · b4:3 =

(
0.6 0.4
0.2 0.8

)
·
(

0.1 0
0 0.85

)
·
(

1
1

)
=

(
0.4
0.7

)

▶ b2:3 = T · O2 · b3:3 =

(
0.6 0.4
0.2 0.8

)
·
(

0.9 0
0 0.15

)
·
(

0.4
0.7

)
=

(
0.258
0.156

)

⇒ α(

(
0.8
0.2

)
×
(

0.258
0.156

)
) = α(

(
0.2064
0.0312

)
) =

(
0.87
0.13

)

⇒ Given the evidence U2,¬U3, the posterior probability for R1 went up from 0.8 to 0.87!

: 846 2025-05-14

Forward/Backward Algorithm for Smoothing

Definition 2.15. Forward backward algorithm: returns the sequence of posterior distributions
P(X 1). . .P(X t) given evidence e1, . . ., et :

function Forward-Backward(⟨e1, . . ., et⟩,P(X 0))
f := ⟨P(X 0)⟩
b := ⟨1, 1, . . .⟩
S := ⟨P(X 0)⟩
for i = 1, . . . , t do

fi := FORWARD(fi−1, e i) /* filtering */
for i = t, . . . , 1 do

Si := α(fi × b) /* smoothing */
b := BACKWARD(b, e i)

return S

Time complexity linear in t (polytree inference), Space complexity O(t · |f|).

: 847 2025-05-14

Country dance algorithm

Idea: If T and Oi are invertible, we can avoid storing all forward messages in the smoothing algorithm
by running filtering backwards:

f1:i+1 = α(Oi+1 · TT · f1:i)

⇒ f1:i = α(TT−1 · Oi+1
−1 · f1:i+1)

⇒ we can trade space complexity for time complexity:
▶ In the first for-loop, we only compute the final f1:t (No need to store the intermediate results)
▶ In the second for-loop, we compute both f1:i and bt−i :t (Only one copy of f1:i , bt−i :t is stored)
⇒ constant space.

But: Requires that both matrices are invertible, i.e. every observation must be possible in every state.
(Possible hack: increase the probabilities of 0 to “negligibly small”)

: 848 2025-05-14

Most Likely Explanation

Smoothing allows us to compute the sequence of most likely states X 1, . . .,X t given E=e
1:t . What if we

want the most likely sequence of states? i.e. max
x1,...,x t

(P(X=x
1:t | E=e

1:t))?

Example 2.16. Given the sequence U1, U2,¬U3, U4, U5, the most likely state for R3 is F, but the most
likely sequence might be that it rained throughout...
Prominent Application: In speech recognition, we want to find the most likely word sequence, given
what we have heard. (can be quite noisy)

Idea:
▶ For every x t ∈ dom(X) and 0 ≤ i ≤ t, recursively compute the most likely path X 1, . . .,X i ending in
X i = x i given the observed evidence.
▶ remember the x i−1 that most likely leads to x i .
▶ Among the resulting paths, pick the one to the X t = x t with the most likely path,
▶ and then recurse backwards.
; we want to know max

x1,...,x t−1
P(X=x

1:t−1,X t |E=e
1:t), and then pick the x t with the maximal value.

: 849 2025-05-14

Most Likely Explanation (continued)
By the same reasoning as for filtering:

max
x1,...,x t−1

P(X=x
1:t−1,X t |E=e

1:t)

= α(P(E t = et |X t)︸ ︷︷ ︸
sensor model

·max
x t−1

(P(X t |X t−1 = x t−1)︸ ︷︷ ︸
transition model

· max
x1,...,x t−2

(P(X=x
1:t−2,X t−1 = x t−1 | E=e

1:t−1))

︸ ︷︷ ︸
=:m1:t−1(x t−1)

))

m1:t(i) gives the maximal probability that the most likely path up to t leads to state X t = i .
Note that we can leave out the α, since we’re only interested in the maximum.
Example 2.17. For the sequence [T,T,F,T,T]:

Section 15.2. Inference in Temporal Models 577

Rain1

m1:1

true

Rain5

m1:5

true

Rain4

m1:4

true

Rain3

m1:3

false

Rain2

m1:2

trueUmbrellat

(a)

(b)
.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false

Figure 15.5 (a) Possible state sequences for Raint can be viewed as paths through a graph
of the possible states at each time step. (States are shown as rectangles to avoid confusion
with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella obser-
vation sequence [true, true, false, true, true]. For each t, we have shown the values of the
message m1:t, which gives the probability of the best sequence reaching each state at time t.
Also, for each state, the bold arrow leading into it indicates its best predecessor as measured
by the product of the preceding sequence probability and the transition probability. Following
the bold arrows back from the most likely state in m1:5 gives the most likely sequence.

butions over single time steps, whereas to find the most likely sequence we must consider
joint probabilities over all the time steps. The results can in fact be quite different. (See
Exercise 15.4.)

There is a linear-time algorithm for finding the most likely sequence, but it requires a
little more thought. It relies on the same Markov property that yielded efficient algorithms for
filtering and smoothing. The easiest way to think about the problem is to view each sequence
as a path through a graph whose nodes are the possible states at each time step. Such a
graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding
the most likely path through this graph, where the likelihood of any path is the product of
the transition probabilities along the path and the probabilities of the given observations at
each state. Let’s focus in particular on paths that reach the state Rain5 = true . Because of
the Markov property, it follows that the most likely path to the state Rain5 = true consists of
the most likely path to some state at time 4 followed by a transition to Rain5 = true; and the
state at time 4 that will become part of the path to Rain5 = true is whichever maximizes the
likelihood of that path. In other words, there is a recursive relationship between most likely
paths to each state xt+1 and most likely paths to each state xt. We can write this relationship
as an equation connecting the probabilities of the paths:

max
x1...xt

P(x1, . . . , xt, Xt+1 | e1:t+1)

= α P(et+1 | Xt+1)max
xt

(
P(Xt+1 | xt) max

x1...xt−1

P (x1, . . . , xt−1, xt | e1:t)

)
. (15.11)

Equation (15.11) is identical to the filtering equation (15.5) except that

bold arrows: best predecessor measured by “best preceding sequence probability × transition probability”
: 850 2025-05-14

The Viterbi Algorithm

Definition 2.18. The Viterbi algorithm now proceeds as follows:

function Viterbi(⟨e1, . . ., et⟩,P(X 0))
m := P(X 0) /* m1:i */
prev := ⟨⟩ /* the most likely predecessor of each possible x i */
for i = 1, . . . , t do

m′ := max
x i−1

(P(E i = e i |X i) · P(X i |X i−1 = x i−1) ·mx i−1)

previ−1 := argmax
x i−1

(P(E i = e i |X i) · P(X i |X i−1 = x i−1) ·mx i−1)

m←− m′

P := ⟨0, 0, ..., argmax
(x∈dom(X))

mx ⟩

for i = t − 1, . . . , 0 do
Pi := previ,Pi+1

return P

Observation 2.19. Viterbi has linear time complexity and linear space complexity (needs to keep the
most likely sequence leading to each state).

: 851 2025-05-14

25.3 Hidden Markov Models – Extended Example

: 851 2025-05-14

Example: Robot Localization using Common Sense

Example 3.1 (Robot Localization in a Maze). A robot has four sonar sensors that tell it about
obstacles in four directions: N, S, W, E.
We write the result where the sensor that detects obstacles in the north, south, and east as N S E.

We filter out the impossible states:

a) Possible robot locations after e1 = N S W

Remark 3.2. This only works for perfect sensors. (else no impossible states)
What if our sensors are imperfect?

: 852 2025-05-14

Example: Robot Localization using Common Sense

Example 3.3 (Robot Localization in a Maze). A robot has four sonar sensors that tell it about
obstacles in four directions: N, S, W, E.
We write the result where the sensor that detects obstacles in the north, south, and east as N S E.

We filter out the impossible states:

b) Possible robot locations after e1 = N S W and e2 = N S

Remark 3.4. This only works for perfect sensors. (else no impossible states)
What if our sensors are imperfect?

: 852 2025-05-14

HMM Example: Robot Localization (Modeling)
Example 3.5 (HMM-based Robot Localization). We have the following setup:
▶ A hidden Random variable X t for robot location (domain: 42 empty squares)
▶ Let N(i) be the set of neighboring fields of the field X i = x i
▶ The Transition matrix for the move action (T has 422 = 1764 entries)

P(X t+1 = j | X t = i) = Tij =

{ 1
|N(i)| if j ∈ N(i)

0 else

▶ We do not know where the robot starts: P (X 0) =
1
n (here n = 42)

▶ Evidence variable E t : four bit presence/absence of obstacles in N, S, W, E. Let dit be the number of
wrong bits and ϵ the error rate of the sensor. Then

P(E t = et | X t = i) = Ot ii = (1− ϵ)4−dit · ϵdit

(We assume the sensors are independent)
For example, the probability that the sensor on a square with obstacles in north and south would
produce N S E is (1− ϵ)3 · ϵ1.

We can now use filtering for localization, smoothing to determine e.g. the starting location, and the
Viterbi algorithm to find out how the robot got to where it is now.

: 853 2025-05-14

HMM Example: Robot Localization

We use HMM filtering equation f1:t+1 = α ·Ot+1Tt f1:t to compute posterior distribution over locations.
(i.e. robot localization)

Example 3.6. Redoing ???, with ϵ = 0.2.

582 Chapter 15. Probabilistic Reasoning over Time

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 Posterior distribution over robot location: (a) one observation E1 =NSW ;
(b) after a second observation E2 =NS. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate is ε =0.2.

NS, for example, to mean that the north and south sensors report an obstacle and the east and
west do not. Suppose that each sensor’s error rate is ε and that errors occur independently for
the four sensor directions. In that case, the probability of getting all four bits right is (1 − ε)4

and the probability of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the
number of bits that are different—between the true values for square i and the actual reading
et, then the probability that a robot in square i would receive a sensor reading et is

P (Et = et | Xt = i) = Otii = (1 − ε)4−ditεdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading NSE is (1 − ε)3ε1.

Given the matrices T and Ot, the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the
distributions P(X1 |E1 = NSW) and P(X2 |E1 =NSW,E2 = NS). This is the same maze
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most
likely with noisy sensing, but now every location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing
(Equation (15.13)) to work out where it was at any given past time—for example, where it
began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

a) Posterior distribution over robot location after E1 = N S W

Still the same locations as in the “perfect sensing” case, but now other locations have non-zero
probability.

: 854 2025-05-14

HMM Example: Robot Localization

We use HMM filtering equation f1:t+1 = α ·Ot+1Tt f1:t to compute posterior distribution over locations.
(i.e. robot localization)

Example 3.7. Redoing ???, with ϵ = 0.2.

582 Chapter 15. Probabilistic Reasoning over Time

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 Posterior distribution over robot location: (a) one observation E1 =NSW ;
(b) after a second observation E2 =NS. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate is ε =0.2.

NS, for example, to mean that the north and south sensors report an obstacle and the east and
west do not. Suppose that each sensor’s error rate is ε and that errors occur independently for
the four sensor directions. In that case, the probability of getting all four bits right is (1 − ε)4

and the probability of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the
number of bits that are different—between the true values for square i and the actual reading
et, then the probability that a robot in square i would receive a sensor reading et is

P (Et = et | Xt = i) = Otii = (1 − ε)4−ditεdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading NSE is (1 − ε)3ε1.

Given the matrices T and Ot, the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the
distributions P(X1 |E1 = NSW) and P(X2 |E1 =NSW,E2 = NS). This is the same maze
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most
likely with noisy sensing, but now every location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing
(Equation (15.13)) to work out where it was at any given past time—for example, where it
began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

b) Posterior distribution over robot location after E1 = N S W and E2 = N S

Still the same locations as in the “perfect sensing” case, but now other locations have non-zero
probability.

: 854 2025-05-14

HMM Example: Further Inference Applications

Idea: We can use smoothing: bk+1:t = TOk+1bk+2:t to find out where it started and the Viterbi
algorithm to find the most likely path it took.
Example 3.8.Performance of HMM localization vs. observation length (various error rates ϵ)

Section 15.3. Hidden Markov Models 583

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20 25 30 35 40

L
oc

al
iz

at
io

n
er

ro
r

Number of observations

¡ = 0.20
¡ = 0.10
¡ = 0.05
¡ = 0.02
¡ = 0.00

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40

Pa
th

 a
cc

ur
ac

y

Number of observations

¡ = 0.00
¡ = 0.02
¡ = 0.05
¡ = 0.10
¡ = 0.20

(a) (b)

Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ε; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy
for various values of the per-bit sensor error rate ε. Even when ε is 20%—which means that
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its
location within two squares after 25 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
on the location sequence by the transition model. When ε is 10%, the performance after
a half-dozen observations is hard to distinguish from the performance with perfect sensing.
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in
the prior distribution P(X0) and in the transition model itself. Broadly speaking, high levels
of localization and path accuracy are maintained even in the face of substantial errors in the
models used.

The state variable for the example we have considered in this section is a physical
location in the world. Other problems can, of course, include other aspects of the world.
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
(randomly selected) heading. To model this robot, each state in the model consists of a
(location, heading) pair. For the environment in Figure 15.7, which has 42 empty squares,
this leads to 168 states and a transition matrix with 1682 = 28, 224 entries—still a manageable
number. If we add the possibility of dirt in the squares, the number of states is multiplied by
242 and the transition matrix ends up with more than 1029 entries—no longer a manageable
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with
many state variables. If we allow the robot to move continuously rather than in a discrete
grid, the number of states becomes infinite; the next section shows how to handle this case.

Section 15.3. Hidden Markov Models 583

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20 25 30 35 40

L
oc

al
iz

at
io

n
er

ro
r

Number of observations

¡ = 0.20
¡ = 0.10
¡ = 0.05
¡ = 0.02
¡ = 0.00

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40

Pa
th

 a
cc

ur
ac

y

Number of observations

¡ = 0.00
¡ = 0.02
¡ = 0.05
¡ = 0.10
¡ = 0.20

(a) (b)

Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ε; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy
for various values of the per-bit sensor error rate ε. Even when ε is 20%—which means that
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its
location within two squares after 25 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
on the location sequence by the transition model. When ε is 10%, the performance after
a half-dozen observations is hard to distinguish from the performance with perfect sensing.
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in
the prior distribution P(X0) and in the transition model itself. Broadly speaking, high levels
of localization and path accuracy are maintained even in the face of substantial errors in the
models used.

The state variable for the example we have considered in this section is a physical
location in the world. Other problems can, of course, include other aspects of the world.
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
(randomly selected) heading. To model this robot, each state in the model consists of a
(location, heading) pair. For the environment in Figure 15.7, which has 42 empty squares,
this leads to 168 states and a transition matrix with 1682 = 28, 224 entries—still a manageable
number. If we add the possibility of dirt in the squares, the number of states is multiplied by
242 and the transition matrix ends up with more than 1029 entries—no longer a manageable
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with
many state variables. If we allow the robot to move continuously rather than in a discrete
grid, the number of states becomes infinite; the next section shows how to handle this case.

Localization error (Manhattan dis-
tance from true location)

Viterbi path accuracy (fraction of
correct states on Viterbi path)

: 855 2025-05-14

25.4 Dynamic Bayesian Networks

: 855 2025-05-14

Dynamic Bayesian networks
▶ Definition 4.1. A Bayesian network D is called dynamic (a DBN), iff its random variables are

indexed by a time structure. We assume that D is
▶ time sliced, i.e. that the time slices Dt – the subgraphs of t-indexed random variables and the edges

between them – are isomorphic.
▶ a stationary Markov chain, i.e. that variables Xt can only have parents in Dt and Dt−1.
▶ Xt , Et contain arbitrarily many variables in a replicated Bayesian network.
▶ Example 4.2.

Umbrellas Robot Motion

: 856 2025-05-14

DBNs vs. HMMs
▶ Observation 4.3.
▶ Every HMM is a single-variable DBN. (trivially)
▶ Every DBN can be turned into an HMM. (combine variables into tuple ⇒ lose information about

dependencies)
▶ DBNs have sparse dependencies ; exponentially fewer parameters;

▶ Example 4.4 (Sparse Dependencies). With 20 Boolean state variables, three parents each, a DBN
has 20 · 23 = 160 parameters, the corresponding HMM has 220 · 220 ≈ 1012.

: 857 2025-05-14

Exact inference in DBNs

▶ Definition 4.5 (Naive method). Unroll the network and run any exact algorithm.
Rain0 Rain1

Umbrella1

P(R0)

0.7
R0 P(R1)

T 0.7
F 0.3 R1 P(U1)

T 0.9
F 0.2

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

P(R0)

0.7

R0 P(R1)

T 0.7
F 0.3

R1 P(U1)

T 0.9
F 0.2

R1 P(R2)

T 0.7
F 0.3

R2 P(U2)

T 0.9
F 0.2

R2 P(R3)

T 0.7
F 0.3

R3 P(U3)

T 0.9
F 0.2

R3 P(R4)

T 0.7
F 0.3

R4 P(U4)

T 0.9
F 0.2

R4 P(R5)

T 0.7
F 0.3

R5 P(U5)

T 0.9
F 0.2

▶ Problem: Inference cost for each update grows with t.
▶ Definition 4.6. Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination.
▶ Observation: Largest factor is O(dn+1), update cost O(dn+2), where d is the maximal domain size.
▶ Note: Much better than the HMM update cost of O(d2n)

: 858 2025-05-14

Summary

▶ Temporal probability models use state and evidence variables replicated over time.
▶ Markov property and stationarity assumption, so we need both
▶ a transition model and P(Xt |Xt−1)
▶ a sensor model P(Et |Xt).
▶ Tasks are filtering, prediction, smoothing, most likely sequence; (all done recursively with constant

cost per time step)
▶ Hidden Markov models have a single discrete state variable; (used for speech recognition)
▶ DBNs subsume HMMs, exact update intractable.

: 859 2025-05-14

Chapter 26
Making Complex Decisions

: 859 2025-05-14

Outline

We will now combine the ideas of stochastic process with that of acting based on maximizing expected
utility:
▶ Markov decision processes (MDPs) for sequential environments.
▶ Value/policy iteration for computing utilities in MDPs.
▶ Partially observable MDP (POMDPs).
▶ Decision theoretic agents for POMDPs.

: 860 2025-05-14

26.1 Sequential Decision Problems

: 860 2025-05-14

Sequential Decision Problems
▶ Definition 1.1. In sequential decision problems, the agent’s utility depends on a sequence of

decisions (or their result states).
▶ Definition 1.2. Utility functions on action sequences are often expressed in terms of immediate

rewards that are incurred upon reaching a (single) state.
▶ Methods: depend on the environment:
▶ If it is fully observable ; Markov decision process (MDPs)
▶ else ; partially observable MDP (POMDP).
▶ Sequential decision problems incorporate utilities, uncertainty, and sensing.
▶ Preview: Search problems and planning tasks are special cases.

Search

Planning

Decision-theoretic
Planning

Markov Decision
Problems (MDPs)

Partially observable
MDPs (POMDPs)

explicit actions
and subgoals

uncertainty
and utility

uncertainty
and utility

uncertain
sensing

explicit actions
and subgoals belief states

: 861 2025-05-14

Markov Decision Problem: Running Example

▶ Example 1.3 (Running Example: The 4x3 World). A (fully observable) 4× 3 environment with
non-deterministic actions:

▶ States s ∈ S, actions a ∈ As.
▶ Transition model: P(s ′ | s,a) =̂ probability that a in s leads to s ′.
▶ reward function:

R(s) :=

{
−0.04 if (small penalty) for nonterminal states

±1 if for terminal states

: 862 2025-05-14

Markov Decision Process

▶ Motivation: Let us (for now) consider sequential decision problems in a fully observable, stochastic
environment with a Markovian transition model on a finite set of states and an additive reward
function. (We will switch to partially observable ones later)

▶ Definition 1.4. A Markov decision process (MDP) ⟨S ,A, T , s0 ,R ⟩ consists of
▶ a set of S of states (with initial state s0 ∈ S),
▶ for every state s, a set of actions As.
▶ a transition model T (s, a) = P(S|s, a), and
▶ a reward function R : S → R; we call R(s) a reward.
▶ Idea: We use the rewards as a utility function: The goal is to choose actions such that the expected

cumulative rewards for the “foreseeable future” is maximized
⇒ need to take future actions and future states into account

: 863 2025-05-14

Solving MDPs
▶ In MDPs, the aim is to find an optimal policy π(s), which tells us the best action for every possible

state s. (because we can’t predict where we might end up, we need to consider all states)
▶ Definition 1.5. A policy π for an MDP is a function mapping each state s to an action a ∈ As.

An optimal policy is a policy that maximizes the expected total rewards. (for some notion of “total”...)
▶ Example 1.6. Optimal policy when state penalty R(s) is 0.04:

Note: When you run against a wall, you stay in your square.

: 864 2025-05-14

Risk and Reward

▶ Example 1.7. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!

▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).
3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away

from the −1 ; cannot fall in by accident.
4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

: 865 2025-05-14

Risk and Reward

▶ Example 1.8. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.

2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and
is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).

3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away
from the −1 ; cannot fall in by accident.

4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

: 865 2025-05-14

Risk and Reward

▶ Example 1.9. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).

3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away
from the −1 ; cannot fall in by accident.

4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

: 865 2025-05-14

Risk and Reward

▶ Example 1.10. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).
3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away

from the −1 ; cannot fall in by accident.

4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

: 865 2025-05-14

Risk and Reward

▶ Example 1.11. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).
3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away

from the −1 ; cannot fall in by accident.
4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

: 865 2025-05-14

26.2 Utilities over Time

: 865 2025-05-14

Utility of state sequences

Why rewards?
▶ Recall: We cannot observe/assess utility functions, only preferences ; induce utility functions from

rational preferences
▶ Problem: In MDPs we need to understand preferences between sequences of states.

▶ Definition 2.1. We call preferences on reward sequences stationary, iff

[r , r0, r1, r2, . . .]≻[r , r ′0, r ′1, r ′2, . . .]⇔ [r0, r1, r2, . . .]≻[r ′0, r ′1, r ′2, . . .]

(i.e. rewards over time are “independent” of each other)
▶ Good news:

Theorem 2.2. For stationary preferences, there are only two ways to combine rewards over time.
▶ additive rewards: U([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + · · ·
▶ discounted rewards: U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · · where 0 ≤ γ ≤ 1 is called

discount factor.

⇒ we can reduce utilities over time to rewards on individual states

: 866 2025-05-14

Utilities of State Sequences

Problem: Infinite lifetimes ; additive rewards may become infinite.

Possible Solutions:
1. Finite horizon: terminate utility computation at a fixed time T

U([s0, . . . , s∞]) = R(s0) + · · ·+ R(sT)

; nonstationary policy: π(s) depends on time left.
2. If there are absorbing states: for any policy π agent eventually “dies” with probability 1 ; expected

utility of every state is finite.
3. Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, s1, . . .]) =
∞∑

t=0

γtR(st) ≤
∞∑

t=0

γtRmax = Rmax/(1− γ)

Smaller γ ; shorter horizon.
We will only consider discounted rewards in this course

: 867 2025-05-14

Why discounted rewards?

Discounted rewards are both convenient and (often) realistic:
▶ stationary preferences imply (additive rewards or) discounted rewards anyway,
▶ discounted rewards lead to finite utilities for (potentially) infinite sequences of states (we can

compute expected utilities for the entire future),
▶ discounted rewards lead to stationary policies, which are easier to compute and often more adequate

(unless we know that remaining time matters),
▶ discounted rewards mean we value short-term gains over long-term gains (all else being equal), which

is often realistic (e.g. the same amount of money gained early gives more opportunity to spend/invest
⇒ potentially more utility in the long run)
▶ we can interpret the discount factor as a measure of uncertainty about future rewards ⇒ more robust

measure in uncertain environments.

: 868 2025-05-14

Utility of States

Remember: Given a sequence of states S = s0, s1, s2, . . ., and a discount factor 0 ≤ γ < 1, the utility
of the sequence is

U(S) =
∞∑

t=0

γtR(st)

Definition 2.3. Given a policy π and a starting state s0, let Sπ
s0 be the random variable giving the

sequence of states resulting from executing π at every state starting at s0. (Since the environment is
stochastic, we don’t know the exact sequence.)
Then the expected utility obtained by executing π starting in s0 is given by

Uπ(s0):=EU(Sπ
s0).

We define the optimal policy π∗
s0 :=argmax

π
Uπ(s0).

Note: This is perfectly well-defined, but almost always computationally infeasible. (requires considering
all possible (potentially infinite) sequences of states)

: 869 2025-05-14

Utility of States

Remember: Given a sequence of states S = s0, s1, s2, . . ., and a discount factor 0 ≤ γ < 1, the utility
of the sequence is

U(S) =
∞∑

t=0

γtR(st)

Definition 2.4. Given a policy π and a starting state s0, let Sπ
s0 be the random variable giving the

sequence of states resulting from executing π at every state starting at s0. (Since the environment is
stochastic, we don’t know the exact sequence.)
Then the expected utility obtained by executing π starting in s0 is given by

Uπ(s0):=EU(Sπ
s0).

We define the optimal policy π∗
s0 :=argmax

π
Uπ(s0).

Note: This is perfectly well-defined, but almost always computationally infeasible. (requires considering
all possible (potentially infinite) sequences of states)

: 869 2025-05-14

Utility of States (continued)

Observation 2.5. π∗
s0 is independent of the state s0.

Proof sketch: If π∗
a and π∗

b reach point c, then there is no reason to disagree from that point on – or
with π∗

c , and we expect optimal policies to “meet at some state” sooner or later.
?? does not hold for finite horizon policies!

Definition 2.6. We call π∗ := π∗
s for some s the optimal policy.

Definition 2.7. The utility U(s) of a state s is Uπ∗
(s).

Remark: R(s) =̂ “immediate reward”, whereas U =̂ “long-term reward”.

Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of
the immediate successor states

π∗(s) = argmax
a∈A(s)

(
∑

s′

P(s ′ | s,a) · U(s ′))

⇒ given the “true” utilities, we can compute the optimal policy and vice versa.

: 870 2025-05-14

Utility of States (continued)

Observation 2.8. π∗
s0 is independent of the state s0.

Proof sketch: If π∗
a and π∗

b reach point c, then there is no reason to disagree from that point on – or
with π∗

c , and we expect optimal policies to “meet at some state” sooner or later.
?? does not hold for finite horizon policies!

Definition 2.9. We call π∗ := π∗
s for some s the optimal policy.

Definition 2.10. The utility U(s) of a state s is Uπ∗
(s).

Remark: R(s) =̂ “immediate reward”, whereas U =̂ “long-term reward”.

Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of
the immediate successor states

π∗(s) = argmax
a∈A(s)

(
∑

s′

P(s ′ | s,a) · U(s ′))

⇒ given the “true” utilities, we can compute the optimal policy and vice versa.

: 870 2025-05-14

Utility of States (continued)

Observation 2.11. π∗
s0 is independent of the state s0.

Proof sketch: If π∗
a and π∗

b reach point c, then there is no reason to disagree from that point on – or
with π∗

c , and we expect optimal policies to “meet at some state” sooner or later.
?? does not hold for finite horizon policies!

Definition 2.12. We call π∗ := π∗
s for some s the optimal policy.

Definition 2.13. The utility U(s) of a state s is Uπ∗
(s).

Remark: R(s) =̂ “immediate reward”, whereas U =̂ “long-term reward”.

Given the utilities of the states, choosing the best action is just MEU: maximize the expected utility of
the immediate successor states

π∗(s) = argmax
a∈A(s)

(
∑

s′

P(s ′ | s,a) · U(s ′))

⇒ given the “true” utilities, we can compute the optimal policy and vice versa.

: 870 2025-05-14

Utility of States (continued)

▶ Example 2.14 (Running Example Continued).
Expected Utility Optimal Policy

▶ Question: Why do we go left in (3, 1) and not up? (follow the utility)

: 871 2025-05-14

26.3 Value/Policy Iteration

: 871 2025-05-14

Dynamic programming: the Bellman equation
▶ Problem: We have defined U(s) via the optimal policy: U(s) := Uπ∗

(s), but how to compute it
without knowing π∗?
▶ Observation: A simple relationship among utilities of neighboring states:

expected sum of rewards = current reward + γ · exp. reward sum after best action

▶ Theorem 3.1 (Bellman equation (1957)).

U(s) = R(s) + γ · max
a∈A(s)

∑

s′

U(s ′) · P(s ′ | s,a)

We call this equation the Bellman equation
▶ Example 3.2. U(1, 1) = −0.04

+ γ max{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), up
0.9U(1, 1) + 0.1U(1, 2) left
0.9U(1, 1) + 0.1U(2, 1) down
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} right

▶ Problem: One equation/state ; n nonlinear (max isn’t) equations in n unknowns.
; cannot use linear algebra techniques for solving them.

: 872 2025-05-14

Value Iteration Algorithm
▶ Idea: We use a simple iteration scheme to find a fixpoint:

1. start with arbitrary utility values,
2. update to make them locally consistent with the Bellman equation,
3. everywhere locally consistent ; global optimality.
▶ Definition 3.3. The value iteration algorithm for utilitysutility function is given by

function VALUE−ITERATION (mdp,ϵ) returns a utility fn.
inputs: mdp, an MDP with states S , actions A(s), transition model P(s′ | s,a),

rewards R(s), and discount γ
ϵ, the maximum error allowed in the utility of any state

local variables: U, U′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U := U′; δ := 0
for each state s in S do
U′[s] := R(s) + γ · max

a∈A(s)
(
∑

s′ U[s′] · P(s′ | s,a))
if |U′[s]− U[s]| > δ then δ := |U′[s]− U[s]|

until δ < ϵ(1− γ)/γ
return U

▶ Remark: Retrieve the optimal policy with π[s]:=argmax
a∈A(s)

(
∑

s′ U[s ′] · P(s ′ | s,a))

: 873 2025-05-14

Value Iteration Algorithm (Example)

▶ Example 3.4 (Iteration on 4x3).

Section 17.2. Value Iteration 653

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),

rewards R(s), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ ← 0
for each state s in S do

U ′[s] ←R(s) + γ max
a ∈ A(s)

∑

s′
P (s′ | s, a) U [s′]

if |U ′[s] − U [s]| > δ then δ ← |U ′[s] − U [s]|
until δ < ε(1 − γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina-
tion condition is from Equation (17.8).

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

1

10

100

1000

10000

100000

1e+06

1e+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

It
er

at
io

ns
 re

qu
ir

ed

Discount factor a

c = 0.0001
c = 0.001

c = 0.01
c = 0.1

(a) (b)

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations k required to guarantee an error of at most
ε = c · Rmax, for different values of c, as a function of the discount factor γ.

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained
using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is shown in
Figure 17.4.

We can apply value iteration to the 4× 3 world in Figure 17.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ-

Section 17.2. Value Iteration 653

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),

rewards R(s), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ ← 0
for each state s in S do

U ′[s] ←R(s) + γ max
a ∈ A(s)

∑

s′
P (s′ | s, a) U [s′]

if |U ′[s] − U [s]| > δ then δ ← |U ′[s] − U [s]|
until δ < ε(1 − γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina-
tion condition is from Equation (17.8).

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

1

10

100

1000

10000

100000

1e+06

1e+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

It
er

at
io

ns
 re

qu
ir

ed

Discount factor a

c = 0.0001
c = 0.001
c = 0.01
c = 0.1

(a) (b)

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations k required to guarantee an error of at most
ε = c · Rmax, for different values of c, as a function of the discount factor γ.

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained
using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is shown in
Figure 17.4.

We can apply value iteration to the 4× 3 world in Figure 17.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ-

(where ε = c · Rmax)

: 874 2025-05-14

Convergence

▶ Definition 3.5. The maximum norm is defined as ∥U∥ = max
s
|U(s)|, so ∥U − V ∥ = maximum

difference between U and V .
▶ Let U t and U t+1 be successive approximations to the true utility U during value iteration.
▶ Theorem 3.6. For any two approximations U t and V t

∥∥U t+1 − V t+1
∥∥ ≤ γ

∥∥U t − V t
∥∥

I.e., any distinct approximations get closer to each other over time
In particular, any approximation gets closer to the true U over time
⇒ value iteration converges to a unique, stable, optimal solution.
▶ Theorem 3.7. If

∥∥U t+1 − U t
∥∥ < ϵ, then

∥∥U t+1 − U
∥∥ < 2ϵγ/1− γ

(once the change in U t becomes small, we are almost done.)
▶ Remark: The policy resulting from U t may be optimal long before the utilities convergence!

: 875 2025-05-14

Policy Iteration

▶ Recap: Value iteration computes utilities ; optimal policy by MEU.
▶ This even works if the utility estimate is inaccurate. (⇝policy loss small)
▶ Idea: Search for optimal policy and utility values simultaneously [Howard:dpmp60]: Iterate
▶ policy evaluation: given policy πi , calculate Ui = Uπi , the utility of each state were πi to be executed.
▶ policy improvement: calculate a new MEU policy πi+1 using 1 lookahead

Terminate if policy improvement yields no change in computed utilities.
▶ Observation 3.8. Upon termination Ui is a fixpoint of Bellman update
; Solution to Bellman equation ; πi is an optimal policy.
▶ Observation 3.9. Policy improvement improves policy and policy space is finite ; termination.

: 876 2025-05-14

Policy Iteration Algorithm

▶ Definition 3.10. The policy iteration algorithm is given by the following pseudocode:
function POLICY−ITERATION(mdp) returns a policy

inputs: mdp, and MDP with states S, actions A(s), transition model P(s′ | s,a)
local variables: U a vector of utilities for states in S , initially zero

π a policy indexed by state, initially random,
repeat

U := POLICY−EVALUATION(π,U,mdp)
unchanged? := true
foreach state s in X do

if max
a∈A(s)

(
∑

s′ P(s′ | s,a) · U(s′)) >
∑

s′ P(s′ | s,π[s]) · U(s′) then do

π[s] := argmax
b∈A(s)

(
∑

s′ P(s′ | s,b) · U(s′))

unchanged? := false
until unchanged?
return π

: 877 2025-05-14

Policy Evaluation

▶ Problem: How to implement the POLICY−EVALUATION algorithm?
▶ Solution: To compute utilities given a fixed π: For all s we have

U(s) = R(s) + γ(
∑

s′

U(s ′) · P(s ′ | s,π(s)))

(i.e. Bellman equation with the maximum replaced by the current policy π)
▶ Example 3.11 (Simplified Bellman Equations for π).

U i (1, 1) = −0.04 + 0.8U i (1, 2) + 0.1U i (1, 1) + 0.1U i (2, 1)

U i (1, 2) = −0.04 + 0.8U i (1, 3) + 0.1U i (1, 2)

...

▶ Observation 3.12. n simultaneous linear equations in n unknowns, solve in O(n3) with standard
linear algebra methods.

: 878 2025-05-14

Modified Policy Iteration

▶ Value iteration requires many iterations, but each one is cheap.
▶ Policy iteration often converges in few iterations, but each is expensive.
▶ Idea: Use a few steps of value iteration (but with π fixed), starting from the value function produced

the last time to produce an approximate value determination step.
▶ Often converges much faster than pure VI or PI.
▶ Leads to much more general algorithms where Bellman value updates and Howard policy updates can

be performed locally in any order.
▶ Remark: Reinforcement learning algorithms operate by performing such updates based on the

observed transitions made in an initially unknown environment.

: 879 2025-05-14

26.4 Partially Observable MDPs

: 879 2025-05-14

Partial Observability

▶ Definition 4.1. A partially observable MDP (a POMDP for short) is a MDP together with an
observation model O that has the sensor Markov property and is stationary: O(s, e) = P(e | s).
▶ Example 4.2 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

▶ Problem: Agent does not know which state it is in ; makes no sense to talk about policy π(s)!
▶ Theorem 4.3 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where b is the

belief state (probability distribution over states).
▶ Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the probability that

the new belief state is b′ given that the current belief state is b and the agent does a. I.e., essentially
a filtering update step.

: 880 2025-05-14

Partial Observability

▶ Definition 4.4. A partially observable MDP (a POMDP for short) is a MDP together with an
observation model O that has the sensor Markov property and is stationary: O(s, e) = P(e | s).
▶ Example 4.5 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

▶ Problem: Agent does not know which state it is in ; makes no sense to talk about policy π(s)!

▶ Theorem 4.6 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where b is the
belief state (probability distribution over states).
▶ Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the probability that

the new belief state is b′ given that the current belief state is b and the agent does a. I.e., essentially
a filtering update step.

: 880 2025-05-14

Partial Observability

▶ Definition 4.7. A partially observable MDP (a POMDP for short) is a MDP together with an
observation model O that has the sensor Markov property and is stationary: O(s, e) = P(e | s).
▶ Example 4.8 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

▶ Problem: Agent does not know which state it is in ; makes no sense to talk about policy π(s)!
▶ Theorem 4.9 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where b is the

belief state (probability distribution over states).
▶ Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the probability that

the new belief state is b′ given that the current belief state is b and the agent does a. I.e., essentially
a filtering update step.

: 880 2025-05-14

POMDP: Filtering at the Belief State Level

▶ Recap: Filtering updates the belief state for new evidence.
▶ For POMDPs, we also need to consider actions. (but the effect is the same)
▶ If b is the previous belief state and agent does action A = a and then perceives E = e, then the new

belief state is
b′ = α(P(E = e|s ′) · (

∑

s

P(s ′|S = s,A = a) · b(s)))

We write b′ = FORWARD(b, a, e) in analogy to recursive state estimation.
▶ Fundamental Insight for POMDPs: The optimal action only depends on the agent’s current belief

state. (good, it does not know the state!)
▶ Consequence: The optimal policy can be written as a function π∗(b) from belief states to actions.
▶ Definition 4.10. The POMDP decision cycle is to iterate over

1. Given the current belief state b, execute the action a = π∗(b)
2. Receive percept e.
3. Set the current belief state to FORWARD(b, a, e) and repeat.
▶ Intuition: POMDP decision cycle is search in belief state space.

: 881 2025-05-14

Partial Observability contd.

▶ Recap: The POMDP decision cycle is search in belief state space.
▶ Observation 4.11. Actions change the belief state, not just the (physical) state.
▶ Thus POMDP solutions automatically include information gathering behavior.
▶ Problem: The belief state is continuous: If there are n states, b is an n-dimensional real-valued

vector.
▶ Example 4.12. The belief state of the 4x3 world is a 11 dimensional continuous space. (11 states)
▶ Theorem 4.13. Solving POMDPs is very hard! (actually, PSPACE hard)
▶ In particular, none of the algorithms we have learned applies. (discreteness assumption)
▶ The real world is a POMDP (with initially unknown transition model T and sensor model O)

: 882 2025-05-14

Reducing POMDPs to Belief-State MDPs I

▶ Idea: Calculating the probability that an agent in belief state b reaches belief state b′ after
executing action a.
▶ if we knew the action and the subsequent percept e, then b′ = FORWARD(b, a, e). (deterministic update

to the belief state)
▶ but we don’t, since b′ depends on e. (let’s calculate P(e | a,b))
▶ Idea: To compute P(e | a,b) — the probability that e is perceived after executing a in belief state b

— sum up over all actual states the agent might reach:

P(e | a,b) =
∑

s′

P(e | a,s ′,b) · P(s ′ | a,b)

=
∑

s′

P(e | s ′) · P(s ′ | a,b)

=
∑

s′

P(e | s ′) · (
∑

s

P(s ′ | s,a), b(s))

: 883 2025-05-14

Reducing POMDPs to Belief-State MDPs II
Write the probability of reaching b′ from b, given action a, as P(b′ | b,a), then

P(b′ | b,a) = P(b′ | a,b) =
∑

e

P(b′ | e,a,b) · P(e | a,b)

=
∑

e

P(b′ | e,a,b) · (
∑

s′

P(e | s ′) · (
∑

s

P(s ′ | s,a), b(s)))

where P(b′ | e,a,b) is 1 if b′ = FORWARD(b, a, e) and 0 otherwise.
▶ Observation: This equation defines a transition model for belief state space!
▶ Idea: We can also define a reward function for belief states:

ρ(b):=
∑

s

b(s) · R(s)

i.e., the expected reward for the actual states the agent might be in.

: 884 2025-05-14

Reducing POMDPs to Belief-State MDPs III

▶ Together, P(b′ | b,a) and ρ(b) define an (observable) MDP on the space of belief states.
▶ Theorem 4.14. An optimal policy π∗(b) for this MDP, is also an optimal policy for the original

POMDP.
▶ Upshot: Solving a POMDP on a physical state space can be reduced to solving an MDP on the

corresponding belief state space.
▶ Remember: The belief state is always observable to the agent, by definition.

: 885 2025-05-14

Ideas towards Value-Iteration on POMDPs

▶ Recap: The value iteration algorithm from ??? computes one utility value per state.
▶ Problem: We have infinitely many belief states ; be more creative!
▶ Observation: Consider an optimal policy π∗

▶ applied in a specific belief state b: π∗ generates an action,
▶ for each subsequent percept, the belief state is updated and a new action is generated . . .

For this specific b: π∗ =̂ a conditional plan!
▶ Idea: Think about conditional plans and how the expected utility of executing a fixed conditional

plan varies with the initial belief state. (instead of optimal policies)

Definition 4.15. Given a set of percepts E and a set of actions A, a conditional plan is either an action
a ∈ A, or a tuple ⟨a,E ′, p1, p2⟩ such that a ∈ A,E ′ ⊆ E , and p1, p2 are conditional plans.
It represents the strategy “First execute a, If we subsequently perceive e ∈ E ′, continue with p1,
otherwise continue with p2.”
The depth of a conditional plan p is the maximum number of actions in any path from p before reaching
a single action plan.

: 886 2025-05-14

Expected Utilities of Conditional Plans on Belief States
▶ Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.
▶ the expected utility of p in belief state b is

∑
s b(s) · αp(s) =̂ b·αp as vectors.

▶ the expected utility of a fixed conditional plan varies linearly with b
▶ ; the “best conditional plan to execute” corresponds to a hyperplane in belief state space.

▶ Observation 2: We can replace the original actions by conditional plans on those actions!
Let π∗ be the subsequent optimal policy. At any given belief state b,
▶ π∗ will choose to execute the conditional plan with highest expected utility
▶ the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

▶ If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b;

▶ if we bound the depth of the conditional plans, then there are only finitely many such plans
▶ the continuous space of belief states will generally be divided into regions, each corresponding to a

particular conditional plan that is optimal in that region.
▶ Observation 3 (conbined): The utility function U(b) on belief states, being the maximum of a

collection of hyperplanes, is piecewise linear and convex.

: 887 2025-05-14

Expected Utilities of Conditional Plans on Belief States
▶ Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.
▶ the expected utility of p in belief state b is

∑
s b(s) · αp(s) =̂ b·αp as vectors.

▶ the expected utility of a fixed conditional plan varies linearly with b
▶ ; the “best conditional plan to execute” corresponds to a hyperplane in belief state space.
▶ Observation 2: We can replace the original actions by conditional plans on those actions!

Let π∗ be the subsequent optimal policy. At any given belief state b,
▶ π∗ will choose to execute the conditional plan with highest expected utility
▶ the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

▶ If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b;

▶ if we bound the depth of the conditional plans, then there are only finitely many such plans
▶ the continuous space of belief states will generally be divided into regions, each corresponding to a

particular conditional plan that is optimal in that region.

▶ Observation 3 (conbined): The utility function U(b) on belief states, being the maximum of a
collection of hyperplanes, is piecewise linear and convex.

: 887 2025-05-14

Expected Utilities of Conditional Plans on Belief States
▶ Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.
▶ the expected utility of p in belief state b is

∑
s b(s) · αp(s) =̂ b·αp as vectors.

▶ the expected utility of a fixed conditional plan varies linearly with b
▶ ; the “best conditional plan to execute” corresponds to a hyperplane in belief state space.
▶ Observation 2: We can replace the original actions by conditional plans on those actions!

Let π∗ be the subsequent optimal policy. At any given belief state b,
▶ π∗ will choose to execute the conditional plan with highest expected utility
▶ the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

▶ If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b;

▶ if we bound the depth of the conditional plans, then there are only finitely many such plans
▶ the continuous space of belief states will generally be divided into regions, each corresponding to a

particular conditional plan that is optimal in that region.
▶ Observation 3 (conbined): The utility function U(b) on belief states, being the maximum of a

collection of hyperplanes, is piecewise linear and convex.

: 887 2025-05-14

A simple Illustrating Example I
▶ Example 4.16. A world with states S0 and S1, where R(S0) = 0 and R(S1) = 1 and two actions:
▶ “Stay” stays put with probability 0.9
▶ “Go” switches to the other state with probability 0.9.
▶ The sensor reports the correct state with probability 0.6.

Obviously, the agent should “Stay” when it thinks it’s in state S1 and “Go” when it thinks it’s in state
S0.
▶ The belief state has dimension 1. (the two probabilities sum up to 1)
▶ Consider the one-step plans [Stay] and [Go] and their direct utilities:

α([Stay])(S0) = 0.9R(S0) + 0.1R(S1) = 0.1
α([stay])(S1) = 0.9R(S1) + 0.1R(S0) = 0.9
α([go])(S0) = 0.9R(S1) + 0.1R(S0) = 0.9
α([go])(S1) = 0.9R(S0) + 0.1R(S1) = 0.1

: 888 2025-05-14

A simple Illustrating Example II
▶ Let us visualize the hyperplanes b·α([Stay]) and b·α([Go]).

662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
U

til
ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

▶ The maximum represents the utility function for the finite-horizon problem that allows just one action
▶ in each “piece” the optimal action is the first action of the corresponding plan.
▶ Here the optimal one-step policy is to “Stay” when b(1) > 0.5 and “Go” otherwise.

: 889 2025-05-14

A simple Illustrating Example III

▶ compute the utilities for conditional plans of depth 2 by considering
▶ each possible first action,
▶ each possible subsequent percept, and then
▶ each way of choosing a depth-1 plan to execute for each percept:

There are eight of depth 2:

[Stay , if P = 0 then Stay else Stay fi], [Stay , if P = 0 then Stay else Go fi], . . .

: 890 2025-05-14

A simple Illustrating Example IV
662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity
Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

Four of them (dashed lines) are suboptimal for the whole belief space
We call them dominated (they can be ignored)

: 891 2025-05-14

A simple Illustrating Example V

▶ There are four undominated plans, each optimal in their region

662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

: 892 2025-05-14

A simple Illustrating Example VI

662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

▶ Idea: Repeat for depth 3 and so on.
▶ Theorem 4.17 (POMDP Plan Utility). Let p be a depth-d conditional plan whose initial action is
a and whose depth-d − 1-subplan for percept e is p.e, then

αp(s) = R(s) + γ(
∑

s′

P(s ′ | s,a)(
∑

e

P(e | s ′) · αp.e(s
′)))

▶ This recursion naturally gives us a value iteration algorithm,

: 893 2025-05-14

A Value Iteration Algorithm for POMDPs

Definition 4.18. The POMDP value iteration algorithm for POMDPs is given by recursively updating

αp(s) = R(s) + γ(
∑

s′

P(s ′ | s,a)(
∑

e

P(e | s ′) · αp.e(s
′)))

Observations: The complexity depends primarily on the generated plans:

▶ Given |A| actions and |E | possible observations, there are are |A||E |d−1
distinct depth-d plans.

▶ Even for the example with d = 8, we have 2255 (144 undominated)
▶ The elimination of dominated plans is essential for reducing this doubly exponential growth (but they

are already constructed)
Hopelessly inefficient in practice – even the 3x4 POMDP is too hard!

: 894 2025-05-14

26.5 Online Agents with POMDPs

: 894 2025-05-14

DDN: Decision Networks for POMDPs

▶ Idea: Let’s try to use the computationally efficient representations (dynamic Bayesian networks and
decision networks) for POMDPs.
▶ Definition 5.1. A dynamic decision network (DDN) is a graph-based representation of a POMDP,

where
▶ Transition and sensor model are represented as a DBN.
▶ Action nodes and utility nodes are added as in decision networks.
▶ In a DDN, a filtering algorithm is used to incorporate each new percept and action and to update the

belief state representation.
▶ Decisions are made in DDN by projecting forward possible action sequences and choosing the best

one.
▶ DDNs – like the DBNs they are based on – are factored representations
; typically exponential complexity advantages!

: 895 2025-05-14

Structure of DDNs for POMDPs
▶ DDN for POMDPs: The generic structure of a dymamic decision network at time t is

664 Chapter 17. Making Complex Decisions

Xt–1

At–1

Rt–1

At

Rt

At+2

Rt+2

At+1

Rt+1

At–2

Et–1

Xt+1

Et+1

Xt+2

Et+2

Xt+3

Et+3

Ut+3Xt

Et

Figure 17.10 The generic structure of a dynamic decision network. Variables with known
values are shaded. The current time is t and the agent must decide what to do—that is, choose
a value for At. The network has been unrolled into the future for three steps and represents
future rewards, as well as the utility of the state at the look-ahead horizon.

17.4.3 Online agents for POMDPs

In this section, we outline a simple approach to agent design for partially observable, stochas-
tic environments. The basic elements of the design are already familiar:

• The transition and sensor models are represented by a dynamic Bayesian network
(DBN), as described in Chapter 15.

• The dynamic Bayesian network is extended with decision and utility nodes, as used in
decision networks in Chapter 16. The resulting model is called a dynamic decision
network, or DDN.DYNAMIC DECISION

NETWORK

• A filtering algorithm is used to incorporate each new percept and action and to update
the belief state representation.

• Decisions are made by projecting forward possible action sequences and choosing the
best one.

DBNs are factored representations in the terminology of Chapter 2; they typically have
an exponential complexity advantage over atomic representations and can model quite sub-
stantial real-world problems. The agent design is therefore a practical implementation of the
utility-based agent sketched in Chapter 2.

In the DBN, the single state St becomes a set of state variables Xt, and there may be
multiple evidence variables Et. We will use At to refer to the action at time t, so the transition
model becomes P(Xt+1|Xt, At) and the sensor model becomes P(Et|Xt). We will use Rt to
refer to the reward received at time t and Ut to refer to the utility of the state at time t. (Both
of these are random variables.) With this notation, a dynamic decision network looks like the
one shown in Figure 17.10.

Dynamic decision networks can be used as inputs for any POMDP algorithm, including
those for value and policy iteration methods. In this section, we focus on look-ahead methods
that project action sequences forward from the current belief state in much the same way as do
the game-playing algorithms of Chapter 5. The network in Figure 17.10 has been projected
three steps into the future; the current and future decisions A and the future observations

▶ POMDP state St becomes a set of random variables Xt

▶ there may be multiple evidence variables Et

▶ Action at time t denoted by At . agent must choose a value for At .
▶ Transition model: P(Xt+1|Xt ,At); sensor model: P(Et |Xt).
▶ Reward functions Rt and utility Ut of state St .
▶ Variables with known values are gray, rewards for t = 0, . . . , t + 2, but utility for t + 3(=̂ discounted sum of

rest)
▶ Problem: How do we compute with that?
▶ Answer: All POMDP algorithms can be adapted to DDNs! (only need CPTs)

: 896 2025-05-14

Lookahead: Searching over the Possible Action Sequences
▶ Idea: Search over the tree of possible action sequences (like in game-play)
▶ Part of the lookahead solution of the DDN above (three steps lookahead)

Section 17.4. Partially Observable MDPs 665

. . .
...

.........

. . .

.........

.........

. . .

...

. . .

......

. . .

...

. . .

At in P(Xt | E1:t)

At+1 in P(Xt+1 | E1:t+1)

At+2 in P(Xt+2 | E1:t+2)

U(Xt+3)

Et+1

Et+2

Et+3

10 4 6 3

Figure 17.11 Part of the look-ahead solution of the DDN in Figure 17.10. Each decision
will be taken in the belief state indicated.

E and rewards R are all unknown. Notice that the network includes nodes for the rewards
for Xt+1 and Xt+2, but the utility for Xt+3. This is because the agent must maximize the
(discounted) sum of all future rewards, and U(Xt+3) represents the reward for Xt+3 and all
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate
form: if exact utility values were available, look-ahead beyond depth 1 would be unnecessary.

Figure 17.11 shows part of the search tree corresponding to the three-step look-ahead
DDN in Figure 17.10. Each of the triangular nodes is a belief state in which the agent makes
a decision At+i for i= 0, 1, 2, The round (chance) nodes correspond to choices by the
environment, namely, what evidence Et+i arrives. Notice that there are no chance nodes
corresponding to the action outcomes; this is because the belief-state update for an action is
deterministic regardless of the actual outcome.

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm
takes into account the fact that, for decision At+i, the agent will have available percepts
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this
way, a decision-theoretic agent automatically takes into account the value of information and
will execute information-gathering actions where appropriate.

A decision can be extracted from the search tree by backing up the utility values from
the leaves, taking an average at the chance nodes and taking the maximum at the decision
nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes,
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre-
spond to belief states rather than actual states. The time complexity of an exhaustive search
to depth d is O(|A|d · |E|d), where |A| is the number of available actions and |E| is the num-
ber of possible percepts. (Notice that this is far less than the number of depth-d conditional

▶ circle =̂ chance nodes (the environment decides)
▶ triangle =̂ belief state (each action decision is taken there): 897 2025-05-14

Designing Online Agents for POMDPs
Section 17.4. Partially Observable MDPs 665

. . .
...

.........

. . .

.........

.........

. . .

...

. . .

......

. . .

...

. . .

At in P(Xt | E1:t)

At+1 in P(Xt+1 | E1:t+1)

At+2 in P(Xt+2 | E1:t+2)

U(Xt+3)

Et+1

Et+2

Et+3

10 4 6 3

Figure 17.11 Part of the look-ahead solution of the DDN in Figure 17.10. Each decision
will be taken in the belief state indicated.

E and rewards R are all unknown. Notice that the network includes nodes for the rewards
for Xt+1 and Xt+2, but the utility for Xt+3. This is because the agent must maximize the
(discounted) sum of all future rewards, and U(Xt+3) represents the reward for Xt+3 and all
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate
form: if exact utility values were available, look-ahead beyond depth 1 would be unnecessary.

Figure 17.11 shows part of the search tree corresponding to the three-step look-ahead
DDN in Figure 17.10. Each of the triangular nodes is a belief state in which the agent makes
a decision At+i for i= 0, 1, 2, The round (chance) nodes correspond to choices by the
environment, namely, what evidence Et+i arrives. Notice that there are no chance nodes
corresponding to the action outcomes; this is because the belief-state update for an action is
deterministic regardless of the actual outcome.

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm
takes into account the fact that, for decision At+i, the agent will have available percepts
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this
way, a decision-theoretic agent automatically takes into account the value of information and
will execute information-gathering actions where appropriate.

A decision can be extracted from the search tree by backing up the utility values from
the leaves, taking an average at the chance nodes and taking the maximum at the decision
nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes,
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre-
spond to belief states rather than actual states. The time complexity of an exhaustive search
to depth d is O(|A|d · |E|d), where |A| is the number of available actions and |E| is the num-
ber of possible percepts. (Notice that this is far less than the number of depth-d conditional

▶ Belief state at triangle computed by filtering with actions/percepts leading to it
▶ for decision At+i will use percepts Et+1:t+i (even if values at time t unknown)
▶ thus a POMDP agent automatically takes into account the value of information and executes information

gathering actions where appropriate.
▶ Observation: Time complexity for exhaustive search up to depth d is O(|A|d · |E|d) (|A| =̂ number

of actions, |E| =̂ number of percepts)

▶ Upshot: Much better than POMDP value iteration with O(|A||E |d−1
).

▶ Empirically: For problems in which the discount factor γ is not too close to 1, a shallow search is
often good enough to give near-optimal decisions.

: 898 2025-05-14

Summary

▶ Decision theoretic agents for sequential environments
▶ Building on temporal, probabilistic models/inference (dynamic Bayesian networks)
▶ MDPs for fully observable case.
▶ Value/Policy Iteration for MDPs ; optimal policies.
▶ POMDPs for partially observable case.
▶ POMDPs=̂ MDP on belief state space.
▶ The world is a POMDP with (initially) unknown transition and sensor models.

: 899 2025-05-14

Part 2
Machine Learning

: 899 2025-05-14

Chapter 27
Learning from Observations

: 899 2025-05-14

Outline

▶ Learning agents
▶ Inductive learning
▶ Decision tree learning
▶ Measuring learning performance
▶ Computational Learning Theory
▶ Linear regression and classification
▶ Neural Networks
▶ Support Vector Machines

: 900 2025-05-14

27.1 Forms of Learning

: 900 2025-05-14

Learning (why is this a good idea)

▶ Learning is essential for unknown environments:
▶ i.e., when designer lacks omniscience.
▶ The world is a POMDP with (initially) unknown transition and sensor models.
▶ Learning is useful as a system construction method.
▶ i.e., expose the agent to reality rather than trying to write it down
▶ Learning modifies the agent’s decision mechanisms to improve performance.

: 901 2025-05-14

Recap: Learning Agents

: 902 2025-05-14

Recap: Learning Agents (continued)

▶ Definition 1.1. Performance element is what we called “agent” up to now.
▶ Definition 1.2. Critic/learning element/problem generator do the “improving”.
▶ Definition 1.3. Performance standard is fixed; (outside the environment)
▶ We can’t adjust performance standard to flatter own behaviour!
▶ No standard in the environment: e.g. ordinary chess and suicide chess look identical.
▶ Essentially, certain kinds of percepts are “hardwired” as good/bad (e.g.,pain, hunger)
▶ Definition 1.4. Learning element may use knowledge already acquired in the performance element.
▶ Definition 1.5. Learning may require experimentation actions an agent might not normally consider

such as dropping rocks from the Tower of Pisa.

: 903 2025-05-14

Ways of Learning

▶ Supervised learning: There’s an unknown function f : A→ B called the target function. We do know
a set of pairs T := {⟨ai , f (ai)⟩} of examples. The goal is to find a hypothesis h ∈ H ⊆ A→ B based
on T , that is “approximately” equal to f . (Most of the techniques we will consider)
▶ Unsupervised learning: Given a set of data A, find a pattern in the data; i.e. a function f : A→ B for

some predetermined B. (Primarily clustering/dimensionality reduction)
▶ Reinforcement learning: The agent receives a reward for each action performed. T he goal is to

iteratively adapt the action function to maximize the total reward. (Useful in e.g. game play)

: 904 2025-05-14

27.2 Supervised Learning

: 904 2025-05-14

Supervised learning a.k.a. inductive learning (a.k.a. Science)

Definition 2.1. A supervised (or inductive) learning problem consists of the following data:
▶ A set of hypotheses H consisting of functions A→ B,
▶ a set of examples T ⊆ A× B called the training set, such that for every a ∈ A, there is at most one
b ∈ B with ⟨a, b⟩ ∈ T , (⇒ T is a function on some subset of A)

We assume there is an unknown function f : A→ B called the target function with T ⊆ f .
Definition 2.2. Inductive learning algorithms solve inductive learning problems by finding a hypothesis
h ∈ H such that h ∼ f (for some notion of similarity).

Definition 2.3. We call a supervised learning problem with target function A→ B a classification
problem if B is finite, and call the members of B classes.
We call it a regression problem if B = R.

: 905 2025-05-14

Inductive Learning Method

▶ Idea: Construct/adjust hypothesis h ∈ H to agree with a training set T .
▶ Definition 2.4. We call h consistent with f (on a set T ⊆ dom(f)), if it agrees with f (on all

examples in T).
▶ Example 2.5 (Curve Fitting).

Training Set

▶ Ockham’s-razor: maximize a combination of consistency and simplicity.

: 906 2025-05-14

Inductive Learning Method

▶ Idea: Construct/adjust hypothesis h ∈ H to agree with a training set T .
▶ Definition 2.6. We call h consistent with f (on a set T ⊆ dom(f)), if it agrees with f (on all

examples in T).
▶ Example 2.7 (Curve Fitting).

Linear Hypothesis

partially, approximatively
consistent

▶ Ockham’s-razor: maximize a combination of consistency and simplicity.

: 906 2025-05-14

Inductive Learning Method

▶ Idea: Construct/adjust hypothesis h ∈ H to agree with a training set T .
▶ Definition 2.8. We call h consistent with f (on a set T ⊆ dom(f)), if it agrees with f (on all

examples in T).
▶ Example 2.9 (Curve Fitting).

Quadratic Hypothesis

partially consistent

▶ Ockham’s-razor: maximize a combination of consistency and simplicity.

: 906 2025-05-14

Inductive Learning Method

▶ Idea: Construct/adjust hypothesis h ∈ H to agree with a training set T .
▶ Definition 2.10. We call h consistent with f (on a set T ⊆ dom(f)), if it agrees with f (on all

examples in T).
▶ Example 2.11 (Curve Fitting).

Degree-4 Hypothesis

consistent

▶ Ockham’s-razor: maximize a combination of consistency and simplicity.

: 906 2025-05-14

Inductive Learning Method

▶ Idea: Construct/adjust hypothesis h ∈ H to agree with a training set T .
▶ Definition 2.12. We call h consistent with f (on a set T ⊆ dom(f)), if it agrees with f (on all

examples in T).
▶ Example 2.13 (Curve Fitting).

High-degree Hypothesis

consistent

▶ Ockham’s-razor: maximize a combination of consistency and simplicity.

: 906 2025-05-14

Choosing the Hypothesis Space

▶ Observation: Whether we can find a consistent hypothesis for a given training set depends on the
chosen hypothesis space.
▶ Definition 2.14. We say that an supervised learning problem is realizable, iff there is a hypothesis
h ∈ H consistent with the training set T .
▶ Problem: We do not always know whether a given learning problem is realizable, unless we have

prior knowledge. (depending on the hypothesis space)
▶ Solution: Make H large, e.g. the class of all Turing machines.
▶ Tradeoff: The computational complexity of the supervised learning problem is tied to the size of the

hypothesis space. E.g. consistency is not even decidable for general Turing machines.
▶ Much of the research in machine learning has concentrated on simple hypothesis spaces.
▶ Preview: We will concentrate on propositional logic and related languages first.

: 907 2025-05-14

Independent and Identically Distributed

▶ Problem: We want to learn a hypothesis that fits the future data best.
▶ Intuition: This only works, if the training set is “representative” for the underlying process.
▶ Idea: We think of examples (seen and unseen) as a sequence, and express the “representativeness” as

a stationarity assumption for the probability distribution.
▶ Method: Each example before we see it is a random variable Ej , the observed value ej = (xj ,yj)

samples its distribution.
▶ Definition 2.15. A sequence of E 1, . . .,E n of random variables is independent and identically

distributed (short IID), iff they are
▶ independent, i.e. P(E j |E (j−1),E (j−2), . . .) = P(E j) and
▶ identically distributed, i.e. P(E i) = P(E j) for all i and j .
▶ Example 2.16. A sequence of die tosses is IID. (fair or loaded does not matter)
▶ Stationarity Assumption: We assume that the set E of examples is IID in the future.

: 908 2025-05-14

27.3 Learning Decision Trees

: 908 2025-05-14

Attribute-based Representations
▶ Definition 3.1. In attribute-based representations, examples are described by
▶ attributes: (simple) functions on input samples, (think pre classifiers on examples)
▶ their values, and (classify by attributes)
▶ classifications. (Boolean, discrete, continuous, etc.)
▶ Example 3.2 (In a Restaurant). Situations where I will/won’t wait for a table:

Example
Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X 1 T F F T Some $$$ F T French 0–10 T
X 2 T F F T Full $ F F Thai 30–60 F
X 3 F T F F Some $ F F Burger 0–10 T
X 4 T F T T Full $ F F Thai 10–30 T
X 5 T F T F Full $$$ F T French >60 F
X 6 F T F T Some $$ T T Italian 0–10 T
X 7 F T F F None $ T F Burger 0–10 F
X 8 F F F T Some $$ T T Thai 0–10 T
X 9 F T T F Full $ T F Burger >60 F
X 10 T T T T Full $$$ F T Italian 10–30 F
X 11 F F F F None $ F F Thai 0–10 F
X 12 T T T T Full $ F F Burger 30–60 T

▶ Definition 3.3. For a boolean classification we say that an example is positive (T) or negative (F)
depending on its class.

: 909 2025-05-14

Decision Trees
▶ Decision trees are one possible representation for hypotheses.
▶ Example 3.4 (Restaurant continued). Here is the “true” tree for deciding whether to wait:

: 910 2025-05-14

Decision Trees (Definition)

▶ Definition 3.5. A decision tree for a given attribute-based representation is a tree, where the
non-leaf nodes are labeled by attributes, their outgoing edges by disjoint sets of attribute values, and
the leaf nodes are labeled by the classifications.
▶ Definition 3.6. We call an attribute together with a set of attribute values (an inner node) with

outgoing edge label an attribute test.
▶ the target function is a function A1 × . . .× An→ C , where Ai are the domains of the attributes and
C is the set of classifications.

: 911 2025-05-14

Expressiveness

▶ Decision trees can express any function of the input attributes ⇒ H = A1 × . . .× An

▶ Example 3.7. For Boolean functions, a path from the root to a leaf corresponds to a row in a truth
table:

⇒ a decision tree corresponds to a truth table (Formula in DNF)
▶ Trivially, for any training set there is a consistent hypothesis with one path to a leaf for each example,

but it probably won’t generalize to new examples.
▶ Solution: Prefer to find more compact decision trees.

: 912 2025-05-14

Decision Tree learning

▶ Aim: Find a small decision tree consistent with the training examples.
▶ Idea: (recursively) choose “most significant” attribute as root of (sub)tree.
▶ Definition 3.8. The following algorithm performs decision tree learning (DTL)

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else

best := Choose−Attribute(attributes, examples)
tree := a new decision tree with root test best
m := MODE(examples)
for each value vi of best do

examplesi := {elements of examples with best = vi}
subtree := DTL(examplesi , attributes \ best, m)
add a branch to tree with label vi and subtree subtree

return tree

MODE(examples)= most frequent value in example.

: 913 2025-05-14

Choosing an Attribute

▶ Idea: A good attribute splits the examples into subsets that are (ideally) “all positive” or “all
negative”.
▶ Example 3.9.

Attribute “Patrons?” is a better choice, it gives gives information about the classification.
▶ Can we make this more formal? ; Use information theory! (up next)

: 914 2025-05-14

27.4 Using Information Theory

: 914 2025-05-14

Information Entropy

Intuition: Information answers questions – the less I know initially, the more Information is contained in
an answer.
Definition 4.1. Let ⟨p1, . . ., pn⟩ the distribution of a random variable P. The information (also called
entropy) of P is

I (⟨p1, . . ., pn⟩):=
n∑

i=1

−pi · log2(pi)

Note: For pi = 0, we consider pi · log2(pi) = 0 (log2(0) is undefined)
The unit of information is a bit, where 1b := I (⟨ 12 , 1

2 ⟩)=1
Example 4.2 (Information of a Coin Toss).
▶ For a fair coin toss we have I (⟨ 12 , 1

2 ⟩) = − 1
2 log2(

1
2)− 1

2 log2(
1
2) = 1b.

▶ With a loaded coin (99% heads) we have I (⟨ 1
100 ,

99
100 ⟩) = 0.08b.

Rightarrow Information goes to 0 as head probability goes to 1.
“How likely is the outcome actually going to tell me something informative?”

: 915 2025-05-14

Information Gain in Decision Trees
Idea: Suppose we have p examples classified as positive and n examples as negative. We can then
estimate the probability distribution of the classification C with P(C) = ⟨ p

p+n ,
n

p+n ⟩, and need I (P(C))

bits to correctly classify a new example.
Example 4.3. For 12 restaurant examples and p = n = 6, we need I (P(WillWait)) = I (⟨ 6

12 ,
6
12 ⟩) = 1b

of information. (i.e. exactly the information which of the two classes)

Treating attributes also as random variables, we can compute how much information is needed after
knowing the value for one attribute:
Example 4.4. If we know Pat = Full, we only need I (P(WillWait|Pat = Full)) = I (⟨ 46 , 2

6 ⟩) ≊ 0.9 bits
of information.
Note: The expected number of bits needed after an attribute test on A is

∑

a

P(A = a) · I (P(C |A = a))

Definition 4.5. The information gain from an attribute test A is

Gain(A):=I (P(C))−
∑

a

P(A = a) · I (P(C |A = a))

: 916 2025-05-14

Information Gain (continued)
▶ Definition 4.6. Assume we know the results of some attribute tests b := B1 = b1 ∧ . . . ∧ Bn = bn.

Then the conditional information gain from an attribute test A is

Gain(A|b):=I (P(C |b))−
∑

a

P(A = a | b) · I (P(C |a, b))

▶ Example 4.7. If the classification C is Boolean and we have p positive and n negative examples, the
information gain is

Gain(A) = I (⟨ p

p + n
,

n

p + n
⟩)−

∑

a

pa + na
p + n

I (⟨ pa
pa + na

,
na

pa + na
⟩)

where pa and na are the positive and negative examples with A = a.
▶ Example 4.8.

Gain(Patrons?) = 1− (
2
12

I (⟨0, 1⟩) + 4
12

I (⟨1, 0⟩) + 6
12

I (⟨2
6
,
4
6
⟩))

≈ 0.541b

Gain(Type) = 1− (
2
12

I (⟨1
2
,
1
2
⟩) + 2

12
I (⟨1

2
,
1
2
⟩) + 4

12
I (⟨2

4
,
2
4
⟩) + 4

12
I (⟨2

4
,
2
4
⟩))

≈ 0b

▶ Idea: Choose the attribute that maximizes information gain.

: 917 2025-05-14

Restaurant Example contd.
▶ Example 4.9. Decision tree learned by DTL from the 12 examples using information gain

maximization for Choose−Attribute:

▶ Result: Substantially simpler than “true” tree – a more complex hypothesis isn’t justified by small
amount of data.

: 918 2025-05-14

27.5 Evaluating and Choosing the Best Hypothesis

: 918 2025-05-14

Performance measurement
▶ Question: How do we know that h≊f ? (Hume’s Problem of Induction)

1. Use theorems of computational/statistical learning theory.
2. Try h on a new test set of examples. (use same distribution over example space as training set)
▶ Definition 5.1. The learning curve =̂ percentage correct on test set as a function of training set size.
▶ Example 5.2. Restaurant data; graph averaged over 20 trials

: 919 2025-05-14

Performance measurement contd.

▶ Observation 5.3. The learning curve depends on
▶ realizable (can express target function) vs. non-realizable

non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresholded linear
function)

▶ redundant expressiveness (e.g., lots of irrelevant attributes)

: 920 2025-05-14

Generalization and Overfitting

▶ Observation: Sometimes a learned hypothesis is more specific than the experiments warrant.
▶ Definition 5.4. We speak of overfitting, if a hypothesis h describes random error in the (limited)

training set rather than the underlying relationship. Underfitting occurs when h cannot capture the
underlying trend of the data.
▶ Qualitatively: Overfitting increases with the size of hypothesis space and the number of attributes,

but decreases with number of examples.
▶ Idea: Combat overfitting by “generalizing” decision trees computed by DTL.

: 921 2025-05-14

Decision Tree Pruning

▶ Idea: Combat overfitting by “generalizing” decision trees ; prune “irrelevant” nodes.
▶ Definition 5.5. For decision tree pruning repeat the following on a learned decision tree:
▶ Find a terminal test node n (only result leaves as children)
▶ If test is irrelevant, i.e. has low information gain, prune it by replacing n by with a leaf node.
▶ Question: How big should the information gain be to split (; keep) a node?
▶ Idea: Use a statistical significance test.
▶ Definition 5.6. A result has statistical significance, if the probability they could arise from the null

hypothesis (i.e. the assumption that there is no underlying pattern) is very low (usually 5%).

: 922 2025-05-14

Determining Attribute Irrelevance
▶ For decision tree pruning, the null hypothesis is that the attribute is irrelevant.
▶ Compute the probability that the example distribution (p positive, n negative) for a terminal node

deviates from the expected distribution under the null hypothesis.
▶ For an attribute A with d values, compare the actual numbers pk and nk in each subset sk with the

expected numbers (expected if A is irrelevant)
p̂k = p · pk+nk

p+n and n̂k = n · pk+nk
p+n .

▶ A convenient measure of the total deviation is (sum of squared errors)

∆ =
d∑

k=1

(pk − p̂k)
2

p̂k
+

(nk − n̂k)
2

n̂k

▶ Lemma 5.7 (Neyman-Pearson). Under the null hypothesis, the value of ∆ is distributed according
to the χ2 distribution with d − 1 degrees of freedom. [NeyPea:pmtsh33]
▶ Definition 5.8. Decision tree pruning with Pearson’s χ2 with d − 1 degrees of freedom for ∆ is

called χ2 pruning. (χ2 values from stats library.)
▶ Example 5.9. The type attribute has four values, so three degrees of freedom, so ∆ = 7.82 would

reject the null hypothesis at the 5% level.

: 923 2025-05-14

Error Rates and Cross-Validation

▶ Recall: We want to learn a hypothesis that fits the future data best.
▶ Definition 5.10. Given an inductive learning problem with a set of examples T ⊆ AB, we define the

error rate of a hypothesis h ∈ H as the fraction of errors:

|{⟨x , y⟩ ∈ T | h(x) ̸= y}|
|T |

▶ Caveat: A low error rate on the training set does not mean that a hypothesis generalizes well.
▶ Idea: Do not use homework questions in the exam.
▶ Definition 5.11. The practice of splitting the data available for learning into

1. a training set from which the learning algorithm produces a hypothesis h and
2. a test set, which is used for evaluating h

is called holdout cross validation. (no peeking at test set allowed)

: 924 2025-05-14

Error Rates and Cross-Validation

▶ Question: What is a good ratio between training set and test set size?
▶ small training set ; poor hypothesis.
▶ small test set ; poor estimate of the accuracy.
▶ Definition 5.12. In k fold cross validation, we perform k rounds of learning, each with 1/k of the

data as test set and average over the k error rates.
▶ Intuition: Each example does double duty: for training and testing.
▶ k = 5 and k = 10 are popular ; good accuracy at k times computation time.
▶ Definition 5.13. If k = |dom(f)|, then k fold cross validation is called leave one out cross validation

(LOOCV).

: 925 2025-05-14

Model Selection

▶ Definition 5.14. The model selection problem is to determine – given data – a good hypothesis
space.
▶ Example 5.15. What is the best polynomial degree to fit the data

▶ Observation 5.16. We can solve the problem of “learning from observations f ” in a two-part process:

1. model selection determines a hypothesis space H,
2. optimization solves the induced inductive learning problem.
▶ Idea: Solve the two parts together by iteration over “size”. (they inform each other)
▶ Problem: Need a notion of “size” ⇝e.g. number of nodes in a decision tree.
▶ Concrete Problem: Find the “size” that best balances overfitting and underfitting to optimize test

set accuracy.

: 926 2025-05-14

Model Selection Algorithm (Wrapper)
▶ Definition 5.17. The model selection algorithm (MSA) jointly optimizes model selection and

optimization by partitioning and cross-validation:
function CROSS−VALIDATION−WRAPPER(Learner ,k,examples) returns a hypothesis

local variables: errT , an array, indexed by size, storing training−set error rates
errV , an array, indexed by size, storing validation−set error rates

for size = 1 to ∞ do
errT [size], errV [size] := CROSS−VALIDATION(Learner ,size,k,examples)
if errT has converged then do

best_size := the value of size with minimum errV [size]
return Learner(best_size,examples)

function CROSS−VALIDATION(Learner ,size,k,examples) returns two values:
average training set error rate, average validation set error rate

fold_errT := 0; fold_errV := 0
for fold = 1 to k do

training_set, validation_set := PARTITION(examples,fold ,k)
h := Learner(size,training_set)
fold_errT := fold_errT + ERROR−RATE(h,training_set)
fold_errV := fold_errV + ERROR−RATE(h,validation_set)

return fold_errT/k, fold_errV /k

function PARTITION(examples,fold ,k) returns two sets:
a validation set of size |examples|/k and the rest; the split is different for each fold value

: 927 2025-05-14

Error Rates on Training/Validation Data
▶ Example 5.18 (An Error Curve for Restaurant Decision Trees).

Modify DTL to be breadth-first, information gain sorted, stop after k nodes.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6 7 8 9 10

E
rr

or
 r

at
e

Tree size

Validation Set Error
Training Set Error

Stops when training set error rate converges, choose optimal tree for validation curve.(here a tree with
7 nodes)

: 928 2025-05-14

From Error Rates to Loss Functions

▶ So far we have been minimizing error rates. (better than maximizing ,)
▶ Example 5.19 (Classifying Spam). It is much worse to classify ham (legitimate mails) as spam

than vice versa. (message loss)
▶ Recall Rationality: Decision-makers should maximize expected utility (MEU).
▶ So: Machine learning should maximize “utility”. (not only minimize error rates)
▶ machine learning traditionally deals with utilities in form of “loss functions”.

▶ Definition 5.20. The loss function L is defined by setting L(x , y , ŷ) to be the amount of utility lost
by prediction h(x) = ŷ instead of f (x) = y . If L is independent of x , we often use L(y , ŷ).
▶ Example 5.21. L(spam, ham) = 1, while L(ham, spam) = 10.

: 929 2025-05-14

Generalization Loss

▶ Note: L(y , y) = 0. (no loss if you are exactly correct)
▶ Definition 5.22 (Popular general loss functions).

absolute value loss L1(y , ŷ):=|y − ŷ | small errors are good
squared error loss L2(y , ŷ):=(y − ŷ)2 ditto, but differentiable
0/1 loss L0/1(y , ŷ):=0, if y = ŷ , else 1 error rate

▶ Idea: Maximize expected utility by choosing hypothesis h that minimizes expected loss over all
(x ,y) ∈ f .

▶ Definition 5.23. Let E be the set of all possible examples and P(X ,Y) the prior probability
distribution over its components, then the expected generalization loss for a hypothesis h with respect
to a loss function L is

GenLossL(h):=
∑

(x,y)∈E
L(y , h(x)) · P(x , y)

and the best hypothesis h∗ := argmin
h∈H

GenLossL(h).

: 930 2025-05-14

Empirical Loss

▶ Problem: P(X ,Y) is unknown ; learner can only estimate generalization loss:
▶ Definition 5.24. Let L be a loss function and E a set of examples with #(E) = N, then we call

EmpLossL,E (h):=
1
N
(

∑

(x,y)∈E

L(y , h(x)))

the empirical loss and ĥ∗ := argmin
h∈H

EmpLossL,E (h) the estimated best hypothesis.

▶ There are four reasons why ĥ∗ may differ from f :
1. Realizablility: then we have to settle for an approximation ĥ∗ of f .
2. Variance: different subsets of f give different ĥ∗; more examples.
3. Noise: if f is non deterministic, then we cannot expect perfect results.
4. Computational complexity: if H is too large to systematically explore, we make due with subset and get an

approximation.

: 931 2025-05-14

Regularization
▶ Idea: Directly use empirical loss to solve model selection. (finding a good H)

Minimize the weighted sum of empirical loss and hypothesis complexity. (to avoid overfitting).
▶ Definition 5.25. Let λ ∈ R, h ∈ H, and E a set of examples, then we call

CostL,E (h):=EmpLossL,E (h) + λComplexity(h)

the total cost of h on E .
▶ Definition 5.26. The process of finding a total cost minimizing hypothesis

ĥ∗ := argmin
h∈H

CostL,E (h)

is called regularization; Complexity is called the regularization function or hypothesis complexity.
▶ Example 5.27 (Regularization for Polynomials).

A good regularization function for polynomials
is the sum of squares of exponents. ; keep
away from wriggly curves!

: 932 2025-05-14

Minimal Description Length

▶ Remark: In regularization, empirical loss and hypothesis complexity are not measured in the same
scale ; λ mediates between scales.
▶ Idea: Measure both in the same scale ; use information content, i.e. in bits.
▶ Definition 5.28. Let h ∈ H be a hypothesis and E a set of examples, then the description length of
(h,E) is computed as follows:
1. encode the hypothesis as a Turing machine program, count bits.
2. count data bits:
▶ correctly predicted example ; 0b
▶ incorrectly predicted example ; according to size of error.

The minimum description length or MDL hypothesis minimizes the total number of bits required.
▶ This works well in the limit, but for smaller problems there is a difficulty in that the choice of

encoding for the program affects the outcome.
▶ e.g., how best to encode a decision tree as a bit string?

: 933 2025-05-14

The Scale of Machine Learning

▶ Traditional methods in statistics and early machine learning concentrated on small-scale learning
(50-5000 examples)
▶ Generalization error mostly comes from
▶ approximation error of not having the true f in the hypothesis space
▶ estimation error of too few training examples to limit variance.

▶ In recent years there has been more emphasis on large-scale learning. (millions of examples)
▶ Generalization error is dominated by limits of computation
▶ there is enough data and a rich enough model that we could find an h that is very close to the true f ,
▶ but the computation to find it is too complex, so we settle for a sub-optimal approximation.

▶ Hardware advances (GPU farms, Amazon EC2, Google Data Centers, . . .) help.

: 934 2025-05-14

27.6 Computational Learning Theory

: 934 2025-05-14

A (General) Theory of Learning?

▶ Main Question: How can we be sure that our learning algorithm has produced a hypothesis that
will predict the correct value for previously unseen inputs?
▶ Formally: How do we know that the hypothesis h is close to the target function f if we don’t know

what f is?
▶ Other - more recent - Questions:
▶ How many examples do we need to get a good h?
▶ What hypothesis space H should we use?
▶ If the H is very complex, can we even find the best h, or do we have to settle for a local maximum in H.
▶ How complex should h be?
▶ How do we avoid overfitting?
▶ “Computational Learning Theory” tries to answer these using concepts from AI, statistics, and

theoretical CS.

: 935 2025-05-14

PAC Learning

▶ Basic idea of Computational Learning Theory:
▶ Any hypothesis h that is seriously wrong will almost certainly be “found out” with high probability after a

small number of examples, because it will make an incorrect prediction.
▶ Thus, if h is consistent with a sufficiently large set of training examples is unlikely to be seriously wrong.
▶ ; h is probably approximately correct.
▶ Definition 6.1. Any learning algorithm that returns hypotheses that are probably approximately

correct is called a PAC learning algorithm.
▶ Derive performance bounds for PAC learning algorithms in general, using the
▶ Stationarity Assumption (again): We assume that the set E of possible examples is IID ; we

have a fixed distribution P(E) = P(X ,Y) on examples.
▶ Simplifying Assumptions: f is a function (deterministic) and f ∈ H.

: 936 2025-05-14

PAC Learning

▶ Start with PAC theorems for Boolean functions, for which L0/1 is appropriate.
▶ Definition 6.2. The error rate error(h) of a hypothesis h is the probability that h misclassifies a new

example.
error(h):=GenLossL0/1(h) =

∑

(x,y)∈E
L0/1(y , h(x)) · P(x , y)

▶ Intuition: error(h) is the probability that h misclassifies a new example.
▶ This is the same quantity as measured in the learning curves above.

▶ Definition 6.3. A hypothesis h is called approximatively correct, iff error(h) ≤ ϵ for some small ϵ > 0.
We write Hb:={h ∈ H | error(h) > ϵ} for the “seriously bad” hypotheses.

: 937 2025-05-14

Sample Complexity

▶ Let’s compute the probability that hb ∈ Hb is consistent with the first N examples.
▶ We know error(hb) > ϵ

; P(hb agrees with N examples) ≤ (1− ϵ)N . (independence)
; P(Hb contains consistent hyp.)≤|Hb| · (1− ϵ)N≤|H| · (1− ϵ)N . (Hb ⊆ H)
; to bound this by a small δ, show the algorithm N ≥ 1

ϵ · (log2(
1
δ) + log2(|H|)) examples.

▶ Definition 6.4. The number of required examples as a function of ϵ and δ is called the sample
complexity of H.
▶ Example 6.5. If H is the set of n-ary Boolean functions, then |H| = 22n

.
; sample complexity grows with O(log2(22n

)) = O(2n).
There are 2n possible examples,
; PAC learning for Boolean functions needs to see (nearly) all examples.

: 938 2025-05-14

Escaping Sample Complexity

▶ Problem: PAC learning for Boolean functions needs to see (nearly) all examples.
▶ H contains enough hypotheses to classify any given set of examples in all possible ways.
▶ In particular, for any set of N examples, the set of hypotheses consistent with those examples contains equal

numbers of hypotheses that predict xN+1 to be positive and hypotheses that predict xN+1 to be negative.
▶ Idea/Problem: restrict the H in some way (but we may lose realizability)
▶ Three Ways out of this Dilemma:

1. bring prior knowledge into the problem. (???)
2. prefer simple hypotheses. (e.g. decision tree pruning)
3. focus on “learnable subsets” of H. (next)

: 939 2025-05-14

PAC Learning: Decision Lists

▶ Idea: Apply PAC learning to a “learnable hypothesis space”.
▶ Definition 6.6. A decision list consists of a sequence of tests, each of which is a conjunction of

literals.
▶ If a test succeeds when applied to an example description, the decision list specifies the value to be returned.
▶ If the test fails, processing continues with the next test in the list.
▶ Remark: Like decision trees, but restricted branching, but more complex tests.
▶ Example 6.7 (A decision list for the Restaurant Problem).

Patrons(x ,Some) Patrons(x ,Full) ∧ Fri/Sat(x)

Yes Yes

No
Yes Yes

No No

▶ Lemma 6.8. Given arbitrary size conditions, decision lists can represent arbitrary Boolean functions.
▶ This directly defeats our purpose of finding a “learnable subset” of H.

: 940 2025-05-14

Decision Lists: Learnable Subsets (Size-Restricted Cases)

▶ Definition 6.9. The set of decision lists where tests are of conjunctions of at most k literals is
denoted by k−DL.
▶ Example 6.10. The decision list from ?? is in 2−DL.
▶ Observation 6.11. k−DL contains k−DT, the set of decision trees of depth at most k .

▶ Definition 6.12. We denote the set of k−DL decision lists with at most n Boolean attributes with
k−DL(n). The set of conjunctions of at most k literals over n attributes is written as Conj(k, n).
▶ Decision lists are constructed of optional yes/no tests, so there are at most 3|Conj(k,n)| distinct sets of

component tests. Each of these sets of tests can be in any order, so
|k−DL(n)| ≤ 3|Conj(k,n)| · |Conj(k , n)|!

: 941 2025-05-14

Decision Lists: Learnable Subsets (Sample Complexity)

▶ The number of conjunctions of k literals from n attributes is given by

|Conj(k, n)| =
k∑

i=1

(
2n
i

)

thus |Conj(k , n)|=O(nk). Hence, we obtain (after some work)

|k−DL(n)|=2O(nk log2(n
k))

▶ Plug this into the equation for the sample complexity: N ≥ 1
ϵ · (log2(

1
δ) + log2(|H|)) to obtain

N ≥ 1
ϵ
· (log2(

1
δ
) + log2(O(nk log2(n

k))))

▶ Intuitively: Any algorithm that returns a consistent decision list will PAC learn a k−DL function in
a reasonable number of examples, for small k .

: 942 2025-05-14

Decision Lists Learning

▶ Idea: Use a greedy search algorithm that repeats
1. find test that agrees exactly with some subset E of the training set,
2. add it to the decision list under construction and removes E ,
3. construct the remainder of the DL using just the remaining examples,

until there are no examples left.
▶ Definition 6.13. The following algorithm performs decision list learning

function DLL(E) returns a decision list, or failure
if E is empty then return (the trivial decision list) No
t := a test that matches a nonempty subset Et of E

such that the members of Et are all positive or all negative
if there is no such t then return failure
if the examples in Et are positive then o := Yes else o := No
return a decision list with initial test t and outcome o and remaining tests given by

DLL(E\Et)

: 943 2025-05-14

Decision Lists Learning in Comparison

▶ Learning curves: for DLL (and DTL for comparison)

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Decision list

▶ Upshot: The simpler DLL works quite well!

: 944 2025-05-14

27.7 Regression and Classification with Linear Models

: 944 2025-05-14

Univariate Linear Regression
▶ Definition 7.1. A univariate or unary function is a function with one argument.
▶ Recall: A mapping f between vector spaces is called linear, iff it preserves rmodule/plus and

rmodule/scalar multiplication, i.e. f (α · v1 + v2) = α · f (v1) + f (v2).
▶ Observation 7.2. A univariate, linear function f : R→ R is of the form f (x) = w1x + w0 for some

wi ∈ R.
▶ Definition 7.3. Given a vector w := (w0,w1), we define hw(x):=w1x + w0.
▶ Definition 7.4. Given a set of examples E ⊆ R×R, the task of finding hw that best fits E is called

linear regression.
▶ Example 7.5.

Examples of house price vs.
square feet in houses sold in
Berkeley in July 2009.
Also: linear function hypothesis
that minimizes squared error loss
y = 0.232x + 246. 300

 400

 500

 600

 700

 800

 900

 1000

 500 1000 1500 2000 2500 3000 3500

H
ou

se
 p

ri
ce

 in
 $

10
00

House size in square feet

: 945 2025-05-14

Univariate Linear Regression by Loss Minimization
▶ Idea: Minimize squared error loss over {(xi ,yi) | i ≤ N} (used already by Gauss)

Loss(hw) =
N∑

j=1

L2(yj , hw(xj)) =
N∑

j=1

(yj − hw(xj))
2 =

N∑

j=1

(yj − (w1xj + w0))
2

Task: find w∗ := argmin
w

Loss(hw).

▶ Recall:
∑N

j=1 (yj − (w1xj + w0))
2 is minimized, when the partial derivatives wrt. the wi are zero, i.e.

when
∂

∂w0
(

N∑

j=1

(yj − (w1xj + w0))
2) = 0 and

∂

∂w1
(

N∑

j=1

(yj − (w1xj + w0))
2) = 0

▶ Observation: These equations have a unique solution:

w1 =
N(

∑
j xjyj)− (

∑
j xj)(

∑
j yj)

N(
∑

j xj
2)− (

∑
j xj)

2 w0 =
(
∑

j yj)− w1(
∑

j xj)

N

▶ Remark: Closed-form solutions only exist for linear regression, for other (differentiable) hypothesis
spaces use gradient descent methods for adjusting/learning weights.

: 946 2025-05-14

A Picture of the Weight Space

▶ Remark: Many forms of learning involve adjusting weights to minimize loss.
▶ Definition 7.6. The weight space of a parametric model is the space of all possible combinations of

parameters (called the weights). Loss minimization in a weight space is called weight fitting.

The weight space of univariate linear
regression is R2.
; graph the loss function over R2.
Note: it is convex. w0

w1

Loss

▶

▶ Observation 7.7. The squared error loss function is convex for any linear regression problem ; there
are no local minima.

: 947 2025-05-14

Gradient Descent Methods

▶ If we do not have closed form solutions for minimizing loss, we need to search.
▶ Idea: Use local search (hill climbing) methods.
▶ Definition 7.8. The gradient descent algorithm for finding a minimum of a continuous function F is

hill climbing in the direction of the steepest descent, which can be computed by the partial derivatives
of F .
function gradient−descent(F ,w,α) returns a local minimum of F

inputs: a differentiable function F and initial weights w.
loop until w converges do

for each wi do
wi ←− wi − α ∂

∂wi
F (w)

end for
end loop

The parameter α is called the learning rate. It can be a fixed constant or it can decay as learning
proceeds.

: 948 2025-05-14

Gradient-Descent for Loss

▶ Let’s try gradient descent for Loss.
▶ Work out the partial derivatives for one example (x ,y):

∂Loss(w)
∂wi

=
∂(y − hw(x))

2

∂wi
= 2(y − hw(x))

∂(y − (w1x + w0))

∂wi

and thus
∂Loss(w)

∂w0
= −2(y − hw(x))

∂Loss(w)
∂w1

= −2(y − hw(x))x

Plug this into the gradient descent updates:

w0 ←− w0 − α · (−2(y − hw(x))) w1 ←− w1 − α · −2((y − hw(x))) · x

: 949 2025-05-14

Gradient-Descent for Loss (continued)

▶ Analogously for n training examples (xj ,yj):
▶ Definition 7.9.

w0 ←− w0 − α(
∑

j

−2(yj − hw(xj))) w1 ←− w1 − α(
∑

j

−2(yj − hw(xn))xn)

These updates constitute the batch gradient descent learning rule for univariate linear regression.
▶ Convergence to the unique global loss minimum is guaranteed (as long as we pick α small enough)

but may be very slow.
▶ Doing batch gradient descent on random subsets of the examples of fixed batch size n is called

stochastic gradient descent (SGD). (More computationally efficient than updating for every example)

: 950 2025-05-14

Multivariate Linear Regression
▶ Definition 7.10. A multivariate or n-ary function is a function with one or more arguments.
▶ We can use it for multivariate linear regression.
▶ Idea: Every example x⃗j is an n element vector and the hypothesis space is the set of functions

hsw (x⃗j) = w0 + w1xj,1 + . . .+ wnxj,n = w0 +
∑

i

wixj,i

▶ Trick: Invent xj,0 := 1 and use matrix notation:

hsw (x⃗j) = w⃗ ·x⃗j = w⃗ t x⃗j =
∑

i

wixj,i

▶ Definition 7.11. The best vector of weights, w∗, minimizes squared-error loss over the examples:
w∗ := argmin

w
(
∑

j L2(yj)(w·x⃗j)).
▶ Gradient descent will reach the (unique) minimum of the loss function; the update equation for each

weight wi is
wi ←− wi − α(

∑

j

xj,i (yj − hw(x⃗j)))

: 951 2025-05-14

Multivariate Linear Regression (Analytic Solutions)

▶ We can also solve analytically for the w∗ that minimizes loss.
▶ Let y⃗ be the vector of outputs for the training examples, and X be the data matrix, i.e., the matrix

of inputs with one n-dimensional example per row.
Then the solution w∗ = (XTX)

−1
XT y⃗ minimizes the squared error.

: 952 2025-05-14

Multivariate Linear Regression (Regularization)

▶ Remark: Univariate linear regression does not overfit, but in the multivariate case there might be
“redundant dimensions” that result in overfitting.
▶ Idea: Use regularization with a complexity function based on weights.

▶ Definition 7.12. Complexity(hw) = Lq(w) =
∑

i |wi |q
▶ Caveat: Do not confuse this with the loss functions L1 and L2.
▶ Problem: Which q should we pick? (L1 and L2 minimize sum of absolute values/squares)
▶ Answer: It depends on the application.
▶ Remark: L1-regularization tends to produce a sparse model, i.e. it sets many weights to 0,

effectively declaring the corresponding attributes to be irrelevant.
Hypotheses that discard attributes can be easier for a human to understand, and may be less likely to
overfit. (see [RusNor:AIMA03])

: 953 2025-05-14

Linear Classifiers with a hard Threshold
▶ Idea: The result of linear regression can be used for classification.
▶ Example 7.13 (Nuclear Test Ban Verification).

Plots of seismic data parameters:
body wave magnitude x1 vs.
surface wave magnitude x2.
White: earthquakes, black:
underground explosions
Also: hw∗ as a decision boundary
x2 = 17x1 − 4.9.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

▶ Definition 7.14. A decision boundary is a line (or a surface, in higher dimensions) that separates two
classes of points. A linear decision boundary is called a linear separator and data that admits one are
called linearly separable.
▶ Example 7.15 (Nuclear Tests continued). The linear separator for ??is defined by
−4.9 + 1.7x1 − x2 = 0, explosions are characterized by −4.9 + 1.7x1 − x2 > 0, earthquakes by
−4.9 + 1.7x1 − x2 < 0.
▶ Useful Trick: If we introduce dummy coordinate x0 = 1, then we can write the classification

hypothesis as hw(x) = 1 if w·x > 0 and 0 otherwise.

: 954 2025-05-14

Linear Classifiers with a hard Threshold
▶ Idea: The result of linear regression can be used for classification.
▶ Example 7.16 (Nuclear Test Ban Verification).

Plots of seismic data parameters:
body wave magnitude x1 vs.
surface wave magnitude x2.
White: earthquakes, black:
underground explosions
Also: hw∗ as a decision boundary
x2 = 17x1 − 4.9.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

▶ Definition 7.17. A decision boundary is a line (or a surface, in higher dimensions) that separates two
classes of points. A linear decision boundary is called a linear separator and data that admits one are
called linearly separable.
▶ Example 7.18 (Nuclear Tests continued). The linear separator for ??is defined by
−4.9 + 1.7x1 − x2 = 0, explosions are characterized by −4.9 + 1.7x1 − x2 > 0, earthquakes by
−4.9 + 1.7x1 − x2 < 0.

▶ Useful Trick: If we introduce dummy coordinate x0 = 1, then we can write the classification
hypothesis as hw(x) = 1 if w·x > 0 and 0 otherwise.

: 954 2025-05-14

Linear Classifiers with a hard Threshold
▶ Idea: The result of linear regression can be used for classification.
▶ Example 7.19 (Nuclear Test Ban Verification).

Plots of seismic data parameters:
body wave magnitude x1 vs.
surface wave magnitude x2.
White: earthquakes, black:
underground explosions
Also: hw∗ as a decision boundary
x2 = 17x1 − 4.9.

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

▶ Definition 7.20. A decision boundary is a line (or a surface, in higher dimensions) that separates two
classes of points. A linear decision boundary is called a linear separator and data that admits one are
called linearly separable.
▶ Example 7.21 (Nuclear Tests continued). The linear separator for ??is defined by
−4.9 + 1.7x1 − x2 = 0, explosions are characterized by −4.9 + 1.7x1 − x2 > 0, earthquakes by
−4.9 + 1.7x1 − x2 < 0.
▶ Useful Trick: If we introduce dummy coordinate x0 = 1, then we can write the classification

hypothesis as hw(x) = 1 if w·x > 0 and 0 otherwise.
: 954 2025-05-14

Linear Classifiers with a hard Threshold (Perceptron Rule)
▶ So hw(x) = 1 if w·x > 0 and 0 otherwise is well-defined, how to choose w?
▶ Think of hw(x) = T (w·x), where T (z) = 1, if z > 0 and T (z) = 0 otherwise. We call T a threshold

function.
▶ Problem: T is not differentiable and ∂T

∂z = 0 where defined ;
▶ No closed-form solutions by setting ∂T

∂z
= 0 and solving.

▶ Gradient-descent methods in weight-space do not work either.
▶ We can learn weights by iterating over the following rule:
▶ Definition 7.22.Given an example (x,y), the perceptron learning rule is

wi ←− wi + α · (y − hw(x)) · xi
▶ as we are considering 0/1 classification, there are three possibilities:

1. If y = hw(x), then wi remains unchanged.
2. If y = 1 and hw(x) = 0, then wi is in/decreased if xi is positive/negative. (we want to make w·x bigger so

that T (w·x) = 1)
3. If y = 0 and hw(x) = 1, then wi is de/increased if xi is positive/negative. (we want to make w·x smaller so

that T (w·x) = 0)

: 955 2025-05-14

Learning Curves for Linear Classifiers (Perceptron Rule)
▶ Example 7.23.

Learning curves (plots of total
training set accuracy vs. number
of iterations) for the perceptron
rule on the earthquake/explosions
data. 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 6
 6.5

 7
 7.5

 4.5 5 5.5 6 6.5 7

x 2

x1

original data noisy, non-separable data learning rate decay
α(t) = 1000/(1000 + t)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

Pr
op

or
tio

n
co

rr
ec

t
Number of weight updates

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

Pr
op

or
tio

n
co

rr
ec

t

Number of weight updates

messy convergence convergence failure slow convergence
700 iterations 100,000 iterations 100,000 iterations

▶ Theorem 7.24. Finding the minimal-error hypothesis is NP-hard, but possible with learning rate
decay.

: 956 2025-05-14

Linear Classification with Logistic Regression
▶ So far: Passing the output of a linear function through a threshold function T yields a linear

classifier.
▶ Problem: The hard nature of T brings problems:
▶ T is not differentiable nor continuous ; learning via perceptron rule becomes unpredictable.
▶ T is “overly precise” near the boundary ⇝need more graded judgments.
▶ Idea: Soften the threshold, approximate it with a differentiable function.

We use the standard logistic function l(x) = 1
1+e−x

So we have hw(x) = l(w·x) = 1
1+e−(w·x)

▶ Example 7.25 (Logistic Regression Hypothesis in Weight Space).
Plot of a logistic regression hypothesis
for the earthquake/explosion data.
The value at (w0,w1) is the probability
of belonging to the class labeled 1. -2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

We speak of the cliff in the classifier intuitively.

: 957 2025-05-14

Logistic Regression

▶ Definition 7.26. The process of weight fitting in hw(x) = 1
1+e−(w·x) is called logistic regression.

▶ There is no easy closed form solution, but gradient descent is straightforward,
▶ As our hypotheses have continuous output, use the squared error loss function L2.
▶ For an example (x,y) we compute the partial derivatives: (via chain rule)

∂

∂wi
L2(w) =

∂

∂wi
((y − hw(x))

2)

= 2 · hw(x) ·
∂

∂wi
(y − hw(x))

= −2 · hw(x) · l ′(w·x) ·
∂

∂wi
(w·x)

= −2 · hw(x) · l ′(w·x) · xi

: 958 2025-05-14

Logistic Regression (continued)
▶ The derivative of the logistic function satisfies l ′(z) = l(z)(1− l(z)), thus

l ′(w·x) = l(w·x)(1− l(w·x)) = hw(x)(1− hw(x))

▶ Definition 7.27. The rule for logistic update (weight update for minimizing the loss) is

wi ←− wi + α · (y − hw(x)) · hw(x) · (1− hw(x)) · xi
▶ Example 7.28 (Redoing the Learning Curves).

original data noisy, non-separable data learning rate decay
α(t) = 1000/(1000 + t)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1000 2000 3000 4000 5000

Sq
ua

re
d

er
ro

r
pe

r
ex

am
pl

e

Number of weight updates

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

Sq
ua

re
d

er
ro

r
pe

r
ex

am
pl

e

Number of weight updates

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20000 40000 60000 80000 100000

Sq
ua

re
d

er
ro

r
pe

r
ex

am
pl

e

Number of weight updates

messy convergence convergence failure slow convergence
5000 iterations 100,000 iterations 100,000 iterations

▶ Upshot: Logistic update seems to perform better than perceptron update.

: 959 2025-05-14

27.8 Support Vector Machines

: 959 2025-05-14

Support Vector Machines
Definition 8.1. Given a linearly separable data set E the maximum margin separator is the linear
separator s that maximizes the margin, i.e. the distance of the E from s.
Example 8.2. All lines on the left are valid linear separators:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

We expect the maximum margin separator on the right to generalize best
Note: To find the maximum margin separator, we only need to consider the innermost points (circled
above).

: 960 2025-05-14

Support Vector Machines (contd.)

Definition 8.3. Support-vector machines (SVMs; also support-vector networks) are supervised learning
models for classification and regression.
SVMs construct a maximum margin separator by prioritizing critical examples (support vectors).

SVMs are still one of the most popular approaches for “off-the-shelf” supervised learning.

Setting:
▶ We have a training set E = {⟨x1, y1⟩, . . ., ⟨xn, yn⟩} where x i ∈ Rp and y i ∈ { − 1, 1} (instead of
{1, 0})
▶ The goal is to find a hyperplane in Rp that maximally separates the two classes (i.e. y i = −1 from
y i = 1)

Remember A hyperplane can be represented as the set {x | (w·x) + b = 0} for some vector w and
scalar b. (w is orthogonal to the plane, b determines the offset from the origin)

: 961 2025-05-14

Finding the Maximum Margin Separator (Separable Case)

Idea: The margin is bounded by the two hyperplanes described by
{x | (w·x) + b + 1 = 0} (lower boundary) and {x | (w·x) + b − 1 = 0}
(upper boundary).
⇒ The distance between them is 2

∥w∥2
.

Constraints: To maximize the margin, minimize ∥w∥2 while keeping x i
out of the margin:
(w·x i) + b ≥ 1 for y i = 1 and (w·x i) + b ≤ −1 for y i = −1
; y i ((w·x i)− b) ≥ 1 for 1 ≤ i ≤ n.
; This is an optimization problem. 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Theorem 8.4 (SVM equation). Let α = argmax
α

(
∑

j

αj −
1
2
(
∑

j,k

αjαky jyk(x j ·xk))) under the

constraints αj ≥ 0 and
∑

j αjy j = 0.
The maximum margin separator is given by w =

∑
j αjxj and b = w·x i − y i for any x i where αi ̸= 0.

Proof sketch: By the duality principle for optimization problems

: 962 2025-05-14

Finding the Maximum Margin Separator (Separable Case)

α = argmax
α

(
∑

j

αj −
1
2
(
∑

j,k

αjαky jyk(x j ·xk))),where αj ≥ 0,
∑

j

αjy j = 0

Important Properties:
▶ The weights αj associated with each data point are zero except at the support vectors (the points

closest to the separator),
▶ The expression is convex ; the single global maximum can found efficiently,
▶ Data enter the expression only in the form of dot products of point pairs ; once the optimal αi have

been calculated, we have h(x) = sign(
∑

j αjyj(x·xj)− b)

▶ There are good software packages for solving such quadratic programming optimizations

: 963 2025-05-14

Support Vector Machines (Kernel Trick)
What if the data is not linearly separable?
Idea: Transform the data into a feature space where they are.
Definition 8.5. A feature for data in Rp is a function Rp → Rq.

Example 8.6 (Projecting Up a Non-Separable Data Set).
The true decision boundary is x1

2 + x2
2 ≤ 1.

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

; use the feature “distance from center”

: 964 2025-05-14

Support Vector Machines (Kernel Trick continued)
Idea: Replace x i ·x j by some other product on the feature space in the SVM equation

Definition 8.7. A kernel function is a function K : Rp×Rp → R of the form K (x1, x2) = ⟨F (x1),F (x2)⟩
for some feature F and inner product ⟨·, ·⟩ on the codomain of F .

Smart choices for a kernel function often allow us to compute K (x i , x j) without needing to compute F
at all.

Example 8.8. If we encode the distance from the center as the feature F (x) = ⟨x1
2, x2

2,
√

2x1x2⟩ and
define the kernel function as K (x i , x j) = F (x i)·F (x j), then this simplifies to K (x i , x j) = (x i ·x j)2

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

x 2

x1

0
0.5

1
1.5

2x1
2 0.5

1

1.5

2

2.5

x2
2

-3
-2
-1
0
1
2
3

√2x1x2

: 965 2025-05-14

Support Vector Machines (Kernel Trick continued)

Generally: We can learn non-linear separators by solving

argmax
α

(
∑

j

αj −
1
2
(
∑

j,k

αjαkyjykK (xj , xk)))

where K is a kernel function

Definition 8.9. Let X = {x1, . . ., xn}. A symmetric function K : X×X → R is called positive definite iff
the matrix Ki,j = K (x i , x j) is a positive definite matrix.
Theorem 8.10 (Mercer’s Theorem). Every positive definite function K on X is a kernel function on X
for some feature F .

Definition 8.11. The function K (xj , xk) = (1 + (xj ·xj))d is a kernel function corresponding to a feature
space whose dimension is exponential in d . It is called the polynomial kernel.

: 966 2025-05-14

27.9 Artificial Neural Networks

: 966 2025-05-14

Outline

▶ Brains
▶ Neural networks
▶ Perceptrons
▶ Multilayer perceptrons
▶ Applications of neural networks

: 967 2025-05-14

Brains
▶ Axiom 9.1 (Neuroscience Hypothesis). Mental activity consists consists primarily of

electrochemical activity in networks of brain cells called neurons.

▶ Definition 9.2. The animal brain is a biological neural network
▶ with 1011 neurons of > 20 types, 1014 synapses, (1ms)− (10ms) cycle time.
▶ Signals are noisy “spike trains” of electrical potential.

: 968 2025-05-14

Neural Networks as an approach to Artificial Intelligence

▶ One approach to artificial intelligence is to model and simulate brains. (and hope that AI comes along
naturally)
▶ Definition 9.3. The AI subfield of neural networks (also called connectionism, parallel distributed

processing, and neural computation) studies computing systems inspired by the biological neural
networks that constitute brains.
▶ Neural networks are attractive computational devices, since they perform important AI tasks – most

importantly learning and distributed, noise-tolerant computation – naturally and efficiently.

: 969 2025-05-14

Neural Networks – McCulloch-Pitts “unit”
Definition 9.4. An artificial neural network is a directed graph such that every edge ai → aj is
associated with a weight wi,j ∈ R, and each node aj with parents a1, . . ., an is associated with a function
f (w1,j , . . .,wn,j , x1, . . . , xn) ∈ R.
We call the output of a node’s function its activation, the matrix wi,j the weight matrix, the nodes units
and the edges links.

In 1943 McCulloch and Pitts proposed a simple model for a neuron/brain:
Definition 9.5. A McCulloch-Pitts unit first computes a weighted sum of all inputs and then applies an
activation function g to it.

ini =
∑

j

wj,iaj

ai ← g(ini) = g(+
∑

j

wj,iaj)

Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

If g is a threshold function, we call the unit a perceptron unit, if g is a logistic function a sigmoid
perceptron unit.
A McCulloch-Pitts network is a neural network with McCulloch-Pitts units.

: 970 2025-05-14

Implementing Logical Functions as Units

▶ McCulloch-Pitts units are a gross oversimplification of real neurons, but its purpose is to develop
understanding of what neural networks of simple units can do.
▶ Theorem 9.6 (McCulloch and Pitts). Every Boolean function can be implemented as

McCulloch-Pitts networks.
▶ Proof: by construction

1. Recall that ai ←− g(
∑

j wj,iaj). Let g(r) = 1 iff r > 0, else 0.
2. As for linear regression we use a0 = 1 ; w0,i as a bias weight (or intercept) (determines the

threshold)

3.

w0 = −1

w1 = 1

w2 = 1 AND

w0 = −0.5

w1 = 1

w2 = 1 OR

w0 = 0.5

w1 = −1

NOT

4. Any Boolean function can be implemented as a DAG of McCulloch-Pitts units.
□

: 971 2025-05-14

Network Structures: Feed-Forward Networks

▶ We have models for neurons ; connect them to neural networks.
▶ Definition 9.7. A neural network is called a feed-forward network, if it is acyclic.
▶ Intuition: Feed-forward networks implement functions, they have no internal state.
▶ Definition 9.8.Feed-forward networks are usually organized in layers: a n layer network has a

partition {L0, . . ., Ln} of the nodes, such that edges only connect nodes from subsequent layer.
L0 is called the input layer and its members input units, and Ln the output layer and its members
output units. Any unit that is not in the input layer or the output layer is called hidden.

: 972 2025-05-14

Network Structures: Recurrent Networks

▶ Definition 9.9. A neural network is called recurrent (a RNNs), iff it has cycles.
▶ Hopfield networks have symmetric weights (wi,j = wj,i) g(x) = sign(x), ai = ±1; (holographic associative

memory)
▶ Boltzmann machines use stochastic activation functions.
▶ Recurrent neural networks have cycles with delay ; have internal state (like flip-flops), can oscillate

etc.
Recurrent neural networks follow largely the same principles as feed-forward networks, so we will not go
into details here.

: 973 2025-05-14

Single-layer Perceptrons
▶ Definition 9.10. A perceptron network is a feed-forward network of perceptron units. A single layer

perceptron network is called a perceptron.
▶ Example 9.11.

Output
Layer

wi,j
Input
Layer

-2 0 2 4 6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

▶ All input units are directly connected to output units.
▶ Output units all operate separately, no shared weights ; treat as the combination of n perceptron

units.
▶ Adjusting weights moves the location, orientation, and steepness of cliff.

: 974 2025-05-14

Feed-forward Neural Networks (Example)

▶ Feed-forward network =̂ a parameterized family of nonlinear functions:
▶ Example 9.12. We show two feed-forward networks:

1

2

3

4

w1,3

w2,3

w1,4

w2,4

1

2

3

4

5

6

w1,3

w2,3

w1,4

w2,4

w3,5

w4,5

w3,6

w4,6

a) single layer (perceptron network) b) 2 layer feed-forward network

a5 = g(w3,5 · a3 + w4,5 · a4)

= g(w3,5 · g(w1,3 · a1 + w2,3a2) + w4,5 · g(w1,4 · a1 + w2,4a2))

▶ Idea: Adjusting weights changes the function: do learning this way!

: 975 2025-05-14

Expressiveness of Perceptrons
▶ Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
▶ Can represent AND, OR, NOT, majority, etc., but not XOR (and thus no adders)
▶ Represents a linear separator in input space:

∑

j

wjxj > 0 or W, x· > 0

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

▶ Minsky & Papert (1969) pricked the first neural network balloon!

: 976 2025-05-14

Perceptron Learning

For learning, we update the weights using gradient descent based on the generalization loss function.
Let e.g. L(w) = (y − hw(x))

2 (the squared error loss).
We compute the gradient:

∂L(w)
∂wj,k

= 2 · (yk − hw(x)k) ·
∂(y − hw(x))

∂wj,k
= 2 · (yk − hw(x)k) ·

∂

∂wj,k
(y − g(

n∑

j=0

wj,kxj))

= −2 · (yk − hw(x)k) · g ′(ink) · x j

; Replacing the constant factor −2 by a learning rate parameter α we get the update rule:

wj,k ← wj,k + α · (yk − hw(x)k) · g ′(ink) · x j

: 977 2025-05-14

Perceptron learning contd.

The perceptron learning rule converges to a consistent function – for any linearly separable data set

Majority Restaurant

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Perceptron
Decision tree

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Perceptron
Decision tree

Perceptron learns the majority function easily, where DTL is hopeless.
Conversely, DTL learns the restaurant function easily, where a perceptron is hopeless. (not representable)

: 978 2025-05-14

Multilayer perceptrons

▶ Definition 9.13. In multi layer perceptrons (MLPs), layers are usually fully connected;
numbers of hidden units typically chosen by hand.

Output Layer ai

wi,j

Hidden Layer aj

wi,j

Input Layer ak

▶ Definition 9.14. Some MLPs have residual connections, i.e. connections that skip layers.

: 979 2025-05-14

Expressiveness of MLPs

▶ All continuous functions w/ 2 layers, all functions w/ 3 layers.

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

-4 -2 0 2 4x1
-4

-2
0

2
4

x2

0
0.2
0.4
0.6
0.8

1

hW(x1, x2)

▶ Combine two opposite-facing threshold functions to make a ridge.
▶ Combine two perpendicular ridges to make a bump.
▶ Add bumps of various sizes and locations to fit any surface.
▶ Proof requires exponentially many hidden units. (cf. DTL proof)

: 980 2025-05-14

Learning in Multilayer Networks
Note: The output layer of a multilayer neural network is a single-layer perceptron whose input is the
output of the last hidden layer.
; We can use the perceptron learning rule to update the weights of the output layer; e.g. for a squared
error loss function: wj,k ← wj,k + α · (yk − hw(x)k) · g ′(ink) · aj
What about the hidden layers?
Idea: The hidden node j is “responsible” for some fraction of the error proportional to the weight wj,k .
; Back-propagate the error ∆k = (yk − hw(x)k) · g ′(inj) from node k in the output layer to the hidden
node j .
Let’s justify this:

∂L(w)k
∂wi,j

= −2 · (yk − hw(x)k) · g ′(ink)︸ ︷︷ ︸
=:∆k

· ∂ink

∂wi,j
(as before)

= −2 ·∆k ·
∂(
∑

ℓ wℓ,kaℓ)

∂wi,j
= −2 ·∆k · wj,k ·

∂aj
∂wi,j

= −2 ·∆k · wj,k ·
∂g(inj)

∂wi,j

= −2 ·∆k · wj,k · g ′(inj)︸ ︷︷ ︸
=:∆j,k

·ai

: 981 2025-05-14

Learning in Multilayer Networks (Hidden Layers)

∂L(w)k
∂wi,j

= −2 ·∆k · wj,k · g ′(inj)︸ ︷︷ ︸
=:∆j,k

·ai

Idea: The total “error” of the hidden node j is the sum of all the connected nodes k in the next layer
Definition 9.15. The back-propagation rule for hidden nodes of a multilayer perceptron is
∆j ← g ′(inj) · (

∑

i

wj,i∆i) And the update rule for weights in a hidden layer is wk,j ← wk,j + α · ak ·∆j

Remark: Most neuroscientists deny that back-propagation occurs in the brain.

The back-propagation process can be summarized as follows:
1. Compute the ∆ values for the output units, using the observed error.
2. Starting with output layer, repeat the following for each layer in the network, until the earliest hidden

layer is reached:
2.1 Propagate the ∆ values back to the previous (hidden) layer.
2.2 Update the weights between the two layers.

: 982 2025-05-14

Backprogagation Learning Algorithm
▶ Definition 9.16. The back-propagation learning algorithm is given the following pseudocode

function BACK−PROP−LEARNING(examples,network) returns a neural network
inputs: examples, a set of examples, each with input vector x and output vector y

network, a multilayer network with L layers, weights wi,j , activation function g
local variables: ∆, a vector of errors, indexed by network node
foreach weight wi,j in network do

wi,j := a small random number
repeat

foreach example (x, y) in examples do
/∗ Propagate the inputs forward to compute the outputs ∗/
foreach node i in the input layer do ai := xi

for l = 2 to L do
foreach node j in layer l do

inj :=
∑

i wi,jai
aj := g(inj)

/∗ Propagate deltas backward from output layer to input layer ∗/
foreach node j in the output layer do ∆[j] := g ′(inj) · (yj − aj)
for l = L− 1 to 1 do

foreach node i in layer l do ∆[i] := g ′(ini) · (
∑

j wi,j∆[j])

/∗ Update every weight in network using deltas ∗/
foreach weight wi,j in network do wi,j := wi,j + α · ai ·∆[j]

until some stopping criterion is satisfied
return network

: 983 2025-05-14

Back-Propagation – Properties

▶ Sum gradient updates for all examples in some “batch” and apply gradient descent.
▶ Learning curve for 100 restaurant examples: finds exact fit.

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300 350 400

T
ot

al
 e

rr
or

 o
n

tr
ai

ni
ng

 s
et

Number of epochs

▶ Typical problems: slow convergence, local minima.

: 984 2025-05-14

Back-Propagation – Properties (contd.)
▶ Example 9.17. Learning curve for MLPs with 4 hidden units:

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Pr
op

or
tio

n
co

rr
ec

t o
n

te
st

 s
et

Training set size

Decision tree
Multilayer network

▶ Experience shows: MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily.
▶ This makes MLPs ineligible for some tasks, such as credit card and loan approvals, where law requires

clear unbiased criteria.

: 985 2025-05-14

Handwritten digit recognition

▶ 400–300–10 unit MLP = 1.6% error
▶ LeNet: 768–192–30–10 unit MLP = 0.9% error
▶ Current best (kernel machines, vision algorithms) ≈ 0.6% error

: 986 2025-05-14

Summary

▶ neural networks can be extremely powerful (hypothesis space intractably complex)
▶ Perceptrons (one-layer networks) insufficiently expressive for most applications
▶ Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error

back-propagation
▶ Many applications: speech, driving, handwriting, fraud detection, etc.
▶ Engineering, cognitive modelling, and neural system modelling subfields have largely diverged
▶ Drawbacks: take long to converge, require large amounts of data, and are difficult to interpret (Why

is the output what it is?)

: 987 2025-05-14

XKCD on Machine Learning
▶ A Skepticists View: see https://xkcd.com/1838/

: 988 2025-05-14

https://xkcd.com/1838/

Summary of Inductive Learning

▶ Learning needed for unknown environments, lazy designers.
▶ Learning agent = performance element + learning element.
▶ Learning method depends on type of performance element, available feedback, type of component to

be improved, and its representation.
▶ For supervised learning, the aim is to find a simple hypothesis that is approximately consistent with

training examples
▶ Decision tree learning using information gain.
▶ Learning performance = prediction accuracy measured on test set
▶ PAC learning as a general theory of learning boundaries.
▶ Linear regression (hypothesis space of univariate linear functions).
▶ Linear classification by linear regression with hard and soft thresholds.

: 989 2025-05-14

Chapter 28
Statistical Learning

: 989 2025-05-14

Statistical Learning: Outline

▶ Definition 0.1. Statistical learning has the goal to learn the correct probability distribution of a
random variable.
▶ Example 0.2.
▶ Bayesian learning, i.e. learning probabilistic models (e.g. the CPTs in Bayesian networks) from observations.
▶ Maximum a posteriori and maximum likelihood learning
▶ Bayesian network learning
▶ ML Parameter Learning with Complete Data
▶ Naive Bayes Models/Learning

: 990 2025-05-14

28.1 Full Bayesian Learning

: 990 2025-05-14

The Candy Flavors Example

▶ Example 1.1. Suppose there are five kinds of bags of candies:
1. 10% are h1: 100% cherry candies
2. 20% are h2: 75% cherry candies + 25% lime candies
3. 40% are h3: 50% cherry candies + 50% lime candies
4. 20% are h4: 25% cherry candies + 75% lime candies
5. 10% are h5: 100% lime candies

Then we observe candies drawn from some bag:

What kind of bag is it? What flavour will the next candy be?
Note: Every hypothesis is itself a probability distribution over the random variable “flavour”.

: 991 2025-05-14

Candy Flavors: Posterior probability of hypotheses
▶ Example 1.2. Let di be the event that the ith drawn candy is green.

The probability of hypothesis hi after n limes are observed (=̂ d1:n =: d) is

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

Po
st

er
io

r
pr

ob
ab

ili
ty

 o
f

hy
po

th
es

is

Number of observations in d

P(h1 | d)
P(h2 | d)
P(h3 | d)
P(h4 | d)
P(h5 | d)

if the observations are IID, i.e. P(d | hi) =
∏

j P(dj | hi) and the hypothesis prior is as advertised.(e.g.
P(d | h3) = 0.510 = 0.1%)
The posterior probabilities start with the hypothesis priors, change with data.

: 992 2025-05-14

Candy Flavors: Prediction Probability
▶ We calculate that the n + 1-th candy is lime:

P(dn+1 = lime | d) =
∑

i

P(dn+1 = lime | hi) · P(hi | d)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10

Pr
ob

ab
ili

ty
 th

at
 n

ex
t c

an
dy

 is
 li

m
e

Number of observations in d

; we compute the expected value of the probability of the next candy being lime over all hypotheses
(i.e. distributions).
; “meta-distribution”

: 993 2025-05-14

Full Bayesian Learning

▶ Idea: View learning as Bayesian updating of a probability distribution over the hypothesis space:
▶ H is the hypothesis variable with values h1, h2, . . . and prior P(H).
▶ jth observation dj gives the outcome of random variable Dj .
▶ d := d1, . . . , dN constitutes the training set of a inductive learning problem.
▶ Definition 1.3. Bayesian learning calculates the probability of each hypothesis and makes predictions

based on this:
▶ Given the data so far, each hypothesis has a posterior probability:

P(hi | d) = α(P(d | hi) · P(hi))

where P(d | hi) is called the likelihood (of the data under each hypothesis) and P(hi) the hypothesis prior.
▶ Bayesian predictions use a likelihood-weighted average over the hypotheses:

P(X|d) =
∑
i

P(X|d, hi) · P(hi | d) =
∑
i

P(X|hi) · P(hi | d)

▶ Observation: No need to pick one best-guess hypothesis for Bayesian predictions! (and that is all
an agent cares about)

: 994 2025-05-14

Full Bayesian Learning: Properties

▶ Observation: The Bayesian prediction eventually agrees with the true hypothesis.
▶ The probability of generating “uncharacteristic” data indefinitely is vanishingly small.
▶ Proof sketch: Argument analogous to PAC learning.
▶ Problem: Summing over the hypothesis space is often intractable.
▶ Example 1.4. There are 226

= 18, 446, 744, 073, 709, 551, 616 Boolean functions of 6 arguments.
▶ Solution: Approximate the learning methods to simplify.

: 995 2025-05-14

28.2 Approximations of Bayesian Learning

: 995 2025-05-14

Maximum A Posteriori (MAP) Approximation
▶ Goal: Get rid of summation over the space of all hypotheses in predictions.
▶ Idea: Make predictions wrt. the “most probable hypothesis”!
▶ Definition 2.1. For maximum a posteriori learning (MAP learning) choose the MAP hypothesis
hMAP that maximizes P(hi | d).
I.e., maximize P(d | hi) · P(hi) or (even better) log2(P(d | hi)) + log2(P(hi)).
▶ Predictions made according to a MAP hypothesis hMAP are approximately Bayesian to the extent

that P(X |d) ≈ P(X |hMAP).
▶ Example 2.2. In our candy example, hMAP = h5 after three limes in a row
▶ a MAP learner then predicts that candy 4 is lime with probability 1.
▶ compare with Bayesian prediction of 0.8. (see prediction curves above)
▶ As more data arrive, the MAP and Bayesian predictions become closer, because the competitors to

the MAP hypothesis become less and less probable.
▶ For deterministic hypotheses, P(d | hi) is 1 if consistent, 0 otherwise
; MAP = simplest consistent hypothesis. (cf. science)
▶ Remark: Finding MAP hypotheses is often much easier than Bayesian learning, because it requires

solving an optimization problem instead of a large summation (or integration) problem.

: 996 2025-05-14

Digression From MAP-learning to MDL-learning

▶ Idea: Reinterpret the log terms log2(P(d | hi)) + log2(P(hi)) in MAP learning:
▶ Maximizing P(d | hi) · P(hi) =̂ minimizing −log2(P(d | hi))− log2(P(hi)).
▶ −log2(P(d | hi)) =̂ number of bits to encode data given hypothesis.
▶ −log2(P(hi)) =̂ additional bits to encode hypothesis. (???)
▶ Indeed if hypothesis predicts the data exactly – e.g. h5 in candy example – then log2(1) = 0 ;

preferred hypothesis.
▶ This is more directly modeled by the following approximation to Bayesian learning:
▶ Definition 2.3. In minimum description length learning (MDL learning) the MDL hypothesis hMDL

minimizes the information entropy of the hypothesis likelihood.

: 997 2025-05-14

Maximum Likelihood (ML) approximation

▶ Observation: For large data sets, the prior becomes irrelevant. (we might not trust it anyways)
▶ Idea: Use this to simplify learning.
▶ Definition 2.4. Maximum likelihood learning (ML learning): choose the ML hypothesis hML

maximizing P(d | hi). (simply get the best fit to the data)
▶ Remark: ML learning =̂ MAP learning for a uniform prior. (reasonable if all hypotheses are of the

same complexity)
▶ ML learning is the “standard” (non Bayesian) statistical learning method.

: 998 2025-05-14

28.3 Parameter Learning for Bayesian Networks

: 998 2025-05-14

ML Parameter Learning in Bayesian Nets
Bayesian networks (with continuous random variables) often feature nodes with a particular parametric
distribution D(θ) (e.g. normal, binomial, Poisson, etc.).
How do we learn the parameters of these distributions from data?

Example 3.1. We get a candy bag from a new manufacturer; what is the fraction θ of cherry candies?
(Note: We use the probability itself as the parameter. This is somewhat boring, but simple.)

Flavor

P(F = cherry)
θ

New Facet: Any θ is possible: continuum of hypotheses hθ
θ is a parameter for this simple (binomial) family of models; We call hθ a MLP hypothesis and the
process of learning θ MLP learning.

Example 3.2. Suppose we unwrap N candies, c cherries and ℓ = N − c limes. These are IID

observations, so the likelihood is P(d | hθ) =
N∏

j=1

P(dj | hθ) = θc · (1− θ)ℓ

: 999 2025-05-14

ML Parameter Learning in Bayes Nets

Trick: When optimizing a product, optimize the logarithm instead! (log2(!) is monotone and turns
products into sums)
Definition 3.3. The log likelihood is the binary logarithm of the likelihood. L(d|h):=log2(P(d | h))
Example 3.4. Compute the log likelihood as (using ??)

L(d|hθ) = log2(P(d | hθ)) =
N∑

j=1

log2(P(dj | hθ)) = c log2(θ) + ℓlog2(1− θ)

Maximize this w.r.t. θ
∂

∂θ
(L(d|hθ)) =

c

θ
− ℓ

1− θ
= 0 ; θ =

c

c + ℓ
=

c

N

In English: hθ asserts that the actual proportion of cherries in the bag is equal to the observed
proportion in the candies unwrapped so far! (...exactly what we should expect!) (⇒ Generalize to more
interesting parametric models later)
Warning: This causes problems with 0 counts!

: 1000 2025-05-14

ML Learning for Multiple Parameters in Bayesian Networks

▶ Cooking Recipe:
1. Write down an expression for the likelihood of the data as a function of the parameter(s).
2. Write down the derivative of the log likelihood with respect to each parameter.
3. Find the parameter values such that the derivatives are zero

: 1001 2025-05-14

Multiple Parameters Example
▶ Example 3.5. Red/green wrapper depends probabilistically on flavour:

Flavor

Wrapper

F P(W = red | F)
cherry θ1

lime θ2

P(F = cherry)
θ

▶ Likelihood for, e.g., cherry candy in green wrapper:

P(F = cherry ,W = green | hθ,θ1,θ2)

= P(F = cherry | hθ,θ1,θ2) · P(W = green | F = cherry ,hθ,θ1,θ2)

= θ · (1− θ1)

▶ Ovservation: For N candies, rc red-wrapped cherry candies, etc. we have

P(d | hθ,θ1,θ2) = θc · (1− θ)ℓ · θ1
rc · (1− θ1)

gc · θ2
rℓ · (1− θ2)

gℓ

: 1002 2025-05-14

Multiple Parameters Example (contd.)

▶ Minimize the log likelihood:

L = c log2(θ) + ℓlog2(1− θ)

+ rc log2(θ1) + gc log2(1− θ1)

+ rℓlog2(θ2) + gℓlog2(1− θ2)

▶ Derivatives of L contain only the relevant parameter:

∂L
∂θ = c

θ − ℓ
1−θ = 0 ; θ = c

c+ℓ

∂L
∂θ1

= rc
θ1
− gc

1−θ1
= 0 ; θ1 = rc

rc+gc
∂L
∂θ2

= rℓ
θ2
− gℓ

1−θ2
= 0 ; θ2 = rℓ

rℓ+gℓ

▶ Upshot: With complete data, parameters can be learned separately in Bayesian networks.
▶ Remaining Problem: Have to be careful with zero values! (division by zero)

: 1003 2025-05-14

Example: Linear Gaussian Model
A continuous random variable Y has the linear-Gaussian distribution with respect to a continuous
random variable X , if the outcome of Y is determined by a linear function of the outcome of X plus
gaussian noise with a fixed variance σ, i.e.

P(y1 ≤ Y ≤ y2 | X = x) =

∫ y2

y1

N(y ; θ1x + θ2, σ
2) dy =

∫ y2

y1

1
σ
√

2π
· e−

1
2 ·
(

y−(θ1x+θ2)
σ

)2

dy

; assuming σ given, we have two parameter θ1 and θ2 ; Hypothesis space is R× R

0 0.2 0.4 0.6 0.8 1x 0
0.2

0.4
0.6

0.8
1

y
0

0.5
1

1.5
2

2.5
3

3.5
4
P(y |x)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y

x

: 1004 2025-05-14

Example: Linear Gaussian Model

P(y1 ≤ Y ≤ y2 | X = x) =

∫ y2

y1

1
σ
√

2π
· e−

1
2 ·
(

y−(θ1x+θ2)
σ

)2

dy

; Given observations X = X ,Y = y , maximize
∏N

i=1
1√
2πσ

e−
(yi−(θ1xi+θ2))2

2σ2 w.r.t. θ1, θ2. (we can ignore
the integral for this)

Using the log likelihood, this is equivalent to minimizing
∑N

i=1(yi − (θ1xi + θ2))
2

; minimizing the sum of squared errors gives the ML solution

: 1005 2025-05-14

Statistical Learning: Summary

▶ Full Bayesian learning gives best possible predictions but is intractable.
▶ MAP learning balances complexity with accuracy on training data.
▶ Maximum likelihood learning assumes uniform prior, OK for large data sets:

1. Choose a parameterized family of models to describe the data.
; requires substantial insight and sometimes new models.

2. Write down the likelihood of the data as a function of the parameters.
; may require summing over hidden variables, i.e., inference.

3. Write down the derivative of the log likelihood w.r.t. each parameter.
4. Find the parameter values such that the derivatives are zero.

; may be hard/impossible; modern optimization techniques help.
▶ Naive Bayes models as a fall-back solution for machine learning:
▶ conditional independence of all attributes as simplifying assumption.

: 1006 2025-05-14

Chapter 29
Reinforcement Learning

: 1006 2025-05-14

29.1 Reinforcement Learning: Introduction & Motivation

: 1006 2025-05-14

Unsupervised Learning

▶ So far: We have studied “learning from examples”. (functions, logical theories, probability models)
▶ Now: How can agents learn “what to do” in the absence of labeled examples of “what to do”. We

call this problem unsupervised learning.
▶ Example 1.1 (Playing Chess). Learn transition models for own moves and maybe predict

opponent’s moves.
▶ Problem: The agent needs to have some feedback about what is good/bad
; cannot decide “what to do” otherwise. (recall: external performance standard for learning agents)
▶ Example 1.2. The ultimate feedback in chess is whether you win, lose, or draw.
▶ Definition 1.3. We call a learning situation where there are no labeled examples unsupervised

learning and the feedback involved a reward or reinforcement.
▶ Example 1.4. In soccer, there are intermediate reinforcements in the shape of goals, penalties, . . .

: 1007 2025-05-14

Reinforcement Learning as Policy Learning

▶ Definition 1.5. Reinforcement learning is a type of unsupervised learning where an agent learns how
to behave in an environment by performing actions and seeing the results.
▶ Recap: In ??? we introduced rewards as parts of MDPs (Markov decision processes) to define

optimal policies.
▶ an optimal policy maximizes the expected total reward.
▶ Idea: The task of reinforcement learning is to use observed rewards to come up with an optimal

policy.
▶ In MDPs, the agent has total knowledge about the environment and the reward function, in

reinforcement learning we do not assume this. (; POMDPs+reward-learning)
▶ Example 1.6. You play a game without knowing the rules, and at some time the opponent shouts

“you lose!”

: 1008 2025-05-14

Scope and Forms of Reinforcement Learning

▶ Reinforcement Learning solves all of AI: An agent is placed in an environment and must learn to
behave successfully therein.
▶ KISS: We will only look at simple environments and simple agent designs:
▶ A utility-based agent learns a utility function on states and uses it to select actions that maximize the

expected outcome utility. (passive learning)
▶ A Q-learning agent learns an action-utility function, or Q-function, giving the expected utility of taking a

given action in a given state. (active learning)
▶ A reflex agent learns a policy that maps directly from states to actions.

: 1009 2025-05-14

29.2 Passive Learning

: 1009 2025-05-14

Passive Learning

▶ Definition 2.1 (To keep things simple). Agent uses a state-based representation in a fully
observable environment:
▶ In passive learning, the agent’s policy π is fixed: in state s, it always executes the action π(s).
▶ Its goal is simply to learn how good the policy is – that is, to learn the utility function Uπ(s).
▶ The passive learning task is similar to the policy evaluation task (part of the policy iteration

algorithm) but the agent does not know
▶ the transition model P(s ′ | s,a), which specifies the probability of reaching state s ′ from state s after doing

action a,
▶ the reward function R(s), which specifies the reward for each state.

: 1010 2025-05-14

Passive Learning by Example

▶ Example 2.2 (Passive Learning). We use the 4× 3 world introduced above

648 Chapter 17. Making Complex Decisions

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)

– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

Figure 17.2 (a) An optimal policy for the stochastic environment with R(s)= − 0.04 in
the nonterminal states. (b) Optimal policies for four different ranges of R(s).

and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward be-
cause it never enters a terminal state. Surprisingly, it turns out that there are six other optimal
policies for various ranges of R(s); Exercise 17.5 asks you to find them.

The careful balancing of risk and reward is a characteristic of MDPs that does not
arise in deterministic search problems; moreover, it is a characteristic of many real-world
decision problems. For this reason, MDPs have been studied in several fields, including
AI, operations research, economics, and control theory. Dozens of algorithms have been
proposed for calculating optimal policies. In sections 17.2 and 17.3 we describe two of the
most important algorithm families. First, however, we must complete our investigation of
utilities and policies for sequential decision problems.

17.1.1 Utilities over time

In the MDP example in Figure 17.1, the performance of the agent was measured by a sum of
rewards for the states visited. This choice of performance measure is not arbitrary, but it is
not the only possibility for the utility function on environment histories, which we write as
Uh([s0, s1, . . . , sn]). Our analysis draws on multiattribute utility theory (Section 16.4) and
is somewhat technical; the impatient reader may wish to skip to the next section.

The first question to answer is whether there is a finite horizon or an infinite horizonFINITE HORIZON

INFINITE HORIZON for decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus, Uh([s0, s1, . . . , sN+k])= Uh([s0, s1, . . . , sN])
for all k > 0. For example, suppose an agent starts at (3,1) in the 4× 3 world of Figure 17.1,
and suppose that N = 3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N = 100,
then there is plenty of time to take the safe route by going Left. So, with a finite horizon,

Section 17.1. Sequential Decision Problems 651

Remember that π∗
s is a policy, so it recommends an action for every state; its connection

with s in particular is that it’s an optimal policy when s is the starting state. A remarkable
consequence of using discounted utilities with infinite horizons is that the optimal policy is
independent of the starting state. (Of course, the action sequence won’t be independent;
remember that a policy is a function specifying an action for each state.) This fact seems
intuitively obvious: if policy π∗

a is optimal starting in a and policy π∗
b is optimal starting in b,

then, when they reach a third state c, there’s no good reason for them to disagree with each
other, or with π∗

c , about what to do next.2 So we can simply write π∗ for an optimal policy.
Given this definition, the true utility of a state is just Uπ∗

(s)—that is, the expected
sum of discounted rewards if the agent executes an optimal policy. We write this as U(s),
matching the notation used in Chapter 16 for the utility of an outcome. Notice that U(s) and
R(s) are quite different quantities; R(s) is the “short term” reward for being in s, whereas
U(s) is the “long term” total reward from s onward. Figure 17.3 shows the utilities for the
4× 3 world. Notice that the utilities are higher for states closer to the +1 exit, because fewer
steps are required to reach the exit.

1 2 3

1

2

3

–1

+ 1

4

0.611

0.812

0.655

0.762

0.918

0.705

0.660

0.868

 0.388

Figure 17.3 The utilities of the states in the 4 × 3 world, calculated with γ =1 and
R(s)= − 0.04 for nonterminal states.

The utility function U(s) allows the agent to select actions by using the principle of
maximum expected utility from Chapter 16—that is, choose the action that maximizes the
expected utility of the subsequent state:

π∗(s) = argmax
a∈A(s)

∑

s′
P (s′ | s, a)U(s′) . (17.4)

The next two sections describe algorithms for finding optimal policies.

2 Although this seems obvious, it does not hold for finite-horizon policies or for other ways of combining
rewards over time. The proof follows directly from the uniqueness of the utility function on states, as shown in
Section 17.2.

Optimal Policy π Utilities, given π

▶ The agent executes a set of trials in the environment using its policy π.
▶ In each trial, the agent starts in state (1,1) and experiences a sequence of state transitions until it

reaches one of the terminal states, (4,2) or (4,3).
▶ Its percepts supply both the current state and the reward received in that state.

: 1011 2025-05-14

Passive Learning by Example

▶ Example 2.3. Typical trials might look like this:
1. (1, 1)−0.4 ; (1, 2)−0.4 ; (1, 3)−0.4 ; (1, 2)−0.4 ; (1, 3)−0.4 ; (2, 3)−0.4 ; (3, 3)−0.4 ; (4, 3)+1

2. (1, 1)−0.4 ; (1, 2)−0.4 ; (1, 3)−0.4 ; (2, 3)−0.4 ; (3, 3)−0.4 ; (3, 2)−0.4 ; (3, 3)−0.4 ; (4, 3)+1

3. (1, 1)−0.4 ; (2, 1)−0.4 ; (3, 1)−0.4 ; (3, 2)−0.4 ; (4, 2)−1 .

▶ Definition 2.4. The utility is defined to be the expected sum of (discounted) rewards obtained if
policy π is followed.

Uπ(s):=E

[∞∑

t=0

γtR(St)

]

where R(s) is the reward for a state, St (a random variable) is the state reached at time t when
executing policy π, and S0 = s. (for 4× 3 we take the discount factor γ = 1)

: 1012 2025-05-14

Direct Utility Estimation

▶ A simple method for direct utility estimation was invented in the late 1950s in the area of adaptive
control theory.
▶ Definition 2.5. The utility of a state is the expected total reward from that state onward (called the

expected reward to go).
▶ Idea: Each trial provides a sample of the reward to go for each state visited.
▶ Example 2.6. The first trial in ??? provides a sample total reward of 0.72 for state (1,1), two

samples of 0.76 and 0.84 for (1,2), two samples of 0.80 and 0.88 for (1,3), . . .
▶ Definition 2.7. The direct utility estimation algorithm cycles over trials, calculates the reward to go

for each state, and updates the estimated utility for that state by keeping the running average for that
for each state in a table.
▶ Observation 2.8. In the limit, the sample average will converge to the true expectation (utility) from

???.
▶ Remark 2.9. Direct utility estimation is just supervised learning, where each example has the state as

input and the observed reward to go as output.
▶ Upshot: We have reduced reinforcement learning to an inductive learning problem.

: 1013 2025-05-14

Adaptive Dynamic Programming
▶ Problem: The utilities of states are not independent in direct utility estimation!
▶ The utility of each state equals its own reward plus the expected utility of its successor states.
▶ So: The utility values obey a Bellman equation for a fixed policy π.

Uπ(s) = R(s) + γ · (
∑

s′

P(s ′ | s,π(s)) · Uπ(s ′))

▶ Observation 2.10. By ignoring the connections between states, direct utility estimation misses
opportunities for learning.
▶ Example 2.11. Recall trial 2 in ???; state (3,3) is new.

2 (1, 1)−0.4 ; (1, 2)−0.4 ; (1, 3)−0.4 ; (2, 3)−0.4 ; (3, 3)−0.4 ; (3, 2)−0.4 ; (3, 3)−0.4 ; (4, 3)+1
▶ The next transition reaches (3,3), (known high utility from trial 1)
▶ Bellman equation: ; high Uπ(3, 2) because (3, 2)−0.4 ; (3, 3)
▶ But direct utility estimation learns nothing until the end of the trial.
▶ Intuition: Direct utility estimation searches for U in a hypothesis space that too large ⇝many

functions that violate the Bellman equations.
▶ Thus the algorithm often converges very slowly.

: 1014 2025-05-14

Adaptive Dynamic Programming

▶ Idea: Take advantage of the constraints among the utilities of states by
▶ learning the transition model that connects them,
▶ solving the corresponding Markov decision process using a dynamic programming method.

This means plugging the learned transition model P(s ′|s, π(s)) and the observed rewards R(s) into the
Bellman equations to calculate the utilities of the states.
▶ As above: These equations are linear (no maximization involved) (solve with any any linear algebra

package).
▶ Observation 2.12. Learning the model itself is easy, because the environment is fully observable.
▶ Corollary 2.13. We have a supervised learning task where the input is a state–action pair and the

output is the resulting state.
▶ In the simplest case, we can represent the transition model as a table of probabilities.
▶ Count how often each action outcome occurs and estimate the transition probability P(s ′ | s,a) from the

frequency with which s ′ is reached by action a in s.
▶ Example 2.14. In the 3 trials from ???, Right is executed 3 times in (1, 3) and 2 times the result is
(2, 3), so P((2, 3) | (1,3),Right) is estimated to be 2/3.

: 1015 2025-05-14

Passive ADP Learning Algorithm
▶ Definition 2.15. The passive ADP algorithm is given by

function PASSIVE−ADP−AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s ′ and reward signal r ′
persistent: π a fixed policy

mdp, an MDP with model P, rewards R, discount γ
U, a table of utilities, initially empty
Nsa, a table of frequencies for state−action pairs, initially zero
Ns′|sa, a table of outcome frequencies given state−action pairs, initially zero
s, a, the previous state and action, initially null

if s ′ is new then U[s ′] := r ′; R[s ′] := r ′

if s is not null then
increment Nsa[s, a] and Ns′|sa[s ′, s, a]
for each t such that Ns]|sa[t, s, a] is nonzero do

P(t|s, a) :=Ns′|sa[t, s, a]/Nsa[s, a]
U := POLICY−EVALUATION(π,mdp)
if s ′.TERMINAL? then s, a := null else s, a := s ′, π[s ′]
return a

POLICY−EVALUATION computes Uπ(s):=E [
∑∞

t=0 γ
tR(st)] in a MDP.

: 1016 2025-05-14

Passive ADP Convergence
▶ Example 2.16 (Passive ADP learning curves for the 4x3 world). Given the optimal policy from

???

utility estimates/trials error for U(1, 1): 20 runs of 100 trials
Note the large changes occurring around the 78th trial – this is the first time that the agent falls into
the -1 terminal state at (4,2).
▶ Observation 2.17. The ADP agent is limited only by its ability to learn the transition model.

(intractable for large state spaces)
▶ Example 2.18. In backgammon, roughly 1050 equations in 1050 unknowns.
▶ Idea: Use this as a baseline to compare passive learning algorithms

: 1017 2025-05-14

29.3 Active Reinforcement Learning

: 1017 2025-05-14

Active Reinforcement Learning

▶ Recap: A passive learning agent has a fixed policy that determines its behavior.
▶ An active agent must also decide what actions to take.
▶ Idea: Adapt the passive ADP algorithm to handle this new freedom.
▶ learn a complete model with outcome probabilities for all actions, rather than just the model for the fixed

policy. (use PASSIVE-ADP-AGENT)
▶ choose actions; the utilities to learn are defined by the optimal policy, they obey the Bellman equation:

U(s) = R(s) + γ · max
a∈A(s)

(
∑
s′

U(s ′) · P(s ′ | s,a))

▶ solve with value/policy iteration techniques from ???.
▶ choose a good action, e.g.
▶ by one-step lookahead to maximize expected utility, or
▶ if agent uses policy iteration and has optimal policy, execute that.

This agent/algorithm is greedy, since it only optimizes the next step!

: 1018 2025-05-14

Greedy ADP Learning (Evaluation)

▶ Example 3.1 (Greedy ADP learning curves for the 4x3 world).

average error/loss suboptimal policy involved
The agent follows the optimal policy for the learned model at each step.
▶ It does not learn the true utilities or the true optimal policy!
▶ instead, in the 39th trial, it finds a policy that reaches the +1 reward along the lower route via (2,1), (3,1),

(3,2), and (3,3).
▶ After experimenting with minor variations, from the 276th trial onward it sticks to that policy, never

learning the utilities of the other states and never finding the optimal route via (1,2), (1,3), and (2,3).

: 1019 2025-05-14

Exploration in Active Reinforcement Learning

▶ Observation 3.2. Greedy active ADP learning agents very seldom converge against the optimal
solution
▶ The learned model is not the same as the true environment,
▶ What is optimal in the learned model need not be in the true environment.
▶ What can be done? The agent does not know the true environment.
▶ Idea: Actions do more than provide rewards according to the learned model
▶ they also contribute to learning the true model by affecting the percepts received.
▶ By improving the model, the agent may reap greater rewards in the future.
▶ Observation 3.3. An agent must make a tradeoff between
▶ exploitation to maximize its reward as reflected in its current utility estimates and
▶ exploration to maximize its long term well-being.

Pure exploitation risks getting stuck in a rut. Pure exploration to improve one’s knowledge is of no use
if one never puts that knowledge into practice.
▶ Compare with the information gathering agent from ???.

: 1020 2025-05-14

Chapter 30
Knowledge in Learning

: 1020 2025-05-14

30.1 Logical Formulations of Learning

: 1020 2025-05-14

Knowledge in Learning: Motivation

▶ Recap: Learning from examples. (last chapter)
▶ Idea: Construct a function with the input/output behavior observed in data.
▶ Method: Search for suitable functions in the hypothesis space. (e.g. decision trees)
▶ Observation 1.1. Every learning task begins from zero. (except for the choice of hypothesis space)
▶ Problem: We have to forget everything before we can learn something new.
▶ Idea: Utilize prior knowledge about the world! (represented e.g. in logic)

: 1021 2025-05-14

A logical Formulation of Learning

▶ Recall: Examples are composed of descriptions (of the input sample) and classifications.
▶ Idea: Represent examples and hypotheses as logical formulae.
▶ Example 1.2. For attribute-based representations, we can use PL1: we use predicate constants for

Boolean attributes and classification and function constants for the other attributes.
▶ Definition 1.3. Logic based inductive learning tries to learn an hypothesis h that explains the

classifications of the examples given their description, i.e. h,D ⊨ C (the explanation constraint), where
▶ D is the conjunction of the descriptions, and
▶ C the conjunction of their classifications.
▶ Idea: We solve the explanation constraint h,D ⊨ C for h where h ranges over some hypothesis space.
▶ Refinement: Use Occam’s razor or additional constraints to avoid h = C. (too easy

otherwise/boring; see below)

: 1022 2025-05-14

A logical Formulation of Learning (Restaurant Examples)

▶ Example 1.4 (Restaurant Example again). Descriptions are conjunctions of literals built up from
▶ predicates Alt, Bar, Fri/Sat, Hun, Rain, and res
▶ equations about the functions Pat, Price, Type, and Est.
For instance the first example X 1 from ???, can be described as

Alt(X 1) ∧ ¬Bar(X 1) ∧ Fri/Sat(X 1) ∧Hun(X 1) ∧ . . .

The classification is given by the goal predicate WillWait, in this case WillWait(X 1) or
¬WillWait(X 1).

: 1023 2025-05-14

A logical Formulation of Learning (Restaurant Tree)

▶ Example 1.5 (Restaurant Example again; Tree). The induced decision tree from ???

: 1024 2025-05-14

A logical Formulation of Learning (Restaurant Tree)

▶ Example 1.6 (Restaurant Example again; Tree). The induced decision tree from ??? can be
represented as

∀r .WillWait(r) ⇔ Pat(r ,Some)
∨ Pat(r ,Full) ∧Hun(r) ∧ Type(r ,French)
∨ Pat(r ,Full) ∧Hun(r) ∧ Type(r ,Thai) ∧ Fri/Sat(r)
∨ Pat(r ,Full) ∧Hun(r) ∧ Type(r ,Burger)

Method: Construct a disjunction of all the paths from the root to the positive leaves interpreted as
conjunctions of the attributes on the path.
Note: The equivalence takes care of positive and negative examples.

: 1024 2025-05-14

Cumulative Development
▶ Example 1.7. Learning from very few examples using background knowledge:

1. Caveman Zog and the fish on a stick:

2. Generalizing from one Brazilian:
3. General rules about effectiveness of antibiotics:
▶ Observation: The methods/algorithms from ??? cannot replicate this. (why?)
▶ Missing Piece: The background knowledge!
▶ Problem: To use background knowledge, need a method to obtain it. (use learning)
▶ Question: How to use knowledge to learn more efficiently?
▶ Answer: Cumulative development: collect knowledge and use it in learning!

Observations
Logic based
inductive learning Hypotheses Predictions

Prior
Knowledge

▶ Definition 1.8. We call the body of knowledge accumulated by (a group of) agents their
background knowledge. It acts as prior knowledge in logic based learning processes.

: 1025 2025-05-14

Cumulative Development
▶ Example 1.9. Learning from very few examples using background knowledge:

1. Caveman Zog and the fish on a stick:
2. Generalizing from one Brazilian:

Upon meeting her first Brazilian – Fernando – who speaks Portugese, Sarah
▶ learns/generalizes that all Brazilians speak Portugese,
▶ but not that all Brazilians are called Fernando.

3. General rules about effectiveness of antibiotics:
▶ Observation: The methods/algorithms from ??? cannot replicate this. (why?)
▶ Missing Piece: The background knowledge!
▶ Problem: To use background knowledge, need a method to obtain it. (use learning)
▶ Question: How to use knowledge to learn more efficiently?
▶ Answer: Cumulative development: collect knowledge and use it in learning!

Observations
Logic based
inductive learning Hypotheses Predictions

Prior
Knowledge

▶ Definition 1.10. We call the body of knowledge accumulated by (a group of) agents their
background knowledge. It acts as prior knowledge in logic based learning processes.

: 1025 2025-05-14

Cumulative Development
▶ Example 1.11. Learning from very few examples using background knowledge:

1. Caveman Zog and the fish on a stick:
2. Generalizing from one Brazilian:
3. General rules about effectiveness of antibiotics:

When Sarah – gifted in diagnostics, but clueless in pharmacology – observes a doctor prescribing the
antibiotic Proxadone for an inflamed foot, she learns/infers that Proxadone is effective against this ailment.

▶ Observation: The methods/algorithms from ??? cannot replicate this. (why?)

▶ Missing Piece: The background knowledge!
▶ Problem: To use background knowledge, need a method to obtain it. (use learning)
▶ Question: How to use knowledge to learn more efficiently?
▶ Answer: Cumulative development: collect knowledge and use it in learning!

Observations
Logic based
inductive learning Hypotheses Predictions

Prior
Knowledge

▶ Definition 1.12. We call the body of knowledge accumulated by (a group of) agents their
background knowledge. It acts as prior knowledge in logic based learning processes.

: 1025 2025-05-14

Cumulative Development
▶ Example 1.13. Learning from very few examples using background knowledge:

1. Caveman Zog and the fish on a stick:
2. Generalizing from one Brazilian:
3. General rules about effectiveness of antibiotics:
▶ Observation: The methods/algorithms from ??? cannot replicate this. (why?)
▶ Missing Piece: The background knowledge!
▶ Problem: To use background knowledge, need a method to obtain it. (use learning)
▶ Question: How to use knowledge to learn more efficiently?

▶ Answer: Cumulative development: collect knowledge and use it in learning!

Observations
Logic based
inductive learning Hypotheses Predictions

Prior
Knowledge

▶ Definition 1.14. We call the body of knowledge accumulated by (a group of) agents their
background knowledge. It acts as prior knowledge in logic based learning processes.

: 1025 2025-05-14

Cumulative Development
▶ Example 1.15. Learning from very few examples using background knowledge:

1. Caveman Zog and the fish on a stick:
2. Generalizing from one Brazilian:
3. General rules about effectiveness of antibiotics:
▶ Observation: The methods/algorithms from ??? cannot replicate this. (why?)
▶ Missing Piece: The background knowledge!
▶ Problem: To use background knowledge, need a method to obtain it. (use learning)
▶ Question: How to use knowledge to learn more efficiently?
▶ Answer: Cumulative development: collect knowledge and use it in learning!

Observations
Logic based
inductive learning Hypotheses Predictions

Prior
Knowledge

▶ Definition 1.16. We call the body of knowledge accumulated by (a group of) agents their
background knowledge. It acts as prior knowledge in logic based learning processes.

: 1025 2025-05-14

Cumulative Development
▶ Example 1.17. Learning from very few examples using background knowledge:

1. Caveman Zog and the fish on a stick:
2. Generalizing from one Brazilian:
3. General rules about effectiveness of antibiotics:
▶ Observation: The methods/algorithms from ??? cannot replicate this. (why?)
▶ Missing Piece: The background knowledge!
▶ Problem: To use background knowledge, need a method to obtain it. (use learning)
▶ Question: How to use knowledge to learn more efficiently?
▶ Answer: Cumulative development: collect knowledge and use it in learning!

Observations
Logic based
inductive learning Hypotheses Predictions

Prior
Knowledge

▶ Definition 1.18. We call the body of knowledge accumulated by (a group of) agents their
background knowledge. It acts as prior knowledge in logic based learning processes.

: 1025 2025-05-14

Adding Background Knowledge to Learning: Overview

▶ Explanation based learning (EBL)
▶ Relevance based learning (RBL)
▶ Knowledge based inductive learning (KBIL)

: 1026 2025-05-14

Three Principal Modes of Inference

▶ Definition 1.19. Deduction =̂ knowledge extension

▶ Example 1.20.
rains⇒ wet_street rains

wet_street
D

▶ Definition 1.21. Abduction =̂ explanation

▶ Example 1.22.
rains⇒ wet_street wet_street

rains
A

▶ Definition 1.23. Induction =̂ learning general rules from examples

▶ Example 1.24.
wet_street rains

rains⇒ wet_street
I

: 1027 2025-05-14

Three Principal Modes of Inference

▶ Definition 1.25. Deduction =̂ knowledge extension

▶ Example 1.26.
rains⇒ wet_street rains

wet_street
D

▶ Definition 1.27. Abduction =̂ explanation

▶ Example 1.28.
rains⇒ wet_street wet_street

rains
A

▶ Definition 1.29. Induction =̂ learning general rules from examples

▶ Example 1.30.
wet_street rains

rains⇒ wet_street
I

: 1027 2025-05-14

Three Principal Modes of Inference

▶ Definition 1.31. Deduction =̂ knowledge extension

▶ Example 1.32.
rains⇒ wet_street rains

wet_street
D

▶ Definition 1.33. Abduction =̂ explanation

▶ Example 1.34.
rains⇒ wet_street wet_street

rains
A

▶ Definition 1.35. Induction =̂ learning general rules from examples

▶ Example 1.36.
wet_street rains

rains⇒ wet_street
I

: 1027 2025-05-14

30.2 Inductive Logic Programming

: 1027 2025-05-14

Knowledge-based Inductive Learning

▶ Idea: Background knowledge and new hypothesis combine to explain the examples.
▶ Example 2.1. Inferring disease D from the symptoms is not enough to explain the prescription of

medicine M.
Need a new general rule: “M is effective against D” (induction from example)
▶ Definition 2.2. Knowledge based inductive learning (KBIL) replaces the explanation constraint by

the KBIL constraint:

Background ∧ Hypothesis ∧ Descriptions ⊨ Classifications

: 1028 2025-05-14

Inductive Logic Programming

▶ Definition 2.3. Inductive logic programming (ILP) is logic based inductive learning method that uses
logic programming as a uniform representation for examples, background knowledge and hypotheses.
Given an encoding of the known background knowledge and a set of examples represented as a logical
knowledge base of facts, an ILP system will derive a hypothesised logic program which entails all the
positive and none of the negative examples.
▶ Main field of study for KBIL algorithms.
▶ Prior knowledge plays two key roles:

1. The effective hypothesis space is reduced to include only those theories that are consistent with what is
already known.

2. Prior knowledge can be used to reduce the size of the hypothesis explaining the observations.
▶ Smaller hypotheses are easier to find.

▶ Observation: ILP systems can formulate hypotheses in first-order logic.
; Can learn in environments not understood by simpler systems.

: 1029 2025-05-14

Inductive Logic Programming

▶ Combines inductive methods with the power of first-order representations.
▶ Offers a rigorous approach to the general KBIL problem.
▶ Offers complete algorithms for inducing general, first-order theories from examples.

: 1030 2025-05-14

30.2.1 An Example

: 1030 2025-05-14

ILP: An example

▶ General knowledge-based induction problem

Background ∧ Hypothesis ∧ Descriptions ⊨ Classifications

▶ Example 2.4 (Learning family relations from examples).
▶ Observations are an extended family tree
▶ mother, father and married relations
▶ male and female properties

▶ Target predicates: grandparent, BrotherInLaw, Ancestor
; The goal is to find a logical formula that serves as a definition of the target predicates
▶ equivalently: A Prolog program that computes the value of the target predicate
; We obtain a perfectly comprehensible hypothesis

: 1031 2025-05-14

British Royalty Family Tree (not quite not up to date)

▶ The facts about kinship and relations can be visualized as a family tree:

George Mum

Spencer Kydd

Diana Charles

William Harry

Elisabeth Philipp Margaret

Anne Mark Andrew Sarah Edward

Peter Zara Beatrice Eugenie

: 1032 2025-05-14

Example

▶ Descriptions include facts like
▶ father(Philip,Charles)
▶ mother(Mum,Margaret)
▶ married(Diana,Charles)
▶ male(Philip)
▶ female(Beatrice)
▶ Sentences in classifications depend on the target concept being learned (in the example: 12 positive,

388 negative)
▶ grandparent(Mum,Charles)
▶ ¬grandparent(Mum,Harry)

▶ Goal: Find a set of sentences for hypothesis such that the entailment constraint is satisfied.
▶ Example 2.5. Without background knowledge, define grandparent in terms of mother and father.

grandparent(x , y)⇔(∃z.mother(x , z)∧mother(z, y))∨(∃z.mother(x , z)∧father(z, y))∨. . .∨(∃z.father(x , z)∧father(z, y))

: 1033 2025-05-14

Why Attribute-based Learning Fails

▶ Observation: Decision tree learning will get nowhere!
▶ To express Grandparent as a (Boolean) attribute, pairs of people need to be objects

Grandparent(⟨Mum,Charles⟩).
▶ But then the example descriptions can not be represented

FirstElementIsMotherOfElizabeth(⟨Mum,Charles⟩)

▶ A large disjunction of specific cases without any hope of generalization to new examples.
▶ Generally: Attribute-based learning algorithms are incapable of learning relational predicates.

: 1034 2025-05-14

Background knowledge

▶ Observation: A little bit of background knowledge helps a lot.
▶ Example 2.6. If the background knowledge contains

parent(x , y)⇔mother(x , y) ∨ father(x , y)

then Grandparent can be reduced to

grandparent(x , y)⇔(∃z .parent(x , z) ∧ parent(z , y))

▶ Definition 2.7. A constructive induction algorithm creates new predicates to facilitate the expression
of explanatory hypotheses.
▶ Example 2.8. Use constructive induction to introduce a predicate parent to simplify the definitions

of the target predicates.

: 1035 2025-05-14

30.2.2 Top-Down Inductive Learning: FOIL

: 1035 2025-05-14

Top-Down Inductive Learning

▶ Bottom-up learning; e.g. Decision-tree learning: start from the observations and work backwards.
▶ Decision tree is gradually grown until it is consistent with the observations.
▶ Top-down learning method
▶ start from a general rule and specialize it on every example.

: 1036 2025-05-14

Top-Down Inductive Learning: FOIL

▶ Split positive and negative examples
▶ Positive: ⟨George,Anne⟩, ⟨Philip,Peter⟩, ⟨Spencer ,Harry⟩
▶ Negative: ⟨George,Elizabeth⟩, ⟨Harry ,Zara⟩, ⟨Charles,Philip⟩
▶ Construct a set of Horn clauses with head grandfather(x , y) such that the positive examples are

instances of the grandfather relationship.
▶ Start with a clause with an empty body ⇒grandfather(x , y).
▶ All examples are now classified as positive, so specialize to rule out the negative examples: Here are 3

potential additions:
1. father(x , y)⇒ grandfather(x , y)
2. parent(x , z)⇒ grandfather(x , y)
3. father(x , z)⇒ grandfather(x , y)

▶ The first one incorrectly classifies the 12 positive examples.
▶ The second one is incorrect on a larger part of the negative examples.
▶ Prefer the third clause and specialize to father(x , z) ∧ parent(z , y)⇒ grandfather(x , y).

: 1037 2025-05-14

FOIL

function Foil(examples,target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty
while examples contains positive examples do
clause := New−Clause(examples,target)
remove examples covered by clause from examples
add clause to clauses

return clauses

: 1038 2025-05-14

FOIL

function New−Clause(examples,target) returns a Horn clause
local variables: clause, a clause with target as head and an empty body

l , a literal to be added to the clause
extendedExamples, a set of examples with values for new variables

extendedExamples := examples
while extendedExamples contains negative examples do

l := Choose−Literal(New−Literals(clause),extendedExamples)
append l to the body of clause
extendedExamples := map Extend−Example over extendedExamples

return clause

function Extend−Example(example,literal) returns a new example
if example satisfies literal
then return the set of examples created by extending example with each

possible constant value for each new variable in literal
else return the empty set

function New−Literals(clause) returns a set of possibly ‘‘useful’’ literals
function Choose−Literal(literals) returns the ‘‘best’’ literal from literals

: 1039 2025-05-14

FOIL: Choosing Literals

▶ New-Literals: Takes a clause and constructs all possibly “useful” literals
▶ father(x , z)⇒ grandfather(x , y)
▶ Add literals using predicates
▶ Negated or unnegated
▶ Use any existing predicate (including the goal)
▶ Arguments must be variables
▶ Each literal must include at least one variable from an earlier literal or from the head of the clause
▶ Valid: Mother(z, u),Married(z, z), grandfather(v , x)
▶ Invalid: Married(u, v)

▶ Equality and inequality literals
▶ E.g. z ̸= x , empty list
▶ Arithmetic comparisons
▶ E.g. x > y , threshold values

: 1040 2025-05-14

FOIL: Choosing Literals

▶ The way New-Literal changes the clauses leads to a very large branching factor.
▶ Improve performance by using type information:
▶ E.g., parent(x , n) where x is a person and n is a number
▶ Choose-Literal uses a heuristic similar to information gain.
▶ Ockham’s razor to eliminate hypotheses.
▶ If the clause becomes longer than the total length of the positive examples that the clause explains, this

clause is not a valid hypothesis.
▶ Most impressive demonstration
▶ Learn the correct definition of list-processing functions in Prolog from a small set of examples, using

previously learned functions as background knowledge.

: 1041 2025-05-14

30.2.3 Inverse Resolution

: 1041 2025-05-14

Inverse Resolution

▶ Definition 2.9. Inverse resolution in a nutshell
▶ Classifications follows from Background ∧ Hypothesis ∧ Descriptions.
▶ This can be proven by resolution.
▶ Run the proof backwards to find hypothesis.

▶ Problem: How to run the resolution proof backwards?
▶ Recap: In ordinary resolution we take two clauses C1 = L ∨ R1 and C2 = ¬L ∨ R2 and resolve them

to produce the resolvent C = R1 ∨ R2.
▶ Idea: Two possible variants of inverse resolution:
▶ Take resolvent C and produce two clauses C1 and C2.
▶ Take C and C1 and produce C2.

: 1042 2025-05-14

Inverse Resolution

▶ Definition 2.10. Inverse resolution in a nutshell
▶ Classifications follows from Background ∧ Hypothesis ∧ Descriptions.
▶ This can be proven by resolution.
▶ Run the proof backwards to find hypothesis.
▶ Problem: How to run the resolution proof backwards?

▶ Recap: In ordinary resolution we take two clauses C1 = L ∨ R1 and C2 = ¬L ∨ R2 and resolve them
to produce the resolvent C = R1 ∨ R2.
▶ Idea: Two possible variants of inverse resolution:
▶ Take resolvent C and produce two clauses C1 and C2.
▶ Take C and C1 and produce C2.

: 1042 2025-05-14

Inverse Resolution

▶ Definition 2.11. Inverse resolution in a nutshell
▶ Classifications follows from Background ∧ Hypothesis ∧ Descriptions.
▶ This can be proven by resolution.
▶ Run the proof backwards to find hypothesis.
▶ Problem: How to run the resolution proof backwards?
▶ Recap: In ordinary resolution we take two clauses C1 = L ∨ R1 and C2 = ¬L ∨ R2 and resolve them

to produce the resolvent C = R1 ∨ R2.
▶ Idea: Two possible variants of inverse resolution:
▶ Take resolvent C and produce two clauses C1 and C2.
▶ Take C and C1 and produce C2.

: 1042 2025-05-14

Generating Inverse Proofs (Example)

1. Start with an example classified as both positive and negative (Need a contradiction)
2. Invent clauses that resolve with a fact in our knowledge base

¬parent(x , z) ∨ ¬parent(z , y) ∨ grandparent(x , y) parent(George,Elizabeth)

¬parent(Elizabeth, y) ∨ grandparent(George, y) parent(Elizabeth,Anne)

grandparent(George,Anne) ¬grandparent(George,Anne)

{}

[George/x],[Elisabeth/z]

[Anne/y]

¬parent(x , z) ∨ ¬parent(z , y) ∨ grandparent(x , y) is equivalent to
parent(x , z) ∧ parent(z , y)⇒ grandparent(x , y)

: 1043 2025-05-14

Generating Inverse Proofs

▶ Inverse resolution is a search algorithm: For any C and C1 there can be several or even an infinite
number of clauses C2.
▶ Example 2.12. Instead of parent(George,Elizabeth) there were numerous alternatives we could

have picked!
▶ The clauses C1 that participate in each step can be chosen from Background, Descriptions,

Classifications or from hypothesized clauses already generated.
▶ ILP needs restrictions to make the search manageable
▶ Eliminate function symbols
▶ Generate only the most specific hypotheses
▶ Use Horn clauses
▶ All hypothesized clauses must be consistent with each other
▶ Each hypothesized clause must agree with the observations

: 1044 2025-05-14

New Predicates and New Knowledge

▶ An inverse resolution procedure is a complete algorithm for learning first-order theories:
▶ If some unknown hypothesis generates a set of examples, then an inverse resolution procedure can generate

hypothesis from the examples.
▶ Can inverse resolution infer the law of gravity from examples of falling bodies?
▶ Yes, given suitable background mathematics!
▶ Monkey and typewriter problem: How to overcome the large branching factor and the lack of

structure in the search space?

: 1045 2025-05-14

New Predicates and New Knowledge

▶ Inverse resolution is capable of generating new predicates:
▶ Resolution of C1 and C2 into C eliminates a literal that C1 and C2 share.
▶ This literal might contain a predicate that does not appear in C .
▶ When working backwards, one possibility is to generate a new predicate from which to construct the

missing literal.

: 1046 2025-05-14

New Predicates and New Knowledge

▶ Example 2.13.

Father(George; y)⇒ P(x , y) P(George; y)⇒ Ancestor(George, y)

Father(George; y)⇒ Ancestor(George, y)

[George/x]

P can be used in later inverse resolution steps.
▶ Example 2.14. mother(x , y)⇒ P(x , y) or father(x , y)⇒ P(x , y) leading to the “Parent”

relationship.
▶ Inventing new predicates is important to reduce the size of the definition of the goal predicate.
▶ Some of the deepest revolutions in science come from the invention of new predicates. (e.g. Galileo’s

invention of acceleration)

: 1047 2025-05-14

Applications of ILP

▶ ILP systems have outperformed knowledge free methods in a number of domains.
▶ Molecular biology: the GOLEM system has been able to generate high-quality predictions of protein

structures and the therapeutic efficacy of various drugs.
▶ GOLEM is a completely general-purpose program that is able to make use of background knowledge

about any domain.

: 1048 2025-05-14

Part 3
Natural Language

: 1048 2025-05-14

Fascination of (Natural) Language

▶ Definition 2.15. A natural language is any form of spoken or signed means of communication that
has evolved naturally in humans through use and repetition without conscious planning or
premeditation.
▶ In other words: the language you use all day long, e.g. English, German, . . .
▶ Why Should we care about natural language?:
▶ Even more so than thinking, language is a skill that only humans have.
▶ It is a miracle that we can express complex thoughts in a sentence in a matter of seconds.
▶ It is no less miraculous that a child can learn tens of thousands of words and complex syntax in a matter of

a few years.

: 1049 2025-05-14

Natural Language and AI

▶ Without natural language capabilities (understanding and generation) no AI!
▶ Ca. 100.000 years ago, humans learned to speak, ca. 7.000 years ago, to write.
▶ Alan Turing based his test on natural language: (for good reason)
▶ We want AI agents to be able to communicate with humans.
▶ We want AI agents to be able to acquire knowledge from written documents.
▶ In this part, we analyze the problem with specific information-seeking tasks:
▶ Language models (Which strings are English/Spanish/etc.)
▶ Text classification (E.g. spam detection)
▶ Information retrieval (aka. Search Engines)
▶ Information extraction (finding objects and their relations in texts)

: 1050 2025-05-14

Chapter 31
Natural Language Processing

: 1050 2025-05-14

31.1 Introduction to NLP

: 1050 2025-05-14

What is Natural Language Processing?

▶ Generally: Studying of natural languages and development of systems that can use/generate these.
▶ Definition 1.1. Natural language processing (NLP) is an engineering field at the intersection of

computer science, AI, and linguistics which is concerned with the interactions between computers and
human (natural) languages. Most challenges in NLP involve:
▶ Natural language understanding (NLU) that is, enabling computers to derive meaning (representations)

from human or natural language input.
▶ Natural language generation (NLG) which aims at generating natural language or speech from meaning

representation.
▶ For communication with/among humans we need both NLU and NLG.

: 1051 2025-05-14

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.

▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)
▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)
▶ Observation: The earlier technologies largely rely on pattern matching, the latter ones need to

compute the meaning of the input utterances, e.g. for database lookups in information systems.

: 1052 2025-05-14

http://ask.com

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.
▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)

▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)
▶ Observation: The earlier technologies largely rely on pattern matching, the latter ones need to

compute the meaning of the input utterances, e.g. for database lookups in information systems.

: 1052 2025-05-14

http://ask.com

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.
▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)
▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

▶ Observation: The earlier technologies largely rely on pattern matching, the latter ones need to
compute the meaning of the input utterances, e.g. for database lookups in information systems.

: 1052 2025-05-14

http://ask.com

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.
▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)
▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)
▶ Observation: The earlier technologies largely rely on pattern matching, the latter ones need to

compute the meaning of the input utterances, e.g. for database lookups in information systems.

: 1052 2025-05-14

http://ask.com

31.2 Natural Language and its Meaning

: 1052 2025-05-14

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of semantics (of natural

language) in different ways.

▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; syllogisms.
▶ Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)
▶ Linguistics/Language Philosophy: We need semantics e.g. in translation

“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)
▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

: 1053 2025-05-14

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of semantics (of natural

language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; syllogisms.
▶ Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)
▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

: 1053 2025-05-14

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of semantics (of natural

language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; syllogisms.
▶ Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)
▶ Linguistics/Language Philosophy: We need semantics e.g. in translation

“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

: 1053 2025-05-14

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of semantics (of natural

language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; syllogisms.
▶ Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)
▶ Linguistics/Language Philosophy: We need semantics e.g. in translation

“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)
▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

: 1053 2025-05-14

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of semantics (of natural

language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; syllogisms.
▶ Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)
▶ Linguistics/Language Philosophy: We need semantics e.g. in translation

“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)
▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

: 1053 2025-05-14

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of semantics (of natural

language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; syllogisms.
▶ Frege/Russell ; sense vs. referent. (“Michael Kohlhase” vs. “Odysseus”)
▶ Linguistics/Language Philosophy: We need semantics e.g. in translation

“Der Geist ist willig aber das Fleisch ist schwach!” vs.
“Der Schnaps ist gut, aber der Braten ist verkocht!” (meaning counts)
▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental models)
▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).
▶ Logic@AI/CS tries to define meaning and compute with them. (applied semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

: 1053 2025-05-14

Meaning of Natural Language; e.g. Machine Translation

▶ Idea: Machine translation is very simple! (we have good lexica)
▶ Example 2.1. “Peter liebt Maria.” ; “Peter loves Mary.”
▶ this only works for simple examples!
▶ Example 2.2. “Wirf der Kuh das Heu über den Zaun.” ̸;“Throw the cow the hay over the fence.”

(differing grammar; Google Translate)
▶ Example 2.3. Grammar is not the only problem
▶ “Der Geist ist willig, aber das Fleisch ist schwach!”
▶ “Der Schnaps ist gut, aber der Braten ist verkocht!”

▶ Observation 2.4. We have to understand the meaning for high-quality translation!

: 1054 2025-05-14

https://goo.gl/4Wgqw5

Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to represent and

communicate information.
▶ But: What really counts is not the words themselves, but the meaning information they carry.

▶ Example 2.5 (Word Meaning).

“Newspaper” ;

▶ For questions/answers, it would be very useful to find out what words (sentences/texts) mean.
▶ Definition 2.6. Interpretation of natural language utterances: three problems

schema abstraction ambiguity composition

language
utterance

semantic
intepretation

: 1055 2025-05-14

Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to represent and

communicate information.
▶ But: What really counts is not the words themselves, but the meaning information they carry.
▶ Example 2.7 (Word Meaning).

“Newspaper” ;

▶ For questions/answers, it would be very useful to find out what words (sentences/texts) mean.

▶ Definition 2.8. Interpretation of natural language utterances: three problems
schema abstraction ambiguity composition

language
utterance

semantic
intepretation

: 1055 2025-05-14

Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to represent and

communicate information.
▶ But: What really counts is not the words themselves, but the meaning information they carry.
▶ Example 2.9 (Word Meaning).

“Newspaper” ;

▶ For questions/answers, it would be very useful to find out what words (sentences/texts) mean.
▶ Definition 2.10. Interpretation of natural language utterances: three problems

schema abstraction ambiguity composition

language
utterance

semantic
intepretation

: 1055 2025-05-14

Language and Information (Examples)

▶ Example 2.11 (Abstraction).

“Car” and “automobile” have the same meaning.

▶ Example 2.12 (Ambiguity).

A “bank” can be a financial institution or a geographical
feature.

▶ Example 2.13 (Composition).

“Every student sleeps” ; ∀x .student(x)⇒ sleep(x)

: 1056 2025-05-14

Language and Information (Examples)

▶ Example 2.14 (Abstraction).

“Car” and “automobile” have the same meaning.

▶ Example 2.15 (Ambiguity).

A “bank” can be a financial institution or a geographical
feature.

▶ Example 2.16 (Composition).

“Every student sleeps” ; ∀x .student(x)⇒ sleep(x)

: 1056 2025-05-14

Language and Information (Examples)

▶ Example 2.17 (Abstraction).

“Car” and “automobile” have the same meaning.

▶ Example 2.18 (Ambiguity).

A “bank” can be a financial institution or a geographical
feature.

▶ Example 2.19 (Composition).

“Every student sleeps” ; ∀x .student(x)⇒ sleep(x)

: 1056 2025-05-14

Context Contributes to the Meaning of NL Utterances

▶ Observation: Not all information conveyed is linguistically realized in an utterance.
▶ Example 2.20. “The lecture begins at 11:00 am.” What lecture? Today?
▶ Definition 2.21. We call a piece i of information linguistically realized in an utterance U, iff, we can

trace i to a fragment of U.
▶ Definition 2.22 (Possible Mechanism). Inferring the missing pieces from the context and world

knowledge:

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

We call this process semantic/pragmatic analysis.

: 1057 2025-05-14

Context Contributes to the Meaning of NL Utterances

▶ Example 2.23. “It starts at eleven.” What starts?
▶ Before we can resolve the time, we need to resolve the anaphor “ it”.
▶ Possible Mechanism: More Inference!

Utterance
semantic
potential

utterance-
specific
meaning

relevant
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

; Semantic/pragmatic analysis is quite complex! (prime topic of AI-2)

: 1058 2025-05-14

31.3 Looking at Natural Language

: 1058 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.1. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)

▶ “This is a blue diamond.” (|= diamond , |= blue)
▶ “This is a big diamond.” (|= diamond , ̸|= big)
▶ “This is a fake diamond.” (|= ¬diamond)
▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)
▶ “Mary knows that this is a diamond.” (|= diamond)
▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.2. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)
▶ “This is a blue diamond.” (|= diamond , |= blue)

▶ “This is a big diamond.” (|= diamond , ̸|= big)
▶ “This is a fake diamond.” (|= ¬diamond)
▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)
▶ “Mary knows that this is a diamond.” (|= diamond)
▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.3. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)
▶ “This is a blue diamond.” (|= diamond , |= blue)
▶ “This is a big diamond.” (|= diamond , ̸|= big)

▶ “This is a fake diamond.” (|= ¬diamond)
▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)
▶ “Mary knows that this is a diamond.” (|= diamond)
▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.4. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)
▶ “This is a blue diamond.” (|= diamond , |= blue)
▶ “This is a big diamond.” (|= diamond , ̸|= big)
▶ “This is a fake diamond.” (|= ¬diamond)

▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)
▶ “Mary knows that this is a diamond.” (|= diamond)
▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.5. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)
▶ “This is a blue diamond.” (|= diamond , |= blue)
▶ “This is a big diamond.” (|= diamond , ̸|= big)
▶ “This is a fake diamond.” (|= ¬diamond)
▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)

▶ “Mary knows that this is a diamond.” (|= diamond)
▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.6. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)
▶ “This is a blue diamond.” (|= diamond , |= blue)
▶ “This is a big diamond.” (|= diamond , ̸|= big)
▶ “This is a fake diamond.” (|= ¬diamond)
▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)
▶ “Mary knows that this is a diamond.” (|= diamond)

▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Fun with Diamonds (are they real?) [Davidson:tam67]

▶ Example 3.7. We study the truth conditions of adjectival complexes:
▶ “This is a diamond.” (|= diamond)
▶ “This is a blue diamond.” (|= diamond , |= blue)
▶ “This is a big diamond.” (|= diamond , ̸|= big)
▶ “This is a fake diamond.” (|= ¬diamond)
▶ “This is a fake blue diamond.” (|= blue?, |= diamond?)
▶ “Mary knows that this is a diamond.” (|= diamond)
▶ “Mary believes that this is a diamond.” (̸|= diamond)

: 1059 2025-05-14

Ambiguity: The dark side of Meaning

▶ Definition 3.8. We call an utterance ambiguous, iff it has multiple meanings, which we call readings.
▶ Example 3.9. All of the following sentences are ambiguous:
▶ “John went to the bank.” (river or financial?)

▶ “You should have seen the bull we got from the pope.” (three readings!)
▶ “I saw her duck.” (animal or action?)
▶ “John chased the gangster in the red sports car.” (three-way too!)

: 1060 2025-05-14

Ambiguity: The dark side of Meaning

▶ Definition 3.10. We call an utterance ambiguous, iff it has multiple meanings, which we call readings.
▶ Example 3.11. All of the following sentences are ambiguous:
▶ “John went to the bank.” (river or financial?)
▶ “You should have seen the bull we got from the pope.” (three readings!)

▶ “I saw her duck.” (animal or action?)
▶ “John chased the gangster in the red sports car.” (three-way too!)

: 1060 2025-05-14

Ambiguity: The dark side of Meaning

▶ Definition 3.12. We call an utterance ambiguous, iff it has multiple meanings, which we call readings.
▶ Example 3.13. All of the following sentences are ambiguous:
▶ “John went to the bank.” (river or financial?)
▶ “You should have seen the bull we got from the pope.” (three readings!)
▶ “I saw her duck.” (animal or action?)

▶ “John chased the gangster in the red sports car.” (three-way too!)

: 1060 2025-05-14

Ambiguity: The dark side of Meaning

▶ Definition 3.14. We call an utterance ambiguous, iff it has multiple meanings, which we call readings.
▶ Example 3.15. All of the following sentences are ambiguous:
▶ “John went to the bank.” (river or financial?)
▶ “You should have seen the bull we got from the pope.” (three readings!)
▶ “I saw her duck.” (animal or action?)
▶ “John chased the gangster in the red sports car.” (three-way too!)

: 1060 2025-05-14

Quantifiers, Scope and Context

▶ Example 3.16. “Every man loves a woman.” (Keira Knightley or his mother!)

▶ Example 3.17. “Every car has a radio.” (only one reading!)
▶ Example 3.18. “Some student in every course sleeps in every class at least some of the time.” (how

many readings?)
▶ Example 3.19. “The president of the US is having an affair with an intern.” (2002 or 2000?)
▶ Example 3.20. “Everyone is here.” (who is everyone?)

: 1061 2025-05-14

Quantifiers, Scope and Context

▶ Example 3.21. “Every man loves a woman.” (Keira Knightley or his mother!)
▶ Example 3.22. “Every car has a radio.” (only one reading!)

▶ Example 3.23. “Some student in every course sleeps in every class at least some of the time.” (how
many readings?)
▶ Example 3.24. “The president of the US is having an affair with an intern.” (2002 or 2000?)
▶ Example 3.25. “Everyone is here.” (who is everyone?)

: 1061 2025-05-14

Quantifiers, Scope and Context

▶ Example 3.26. “Every man loves a woman.” (Keira Knightley or his mother!)
▶ Example 3.27. “Every car has a radio.” (only one reading!)
▶ Example 3.28. “Some student in every course sleeps in every class at least some of the time.” (how

many readings?)

▶ Example 3.29. “The president of the US is having an affair with an intern.” (2002 or 2000?)
▶ Example 3.30. “Everyone is here.” (who is everyone?)

: 1061 2025-05-14

Quantifiers, Scope and Context

▶ Example 3.31. “Every man loves a woman.” (Keira Knightley or his mother!)
▶ Example 3.32. “Every car has a radio.” (only one reading!)
▶ Example 3.33. “Some student in every course sleeps in every class at least some of the time.” (how

many readings?)
▶ Example 3.34. “The president of the US is having an affair with an intern.” (2002 or 2000?)

▶ Example 3.35. “Everyone is here.” (who is everyone?)

: 1061 2025-05-14

Quantifiers, Scope and Context

▶ Example 3.36. “Every man loves a woman.” (Keira Knightley or his mother!)
▶ Example 3.37. “Every car has a radio.” (only one reading!)
▶ Example 3.38. “Some student in every course sleeps in every class at least some of the time.” (how

many readings?)
▶ Example 3.39. “The president of the US is having an affair with an intern.” (2002 or 2000?)
▶ Example 3.40. “Everyone is here.” (who is everyone?)

: 1061 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.41 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)

▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)
▶ “John likes Spiff. Peter does too.” (what to does Peter do?)
▶ “John loves his wife. Peter does too.” (whom does Peter love?)
▶ “John loves golf, and Mary too.” (who does what?)
▶ Definition 3.42. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends

upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.43. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.44. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential capabilities of the

hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.45 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)
▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)

▶ “John likes Spiff. Peter does too.” (what to does Peter do?)
▶ “John loves his wife. Peter does too.” (whom does Peter love?)
▶ “John loves golf, and Mary too.” (who does what?)
▶ Definition 3.46. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends

upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.47. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.48. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential capabilities of the

hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.49 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)
▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)
▶ “John likes Spiff. Peter does too.” (what to does Peter do?)

▶ “John loves his wife. Peter does too.” (whom does Peter love?)
▶ “John loves golf, and Mary too.” (who does what?)
▶ Definition 3.50. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends

upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.51. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.52. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential capabilities of the

hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.53 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)
▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)
▶ “John likes Spiff. Peter does too.” (what to does Peter do?)
▶ “John loves his wife. Peter does too.” (whom does Peter love?)

▶ “John loves golf, and Mary too.” (who does what?)
▶ Definition 3.54. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends

upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.55. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.56. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential capabilities of the

hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.57 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)
▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)
▶ “John likes Spiff. Peter does too.” (what to does Peter do?)
▶ “John loves his wife. Peter does too.” (whom does Peter love?)
▶ “John loves golf, and Mary too.” (who does what?)

▶ Definition 3.58. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends
upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.59. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.60. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential capabilities of the

hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.61 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)
▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)
▶ “John likes Spiff. Peter does too.” (what to does Peter do?)
▶ “John loves his wife. Peter does too.” (whom does Peter love?)
▶ “John loves golf, and Mary too.” (who does what?)
▶ Definition 3.62. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends

upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.63. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.64. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.

▶ Anaphora are another example, where natural languages use the inferential capabilities of the
hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

More Context: Anaphora – Challenge for Pragmatic Analysis
▶ Example 3.65 (Anaphoric References).
▶ “John is a bachelor. His wife is very nice.” (Uh, what?, who?)
▶ “John likes his dog Spiff even though he bites him sometimes.” (who bites?)
▶ “John likes Spiff. Peter does too.” (what to does Peter do?)
▶ “John loves his wife. Peter does too.” (whom does Peter love?)
▶ “John loves golf, and Mary too.” (who does what?)
▶ Definition 3.66. A word or phrase is called anaphoric (or an anaphor), if its interpretation depends

upon another phrase in context. In a narrower sense, an anaphor refers to an earlier phrase (its
antecedent), while a cataphor to a later one (its postcedent).
Definition 3.67. The process of determining the antecedent or postcedent of an anaphoric phrase is
called anaphor resolution.
Definition 3.68. An anaphoric connection between anaphor and its antecedent or postcedent is called
direct, iff it can be understood purely syntactically. An anaphoric connection is called indirect or a
bridging reference if additional knowledge is needed.
▶ Anaphora are another example, where natural languages use the inferential capabilities of the

hearer/reader to “shorten” utterances.
▶ Anaphora challenge pragmatic analysis, since they can only be resolved from the context using world

knowledge.

: 1062 2025-05-14

Context is Personal and Keeps Changing

▶ Example 3.69. Consider the following sentences involving definite description:
1. “The king of America is rich.” (true or false?)

2. “The king of America isn’t rich.” (false or true?)
3. “If America had a king, the king of America would be rich.” (true or false!)
4. “The king of Buganda is rich.” (Where is Buganda?)
5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.” (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add ““Buganda exists and is a monarchy” to our world knowledge
▶ We add “Joe Smith is the CEO of Westinghouse to the context/world knowledge” (happens all the time in

newpaper articles)

: 1063 2025-05-14

Context is Personal and Keeps Changing

▶ Example 3.70. Consider the following sentences involving definite description:
1. “The king of America is rich.” (true or false?)
2. “The king of America isn’t rich.” (false or true?)

3. “If America had a king, the king of America would be rich.” (true or false!)
4. “The king of Buganda is rich.” (Where is Buganda?)
5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.” (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add ““Buganda exists and is a monarchy” to our world knowledge
▶ We add “Joe Smith is the CEO of Westinghouse to the context/world knowledge” (happens all the time in

newpaper articles)

: 1063 2025-05-14

Context is Personal and Keeps Changing

▶ Example 3.71. Consider the following sentences involving definite description:
1. “The king of America is rich.” (true or false?)
2. “The king of America isn’t rich.” (false or true?)
3. “If America had a king, the king of America would be rich.” (true or false!)

4. “The king of Buganda is rich.” (Where is Buganda?)
5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.” (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add ““Buganda exists and is a monarchy” to our world knowledge
▶ We add “Joe Smith is the CEO of Westinghouse to the context/world knowledge” (happens all the time in

newpaper articles)

: 1063 2025-05-14

Context is Personal and Keeps Changing

▶ Example 3.72. Consider the following sentences involving definite description:
1. “The king of America is rich.” (true or false?)
2. “The king of America isn’t rich.” (false or true?)
3. “If America had a king, the king of America would be rich.” (true or false!)
4. “The king of Buganda is rich.” (Where is Buganda?)

5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.” (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add ““Buganda exists and is a monarchy” to our world knowledge
▶ We add “Joe Smith is the CEO of Westinghouse to the context/world knowledge” (happens all the time in

newpaper articles)

: 1063 2025-05-14

Context is Personal and Keeps Changing

▶ Example 3.73. Consider the following sentences involving definite description:
1. “The king of America is rich.” (true or false?)
2. “The king of America isn’t rich.” (false or true?)
3. “If America had a king, the king of America would be rich.” (true or false!)
4. “The king of Buganda is rich.” (Where is Buganda?)
5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.” (CEO=J.S.!)

How do the interact with your context and world knowledge?

▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add ““Buganda exists and is a monarchy” to our world knowledge
▶ We add “Joe Smith is the CEO of Westinghouse to the context/world knowledge” (happens all the time in

newpaper articles)

: 1063 2025-05-14

Context is Personal and Keeps Changing

▶ Example 3.74. Consider the following sentences involving definite description:
1. “The king of America is rich.” (true or false?)
2. “The king of America isn’t rich.” (false or true?)
3. “If America had a king, the king of America would be rich.” (true or false!)
4. “The king of Buganda is rich.” (Where is Buganda?)
5. “. . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.” (CEO=J.S.!)

How do the interact with your context and world knowledge?
▶ The interpretation or whether they make sense at all dep
▶ Note: Last two examples feed back into the context or even world knowledge:
▶ If 4. is uttered by an Africa expert, we add ““Buganda exists and is a monarchy” to our world knowledge
▶ We add “Joe Smith is the CEO of Westinghouse to the context/world knowledge” (happens all the time in

newpaper articles)

: 1063 2025-05-14

31.4 Language Models

: 1063 2025-05-14

Natural Languages vs. Formal Language

▶ Recap: A formal language is a set of strings.
▶ Example 4.1. Programming languages like Java or C++ are formal languages.

▶ Remark 4.2. Natural languages like English, German, or Spanish are not.
▶ Example 4.3. Let us look at concrete examples
▶ “Not to be invited is sad!” (definitely English)
▶ “To not be invited is sad!” (controversial)
▶ Idea: Let’s be lenient, instead of a hard set, use a probability distribution.
▶ Definition 4.4. A (statistical) language model is a probability distribution over sequences of

characters or words.
▶ Idea: Try to learn/derive language models from text corpora.
▶ Definition 4.5. A text corpus (or simply corpus; plural corpora) is a large and structured collection of

natural language texts called documents.
▶ Definition 4.6. In corpus linguistics, corpora are used to do statistical analysis and hypothesis

testing, checking occurrences or validating linguistic rules within a specific natural language.

: 1064 2025-05-14

N-gram Character Models

▶ Written text is composed of characters letters, digits, punctuation, and spaces.
▶ Idea: Let’s study language models for sequences of characters.
▶ As for Markov processes, we write P(c1:N) for the probability of a character sequence c1. . .cn of

length N.
▶ Definition 4.7. We call an character sequence of length n an n gram (unigram, bigram, trigram for
n = 1, 2, 3).
▶ Definition 4.8. An n gram model is a Markov process of order n − 1.
▶ Remark 4.9. For a trigram model, P(ci | c1:i−1) = P(ci | c(i−2),c(i−1)). Factoring with the chain rule

and then using the Markov property, we obtain

P(c1:N) =
N∏

i=1

P(ci | c1:i−1) =
N∏

i=1

P(ci | c(i−2),c(i−1))

▶ Thus, a trigram model for a language with 100 characters, P(ci |ci−2:i−1) has 1.000.000 entries. It
can be estimated from a corpus with 107 characters.

: 1065 2025-05-14

Applications of N-Gram Models of Character Sequences
▶ What can we do with N gram models?
▶ Definition 4.10. The problem of language identification is given a text, determine the natural

language it is written in.
▶ Remark 4.11. Current technology can classify even short texts like “Hello, world”, or “Wie geht es

Dir” correctly with more than 99% accuracy.
▶ One approach: Build a trigram language model P(ci |ci−2:i−1, ℓ) for each candidate language ℓ by

counting trigrams in a ℓ-corpus.
Apply Bayes’ rule and the Markov property to get the most likely language:

ℓ∗ = argmax
ℓ

(P(ℓ | c1:N))

= argmax
ℓ

(P(ℓ) · P(c1:N | ℓ))

= argmax
ℓ

(P(ℓ) · (
N∏

i=1

P(ci | ci−2:i−1,ℓ)))

The prior probability P(ℓ) can be estimated, it is not a critical factor, since the trigram language
models are extremely sensitive.

: 1066 2025-05-14

Other Applications of Character N-Gram Models

▶ Spelling correction is a direct application of a single-language language model: Estimate the
probability of a word and all off-by-one variants.
▶ Definition 4.12. Genre classification means deciding whether a text is a news story, a legal

document, a scientific article, etc.
▶ Remark 4.13. While many features help make this classification, counts of punctuation and other

character n-gram features go a long way [KesNunSch:adtg97].
▶ Definition 4.14. Named entity recognition (NER) is the task of finding names of things in a

document and deciding what class they belong to.
▶ Example 4.15. In “Mr. Sopersteen was prescribed aciphex.” NER should recognize that “Mr.

Sopersteen” is the name of a person and “aciphex” is the name of a drug.
▶ Remark 4.16. Character-level language models are good for this task because they can associate the

character sequence “ex ” with a drug name and “steen ” with a person name, and thereby identify
words that they have never seen before.

: 1067 2025-05-14

N-Grams over Word Sequences

▶ Idea: n gram models apply to word sequences as well.
▶ Problems: The method works identically, but

1. There are many more words than characters. (100 vs. 105 in Englisch)
2. And what is a word anyways? (space/punctuation-delimited substrings?)

3. Data sparsity: we do not have enough data! For a language model for 105 words in English, we have 1015

trigrams.
4. Most training corpora do not have all words.

: 1068 2025-05-14

Word N-Grams: Out-of-Vocab Words

▶ Definition 4.17. Out of vocabulary (OOV) words are unknown words that appear in the test corpus
but not training corpus.
▶ Remark 4.18. OOV words are usually content words such as names and locations which contain

information crucial to the success of NLP tasks.
▶ Idea: Model OOV words by

1. adding a new word token, e.g. <UNK> to the vocabulary,
2. in the training corpus, replacing the respective first occurrence of a previously unknown word by <UNK>,
3. counting n grams as usual, treating <UNK> as a regular word.

This trick can be refined if we have a word classifier, then use a new token per class, e.g. <EMAIL>
or <NUM>.

: 1069 2025-05-14

What can Word N-Gram Models do?
▶ Example 4.19 (Test n-grams). Build unigram, bigram, and trigram language models over the words

[RusNor:AIMA03], randomly sample sequences from the models.
1. Unigram: “ logical are as are confusion a may right tries agent goal the was . . . ”
2. Bigram: “systems are very similar computational approach would be represented . . . ”
3. Trigram: “planning and scheduling are integrated the success of naive bayes model . . . ”

▶ Clearly there are differences, how can we measure them to evaluate the models?

▶ Definition 4.20. The perplexity of a sequence c1:N is defined as

Perplexity(c1:N):=P(c1:N)
−(1

N)

▶ Intuition: The reciprocal of probability, normalized by sequence length.
▶ Example 4.21. For a language with n characters or words and a language model that predicts that

all are equally likely, the perplexity of any sequence is n.
If some characters or words are more likely than others, and the model reflects that, then the
perplexity of correct sequences will be less than n.
▶ Example 4.22. In ???, the perplexity was 891 for the unigram model, 142 for the bigram model and

91 for the trigram model.

: 1070 2025-05-14

What can Word N-Gram Models do?
▶ Example 4.23 (Test n-grams). Build unigram, bigram, and trigram language models over the words

[RusNor:AIMA03], randomly sample sequences from the models.
1. Unigram: “ logical are as are confusion a may right tries agent goal the was . . . ”
2. Bigram: “systems are very similar computational approach would be represented . . . ”
3. Trigram: “planning and scheduling are integrated the success of naive bayes model . . . ”

▶ Clearly there are differences, how can we measure them to evaluate the models?
▶ Definition 4.24. The perplexity of a sequence c1:N is defined as

Perplexity(c1:N):=P(c1:N)
−(1

N)

▶ Intuition: The reciprocal of probability, normalized by sequence length.
▶ Example 4.25. For a language with n characters or words and a language model that predicts that

all are equally likely, the perplexity of any sequence is n.
If some characters or words are more likely than others, and the model reflects that, then the
perplexity of correct sequences will be less than n.
▶ Example 4.26. In ???, the perplexity was 891 for the unigram model, 142 for the bigram model and

91 for the trigram model.

: 1070 2025-05-14

31.5 Part of Speech Tagging

: 1070 2025-05-14

Language Models and Generalization

▶ Recall: n-grams can predict that a word sequence like “a black cat” is more likely than “cat black a”.
(as trigram 1. appears 0.000014% in a corpus and 2. never)

▶ Native Speakers However: Will tell you that “a black cat” matches a familiar pattern:
article-adjective-noun, while “cat black a” does not!
▶ Example 5.1. Consider “the fulvous kitten” a native speaker reasons that it
▶ follows the determiner-adjective-noun pattern
▶ “fulvous” (=̂ brownish yellow) ends in “ous” ; adjective

So by generalization this is (probably) correct English.
▶ Observation: The order of syntactical categories of words plays a role in English!
▶ Problem: How can we compute them? (up next)

: 1071 2025-05-14

Part-of-Speech Tagging

▶ Definition 5.2. Part-of-speech tagging (also POS tagging, POST, or grammatical tagging) is the
process of marking up a word in corpus with tags (called POS tags) as corresponding to a particular
part of speech (a category of words with similar syntactic properties) based on both its definition and
its context.
▶ Example 5.3. A sentence tagged with POS tags from the Penn treebank: (see below)

From the start , it took a person with great qualities to succeed
IN DT NN , PRP VBD DT NN IN JJ NNS TO VB

1. “From” is tagged as a preposition (IN)
2. “the” as a determiner (DT)
3. . . .
▶ Observation: Even though POS tagging is uninteresting in its own right, it is useful as a first step in

many NLP tasks.
▶ Example 5.4. In text-to-speech synthesis, a POS tag of “noun” for “record” helps determine the

correct pronunciation (as opposed to the tag “verb”)

: 1072 2025-05-14

The Penn Treebank POS tags
▶ Example 5.5. The following 45 POS tags are used by the Penn treebank:

: 1073 2025-05-14

Computing Part of Speech Tags

▶ Idea: Treat the POS tags in a sentence as state variables C1:n in a HMM: the words are the evidence
variables W1:n, use prediction for POS tagging.
▶ The HMM is a generative model that
▶ starts in the tag predicted by the prior probability (usually IN) (problematic!)
▶ and then, for each step makes two choices:
▶ what word – e.g. “From” – should be emitted
▶ what state – e.g. DT – should come next

▶ This works, but there are problems
▶ the HMM does not consider context other than the current state (Markov property)
▶ it does not have any idea what the sentence is trying to convey
▶ Idea: Use the Viterbi algorithm to find the most probable sequence of hidden states (POS tags)
▶ POS taggers based on the Viterbi algorithm can reach an F1 score of up to 97%.

: 1074 2025-05-14

The Viterbi algorithm for POS tagging – Details

▶ We need a transition model P(Ct | Ct−1): the probability of one POS tag following another.
▶ Example 5.6. P(Ct = VB | Ct−1 = MD) = 0.8 means that given a modal verb (e.g. “would”) the

following word is a verb (e.g. “think”) with probability 0.8.
▶ Question: Where does the number 0.8 come from?
▶ Answer: From counts in the corpus – with appropriate smoothing!

There are 13124 instances of MD in the Penn treebank and 10471 are followed by a VB.
▶ For the sensor model P(Wt = would | Ct = MD) = 0.1 means that if we choose a modal verb, we

will choose “would” 10% of the time.
▶ These numbers also come from the corpus with appropriate smoothing.
▶ Limitations: HMM models only know about the transition and sensor models

In particular, we cannot take into account that e.g. words ending in “ous” are likely adjectives.
▶ We will see methods based on neural networks later.

: 1075 2025-05-14

31.6 Text Classification

: 1075 2025-05-14

Text Classification as a NLP Task

▶ Problem: Often we want to (ideally) automatically see who can best deal with a given document
(e.g. e-mails in customer service)
▶ Definition 6.1. Given a set of categories the task of deciding which one a given document belongs to

is called text classification or categorization.
▶ Example 6.2. Language identification and genre classification are examples of text classification.
▶ Example 6.3. Sentiment analysis – classifying a product review as positive or negative.
▶ Example 6.4. Spam detection – classifying an email message as spam or ham (i.e. non-spam).

: 1076 2025-05-14

Spam Detection
▶ Definition 6.5. Spam detection – classifying an email message as spam or ham (i.e. non-spam)
▶ General Idea: Use NLP/machine learning techniques to learn the categories.
▶ Example 6.6. We have lots of examples of spam/ham, e.g.

Spam (from my spam folder) Ham (in my inbox)
Wholesale Fashion Watches -57% today. De-
signer watches for cheap ...
You can buy ViagraFr$1.85 All Medications
at unbeatable prices! ...
WE CAN TREAT ANYTHING YOU SUF-
FER FROM JUST TRUST US ...
Sta.rt earn*ing the salary yo,u d-eserve by
o’btaining the prope,r crede’ntials!

The practical significance of hypertree width
in identifying more ...
Abstract: We will motivate the problem of
social identity clustering: ...
Good to see you my friend. Hey Peter, It
was good to hear from you. ...
PDS implies convexity of the resulting opti-
mization problem (Kernel Ridge ...

▶ Specifically: What are good features to classify e-mails by?
▶ n-grams like “for cheap” and “You can buy” indicate spam (but also occur in ham)
▶ character-level features: capitalization, punctuation (e.g. in “yo,u d-eserve”)

▶ Note: We have two complementary ways of talking about classification: (up next)
▶ using language models
▶ using machine learning

: 1077 2025-05-14

Spam Detection as Language Modeling

▶ Idea: Define two n-gram language models:
1. one for P(Message|spam) by training on the spam folder
2. one for P(Message|ham) by training on the inbox

Then we can classify a new message m with an application of Bayes’ rule:

argmax
c∈{spam,ham}

(P(c | m)) = argmax
c∈{spam,ham}

(P(m | c)P(c))

where P(c) is estimated just by counting the total number of spam and ham messages.
▶ This approach works well for spam detection, just as it did for language identification.

: 1078 2025-05-14

Classifier Success Measures: Precision, Recall, and F1 score
▶ We need a way to measure success in classification tasks.
▶ Definition 6.7. Let fC : S → B be a binary classifier for a class C ⊆ S , then we call a ∈ S with
fC (a) = T a false positive, iff a ̸∈ C and fC (a) = F a false negative, iff a ∈ C . False positives and
negatives are erros of fC . True positives and negatives occur when fC correctly indicates actual
membership in S .
▶ Definition 6.8. The precision of fC is defined as #(TP)

#(TP)+#(FP) and the recall is #(TP)
#(TP)+#(FN) , where

TP is the set of true positives and FN/FPthe sets of false negatives and false positives of fC .
▶ Intuitively these measure the rates of:
▶ true positives in class C . (precision high, iff few false positives)
▶ true positives in fC

−1(T). (recall high, iff few true positives forgotten, i.e. few false negatives)
▶ Definition 6.9. The F1 score combines precision and recall into a single number: (harmonic mean)

2
precision · recall

(precision + recall)

▶ Observation: Classifiers try to reach precision and recall ; F1 score of 1.
▶ if that is impossible, compromize on one ; Fβ score . (application-dependent)
▶ The Fβ score generalizes the F1 score by weighing the precision β times as important as recall.

: 1079 2025-05-14

31.7 Information Retrieval

: 1079 2025-05-14

Information Retrieval
▶
▶ Definition 7.1. An information need is an individual or group’s desire to locate and obtain

information to satisfy a conscious or unconscious need.
▶ Definition 7.2. An information object is medium that is mainly used for its information content.
▶ Definition 7.3. Information retrieval (IR) deals with the representation, organization, storage, and

maintenance of information objects that provide users with easy access to the relevant information and
satisfy their various information needs.
Observation (Hjørland 1997): Information need is closely related to relevance: If something is
relevant for a person in relation to a given task, we might say that the person needs the information
for that task.
▶ Definition 7.4. Relevance denotes how well an information object meets the information need of the

user. Relevance may include concerns such as timeliness, authority or novelty of the object.
▶ Observation: We normally come in contact with IR in the form of web search.
▶ Definition 7.5. Web search is a fully automatic process that responds to a user query by returning a

sorted document list relevant to the user requirements expressed in the query.
▶ Example 7.6. Google and Bing are web search engines, their query is a bag of words and

documents are web pages, PDFs, images, videos, shopping portals.

: 1080 2025-05-14

Vector Space Models for IR

▶ Idea: For web search, we usually represent documents and queries as bags of words over a fixed
vocabulary V . Given a query Q, we return all documents that are “similar”.
▶ Definition 7.7. Given a vocabulary (a list) V of words, a word w ∈ V , and a document d , then we

define the raw term frequency (often just called the term frequency) of w in d as the number of
occurrences of w in d .
▶ Definition 7.8. A multiset of words in V = {t1, . . ., tn} is called a bag of words (BOW), and can be

represented as a word frequency vectors in N|V |: the vector of raw word frequencies.
▶ Example 7.9. If we have two documents: d1 = “Have a good day!” and d2 = “Have a great day!”,

then we can use V = “Have”, “a”, “good”, “great”, “day” and can represent “good” as ⟨0, 0, 1, 0, 0⟩,
“great” as ⟨0, 0, 0, 1, 0⟩, and d1 a ⟨1, 1, 1, 0, 1⟩.
Words outside the vocabulary are ignored in the BOW approach. So the document
d3 = “What a day, a good day” is represented as ⟨0, 2, 1, 0, 2⟩.

: 1081 2025-05-14

Vector Space Models for IR

▶ Idea: Query and document are similar, iff the angle between their word frequency vectors is small.

term 1

term 2

term 3

D1(t1,1, t1,2, t1,3)

D2(t2,1, t2,2, t2,3)

▶ Lemma 7.10 (Euclidean Dot Product Formula). A·B = ∥A∥2 ∥B∥2 cos θ, where θ is the angle
between A and B.
▶ Definition 7.11. The cosine similarity of A and B is cos θ = A·B

∥A∥2∥B∥2
.

: 1082 2025-05-14

TF-IDF: Term Frequency/Inverse Document Frequency

▶ Problem: Word frequency vectors treat all the words equally.
▶ Example 7.12. In an query “the brown cow”, the “the” is less important than “brown cow”. (because

“the” is less specific)
▶ Idea: Introduce a weighting factor for the word frequency vector that de-emphasizes the dimension

of the more (globally) frequent words.
▶ We need to normalize the word frequency vectors first:

▶ Definition 7.13. Given a document d and a vocabulary word t ∈ V , the normalized term frequency
(confusingly often called just term frequency) tf(t, d) is the raw term frequency divided by |d |.
▶ Definition 7.14. Given a document collection D = {d1, . . ., dN} and a word t the inverse document

frequency is given by idf(t,D) := log10(
N

|{d∈D | t∈d}|).

▶ Definition 7.15. We define tfidf(t, d ,D):=tf(t, d) · idf(t,D).
▶ Idea: Use the tfidf-vector with cosine similarity for information retrieval instead.
▶ Definition 7.16. Let D be a document collection with vocabulary V = {t1, . . ., t |V |}, then the

tfidf-vector tfidf(d ,D) ∈ N|V | is defined by tfidf(d ,D)i := tfidf(t i , d ,D).

: 1083 2025-05-14

TF-IDF Example

▶ Let D := {d1, d2} be a document corpus over the vocabulary

V = {“this ′′, “is ′′, “a′′, “sample′′, “another ′′, “example′′}

with word frequency vectors ⟨1, 1, 1, 2, 0, 0⟩ and ⟨1, 1, 0, 0, 2, 3⟩.
▶ Then we compute for the word “this”
▶ tf(“this ′′, d1) =

1
5 = 0.2 and tf(“this ′′, d2) =

1
7 ≊ 0.14,

▶ idf is constant over D, we have idf(“this ′′,D) = log10(
2
2) = 0,

▶ thus tfidf(“this ′′, d1,D) = 0 = tfidf(“this ′′, d2,D). (“this” occurs in both)

▶ The word “example” is more interesting, since it occurs only in d2 (thrice)
▶ tf(“example′′, d1) =

0
5 = 0 and tf(“example′′, d2) =

3
7 ≊ 0.429.

▶ idf(“example′′,D) = log10(
2
1) ≊ 0.301,

▶ thus tfidf(“example′′, d1,D) = 0 · 0.301 = 0 and tfidf(“example′′, d2,D) ≊ 0.429 · 0.301 = 0.129.

: 1084 2025-05-14

Ranking Search Hits: e.g. Google’s Page Rank
▶ Problem: There are many hits, need to sort them (e.g. by importance)
▶ Idea: A web site is important, . . . if many other hyperlink to it.

▶ Refinement: . . . , if many important web pages hyperlink to it.
▶ Definition 7.17. Let A be a web page that is hyperlinked from web pages S1, . . . ,Sn, then the page

rank PR of A is defined as

PR(A) = 1− d + d

(
PR(S1)

C (S1)
+ · · ·+ PR(Sn)

C (Sn)

)

where C (W) is the number of links in a page W and d = 0.85.
▶ Remark 7.18. PR(A) is the probability of reaching A by random browsing.

: 1085 2025-05-14

31.8 Information Extraction

: 1085 2025-05-14

Information Extraction

▶ Definition 8.1. Information extraction is the process of acquiring information by skimming a text
and looking for occurrences of a particular class of object and for relationships among objects.
▶ Example 8.2. Extracting instances of addresses from web pages, with attributes for street, city,

state, and zip code;
▶ Example 8.3. Extracting instances of storms from weather reports, with attributes for temperature,

wind speed, and precipitation.
▶ Observation: In a limited domain, this can be done with high accuracy.

: 1086 2025-05-14

Attribute-Based Information Extraction
▶ Definition 8.4. In attribute-based information extraction we assume that the text refers to a single

object and the task is to extract a factored representation.
▶ Example 8.5 (Computer Prices). Extracting from the text “IBM ThinkBook 970. Our price:

$399.00” the attribute-based representation
{Manufacturer=IBM, Model=ThinkBook970,Price=$399.00}.
▶ Idea: Try a template-based approach for each attribute.
▶ Definition 8.6. A template is a finite automaton that recognizes the information to be extracted.

The template often consists of three sub-automata per attribute: the prefix pattern followed by the
target pattern (it matches the attribute value) and the postfix pattern.
▶ Example 8.7 (Extracing Prices with Regular Expressions).

When we want to extract computer price information, we could use regular expressions for the
automata, concretely, the
▶ prefix pattern: .∗price[:]?
▶ target pattern: [$][0−9]+([.][0−9][0−9])?
▶ postfix pattern: + shipping|
▶ Alternative: take all the target matches and choose among them.
▶ Example 8.8. For “List price $99.00, special sale price $78.00, shipping $3.00.” take the lowest price

that is within 50% of the highest price. ; “$78.00”

: 1087 2025-05-14

Relational Information Extraction
▶ Question: Can we also do structured representations?
▶ Answer: That is the next step up from attribute-based information extraction.
▶ Definition 8.9. The task of a relational extraction system is to extract multiple objects and the

relationships among them from a text.
▶ Example 8.10. When these systems see the text “$249.99,” they need to determine not just that it is

a price, but also which object has that price.
▶ Example 8.11. FASTUS is a typical relational extraction system, which handles news stories about

corporate mergers and acquisitions. It can read the story
Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan with a local concern and
a Japanese trading house to produce golf clubs to be shipped to Japan.

and extract the relations:

e ∈ JointVentures ∧ Product(e, ”golfclubs) ∧ Date(e, ”Friday”)

Member(e, ”BridgestoneSportsCo”) ∧Member(e, ”alocalconcern”)

Member(e, ”aJapanesetradinghouse”)

: 1088 2025-05-14

Advertisement: Logic-Based Natural Language Semantics

▶ Advanced Course: “Logic-Based Natural Language Semantics” (next semester)
▶ Wed. 10:15-11:50 and Thu 12:15-13:50 (expected: ≤ 10 Students)

▶ Contents: (Alternating Lectures and hands-on Lab Sessions)
▶ Foundations of Natural Language Semantics (NLS)
▶ Montague’s Method of Fragments (Grammar, Semantics Constr., Logic)
▶ Implementing Fragments in GLF (Grammatical Framework and MMT)
▶ Inference Systems for Natural Language Pragmatics (tableau machine)
▶ Advanced logical systems for NLS (modal, higher-order, dynamic Logics)
▶ Grading: Attendance & Wakefulness, Project/Homework, Oral Exam.
▶ Course Intent: Groom students for bachelor/master theses and as KWARC research assistants.

: 1089 2025-05-14

Chapter 32
Deep Learning for NLP

: 1089 2025-05-14

Deep Learning for NLP: Agenda

▶ Observation: Symbolic and statistical systems have demonstrated success on many NLP tasks, but
their performance is limited by the endless complexity of natural language.
▶ Idea: Given the vast amount of text in machine-readable form, can data-driven machine-learning

base approaches do better?
▶ In this chapter, we explore this idea, using – and extending – the methods from ???.
▶ Overview:

1. Word embeddings
2. Recurrent neural networks for NLP
3. Sequence-to-sequence models
4. Transformer Architecture
5. Pretraining and transfer learning.

: 1090 2025-05-14

32.1 Word Embeddings

: 1090 2025-05-14

Word Embeddings

▶ Problem: For ML methods in NLP, we need numerical data. (not words)
▶ Idea: Embed words or word sequences into real vector spaces.
▶ Definition 1.1. A word embedding is a mapping from words in context into a real vector space Rn

used for natural language processing.
▶ Definition 1.2. A vector is called one hot, iff all components are 0 except for one 1. We call a word

embedding one hot, iff all of its vectors are.
One hot word embeddings are rarely used for actual tasks, but often used as a starting point for better
word embeddings.
▶ Example 1.3 (Vector Space Methods in Information Retrieval).

Word frequency vectors are induced by adding up one hot word embeddings.
▶ Example 1.4. Given a corpus D – the context – the tf idf word embedding is given by

tfidf(t, d ,D):=tf(t, d) · log10(
|D|

|{d∈D | t∈d}|), where tf(t, d) is the term frequency of word t in
document d .
▶ Intuition behind these two: Words that occur in similar documents are similar.

: 1091 2025-05-14

Word2Vec
Idea: Use feature extraction to map words to vectors in RN :
Train a neural network on a “dummy task”, throw away the output layer, use the previous layer’s output
(of size N) as the word embedding
First Attempt: Dimensionality Reduction: Train to predict the original one hot vector:
▶ For a vocabulary size V , train a network with a single hidden layer; i.e. three layers of sizes
(V ,N,V). The first two layers will compute our embeddings.
▶ Feed the one hot encoded input word into the network, and train it on the one hot vector itself, using

a softmax activation function at the output layer. (softmax normalizes a vector into a probability
distribution)

: 1092 2025-05-14

Word2Vec: The Continuous Bag Of Words (CBOW) Algorithm

Distributional Semantics: “a word is characterized by the company it keeps”.

Better Idea: Predict a word from its context:
▶ For a context window size n, take all sequences of 2n + 1

words in our corpus (e.g. the brown cow jumps over the
moon for n = 3) as training data. We call the word at the
center (jumps) the target word, and the remaining words
the context words.
▶ For every such sentence, pass all context words (one-hot

encoded) through the first layer of the network, yielding 2n
vectors.
▶ Pass their average into the output layer (average pooling

layer) with a softmax activation function, and train the
network to predict the target word. (sum pooling also
works)

: 1093 2025-05-14

Properties
Vector embeddings like CBOW have interesting properties:
▶ Similarity: Using e.g. cosine similarity (A · B · cos(θ)) to compare vectors, we can find words with

similar meanings.
▶ Semantic and syntactic relationships emerge as arithmetic relations:

king −man + woman ≈ queen

germany − country + capitol ≈ berlin

: 1094 2025-05-14

Common Word Embeddings

▶ Observation: Word embeddings are crucial as first steps in any NN-based NLP methods.
▶ In practice it is often sufficient to use generic, pretrained word embeddings
▶ Definition 1.5. Common pretrained – i.e. trained for generic NLP applications word embeddings

include
▶ Word2vec: the original system that established the concept (see above)
▶ GloVe (Global Vectors)
▶ fastText (embeddings for 157 languages)
▶ But we can also train our own word embedding (together with main task) (up next)

: 1095 2025-05-14

Learning POS tags and Word embeddings simultaneously

Specific word embeddings are trained on a carefully selected corpus and tend to emphasize the
characteristics of the task.
Example 1.6. POS tagging – even though simple – is a good but non-trivial example.
Recall that many words can have multiple POS tags, e.g. “cut” can be
▶ a present tense verb (transitive or intransitive)
▶ a past tense verb
▶ a infinitive verb
▶ a past participle
▶ an adjective
▶ a noun.
If a nearby temporal adverb refers to the past ; this occurrence may be a past tense verb.

Note: CBOW treats all context words identically reagrdless of order, but in POS tagging the exact
positions of the words matter.

: 1096 2025-05-14

POS/Embedding Network
Idea: Start with a random (or pretrained) embedding of the words in the corpus and just concatenate
them over some context window sizeFigure 24.3

Feedforward part-of-speech tagging model. This model takes a 5-word window as input and
predicts the tag of the word in the middle—here, cut. The model is able to account for word
position because each of the 5 input embeddings is multiplied by a different part of the first
hidden layer. The parameter values for the word embeddings and for the three layers are all
learned simultaneously during training.

7. To encode a sequence of words into an input vector, simply look up the

embedding for each word and concatenate the embedding vectors. The result is a

real-valued input vector of length . Even though a given word will have the

same embedding vector whether it occurs in the first position, the last, or

somewhere in between, each embedding will be multiplied by a different part of the

first hidden layer; therefore we are implicitly encoding the relative position of each

word.

8. Train the weights and the other weight matrices , , and using gradient

descent. If all goes well, the middle word, cut, will be labeled as a past-tense verb,

based on the evidence in the window, which includes the temporal past word

“yesterday,” the third-person subject pronoun “they” immediately before cut, and so

on.

An alternative to word embeddings is a character-level model in which the input is a

sequence of characters, each encoded as a one-hot vector. Such a model has to learn how

▶ Layer 1 has (in this case) 5 · N inputs, Output layer is one hot over POS classes.
▶ The embedding layers treat all words the same, but the first hidden layer will treat them differently

depending on the position.
▶ The embeddings will be finetuned for the POS task during training.
Note: Better positional encoding techniques exist (e.g. sinusoidal), but for fixed small context window
sizes, this works well.

: 1097 2025-05-14

32.2 Recurrent Neural Networks

: 1097 2025-05-14

Recurrent Neural Networks in NLP

▶ word embeddings give a good representation of words in isolation.
▶ But natural language of word sequences ⇝surrounding words provide context!
▶ For simple tasks like POS tagging, a fixed-size window of e.g. 5 words is sufficient.
▶ Observation: For advanced tasks like question answering we need more context!
▶ Example 2.1. In the sentence “Eduardo told me that Miguel was very sick so I took him to the

hospital”, the pronouns “him” refers to “Miguel” and not “Eduardo”. (14 words of context)
▶ Observation: Language models with n-grams or n-word feed-forward networks have problems:

Either the context is too small or the model has too many parameters! (or both)
▶ Observation: Feed-forward networks N also have the problem of asymmetry: whatever N learns

about a word w at position n, it has to relearn about w at position m ̸= n.
▶ Idea: What about recurrent neural networks – nets with cycles? (up next)

: 1098 2025-05-14

RNNs for Time Series
▶ Idea: RNNs – neural networks with cycles – have memory
; use that for more context in neural NLP.
▶ Example 2.2 (A simple RNN).

It has an input layer x, a hidden layer z with recurrent
connections and delay ∆, and an output layer y as
shown on the right.
Defining Equations for time step t:

zt = gz(Wz,zzt−1 + Wx,zxt)
yt = gy(Wz,yzt)

where gz and gy are the activation functions for the
hidden and output layers.

(a) Schematic diagram of an RNN where the hidden layer has recurrent connections; the symbol
indicates a delay. Each input is the word embedding vector of the next word in the sentence. Each
output is the output for that time step. (b) The same network unrolled over three timesteps to create a
feedforward network. Note that the weights are shared across all timesteps.

In an RNN language model each input word is encoded as a word embedding vector, .

There is a hidden layer which gets passed as input from one time step to the next. We are

interested in doing multiclass classification: the classes are the words of the vocabulary.

Thus the output will be a softmax probability distribution over the possible values of the

next word in the sentence.

The RNN architecture solves the problem of too many parameters. The number of

parameters in the weight matrixes , , and stays constant, regardless of the number

of words—it is . This is in contrast to feedforward networks, which have

parameters, and -gram models, which have parameters, where is the size of the

vocabulary.

The RNN architecture also solves the problem of asymmetry, because the weights are the

same for every word position.

The RNN architecture can sometimes solve the limited context problem as well. In theory

there is no limit to how far back in the input the model can look. Each update of the hidden

layer has access to both the current input word and the previous hidden layer ,

which means that information about any word in the input can be kept in the hidden layer

indefinitely, copied over (or modified as appropriate) from one time step to the next. Of

course, there is a limited amount of storage in , so it can’t remember everything about all

the previous words.

▶ Intuition: RNNs are a bit like HMMs and dynamic Bayesian Networks:
They make a Markov assumption: the hidden state z suffices to capture the input from all previous
inputs.
▶ Side Benefit: RNNs solve the asymmetry problem ⇝, the Wz,z are the same at every step.

: 1099 2025-05-14

Training RNNs for NLP

▶ Idea: For training, unroll a RNN into a feed-forward network ; back-propagation.
▶ Example 2.3. The RNN from ?? unrolled three times.

(a) Schematic diagram of an RNN where the hidden layer has recurrent connections; the symbol
indicates a delay. Each input is the word embedding vector of the next word in the sentence. Each
output is the output for that time step. (b) The same network unrolled over three timesteps to create a
feedforward network. Note that the weights are shared across all timesteps.

In an RNN language model each input word is encoded as a word embedding vector, .

There is a hidden layer which gets passed as input from one time step to the next. We are

interested in doing multiclass classification: the classes are the words of the vocabulary.

Thus the output will be a softmax probability distribution over the possible values of the

next word in the sentence.

The RNN architecture solves the problem of too many parameters. The number of

parameters in the weight matrixes , , and stays constant, regardless of the number

of words—it is . This is in contrast to feedforward networks, which have

parameters, and -gram models, which have parameters, where is the size of the

vocabulary.

The RNN architecture also solves the problem of asymmetry, because the weights are the

same for every word position.

The RNN architecture can sometimes solve the limited context problem as well. In theory

there is no limit to how far back in the input the model can look. Each update of the hidden

layer has access to both the current input word and the previous hidden layer ,

which means that information about any word in the input can be kept in the hidden layer

indefinitely, copied over (or modified as appropriate) from one time step to the next. Of

course, there is a limited amount of storage in , so it can’t remember everything about all

the previous words.

Problem: The weight matrices Wx,z, Wz,z, and Wz,y are shared over all time slides.
▶ Definition 2.4. The back-propagation through time algorithm carefully maintains the identity of

Wz,z over all steps

: 1100 2025-05-14

Bidirectional RNN for more Context
▶ Observation: RNNs only take left context – i.e. words before – into account, but we may also need

right context – the words after.
▶ Example 2.5. For “Eduardo told me that Miguel was very sick so I took him to the hospital” the

pronoun “him” resolves to “Miguel” with high probability.
If the sentence ended with “to see Miguel”, then it should be “Eduardo”.
▶ Definition 2.6. A bidirectional RNN concatenates a separate right-to-left model onto a left-to-right

model
▶ Example 2.7. Bidirectional RNNs can be used for POS tagging, extending the network from ???

POS tagger the output will be a softmax distribution over POS tags, and for coreference

resolution it will be a softmax distribution over the posible antecedents. For example, when

the network gets to the input him in “Eduardo told me that Miguel was very sick so I took him to

the hospital” it should output a high probability for “Miguel.”

Training an RNN to do classification like this is done the same way as with the language

model. The only difference is that the training data will require labels—part of speech tags or

reference indications. That makes it much harder to collect the data than for the case of a

language model, where unlabelled text is all we need.

In a language model we want to predict the th word given the previous words. But for

classification, there is no reason we should limit ourselves to looking at only the previous

words. It can be very helpful to look ahead in the sentence. In our coreference example, the

referent him would be different if the sentence concluded “to see Miguel” rather than “to the

hospital,” so looking ahead is crucial. We know from eye-tracking experiments that human

readers do not go strictly left-to-right.

To capture the context on the right, we can use a bidirectional RNN, which concatenates a

separate right-to-left model onto the left-to-right model. An example of using a bidirectional

RNN for POS tagging is shown in Figure 24.5 .

Figure 24.5

: 1101 2025-05-14

Long Short-Term Memory RNNs

▶ Problem: When training a vanilla RNN using back-propagation through time, the long-term
gradients which are back-propagated can “vanish” – tend to zero – or “explode” – tend to infinity.
▶ Definition 2.8. LSTMs provide a short-term memory for RNN that can last thousands of time steps,

thus the name “long short-term memory”. A LSTM can learn when to remember and when to forget
pertinent information,
▶ Example 2.9. In NLP LSTMs can learn grammatical dependencies.

An LSTM might process the sentence “Dave, as a result of his controversial claims, is now a pariah”
by
▶ remembering the (statistically likely) grammatical gender and number of the subject “Dave”,
▶ note that this information is pertinent for the pronoun “his” and
▶ note that this information is no longer important after the verb “ is”.

: 1102 2025-05-14

LSTM: Idea

Introduce a memory vector c in addition to the recurrent (short-term memory) vector z
▶ c is essentially copied from the previous time step, but can be modified by the forget gate f , the

input gate i , and the output gate o.
▶ the forget gate f decides which components of c to retain or discard
▶ the input gate i decides which components of the current input to add to c (additive, not

multiplicative ; no vanishing gradients)
▶ the output gate o decides which components of c to output as z

: 1103 2025-05-14

32.3 Sequence-to-Sequence Models

: 1103 2025-05-14

Neural Machine Translation

▶ Question: Machine translation (MT) is an important task in NLP, can we do it with neural
networks?
▶ Observation: If there were a one-to-one correspondence between source words and target words MT

would be a simple tagging task. But
▶ the three Spanish words “caballo de mar” translate to the English “seahorse” and
▶ the two Spanish words “perro grande” translate to English as “big dog”.
▶ in English, the subject is usually first and in Fijian last.
▶ Idea: For MT, generate one word at a time, but keep track of the context, so that
▶ we can remember parts of the source we have not translated yet
▶ we remember what we already translated so we do not repeat ourselves.

We may have to process the whole source sentence before generating the target!
▶ Remark: This smells like we need LSTMs.

: 1104 2025-05-14

Sequence-To-Sequence Models
▶ Idea: Use two coupled RNNs, one for the source, and one for the target. The input for the target is

the output of the last hidden layer of the source RNN.
▶ Definition 3.1. A sequence-to-sequence (seq2seq) model is a neural model for translating an input

sequence x into an output sequence y by an encoder followed by a decoder generates y .

input

Encoder Decoder

output

hi

▶ Example 3.2. A simple seq2seq model (without embedding and output layers)

what has been translated so that we don’t repeat ourselves. It also seems that for some

sentences we have to process the entire source sentence before starting to generate the

target. In other words, the generation of each target word is conditional on the entire source

sentence and on all previously generated target words.

This gives text generation for MT a close connection to a standard RNN language model, as

described in Section 24.2 . Certainly, if we had trained an RNN on English text, it would be

more likely to generate “big dog” than “dog big.” However, we don’t want to generate just

any random target language sentence; we want to generate a target language sentence that

corresponds to the source language sentence. The simplest way to do that is to use two

RNNs, one for the source and one for the target. We run the source RNN over the source

sentence and then use the final hidden state from the source RNN as the initial hidden state

for the target RNN. This way, each target word is implicitly conditioned on both the entire

source sentence and the previous target words.

This neural network architecture is called a basic sequence-to-sequence model, an example

of which is shown in Figure 24.6 . Sequence-to-sequence models are most commonly used

for machine translation, but can also be used for a number of other tasks, like automatically

generating a text caption from an image, or summarization: rewriting a long text into a

shorter one that maintains the same meaning.

Figure 24.6

Basic sequence-to-sequence model. Each block represents one LSTM timestep. (For simplicity, the
embedding and output layers are not shown.) On successive steps we feed the network the words of the
source sentence “The man is tall,” followed by the <start> tag to indicate that the network should start
producing the target sentence. The final hidden state at the end of the source sentence is used as the
hidden state for the start of the target sentence. After that, each target sentence word at time is used as
input at time , until the network produces the <end> tag to indicate that sentence generation is
finished.

Each block represents one LSTM time step; inputs are fed successively followed by the token <start>
to start the decoder.

: 1105 2025-05-14

Seq2Seq Evaluation

▶ Remark: Seq2seq models were a major breakthrough in NLP and MT. But they have three major
shortcomings:
▶ nearby context bias: RNNs remember with their hidden state, which has more information about a word in

– say – step 56 than in step 5. BUT long-distance context can also be important.
▶ fixed context size: the entire information about the source sentence must be compressed into the

fixed-dimensional – typically 1024 – vector. Larger vectors ; slow training and overfitting.
▶ Idea: Concatenate all source RNN hidden vectors to use all of them to mitigate the nearby context

bias.
▶ Problem: Huge increase of weights ; slow training and overfitting.

: 1106 2025-05-14

Attention
▶ Bad Idea: Concatenate all source RNN hidden vectors to use all of them to mitigate the nearby

context bias.
▶ Better Idea: The decoder generates the target sequence one word at a time. ; Only a small part

of the source is actually relevant.
the decoder must focus on different parts of the source for every word.
▶ Idea: We need a neural component that does context-free summarization.
▶ Definition 3.3. An attentional seq2seq model is a seq2seq that passes along a context vector ci in the

decoder. If hi = RNN(hi−1, xi) is the standard decoder, then the decoder with attention is given by
hi = RNN(hi−1, xi + ci), where xi + ci is the concatenation of the input xi and context vectors ci with

rij = hi−1 · sj raw attention score
aij = erij/(

∑
k e

rij) attention probability matrix
ci =

∑
j aij · sj context vector

input

Encoder Decoder

output
context
vector

xi + ci

: 1107 2025-05-14

Attention: English to Spanish Translation

▶ Example 3.4. An attentional seq2seq model for English-to-Spanish translation

where is the target RNN vector that is going to be used for predicting the word at

timestep , and is the output of the source RNN vector for the source word (or timestep) .

Both and are -dimensional vectors, where is the hidden size. The value of is

therefore the raw “attention score” between the current target state and the source word .

These scores are then normalized into a probability using a softmax over all source

words. Finally, these probabilities are used to generate a weighted average of the source

RNN vectors, (another -dimensional vector).

An example of an attentional sequence-to-sequence model is given in Figure 24.7(a) .

There are a few important details to understand. First, the attention component itself has no

learned weights and supports variable-length sequences on both the source and target side.

Second, like most of the other neural network modeling techniques we’ve learned about,

attention is entirely latent. The programmer does not dictate what information gets used

when; the model learns what to use. Attention can also be combined with multilayer RNNs.

Typically attention is applied at each layer in that case.

Figure 24.7

(a) Attentional sequence-to-sequence model for English-to-Spanish translation. The dashed lines
represent attention. (b) Example of attention probability matrix for a bilingual sentence pair, with darker
boxes representing higher values of . The attention probabilities sum to one over each column.

where is the target RNN vector that is going to be used for predicting the word at

timestep , and is the output of the source RNN vector for the source word (or timestep) .

Both and are -dimensional vectors, where is the hidden size. The value of is

therefore the raw “attention score” between the current target state and the source word .

These scores are then normalized into a probability using a softmax over all source

words. Finally, these probabilities are used to generate a weighted average of the source

RNN vectors, (another -dimensional vector).

An example of an attentional sequence-to-sequence model is given in Figure 24.7(a) .

There are a few important details to understand. First, the attention component itself has no

learned weights and supports variable-length sequences on both the source and target side.

Second, like most of the other neural network modeling techniques we’ve learned about,

attention is entirely latent. The programmer does not dictate what information gets used

when; the model learns what to use. Attention can also be combined with multilayer RNNs.

Typically attention is applied at each layer in that case.

Figure 24.7

(a) Attentional sequence-to-sequence model for English-to-Spanish translation. The dashed lines
represent attention. (b) Example of attention probability matrix for a bilingual sentence pair, with darker
boxes representing higher values of . The attention probabilities sum to one over each column.

dashed lines represent attention attention probablity matrix
darker colors ; higher probabilities

▶ Remarks: The attention
▶ component learns no weights and supports variable-length sequences.
▶ is entirely latent – the developer does not influence it.

: 1108 2025-05-14

Attention: Greedy Decoding

▶ During training, a seq2seq model tries to maximize the probability of each word in the training
sequence, conditioned on the source and the previous target words.
▶ Definition 3.5. The procedure that generates the target one word at a time and feeds it back at the

next time step is called decoding.
▶ Definition 3.6. Always selecting the highest probability word is called greedy decoding.
▶ Problem: This may not always maximize the probability of the whole sequence
▶ Example 3.7. Let’s use a greedy decoder on “The front door is red”.
▶ The correct translation is “La puerta de entrada es roja”.
▶ Suppose we have generated the first word “La” for “The”.
▶ A greedy decoder might propose “entrada” for “front”.
▶ Greedy decoding is fast, but has no mechanism for correcting mistakes.
▶ Solution: Use an optimizing search algorithm (e.g. local beam search)

: 1109 2025-05-14

Decoding with Beam Search

▶ Recall: Greedy decoding is not optimal!
▶ Idea: Search for an optimal decoding (or at least a good one) using one of the search algorithms

from ???.
▶ Local beam search is a common choice in machine translation. Concretely:
▶ keep the top k hypotheses at each stage,
▶ extending each by one word using the top k choices of words,
▶ then chooses the best k of the resulting k2 new hypotheses.

When all hypotheses in the beam generate the special <end> token, the algorithm outputs the
highest scoring hypothesis.
▶ Observation: The better the seq2seq models get, the smaller we can keep beam size

Today beams of b = 4 are sufficient after b = 100 a decade ago.

: 1110 2025-05-14

Decoding with Beam Search

▶ Example 3.8. A local beam search with beam size b = 2

Beam search with beam size of . The score of each word is the log-probability generated by the target
RNN softmax, and the score of each hypothesis is the sum of the word scores. At timestep 3, the highest
scoring hypothesis La entrada can only generate low-probability continuations, so it “falls off the beam.”

▶ Word scores are log-probabilities generated by the decoder softmax
▶ hypothesis score is the sum of the word scores.

At time step 3, the highest scoring hypothesis “La entrada” can only generate low-probability
continuations, so it “falls off the beam”. (as intended)

: 1111 2025-05-14

32.4 The Transformer Architecture

: 1111 2025-05-14

Self-Attention
▶ Idea: “Attention is all you need!” (see [VasShaPar:aiayn17])
▶ So far, attention was used from the encoder to the decoder.
▶ Self-attention extends this so that each hidden states sequence also attends to itself. (*coder to

*coder)
▶ Idea: Just use the dot product of the input vectors
▶ Problem: Always high, so each hidden state will be biased towards attending to itself.
▶ Self-attention solves this by first projecting the input into three different representations using three

different weight matrices:
▶ the query vector qi = Wqxi =̂ standard attention
▶ key vector ki = Wkxi =̂ the source in seq2seq
▶ value vector vi = Wvxi is the context being generated

rij = (qi ·ki)/
√
d

aij = erij/(
∑

k e
rij)

ci =
∑

j aij · vj
where d is the dimension of k and q.

: 1112 2025-05-14

The Transformer Architecture
▶ Definition 4.1. The transformer architecture uses neural blocks called transformers, which are built

up from multiple transformer layers.
▶ Remark: The context modeled in self-attention is agnostic to word order ; transformers use

positional embeddings to cope with that.
▶ Example 4.2.

A single-layer transformer consists of
self-attention, a feed-forward
network, and residual connections to
cope with the vanishing gradient
problem.

the transformer layer. A single-layer transformer in shown in Figure 24.9 . In practice,

transformer models usually have six or more layers. As with the other models that we’ve

learned about, the output of layer is used as the input to layer .

Figure 24.9

A single-layer transformer consists of self-attention, a feedforward network, and residual connections.

Positional embedding

The transformer architecture does not explicitly capture the order of words in the sequence,

since context is modeled only through self-attention, which is agnostic to word order. To

capture the ordering of the words, the transformer uses a technique called positional

embedding. If our input sequence has a maximum length of , then we learn new

embedding vectors—one for each word position. The input to the first transformer layer is

the sum of the word embedding at position plus the positional embedding corresponding

to position .

▶ In practice transformers consist of 6-7 transformer layers.

: 1113 2025-05-14

A Transformer for POS tagging
▶ Example 4.3. A transformers for POS tagging:

Figure 24.10 illustrates the transformer architecture for POS tagging, applied to the same

sentence used in Figure 24.3 . At the bottom, the word embedding and the positional

embeddings are summed to form the input for a three-layer transformer. The transformer

produces one vector per word, as in RNN-based POS tagging. Each vector is fed into a final

output layer and softmax layer to produce a probability distribution over the tags.

Figure 24.10

Using the transformer architecture for POS tagging.

In this section, we have actually only told half the transformer story: the model we

described here is called the transformer encoder. It is useful for text classification tasks. The

full transformer architecture was originally designed as a sequence-to-sequence model for

machine translation. Therefore, in addition to the encoder, it also includes a transformer

decoder. The encoder and decoder are nearly identical, except that the decoder uses a

version of self-attention where each word can only attend to the words before it, since text

is generated left-to-right. The decoder also has a second attention module in each

transformer layer that attends to the output of the transformer encoder.

: 1114 2025-05-14

32.5 Large Language Models

: 1114 2025-05-14

Pretraining and Transfer Learning

▶ Getting enough data to build a robust model can be a challenge.
▶ In NLP we often work with unlabeled data
▶ syntactic/semantic labeling is much more difficult ; costly than image labeling.
▶ the Internet has lots of texts (adds ∼ 1011 words/day)
▶ Idea: Why not let other’s do this work and re-use their training efforts.
▶ Definition 5.1. In pretraining we use
▶ a large amount of shared general-domain language data to train an initial version of an NLP model.
▶ a smaller amount of domain-specific data (perhaps labeled) to finetune it to the vocabulary, idioms,

syntactic structures, and other linguistic phenomena that are specific to the new domain.
▶ Pretraining is a form of transfer learning:
▶ Definition 5.2. In Transfer learning (TL), knowledge learned from a task is re-used in order to boost

performance on a related task.
▶ Idea: Take a pretrained neural network, replace the last layer(s), and then train those on your own

corpus.
▶ Observation: Simple but surprisingly efficient!

: 1115 2025-05-14

Large Language Models

Definition 5.3. A Large Language Model (LLM) is a generic pretrained neural network, providing
embeddings for sentences or entire documents for NLP tasks. In practice, they (usually) combine the
following components:

▶ Tokenization: Splitting text into tokens (characters, words, punctuation,...)
▶ embeddings for these tokens, (e.g., Word2vec – or we let the transformer learn them)

▶ positional embeddings of tokens (encodes where in a sentence a token is)
▶ a transformer architecture, trained on
▶ a masked token prediction task.
LLMs can be used for a variety of tasks.
▶ classification (e.g., sentiment analysis, POS-tagging),
▶ translation (bwetween languages, styles, etc.),
▶ generation (e.g., text completion, summarization, chatbots),
▶ ...

: 1116 2025-05-14

Tokenization - Byte Pair Encodings

So far: we have encoded text either as sequences of characters (non-semantic) or as sequences of words
(semantic, but virtually unlimited vocabulary, OOV-problems).
Idea: Find a middle ground: Learn an optimal vocabulary of tokens from data and split text into a
sequence of tokens.
Definition 5.4. The Byte Pair Encoding (BPE) algorithm learns a vocabulary of tokens of given size
N > 256 from a corpus C, by doing the following:
▶ Let ℓ = 256 and set BPE(⟨b⟩) = b for every byte 0 ≤ b ≤ 255.
▶ While ℓ < N, find the most common pair of tokens (a, b) and let BPE(⟨a, b⟩) = ℓ+ 1 (and increase ℓ

by 1).
▶ Repeat until ℓ = N.
; we obtain a one-hot encoding of tokens of size N, where the most common sequences of bytes are
represented by a single token. By retaining BPE(⟨b⟩) = b, we avoid OOV problems.
; We can then train a word embedding on the resulting tokens

Alternative techniques include WordPiece and SentencePiece.

: 1117 2025-05-14

Tokenization - Example

https://huggingface.co/spaces/Xenova/the-tokenizer-playground

: 1118 2025-05-14

https://huggingface.co/spaces/Xenova/the-tokenizer-playground

Positional encodings

Definition 5.5. Let ⟨w1, . . . ,wn⟩ be a sequence of tokens. A positional encoding PEi (wi) is a vector
that retains the position of wi in the sequence alongside the word embedding of wi .
We want positional encodings to satisfy the following properties:
1. PEi (w) ̸= PEj(w) for i ̸= j ,
2. PE should retain distances: if i1 − i2 = j1 − j2, then given the embeddings for w1,w2, we should be

able to linearly transform ⟨PEi1(w1),PEi2(w2)⟩ into ⟨PEj1(w1),PEj2(w2)⟩.
; no entirely separate embeddings for w1,w2 depending on positions
; learning from short sentences generalizes (ideally) to longer ones

: 1119 2025-05-14

Sinusoidal positional encoding

Idea: Let PEt(w) = E(w) + pt , for some suitable pt (where E(w) is the word embedding for token w).
; pt has the same dimensionality as our embedding E.

Idea: Use a combination of sine and cosine functions with different frequencies for each dimension of
the embedding.
Attention is all you need: For a vocabulary size d , we define

pt i :=

{
sin(t

c2k/d) if i = 2k
cos(t

c2k/d) if i = 2k + 1

for some constant c . (10000 in the paper)
; works for arbitrary sequence lengths and vocabulary sizes.

: 1120 2025-05-14

Training Large Language Models

Three strategies for training LLMs:
▶ Masked Token Prediction: Given a sentence (e.g. “The river rose five feet”), randomly replace tokens

by a special mask token (e.g. “The river [MASK] five feet”). The LLM should predict the masked
tokens (e.g. “rose”). (BERT et al; well suited for generic tasks)
▶ Discrimination: Train a small masked token prediction model M. Given a masked sentence, let M

generated possible completions. Train the actual model to distinguish between tokens generated by M
and the original tokens. (Google Electra et al; well suited for generic tasks)
▶ Next Token Prediction: Given the (beginning of) a sentence, predict the next token in the sequence.

(GPT et al; well suited for generative tasks)
; All techniques turn an unlabelled corpus into a supervised learning task.

: 1121 2025-05-14

Deep Learning for NLP: Evaluation

▶ Deep learning methods are currently dominant in NLP! (think ChatGPT)
▶ Data-driven methods are easier to develop and maintain than symbolic ones
▶ also perform better models crafted by humans (with reasonable effort)
▶ But problems remain;
▶ DL methods work best on immense amounts of data. (small languages?)
▶ LLM contain knowledge, but integration with symbolic methods elusive.

▶ DL4NLP methods do very well, but only after processing orders of magnitude more data than humans
do for learning language.
▶ This suggests that there is of scope for new insigths from all areas.

: 1122 2025-05-14

Deep Learning for NLP: Evaluation

▶ Deep learning methods are currently dominant in NLP! (think ChatGPT)
▶ Data-driven methods are easier to develop and maintain than symbolic ones
▶ also perform better models crafted by humans (with reasonable effort)
▶ But problems remain;
▶ DL methods work best on immense amounts of data. (small languages?)
▶ LLM contain knowledge, but integration with symbolic methods elusive.
▶ DL4NLP methods do very well, but only after processing orders of magnitude more data than humans

do for learning language.
▶ This suggests that there is of scope for new insigths from all areas.

: 1122 2025-05-14

Chapter 33
What did we learn in AI 1/2?

: 1122 2025-05-14

Topics of AI-1 (Winter Semester)
▶ Getting Started
▶ What is artificial intelligence? (situating ourselves)
▶ Logic programming in Prolog (An influential paradigm)
▶ Intelligent Agents (a unifying framework)
▶ Problem Solving
▶ Problem Solving and search (Black Box World States and Actions)
▶ Adversarial search (Game playing) (A nice application of search)
▶ constraint satisfaction problems (Factored World States)
▶ Knowledge and Reasoning
▶ Formal Logic as the mathematics of Meaning
▶ Propositional logic and satisfiability (Atomic Propositions)
▶ First-order logic and theorem proving (Quantification)
▶ Logic programming (Logic + Search; Programming)
▶ Description logics and semantic web
▶ Planning
▶ Planning Frameworks
▶ Planning Algorithms
▶ Planning and Acting in the real world

: 1123 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ Agents interact with the environment

: 1124 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ General agent schema

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

: 1124 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ Reflex Agents

Section 2.4. The Structure of Agents 49

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

: 1124 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ Reflex Agents with State

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

: 1124 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ Goal-Based Agents

52 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from

: 1124 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ Utility-Based Agent

54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

: 1124 2025-05-14

Rational Agents as an Evaluation Framework for AI

▶ Learning Agents

Section 2.4. The Structure of Agents 55

Performance standard

Agent

E
n
v
iro

n
m

en
t

Sensors

Performance
element

changes

knowledge

learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

: 1124 2025-05-14

Rational Agent

▶ Idea: Try to design agents that are successful (do the right thing)
▶ Definition 0.1. An agent is called rational, if it chooses whichever action maximizes the expected

value of the performance measure given the percept sequence to date. This is called the MEU
principle.
▶ Note: A rational agent need not be perfect
▶ only needs to maximize expected value (rational ̸= omniscient)
▶ need not predict e.g. very unlikely but catastrophic events in the future

▶ percepts may not supply all relevant information (Rational ̸= clairvoyant)
▶ if we cannot perceive things we do not need to react to them.
▶ but we may need to try to find out about hidden dangers (exploration)

▶ action outcomes may not be as expected (rational ̸= successful)
▶ but we may need to take action to ensure that they do (more often) (learning)

▶ Rational ; exploration, learning, autonomy

: 1125 2025-05-14

: 1126 2025-05-14

Symbolic AI: Adding Knowledge to Algorithms

▶ Problem Solving (Black Box States, Transitions, Heuristics)
▶ Framework: Problem Solving and Search (basic tree/graph walking)
▶ Variant: Game playing (Adversarial search) (minimax + αβ-Pruning)

▶ Constraint Satisfaction Problems (heuristic search over partial assignments)
▶ States as partial variable assignments, transitions as assignment
▶ Heuristics informed by current restrictions, constraint graph
▶ Inference as constraint propagation (transferring possible values across arcs)

▶ Describing world states by formal language (and drawing inferences)
▶ Propositional logic and DPLL (deciding entailment efficiently)
▶ First-order logic and ATP (reasoning about infinite domains)
▶ Digression: Logic programming (logic + search)
▶ Description logics as moderately expressive, but decidable logics
▶ Planning: Problem Solving using white-box world/action descriptions
▶ Framework: describing world states in logic as sets of propositions and actions by preconditions and

add/delete lists
▶ Algorithms: e.g heuristic search by problem relaxations

: 1126 2025-05-14

Symbolic AI: Adding Knowledge to Algorithms

▶ Problem Solving (Black Box States, Transitions, Heuristics)
▶ Framework: Problem Solving and Search (basic tree/graph walking)
▶ Variant: Game playing (Adversarial search) (minimax + αβ-Pruning)

▶ Constraint Satisfaction Problems (heuristic search over partial assignments)
▶ States as partial variable assignments, transitions as assignment
▶ Heuristics informed by current restrictions, constraint graph
▶ Inference as constraint propagation (transferring possible values across arcs)

▶ Describing world states by formal language (and drawing inferences)
▶ Propositional logic and DPLL (deciding entailment efficiently)
▶ First-order logic and ATP (reasoning about infinite domains)
▶ Digression: Logic programming (logic + search)
▶ Description logics as moderately expressive, but decidable logics
▶ Planning: Problem Solving using white-box world/action descriptions
▶ Framework: describing world states in logic as sets of propositions and actions by preconditions and

add/delete lists
▶ Algorithms: e.g heuristic search by problem relaxations

: 1126 2025-05-14

Symbolic AI: Adding Knowledge to Algorithms

▶ Problem Solving (Black Box States, Transitions, Heuristics)
▶ Framework: Problem Solving and Search (basic tree/graph walking)
▶ Variant: Game playing (Adversarial search) (minimax + αβ-Pruning)

▶ Constraint Satisfaction Problems (heuristic search over partial assignments)
▶ States as partial variable assignments, transitions as assignment
▶ Heuristics informed by current restrictions, constraint graph
▶ Inference as constraint propagation (transferring possible values across arcs)

▶ Describing world states by formal language (and drawing inferences)
▶ Propositional logic and DPLL (deciding entailment efficiently)
▶ First-order logic and ATP (reasoning about infinite domains)
▶ Digression: Logic programming (logic + search)
▶ Description logics as moderately expressive, but decidable logics

▶ Planning: Problem Solving using white-box world/action descriptions
▶ Framework: describing world states in logic as sets of propositions and actions by preconditions and

add/delete lists
▶ Algorithms: e.g heuristic search by problem relaxations

: 1126 2025-05-14

Symbolic AI: Adding Knowledge to Algorithms

▶ Problem Solving (Black Box States, Transitions, Heuristics)
▶ Framework: Problem Solving and Search (basic tree/graph walking)
▶ Variant: Game playing (Adversarial search) (minimax + αβ-Pruning)

▶ Constraint Satisfaction Problems (heuristic search over partial assignments)
▶ States as partial variable assignments, transitions as assignment
▶ Heuristics informed by current restrictions, constraint graph
▶ Inference as constraint propagation (transferring possible values across arcs)

▶ Describing world states by formal language (and drawing inferences)
▶ Propositional logic and DPLL (deciding entailment efficiently)
▶ First-order logic and ATP (reasoning about infinite domains)
▶ Digression: Logic programming (logic + search)
▶ Description logics as moderately expressive, but decidable logics
▶ Planning: Problem Solving using white-box world/action descriptions
▶ Framework: describing world states in logic as sets of propositions and actions by preconditions and

add/delete lists
▶ Algorithms: e.g heuristic search by problem relaxations

: 1126 2025-05-14

Topics of AI-2 (Summer Semester)

▶ Uncertain Knowledge and Reasoning
▶ Uncertainty
▶ Probabilistic reasoning
▶ Making Decisions in Episodic Environments
▶ Problem Solving in Sequential Environments
▶ Foundations of machine learning
▶ Learning from Observations
▶ Knowledge in Learning
▶ Statistical Learning Methods
▶ Communication (If there is time)
▶ Natural Language Processing
▶ Natural Language for Communication

: 1127 2025-05-14

Statistical AI: Adding uncertainty and Learning
▶ Problem Solving under uncertainty (non-observable environment, stochastic states)
▶ Framework: Probabilistic Inference: Conditional Probabilities/Independence
▶ Intuition: Reasoning in Belief Space instead of State Space!
▶ Implementation: Bayesian Networks (exploit conditional independence)
▶ Extension: Utilities and Decision Theory (for static/episodic environments)

▶ Problem Solving in Sequential Worlds:
▶ Framework: Markov Processes, transition models
▶ Extension: MDPs, POMDPs (+ utilities/decisions)
▶ Implementation: Dynamic Bayesian Networks
▶ Machine learning: adding optimization in changing environments (unsupervised)
▶ Framework: Learning from Observations (positive/negative examples)
▶ Intuitions: finding consistent/optimal hypotheses in a hypothesis space
▶ Problems: consistency, expressivity, under/overfitting, computational/data resources.
▶ Extensions
▶ knowledge in learning (based on logical methods)
▶ statistical learning (optimizing the probability distribution over hypspace, learning BNs)

▶ Communication
▶ Phenomena of natural language (NL is interesting/complex)
▶ symbolic/statistical NLP (historic/as a backup)
▶ Deep Learning for NLP (the current hype/solution)

: 1128 2025-05-14

Statistical AI: Adding uncertainty and Learning
▶ Problem Solving under uncertainty (non-observable environment, stochastic states)
▶ Framework: Probabilistic Inference: Conditional Probabilities/Independence
▶ Intuition: Reasoning in Belief Space instead of State Space!
▶ Implementation: Bayesian Networks (exploit conditional independence)
▶ Extension: Utilities and Decision Theory (for static/episodic environments)
▶ Problem Solving in Sequential Worlds:
▶ Framework: Markov Processes, transition models
▶ Extension: MDPs, POMDPs (+ utilities/decisions)
▶ Implementation: Dynamic Bayesian Networks

▶ Machine learning: adding optimization in changing environments (unsupervised)
▶ Framework: Learning from Observations (positive/negative examples)
▶ Intuitions: finding consistent/optimal hypotheses in a hypothesis space
▶ Problems: consistency, expressivity, under/overfitting, computational/data resources.
▶ Extensions
▶ knowledge in learning (based on logical methods)
▶ statistical learning (optimizing the probability distribution over hypspace, learning BNs)

▶ Communication
▶ Phenomena of natural language (NL is interesting/complex)
▶ symbolic/statistical NLP (historic/as a backup)
▶ Deep Learning for NLP (the current hype/solution)

: 1128 2025-05-14

Statistical AI: Adding uncertainty and Learning
▶ Problem Solving under uncertainty (non-observable environment, stochastic states)
▶ Framework: Probabilistic Inference: Conditional Probabilities/Independence
▶ Intuition: Reasoning in Belief Space instead of State Space!
▶ Implementation: Bayesian Networks (exploit conditional independence)
▶ Extension: Utilities and Decision Theory (for static/episodic environments)
▶ Problem Solving in Sequential Worlds:
▶ Framework: Markov Processes, transition models
▶ Extension: MDPs, POMDPs (+ utilities/decisions)
▶ Implementation: Dynamic Bayesian Networks
▶ Machine learning: adding optimization in changing environments (unsupervised)
▶ Framework: Learning from Observations (positive/negative examples)
▶ Intuitions: finding consistent/optimal hypotheses in a hypothesis space
▶ Problems: consistency, expressivity, under/overfitting, computational/data resources.
▶ Extensions
▶ knowledge in learning (based on logical methods)
▶ statistical learning (optimizing the probability distribution over hypspace, learning BNs)

▶ Communication
▶ Phenomena of natural language (NL is interesting/complex)
▶ symbolic/statistical NLP (historic/as a backup)
▶ Deep Learning for NLP (the current hype/solution)

: 1128 2025-05-14

Statistical AI: Adding uncertainty and Learning
▶ Problem Solving under uncertainty (non-observable environment, stochastic states)
▶ Framework: Probabilistic Inference: Conditional Probabilities/Independence
▶ Intuition: Reasoning in Belief Space instead of State Space!
▶ Implementation: Bayesian Networks (exploit conditional independence)
▶ Extension: Utilities and Decision Theory (for static/episodic environments)
▶ Problem Solving in Sequential Worlds:
▶ Framework: Markov Processes, transition models
▶ Extension: MDPs, POMDPs (+ utilities/decisions)
▶ Implementation: Dynamic Bayesian Networks
▶ Machine learning: adding optimization in changing environments (unsupervised)
▶ Framework: Learning from Observations (positive/negative examples)
▶ Intuitions: finding consistent/optimal hypotheses in a hypothesis space
▶ Problems: consistency, expressivity, under/overfitting, computational/data resources.
▶ Extensions
▶ knowledge in learning (based on logical methods)
▶ statistical learning (optimizing the probability distribution over hypspace, learning BNs)

▶ Communication
▶ Phenomena of natural language (NL is interesting/complex)
▶ symbolic/statistical NLP (historic/as a backup)
▶ Deep Learning for NLP (the current hype/solution)

: 1128 2025-05-14

Topics of AI-3 – A Course not taught at FAU /

▶ Machine Learning
▶ Theory and Practice of Deep Learning
▶ More Reinforcement Learning
▶ Communicating, Perceiving, and Acting
▶ More NLP, dialogue, speech acts, ...
▶ Natural Language Semantics/Pragmatics
▶ Perception
▶ Robotics
▶ Emotions, Sentiment Analysis
▶ The Good News: All is not lost
▶ There are tons of specialized courses at FAU (more as we speak)
▶ Russell/Norvig’s AIMA [RusNor:AIMA09] cover some of them as well!

: 1129 2025-05-14

References I

: 1129 2025-05-14

	20 Preliminaries
	20.1 Administrative Ground Rules
	20.2 Getting Most out of courseacronym
	20.3 Learning Resources for courseacronym

	21 Overview over AI and Topics of AI-II
	21.1 What is Artificial Intelligence?
	21.2 Artificial Intelligence is here today!
	21.3 Ways to Attack the AI Problem
	21.4 AI in the KWARC Group
	21.5 Agents and Environments in AI2
	21.5.1 Recap: Rational Agents as a Conceptual Framework
	21.5.2 Sources of Uncertainty
	21.5.3 Agent Architectures based on Belief States

	1 Reasoning with Uncertain Knowledge
	22 Quantifying Uncertainty
	22.1 Probability Theory
	22.1.1 Prior and Posterior Probabilities
	22.1.2 Independence
	22.1.3 Conclusion

	22.2 Probabilistic Reasoning Techniques
	22.2.1 Probability Distributions
	22.2.2 Naive Bayes
	22.2.3 Inference by Enumeration
	22.2.4 Example – The Wumpus is Back

	23 Probabilistic Reasoning: Bayesian Networks
	23.1 Introduction

