
Artificial Intelligence 2
Summer Semester 2024

– Lecture Notes –

Dr. Dennis Müller

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

dennis.mueller@FAU.de

2024-04-14

Dennis Müller: Artificial Intelligence 2 0 2024-04-14

dennis.mueller@FAU.de

Chapter 1
Administrativa

Dennis Müller: Artificial Intelligence 2 0 2024-04-14

About this course...

▶ AI1 and AI2 are “traditionally” taught by Prof. Michael Kohlhase (since 2016, on sabbatical this
semester)
▶ This is the first time I’m teaching AI2 as a lecturer! ,

But I’ve been a member of Prof. Kohlhase’s research group since 2015 (Ph.D. 2019)
⇒ I’m familiar with the course content (Lead TA 2016 – 2019)
⇒ I’ve adopted and adapted his course material. The topics are the same, but I changed some

notations, clarified and changed some definitions, restructured some parts (Hopefully for the better!)
⇒ Feel free to check out older versions of the course material but don’t rely on them entirely (especially

for exam prep!)
Also: I’m working on my habilitation currently
⇒ Teaching this course is part of that
⇒ Please take the course evaluation seriously ;) (I’m still learning and it helps me improve!)

Dennis Müller: Artificial Intelligence 2 1 2024-04-14

Dates, Links, Materials
▶ Lectures: Tuesday 16:15 – 17:45 H9, Thursday 10:15 – 11:45 H8
▶ Tutorials:
▶ Thursday 14:15 – 15:45 Room 11501.04.023
▶ Friday 10:15 – 11:45 Room 11501.02.019
▶ Friday 14:15 – 15:45 Zoom: https://fau.zoom.us/j/97169402146
▶ Monday 12:15 – 13:45 Zoom: https://fau.zoom.us/j/97169402146
▶ Tuesday 08:15 – 09:45 Room 11302.02.134-113

(Starting thursday in week 2 (25.04.2024))

▶ studon: https://www.studon.fau.de/studon/goto.php?target=crs_5645530 (Used for
announcements, e.g. homeworks, and homework submissions)
▶ Video streams / recordings: https://www.fau.tv/course/id/3816
▶ Lecture notes / slides / exercises: https://kwarc.info/teaching/AI/ (Most importantly:
notes2.pdf and slides2.pdf)
▶ ALeA: https://courses.voll-ki.fau.de/course-home/ai-2: Lecture notes, forum, tuesday

quizzes, flashcards,...
Textbook: Russel/Norvig: Artificial Intelligence, A modern Approach [RN09]. Make sure that you read
the edition ≥ 3 ⇝vastly improved over ≤ 2.

Dennis Müller: Artificial Intelligence 2 2 2024-04-14

http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IE/LER/hr415&anonymous=1&founds=tech/IE/LER/hr415&ref=main&sem=2024s&__e=823
http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IE/lselek/e211&anonymous=1&founds=tech/IE/lselek/e211&ref=main&sem=2024s&__e=823
https://fau.zoom.us/j/97169402146
https://fau.zoom.us/j/97169402146
http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IMMD/zentr/021341&anonymous=1&founds=tech/IMMD/zentr/021341&ref=main&sem=2024s&__e=823
https://www.studon.fau.de/studon/goto.php?target=crs_5645530
https://www.fau.tv/course/id/3816
https://kwarc.info/teaching/AI/
https://courses.voll-ki.fau.de/course-home/ai-2

Dates, Links, Materials
▶ Lectures: Tuesday 16:15 – 17:45 H9, Thursday 10:15 – 11:45 H8
▶ Tutorials:
▶ Thursday 14:15 – 15:45 Room 11501.04.023
▶ Friday 10:15 – 11:45 Room 11501.02.019
▶ Friday 14:15 – 15:45 Zoom: https://fau.zoom.us/j/97169402146
▶ Monday 12:15 – 13:45 Zoom: https://fau.zoom.us/j/97169402146
▶ Tuesday 08:15 – 09:45 Room 11302.02.134-113

(Starting thursday in week 2 (25.04.2024))
▶ studon: https://www.studon.fau.de/studon/goto.php?target=crs_5645530 (Used for

announcements, e.g. homeworks, and homework submissions)
▶ Video streams / recordings: https://www.fau.tv/course/id/3816
▶ Lecture notes / slides / exercises: https://kwarc.info/teaching/AI/ (Most importantly:
notes2.pdf and slides2.pdf)
▶ ALeA: https://courses.voll-ki.fau.de/course-home/ai-2: Lecture notes, forum, tuesday

quizzes, flashcards,...
Textbook: Russel/Norvig: Artificial Intelligence, A modern Approach [RN09]. Make sure that you read
the edition ≥ 3 ⇝vastly improved over ≤ 2.

Dennis Müller: Artificial Intelligence 2 2 2024-04-14

http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IE/LER/hr415&anonymous=1&founds=tech/IE/LER/hr415&ref=main&sem=2024s&__e=823
http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IE/lselek/e211&anonymous=1&founds=tech/IE/lselek/e211&ref=main&sem=2024s&__e=823
https://fau.zoom.us/j/97169402146
https://fau.zoom.us/j/97169402146
http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IMMD/zentr/021341&anonymous=1&founds=tech/IMMD/zentr/021341&ref=main&sem=2024s&__e=823
https://www.studon.fau.de/studon/goto.php?target=crs_5645530
https://www.fau.tv/course/id/3816
https://kwarc.info/teaching/AI/
https://courses.voll-ki.fau.de/course-home/ai-2

AI-2 Homework Assignments

Homework Assignments: Every thursday (starting in the second week)
Small individual problem/programming/proof tasks

Homeworks give no bonus points, but without trying you are unlikely to pass the exam.

Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it. (For those that do get

graded – see later)
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ Homeworks will be posted on kwarc.info/teaching/AI/assignments. (Announced on studon)
▶ Sign up for AI-2 under https://www.studon.fau.de/crs4941850.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Do not sign up for the “AI-2 Übungen” on StudOn (we do not use them)

Dennis Müller: Artificial Intelligence 2 3 2024-04-14

https://kwarc.info/teaching/AI/assignments/
kwarc.info/teaching/AI/assignments
https://www.studon.fau.de/crs4941850.html

AI-2 Homework Assignments

Homework Assignments: Every thursday (starting in the second week)
Small individual problem/programming/proof tasks

Homeworks give no bonus points, but without trying you are unlikely to pass the exam.

Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it. (For those that do get

graded – see later)
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ Homeworks will be posted on kwarc.info/teaching/AI/assignments. (Announced on studon)
▶ Sign up for AI-2 under https://www.studon.fau.de/crs4941850.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Do not sign up for the “AI-2 Übungen” on StudOn (we do not use them)

Dennis Müller: Artificial Intelligence 2 3 2024-04-14

https://kwarc.info/teaching/AI/assignments/
kwarc.info/teaching/AI/assignments
https://www.studon.fau.de/crs4941850.html

AI-2 Homework Assignments

Homework Assignments: Every thursday (starting in the second week)
Small individual problem/programming/proof tasks

Homeworks give no bonus points, but without trying you are unlikely to pass the exam.

Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it. (For those that do get

graded – see later)
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ Homeworks will be posted on kwarc.info/teaching/AI/assignments. (Announced on studon)
▶ Sign up for AI-2 under https://www.studon.fau.de/crs4941850.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Do not sign up for the “AI-2 Übungen” on StudOn (we do not use them)

Dennis Müller: Artificial Intelligence 2 3 2024-04-14

https://kwarc.info/teaching/AI/assignments/
kwarc.info/teaching/AI/assignments
https://www.studon.fau.de/crs4941850.html

Tutorials for Artificial Intelligence 1

Weekly tutorials starting in week two – Lead TA: Florian Rabe (KWARC Postdoc, Privatdozent) (Room:
11.137 @ Händler building, florian.rabe@fau.de)
The tutorials:
▶ reinforce what was taught in class.
▶ allow you to ask any question you have in a protected environment.
▶ discuss the (solutions to) homework assignments

Caveat: We cannot grade all submissions :((too many students, too few TAs)
Group submission has not worked well in the past (too many freeloaders)
Likely solution: We will grade one exercise per week – but you should attempt all of them!

Life-saving advice: Go to your tutorial, and prepare for it by having looked at the slides and the
homework assignments!

Doing your homework is probably even more important (and predictive of exam success) than attending
the lecture!

Dennis Müller: Artificial Intelligence 2 4 2024-04-14

florian.rabe@fau.de

Tutorials for Artificial Intelligence 1

Weekly tutorials starting in week two – Lead TA: Florian Rabe (KWARC Postdoc, Privatdozent) (Room:
11.137 @ Händler building, florian.rabe@fau.de)
The tutorials:
▶ reinforce what was taught in class.
▶ allow you to ask any question you have in a protected environment.
▶ discuss the (solutions to) homework assignments
Caveat: We cannot grade all submissions :((too many students, too few TAs)
Group submission has not worked well in the past (too many freeloaders)
Likely solution: We will grade one exercise per week – but you should attempt all of them!

Life-saving advice: Go to your tutorial, and prepare for it by having looked at the slides and the
homework assignments!

Doing your homework is probably even more important (and predictive of exam success) than attending
the lecture!

Dennis Müller: Artificial Intelligence 2 4 2024-04-14

florian.rabe@fau.de

Tutorials for Artificial Intelligence 1

Weekly tutorials starting in week two – Lead TA: Florian Rabe (KWARC Postdoc, Privatdozent) (Room:
11.137 @ Händler building, florian.rabe@fau.de)
The tutorials:
▶ reinforce what was taught in class.
▶ allow you to ask any question you have in a protected environment.
▶ discuss the (solutions to) homework assignments
Caveat: We cannot grade all submissions :((too many students, too few TAs)
Group submission has not worked well in the past (too many freeloaders)
Likely solution: We will grade one exercise per week – but you should attempt all of them!

Life-saving advice: Go to your tutorial, and prepare for it by having looked at the slides and the
homework assignments!

Doing your homework is probably even more important (and predictive of exam success) than attending
the lecture!

Dennis Müller: Artificial Intelligence 2 4 2024-04-14

florian.rabe@fau.de

Tuesday Quizzes

Tuesday Quizzes: Every tuesday we start the lecture with a 10 min online quiz – the tuesday quiz –
about the material from the previous week. (starts in week 2) Motivations: We do this to
▶ keep you prepared and working continuously. (primary)
▶ update the ALeA learner model (fringe benefit)
▶ give bonus points for the exam! (as an incentive)

The tuesday quiz will be given in the ALeA system
▶ https://courses.voll-ki.fau.de/quiz-dash/ai-2
▶ You have to be logged into ALeA!
▶ You can take the quiz on your laptop or phone, . . .
▶ . . . in the lecture or at home . . .
▶ . . . via WLAN or 4G Network. (do not overload)
▶ Quizzes will only be available 16:15-16:25!

Dennis Müller: Artificial Intelligence 2 5 2024-04-14

https://courses.voll-ki.fau.de/quiz-dash/ai-2

Assessment, Grades

▶ Overall (Module) Grade:
▶ Grade via the exam (Klausur) ; 100% of the grade.
▶ Up to 10% bonus on-top for an exam with ≥ 50% points. (≤ 50% ; no bonus)
▶ Bonus points =̂ percentage sum of the best 10 tuesday quizzes divided by 100.

▶ Exam: 90 minutes exam conducted in presence on paper (∼ Oct. 1. 2023)
▶ Retake Exam: 90 min exam six months later (∼ April 1. 2024)

▶ You have to register for exams in campo in the first month of classes.
▶ Note: You can de-register from an exam on campo up to three working days before.

Dennis Müller: Artificial Intelligence 2 6 2024-04-14

Assessment, Grades

▶ Overall (Module) Grade:
▶ Grade via the exam (Klausur) ; 100% of the grade.
▶ Up to 10% bonus on-top for an exam with ≥ 50% points. (≤ 50% ; no bonus)
▶ Bonus points =̂ percentage sum of the best 10 tuesday quizzes divided by 100.
▶ Exam: 90 minutes exam conducted in presence on paper (∼ Oct. 1. 2023)
▶ Retake Exam: 90 min exam six months later (∼ April 1. 2024)

▶ You have to register for exams in campo in the first month of classes.
▶ Note: You can de-register from an exam on campo up to three working days before.

Dennis Müller: Artificial Intelligence 2 6 2024-04-14

Special Admin Conditions

▶ Some degree programs do not “import” the course Artificial Intelligence, and thus you may not be
able to register for the exam via https://campus.fau.de.
▶ Just send me an e-mail and come to the exam, we will issue a “Schein”.
▶ Tell your program coordinator about AI-1/2 so that they remedy this situation
▶ In “Wirtschafts-Informatik” you can only take AI-1 and AI-2 together in the “Wahlpflichtbereich”.
▶ ECTS credits need to be divisible by five ⇝7.5 + 7.5 = 15.

Dennis Müller: Artificial Intelligence 2 7 2024-04-14

https://campus.fau.de

The ALeA System

Dennis Müller: Artificial Intelligence 2 8 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)

▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate
solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:

▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic
programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)

▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)
▶ (very) elementary complexity theory. (big Oh and friends)

▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)

▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)

▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

Prerequisites

▶ Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)
▶ AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate

solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:
▶ AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some logic

programming)
▶ (very) elementary complexity theory. (big Oh and friends)
▶ rudimentary probability theory (e.g. from stochastics)
▶ basic linear algebra (vectors, matrices,...)
▶ basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what you don’t
know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-04-14

“Strict” Prerequisites

▶ Mathematical Literacy: Mathematics is the language that computer scientists express their ideas in
(“A search problem is a tuple (N,S ,G , ...) such that...”)

Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this skill
will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay off, not
only in this course.
▶ motivation, interest, curiosity, hard work. (AI-2 is non-trivial)
Note: Grades correlate significantly with invested effort; including, but not limited to: time spent on
exercises, being here, asking questions, talking to your peers,...

Dennis Müller: Artificial Intelligence 2 10 2024-04-14

“Strict” Prerequisites

▶ Mathematical Literacy: Mathematics is the language that computer scientists express their ideas in
(“A search problem is a tuple (N,S ,G , ...) such that...”)

Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this skill
will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay off, not
only in this course.

▶ motivation, interest, curiosity, hard work. (AI-2 is non-trivial)
Note: Grades correlate significantly with invested effort; including, but not limited to: time spent on
exercises, being here, asking questions, talking to your peers,...

Dennis Müller: Artificial Intelligence 2 10 2024-04-14

“Strict” Prerequisites

▶ Mathematical Literacy: Mathematics is the language that computer scientists express their ideas in
(“A search problem is a tuple (N,S ,G , ...) such that...”)

Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing this skill
will make things more difficult for you. Be aware of this and, if necessary, work on it – it will pay off, not
only in this course.
▶ motivation, interest, curiosity, hard work. (AI-2 is non-trivial)
Note: Grades correlate significantly with invested effort; including, but not limited to: time spent on
exercises, being here, asking questions, talking to your peers,...

Dennis Müller: Artificial Intelligence 2 10 2024-04-14

What you should learn here...

▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models,
first and foremost)

▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)
▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing

when they are adequate!), and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough

to implement them)

Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.
(They already exist)
But you might get payed to recognize that some given problem can be represented as a Bayesian network!
Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to
develop new specialized tools.

Dennis Müller: Artificial Intelligence 2 11 2024-04-14

What you should learn here...

▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models,
first and foremost)
▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)

▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing
when they are adequate!), and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough

to implement them)

Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.
(They already exist)
But you might get payed to recognize that some given problem can be represented as a Bayesian network!
Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to
develop new specialized tools.

Dennis Müller: Artificial Intelligence 2 11 2024-04-14

What you should learn here...

▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models,
first and foremost)
▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)
▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing

when they are adequate!),

and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough

to implement them)

Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.
(They already exist)
But you might get payed to recognize that some given problem can be represented as a Bayesian network!
Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to
develop new specialized tools.

Dennis Müller: Artificial Intelligence 2 11 2024-04-14

What you should learn here...

▶ In the broadest sense: A bunch of tools for your toolchest (i.e. various (quasi-mathematical) models,
first and foremost)
▶ the underlying principles of these models (assumptions, limitations, the math behind them ...)
▶ the ability to describe real-world problems in terms of these models, where adequate (...and knowing

when they are adequate!), and
▶ the ideas behind effective algorithms that solve these problems (and to understand them well enough

to implement them)

Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian networks.
(They already exist)
But you might get payed to recognize that some given problem can be represented as a Bayesian network!
Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying principles to
develop new specialized tools.

Dennis Müller: Artificial Intelligence 2 11 2024-04-14

Compare two employees

“We have the following problem and we need a solution: ...”

Employee 1: Deep Learning can do everything: “I just need ≈1.5 million labeled examples of
potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

Employee 2: “...while you were talking, I quickly built a custom UI for an off-the-shelve <problem>
solver that runs on a medium-sized potato and returns a provably correct result in a few milliseconds.
For inputs longer than 1000unit, you might need a slightly bigger potato though...”

Moral of the story: Know your tools well enough to select the right one for the job.

Dennis Müller: Artificial Intelligence 2 12 2024-04-14

Compare two employees

“We have the following problem and we need a solution: ...”

Employee 1: Deep Learning can do everything: “I just need ≈1.5 million labeled examples of
potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

Employee 2: “...while you were talking, I quickly built a custom UI for an off-the-shelve <problem>
solver that runs on a medium-sized potato and returns a provably correct result in a few milliseconds.
For inputs longer than 1000unit, you might need a slightly bigger potato though...”

Moral of the story: Know your tools well enough to select the right one for the job.

Dennis Müller: Artificial Intelligence 2 12 2024-04-14

Compare two employees

“We have the following problem and we need a solution: ...”

Employee 1: Deep Learning can do everything: “I just need ≈1.5 million labeled examples of
potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

Employee 2: “...while you were talking, I quickly built a custom UI for an off-the-shelve <problem>
solver that runs on a medium-sized potato and returns a provably correct result in a few milliseconds.
For inputs longer than 1000unit, you might need a slightly bigger potato though...”

Moral of the story: Know your tools well enough to select the right one for the job.

Dennis Müller: Artificial Intelligence 2 12 2024-04-14

Compare two employees

“We have the following problem and we need a solution: ...”

Employee 1: Deep Learning can do everything: “I just need ≈1.5 million labeled examples of
potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and finetune the
model.
But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference per input.
Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger input layer...”

Employee 2: “...while you were talking, I quickly built a custom UI for an off-the-shelve <problem>
solver that runs on a medium-sized potato and returns a provably correct result in a few milliseconds.
For inputs longer than 1000unit, you might need a slightly bigger potato though...”

Moral of the story: Know your tools well enough to select the right one for the job.

Dennis Müller: Artificial Intelligence 2 12 2024-04-14

Chapter 2
Overview over AI and Topics of AI-II

Dennis Müller: Artificial Intelligence 2 12 2024-04-14

2.1 What is Artificial Intelligence?

Dennis Müller: Artificial Intelligence 2 12 2024-04-14

What is Artificial Intelligence? Definition

▶ Definition 1.1 (According to Wikipedia).
Artificial Intelligence (AI) is intelligence
exhibited by machines
▶ Definition 1.2 (also). Artificial Intelligence

(AI) is a sub-field of computer science that is
concerned with the automation of intelligent
behavior.
▶ BUT: it is already difficult to define

intelligence precisely.
▶ Definition 1.3 (Elaine Rich). Artificial

Intelligence (AI) studies how we can make
the computer do things that humans can still
do better at the moment.

Dennis Müller: Artificial Intelligence 2 13 2024-04-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

the ability to learn

Dennis Müller: Artificial Intelligence 2 14 2024-04-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

Inference

Dennis Müller: Artificial Intelligence 2 14 2024-04-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

Perception

Dennis Müller: Artificial Intelligence 2 14 2024-04-14

What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at
the moment.
▶ This needs a combination of

Language understanding

Dennis Müller: Artificial Intelligence 2 14 2024-04-14

What is Artificial Intelligence? Components
▶ Elaine Rich: AI studies how we can make the computer do things that humans can still do better at

the moment.
▶ This needs a combination of

Emotion

Dennis Müller: Artificial Intelligence 2 14 2024-04-14

2.2 Artificial Intelligence is here today!

Dennis Müller: Artificial Intelligence 2 14 2024-04-14

Artificial Intelligence is here today!

▶ in outer space
▶ in outer space systems need

autonomous control:
▶ remote control impossible due

to time lag

▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ for safety/security

Dennis Müller: Artificial Intelligence 2 15 2024-04-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ the user controls the prosthesis

via existing nerves, can e.g.
grip a sheet of paper.

▶ in household appliances
▶ in hospitals
▶ for safety/security

Dennis Müller: Artificial Intelligence 2 15 2024-04-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ The iRobot Roomba vacuums,

mops, and sweeps in corners,
. . . , parks, charges, and
discharges.

▶ general robotic household help
is on the horizon.

▶ in hospitals
▶ for safety/security

Dennis Müller: Artificial Intelligence 2 15 2024-04-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ in the USA 90% of the

prostate operations are carried
out by RoboDoc

▶ Paro is a cuddly robot that
eases solitude in nursing homes.

▶ for safety/security

Dennis Müller: Artificial Intelligence 2 15 2024-04-14

Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ for safety/security
▶ e.g. Intel verifies correctness of

all chips after the “Pentium 5
disaster”

Dennis Müller: Artificial Intelligence 2 15 2024-04-14

The AI Conundrum

▶ Observation: Reserving the term “Artificial Intelligence” has been quite a land grab!
▶ But: researchers at the Dartmouth Conference (1956) really thought they would solve/reach AI in

two/three decades.
▶ Consequence: AI still asks the big questions.
▶ Another Consequence: AI as a field is an incubator for many innovative technologies.
▶ AI Conundrum: Once AI solves a subfield it is called “computer science”. (becomes a separate

subfield of CS)
▶ Example 2.1. Functional/Logic Programming, automated theorem proving, Planning, machine

learning, Knowledge Representation, . . .
▶ Still Consequence: AI research was alternatingly flooded with money and cut off brutally.

Dennis Müller: Artificial Intelligence 2 16 2024-04-14

The current AI Hype — Part of a longer Story

AI becomes
scarily effective,
ubiquitous

Excitement fades;
some applications
profit a lot

AI-bubble bursts,
the next AI winter
comes

1950 1960 1970 1980 1990 2000 2010 2021

Turing Test
Dartmouth Conference

Lighthill report

AI Winter 1
1974-1980

AI Winter 2
1987-1994

WWW ;
Data/-
Computing
Explosion

AI-conse-
quences,
Biases,
Regulation

Dennis Müller: Artificial Intelligence 2 17 2024-04-14

2.3 Ways to Attack the AI Problem

Dennis Müller: Artificial Intelligence 2 17 2024-04-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.1. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.

▶ Definition 3.2. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all
concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.
▶ Definition 3.3. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that posits

that intelligence is inherently tied to brains, where information is represented by a simple sequence
pulses that are processed in parallel via simple calculations realized by neurons, and thus concentrates
on neural computing.
▶ Definition 3.4. Embodied AI posits that intelligence cannot be achieved by reasoning about the state

of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in the
world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

Dennis Müller: Artificial Intelligence 2 18 2024-04-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.5. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.
▶ Definition 3.6. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all

concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.

▶ Definition 3.7. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that posits
that intelligence is inherently tied to brains, where information is represented by a simple sequence
pulses that are processed in parallel via simple calculations realized by neurons, and thus concentrates
on neural computing.
▶ Definition 3.8. Embodied AI posits that intelligence cannot be achieved by reasoning about the state

of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in the
world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

Dennis Müller: Artificial Intelligence 2 18 2024-04-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.9. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.
▶ Definition 3.10. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all

concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.
▶ Definition 3.11. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that

posits that intelligence is inherently tied to brains, where information is represented by a simple
sequence pulses that are processed in parallel via simple calculations realized by neurons, and thus
concentrates on neural computing.

▶ Definition 3.12. Embodied AI posits that intelligence cannot be achieved by reasoning about the
state of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in
the world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

Dennis Müller: Artificial Intelligence 2 18 2024-04-14

Four Main Approaches to Artificial Intelligence

▶ Definition 3.13. Symbolic AI is a subfield of AI based on the assumption that many aspects of
intelligence can be achieved by the manipulation of symbols, combining them into meaning-carrying
structures (expressions) and manipulating them (using processes) to produce new expressions.
▶ Definition 3.14. Statistical AI remedies the two shortcomings of symbolic AI approaches: that all

concepts represented by symbols are crisply defined, and that all aspects of the world are
knowable/representable in principle. Statistical AI adopts sophisticated mathematical models of
uncertainty and uses them to create more accurate world models and reason about them.
▶ Definition 3.15. Subsymbolic AI (also called connectionism or neural AI) is a subfield of AI that

posits that intelligence is inherently tied to brains, where information is represented by a simple
sequence pulses that are processed in parallel via simple calculations realized by neurons, and thus
concentrates on neural computing.
▶ Definition 3.16. Embodied AI posits that intelligence cannot be achieved by reasoning about the

state of the world (symbolically, statistically, or connectivist), but must be embodied i.e. situated in
the world, equipped with a “body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

Dennis Müller: Artificial Intelligence 2 18 2024-04-14

Two ways of reaching Artificial Intelligence?

▶ We can classify the AI approaches by their coverage and the analysis depth (they are complementary)

Deep symbolic not there yet
AI-1 cooperation?

Shallow no-one wants this statistical/sub symbolic
AI-2

Analysis ↑
vs. Narrow Wide

Coverage →
▶ This semester we will cover foundational aspects of symbolic AI (deep/narrow processing)
▶ next semester concentrate on statistical/subsymbolic AI. (shallow/wide-coverage)

Dennis Müller: Artificial Intelligence 2 19 2024-04-14

Environmental Niches for both Approaches to AI

▶ Observation: There are two kinds of applications/tasks in AI
▶ Consumer tasks: consumer grade applications have tasks that must be fully generic and wide coverage. (

e.g. machine translation like Google Translate)
▶ Producer tasks: producer grade applications must be high-precision, but can be domain-specific (e.g.

multilingual documentation, machinery-control, program verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage
▶ General Rule: Subsymbolic AI is well suited for consumer tasks, while symbolic AI is better suited

for producer tasks.
▶ A domain of producer tasks I am interested in: mathematical/technical documents.

Dennis Müller: Artificial Intelligence 2 20 2024-04-14

https://translate.google.com/

2.4 AI in the KWARC Group

Dennis Müller: Artificial Intelligence 2 20 2024-04-14

The KWARC Research Group

▶ Observation: The ability to represent knowledge about the world and to draw logical inferences is
one of the central components of intelligent behavior.
▶ Thus: reasoning components of some form are at the heart of many AI systems.
▶ KWARC Angle: Scaling up (web-coverage) without dumbing down (too much)
▶ Content markup instead of full formalization (too tedious)
▶ User support and quality control instead of “The Truth” (elusive anyway)
▶ use Mathematics as a test tube (Mathematics =̂ Anything Formal)
▶ care more about applications than about philosophy (we cannot help getting this right anyway as logicians)
▶ The KWARC group was established at Jacobs Univ. in 2004, moved to FAU Erlangen in 2016
▶ see http://kwarc.info for projects, publications, and links

Dennis Müller: Artificial Intelligence 2 21 2024-04-14

http://kwarc.info

Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Active Learning, Semantic Spread-
sheets/CAD/CAM, Change Mangagement, Global Digital Math Library, Math
Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games,
. . .
Foundations of Math:
▶ MathML, OpenMath

▶ advanced Type Theories
▶ Mmt: Meta Meta Theory
▶ Logic Morphisms/Atlas
▶ Theorem Prover/CAS

Interoperability
▶ Mathematical

Models/Simulation

KM & Interaction:
▶ Semantic Interpretation

(aka. Framing)
▶ math-literate interaction
▶ MathHub: math archives

& active docs
▶ Active documents:

embedded semantic
services

▶ Model-based Education

Semantization:
▶ LATEXML: LATEX → XML
▶ STEX: Semantic LATEX
▶ invasive editors
▶ Context-Aware IDEs
▶ Mathematical Corpora
▶ Linguistics of Math
▶ ML for Math Semantics

Extraction

Foundations: Computational Logic, Web Technologies, OMDoc/Mmt

Dennis Müller: Artificial Intelligence 2 22 2024-04-14

Research Topics in the KWARC Group

▶ We are always looking for bright, motivated KWARCies.
▶ We have topics in for all levels! (Enthusiast, Bachelor, Master, Ph.D.)
▶ List of current topics: https://gl.kwarc.info/kwarc/thesis-projects/
▶ Automated Reasoning: Maths Representation in the Large
▶ Logics development, (Meta)n-Frameworks
▶ Math Corpus Linguistics: Semantics Extraction
▶ Serious Games, Cognitive Engineering, Math Information Retrieval, Legal Reasoning, . . .
▶ We always try to find a topic at the intersection of your and our interests.
▶ We also often have positions!. (HiWi, Ph.D.: 1

2 , PostDoc: full)

Dennis Müller: Artificial Intelligence 2 23 2024-04-14

https://gl.kwarc.info/kwarc/thesis-projects/

2.5 Agents and Environments in AI2

Dennis Müller: Artificial Intelligence 2 23 2024-04-14

2.5.1 Recap: Rational Agents as a Conceptual Framework

Dennis Müller: Artificial Intelligence 2 23 2024-04-14

Agents and Environments

▶ Definition 5.1. An agent is anything that
▶ perceives its environment via sensors (a means of sensing the environment)
▶ acts on it with actuators (means of changing the environment).

▶ Example 5.2. Agents include humans, robots, softbots, thermostats, etc.

Dennis Müller: Artificial Intelligence 2 24 2024-04-14

Agent Schema: Visualizing the Internal Agent Structure

▶ Agent Schema: We will use the following kind of agent schema to visualize the internal structure of
an agent:
Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Different agents differ on the contents of the white box in the center.

Dennis Müller: Artificial Intelligence 2 25 2024-04-14

Rationality

▶ Idea: Try to design agents that are successful! (aka. “do the right thing”)
▶ Definition 5.3. A performance measure is a function that evaluates a sequence of environments.
▶ Example 5.4. A performance measure for a vacuum cleaner could
▶ award one point per “square” cleaned up in time T?
▶ award one point per clean “square” per time step, minus one per move?
▶ penalize for > k dirty squares?
▶ Definition 5.5. An agent is called rational, if it chooses whichever action maximizes the expected

value of the performance measure given the percept sequence to date.
▶ Question: Why is rationality a good quality to aim for?

Dennis Müller: Artificial Intelligence 2 26 2024-04-14

Consequences of Rationality: Exploration, Learning, Autonomy

▶ Note: a rational agent need not be perfect
▶ only needs to maximize expected value (rational ̸= omniscient)
▶ need not predict e.g. very unlikely but catastrophic events in the future

▶ percepts may not supply all relevant information (rational ̸= clairvoyant)
▶ if we cannot perceive things we do not need to react to them.
▶ but we may need to try to find out about hidden dangers (exploration)

▶ action outcomes may not be as expected (rational ̸= successful)
▶ but we may need to take action to ensure that they do (more often) (learning)

▶ Note: rational ; exploration, learning, autonomy
▶ Definition 5.6. An agent is called autonomous, if it does not rely on the prior knowledge about the

environment of the designer.
▶ Autonomy avoids fixed behaviors that can become unsuccessful in a changing environment. (anything

else would be irrational)
▶ The agent has to learn all relevant traits, invariants, properties of the environment and actions.

Dennis Müller: Artificial Intelligence 2 27 2024-04-14

PEAS: Describing the Task Environment

▶ Observation: To design a rational agent, we must specify the task environment in terms of
performance measure, environment, actuators, and sensors, together called the PEAS components.
▶ Example 5.7. When designing an automated taxi:
▶ Performance measure: safety, destination, profits, legality, comfort, . . .
▶ Environment: US streets/freeways, traffic, pedestrians, weather, . . .
▶ Actuators: steering, accelerator, brake, horn, speaker/display, . . .
▶ Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .
▶ Example 5.8 (Internet Shopping Agent). The task environment:
▶ Performance measure: price, quality, appropriateness, efficiency
▶ Environment: current and future WWW sites, vendors, shippers
▶ Actuators: display to user, follow URL, fill in form
▶ Sensors: HTML pages (text, graphics, scripts)

Dennis Müller: Artificial Intelligence 2 28 2024-04-14

Environment types

▶ Observation 5.9. Agent design is largely determined by the type of environment it is intended for.
▶ Problem: There is a vast number of possible kinds of environments in AI.
▶ Solution: Classify along a few “dimensions”. (independent characteristics)
▶ Definition 5.10. For an agent a we classify the environment e of a by its type, which is one of the

following. We call e
1. fully observable, iff the a’s sensors give it access to the complete state of the environment at any point in

time, else partially observable.
2. deterministic, iff the next state of the environment is completely determined by the current state and a’s

action, else stochastic.
3. episodic, iff a’s experience is divided into atomic episodes, where it perceives and then performs a single

action. Crucially, the next episode does not depend on previous ones. Non-episodic environments are called
sequential.

4. dynamic, iff the environment can change without an action performed by a, else static. If the environment
does not change but a’s performance measure does, we call e semidynamic.

5. discrete, iff the sets of e’s state and a’s actions are countable, else continuous.
6. single agent, iff only a acts on e; else multi agent (when must we count parts of e as agents?)

Dennis Müller: Artificial Intelligence 2 29 2024-04-14

Simple reflex agents
▶ Definition 5.11. A simple reflex agent is an agent a that only bases its actions on the last percept:

so the agent function simplifies to f a : P→A.
▶ Agent Schema:

Section 2.4. The Structure of Agents 49

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

▶ Example 5.12 (Agent Program).
procedure Reflex−Vacuum−Agent [location,status] returns an action

if status = Dirty then . . .

Dennis Müller: Artificial Intelligence 2 30 2024-04-14

Model-based Reflex Agents: Idea

▶ Idea: Keep track of the state of the world we cannot see in an internal model.
▶ Agent Schema:

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

Dennis Müller: Artificial Intelligence 2 31 2024-04-14

Model-based Reflex Agents: Definition

▶ Definition 5.13. A model-based agent is an agent whose actions depend on
▶ a world model: a set S of possible states.
▶ a sensor model S that given a state s and a percepts p determines a new state S(s, p).
▶ a transition model T , that predicts a new state T (s, a) from a state s and an action a.
▶ An action function f that maps (new) states to an actions.

If the world model of a model-based agent A is in state s and A has taken action a, A will transition
to state s ′ = T (S(p, s), a) and take action a′ = f (s ′).
▶ Note: As different percept sequences lead to different states, so the agent function f a : P∗→A no

longer depends only on the last percept.
▶ Example 5.14 (Tail Lights Again). Model-based agents can do the ?? if the states include a

concept of tail light brightness.

Dennis Müller: Artificial Intelligence 2 32 2024-04-14

2.5.2 Sources of Uncertainty

Dennis Müller: Artificial Intelligence 2 32 2024-04-14

Sources of Uncertainty in Decision-Making

Where’s that d. . . Wumpus?
And where am I, anyway??

▶ Non-deterministic actions:
▶ “When I try to go forward in this dark cave, I might actually go forward-left or forward-right.”

▶ Partial observability with unreliable sensors:
▶ “Did I feel a breeze right now?”;
▶ “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”
▶ “According to the heat scanner, the Wumpus is probably in cell [2,3].”
▶ Uncertainty about the domain behavior:
▶ “Are you sure the Wumpus never moves?”

Dennis Müller: Artificial Intelligence 2 33 2024-04-14

Sources of Uncertainty in Decision-Making

Where’s that d. . . Wumpus?
And where am I, anyway??

▶ Non-deterministic actions:
▶ “When I try to go forward in this dark cave, I might actually go forward-left or forward-right.”
▶ Partial observability with unreliable sensors:
▶ “Did I feel a breeze right now?”;
▶ “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”
▶ “According to the heat scanner, the Wumpus is probably in cell [2,3].”

▶ Uncertainty about the domain behavior:
▶ “Are you sure the Wumpus never moves?”

Dennis Müller: Artificial Intelligence 2 33 2024-04-14

Sources of Uncertainty in Decision-Making

Where’s that d. . . Wumpus?
And where am I, anyway??

▶ Non-deterministic actions:
▶ “When I try to go forward in this dark cave, I might actually go forward-left or forward-right.”
▶ Partial observability with unreliable sensors:
▶ “Did I feel a breeze right now?”;
▶ “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”
▶ “According to the heat scanner, the Wumpus is probably in cell [2,3].”
▶ Uncertainty about the domain behavior:
▶ “Are you sure the Wumpus never moves?”

Dennis Müller: Artificial Intelligence 2 33 2024-04-14

Unreliable Sensors

▶ Robot Localization: Suppose we want to support localization using landmarks to narrow down the
area.
▶ Example 5.15. If you see the Eiffel tower, then you’re in Paris.

▶ Difficulty: Sensors can be imprecise.
▶ Even if a landmark is perceived, we cannot conclude with certainty that the robot is at that location.
▶ This is the half-scale Las Vegas copy, you dummy.
▶ Even if a landmark is not perceived, we cannot conclude with certainty that the robot is not at that

location.
▶ Top of Eiffel tower hidden in the clouds.
▶ Only the probability of being at a location increases or decreases.

Dennis Müller: Artificial Intelligence 2 34 2024-04-14

Unreliable Sensors

▶ Robot Localization: Suppose we want to support localization using landmarks to narrow down the
area.
▶ Example 5.16. If you see the Eiffel tower, then you’re in Paris.
▶ Difficulty: Sensors can be imprecise.
▶ Even if a landmark is perceived, we cannot conclude with certainty that the robot is at that location.
▶ This is the half-scale Las Vegas copy, you dummy.
▶ Even if a landmark is not perceived, we cannot conclude with certainty that the robot is not at that

location.
▶ Top of Eiffel tower hidden in the clouds.
▶ Only the probability of being at a location increases or decreases.

Dennis Müller: Artificial Intelligence 2 34 2024-04-14

2.5.3 Agent Architectures based on Belief States

Dennis Müller: Artificial Intelligence 2 34 2024-04-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!

▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.17. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in, and
▶ a sensor model that updates the belief state based on sensor information
▶ a transition model that updates the belief state based on actions.
▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ thus the belief state is a singleton (we call its member the world state) and the transition model is a

function from states and actions to states: a transition function.

Dennis Müller: Artificial Intelligence 2 35 2024-04-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.18. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in, and
▶ a sensor model that updates the belief state based on sensor information
▶ a transition model that updates the belief state based on actions.

▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ thus the belief state is a singleton (we call its member the world state) and the transition model is a

function from states and actions to states: a transition function.

Dennis Müller: Artificial Intelligence 2 35 2024-04-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.19. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in, and
▶ a sensor model that updates the belief state based on sensor information
▶ a transition model that updates the belief state based on actions.
▶ Idea: The agent environment determines what the world model can be.

▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ thus the belief state is a singleton (we call its member the world state) and the transition model is a

function from states and actions to states: a transition function.

Dennis Müller: Artificial Intelligence 2 35 2024-04-14

World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 5.20. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in, and
▶ a sensor model that updates the belief state based on sensor information
▶ a transition model that updates the belief state based on actions.
▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ thus the belief state is a singleton (we call its member the world state) and the transition model is a

function from states and actions to states: a transition function.

Dennis Müller: Artificial Intelligence 2 35 2024-04-14

World Models by Agent Type in AI-1

▶ Search-based Agents: In a fully observable, deterministic environment
▶ goal-based agent with world state =̂ “current state”
▶ no inference. (goal =̂ goal state from search problem)
▶ CSP-based Agents: In a fully observable, deterministic environment
▶ goal-based agent withworld state =̂ constraint network,
▶ inference =̂ constraint propagation. (goal =̂ satisfying assignment)
▶ Logic-based Agents: In a fully observable, deterministic environment
▶ model-based agent with world state =̂ logical formula
▶ inference =̂ e.g. DPLL or resolution.
▶ Planning Agents: In a fully observable, deterministic, environment
▶ goal-based agent with world state =̂ PL0, transition model =̂ STRIPS,
▶ inference =̂ state/plan space search. (goal: complete plan/execution)

Dennis Müller: Artificial Intelligence 2 36 2024-04-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.

▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when
we want to optimize utility)
▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

Dennis Müller: Artificial Intelligence 2 37 2024-04-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.
▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when

we want to optimize utility)

▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

Dennis Müller: Artificial Intelligence 2 37 2024-04-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.
▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when

we want to optimize utility)
▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.

▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

Dennis Müller: Artificial Intelligence 2 37 2024-04-14

World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.
▶ Note: This even applies to online problem solving, where we can just perceive the state. (e.g. when

we want to optimize utility)
▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state – during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)

Dennis Müller: Artificial Intelligence 2 37 2024-04-14

Preview: New World Models (Belief) ; new Agent Types

▶ Probabilistic Agents: In a partially observable environment
▶ belief state =̂ Bayesian networks,
▶ inference =̂ probabilistic inference.

▶ Decision-Theoretic Agents: In a partially observable, stochastic environment
▶ belief state + transition model =̂ decision networks,
▶ inference =̂ maximizing expected utility.
▶ We will study them in detail this semester.

Dennis Müller: Artificial Intelligence 2 38 2024-04-14

Preview: New World Models (Belief) ; new Agent Types

▶ Probabilistic Agents: In a partially observable environment
▶ belief state =̂ Bayesian networks,
▶ inference =̂ probabilistic inference.
▶ Decision-Theoretic Agents: In a partially observable, stochastic environment
▶ belief state + transition model =̂ decision networks,
▶ inference =̂ maximizing expected utility.
▶ We will study them in detail this semester.

Dennis Müller: Artificial Intelligence 2 38 2024-04-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)

▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal
reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)

▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)

▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,
Markov Decision Procedures,...)

⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions

▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Overview: AI2

▶ Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)
▶ Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence, causal

reasoning (Representing distributions efficiently, Bayesian networks,...)
▶ Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)
⇒ We can update our world model episodically based on observations (i.e. sensor data)
▶ Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision networks,

Markov Decision Procedures,...)
⇒ We can choose the right action based on our world model and the likely outcomes of our actions
▶ Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Part 1
Reasoning with Uncertain Knowledge

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Chapter 3
Quantifying Uncertainty

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

3.1 Probability Theory

Dennis Müller: Artificial Intelligence 2 39 2024-04-14

Probabilistic Models

▶ Definition 1.1 (Mathematically (slightly simplified)). A probability space or (probability model) is
a pair ⟨Ω,P ⟩ such that:
▶ Ω is a set of outcomes (called the sample space),
▶ P is a function P(Ω)→ [0,1], such that:
▶ P (Ω) = 1 and
▶ P (

⋃
iAi) =

∑
i P (Ai) for all pairwise disjoint Ai ∈ P(Ω).

P is called a probability measure.

These properties are called the Kolmogorov axioms.
▶ Intuition: We run some experiment, the outcome of which is any ω ∈ Ω. P (X) is the probability

that the result of the experiment is any one of the outcomes in X . Naturally, the probability that any
outcome occurs is 1 (hence P(Ω) = 1). The probability of pairwise disjoint sets of outcomes should
just be the sum of their probabilities.
▶ Example 1.2 (Dice throws). Assume we throw a (fair) die two times. Then the sample space is
{(i , j)|1 ≤ i , j ≤ 6}. We define P by letting P ({A}) = 1

36 for every A ∈ Ω.
Since the probability of any outcome is the same, we say P is uniformly distributed

Dennis Müller: Artificial Intelligence 2 40 2024-04-14

Random Variables

In practice, we are rarely interested in the specific outcome of an experiment, but rather in some
property of the outcome. This is especially true in the very common situation where we don’t even know
the precise probabilities of the individual outcomes.

▶ Example 1.3. The probability that the sum of our two dice throws is 7 is
P ({(i , j) ∈ Ω|i + j = 7}) = P ({(6, 1), (1, 6), (5, 2), (2, 5), (4, 3), (3, 4)}) = 6

36 = 1
6 .

▶ Definition 1.4 (Again, slightly simplified). Let D be a set. A random variable is a function
X : Ω→D. We call D (somewhat confusingly) the domain of X , denoted dom(X).
For x ∈ D, we define the probability of x as P (X = x):=P ({ω ∈ Ω|X (ω) = x}).

▶ Definition 1.5. We say that a random variable X is finite domain, iff its domain dom(X) is finite and
Boolean, iff dom(X) = {T,F}.
For a Boolean random variable, we will simply write P (X) for P (X = T) and P (¬X) for P (X = F).

Dennis Müller: Artificial Intelligence 2 41 2024-04-14

Some Examples
▶ Example 1.6. Summing up our two dice throws is a random variable S : Ω→[2,12] with
X ((i , j)) = i + j . The probability that they sum up to 7 is written as P (S = 7) = 1

6 .

▶ Example 1.7. The first and second of our two dice throws are random variables
First, Second : Ω→[1,6] with First((i , j)) = i and Second((i , j)) = j .

▶ Remark 1.8. Note, that the identity Ω → Ω is a random variable as well.
▶ Example 1.9. We can model toothache, cavity and gingivitis as Boolean random variables, with the

underlying probability space being...??
▶ Example 1.10. We can model tomorrow’s weather as a random variable with domain
{sunny, rainy, foggy, warm, cloudy, humid, ...}, with the underlying probability space being...??

⇒ This is why probabilistic reasoning is necessary: We can rarely reduce probabilistic scenarios down to
clearly defined, fully known probability spaces and derive all the interesting things from there.

But: The definitions here allow us to reason about probabilities and random variables in a
mathematically rigorous way, e.g. to make our intuitions and assumptions precise, and prove our
methods to be sound.

Dennis Müller: Artificial Intelligence 2 42 2024-04-14

Propositions

This is nice and all, but in practice we are interested in “compound” probabilities like:

“What is the probability that the sum of our two dice throws is 7, but neither of the two dice is a 3?”

Idea: Reuse the syntax of propositional logic and define the logical connectives for random variables!
Example 1.11. We can express the above as: P (¬(First = 3) ∧ ¬(Second = 3) ∧ (S = 7))

Definition 1.12. Let X1,X2 be random variables, x1 ∈ dom(X1) and x2 ∈ dom(X2). We define:
1. P (X1 ̸= x1):=P (¬(X1 = x1)):=P ({ω ∈ Ω|X1(ω) ̸= x1})=1 − P (X1 = x1).
2. P ((X1 = x1) ∧ (X2 = x2)):=P ({ω ∈ Ω|(X1(ω) = x1) ∧ (X2(ω) = x2)})
=P ({ω ∈ Ω|X1(ω) = x1} ∩ {ω ∈ Ω|X2(ω) = x2}).

3. P ((X1 = x1) ∨ (X2 = x2)):=P ({ω ∈ Ω|(X1(ω) = x1) ∨ (X2(ω) = x2)})
=P ({ω ∈ Ω|X1(ω) = x1} ∪ {ω ∈ Ω|X2(ω) = x2}).

It is also common to write P (A,B) for P (A ∧ B)

Example 1.13. P ((First ̸= 3) ∧ (Second ̸= 3) ∧ (S = 7)) = P ({(1, 6), (6, 1), (2, 5), (5, 2)}) = 1
9

Dennis Müller: Artificial Intelligence 2 43 2024-04-14

Events

Definition 1.14 (Again slightly simplified). Let ⟨Ω,P ⟩ be a probability space. An event is a subset of
Ω.
Definition 1.15 (Convention). We call an event (by extension) anything that represents a subset of Ω:
any statement formed from the logical connectives and values of random variables, on which P (·) is
defined.

Problem 1.1
Remember: We can define A ∨ B:=¬(¬A ∧ ¬B), T:=A ∨ ¬A and F:=¬T – is this compatible with the
definition of probabilities on propositional formulae? And why is P (X1 ̸= x1) = 1 − P (X1 = x1)?

Problem 1.2 (Inclusion-Exclusion-Principle)
Show that P (A ∨ B) = P (A) + P (B)− P (A ∧ B).

Problem 1.3
Show that P (A) = P (A ∧ B) + P (A ∧ ¬B)

Dennis Müller: Artificial Intelligence 2 44 2024-04-14

Conditional Probabilities
▶ As we gather new information, our beliefs (should) change, and thus our probabilities!
▶ Example 1.16. Your “probability of missing the connection train” increases when you are informed

that your current train has 30 minutes delay.
▶ Example 1.17. The “probability of cavity” increases when the doctor is informed that the patient

has a toothache.
▶ Example 1.18. The probability that S = 3 is clearly higher if I know that First = 1 than otherwise –

or if I know that First = 6!
▶ Definition 1.19. Let A and B be events where P (B) ̸= 0. The conditional probability of A given B is

defined as:
P(A|B):=P (A ∧ B)

P (B)

We also call P (A) the prior probability of A, and P(A|B) the posterior probability.
▶ Intuition: If we assume B to hold, then we are only interested in the “part” of Ω where A is true

relative to B.
Alternatively: We restrict our sample space Ω to the subset of outcomes where B holds. We then
define a new probability space on this subset by scaling the probability measure so that it sums to 1 –
which we do by dividing by P (B). (We “update our beliefs based on new evidence”)

Dennis Müller: Artificial Intelligence 2 45 2024-04-14

Examples

▶ Example 1.20. If we assume First = 1, then P(S = 3|First = 1) should be precisely
P (Second = 2) = 1

6 . We check:

P(S = 3|First = 1) =
P ((S = 3) ∧ (First = 1))

P (First = 1)
=

1/36
1/6

=
1
6

▶ Example 1.21. Assume the prior probability P (cavity) is 0.122. The probability that a patient has
both a cavity and a toothache is P (cavity ∧ toothache) = 0.067. The probability that a patient has a
toothache is P (toothache) = 0.15.
If the patient complains about a toothache, we can update our estimation by computing the posterior
probability:

P(cavity|toothache) =
P (cavity ∧ toothache)

P (toothache)
=

0.067
0.15

= 0.45.

▶ Note: We just computed the probability of some underlying disease based on the presence of a
symptom!
Or more generally: We computed the probability of a cause from observing its effect.

Dennis Müller: Artificial Intelligence 2 46 2024-04-14

Some Rules

Equations on unconditional probabilities have direct analogues for conditional probabilities.
Problem 1.4
Convince yourself of the following:
▶ P(A|C) = 1 − P(¬A|C).
▶ P(A|C) = P(A ∧ B|C) + P(A ∧ ¬B|C).
▶ P(A ∨ B|C) = P(A|C) + P(B|C)− P(A ∧ B|C).

But not on the right hand side!
Problem 1.5
Find counterexamples for the following (false) claims:
▶ P(A|C) = 1 − P(A|¬C)

▶ P(A|C) = P(A|B ∧ C) + P(A|B ∧ ¬C).
▶ P(A|B ∨ C) = P(A|B) + P(A|C)− P(A|B ∧ C).

Dennis Müller: Artificial Intelligence 2 47 2024-04-14

Bayes’ Rule

▶ Note: By definition, P(A|B) = P (A∧B)
P (B) . In practice, we often know the conditional probability

already, and use it to compute the probability of the conjunction instead:
P (A ∧ B) = P(A|B) · P (B) = P(B|A) · P (A).

▶ Theorem 1.22 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and P (B) ̸= 0, we
have:

P(A|B) = P(B|A) · P (A)

P (B)

▶ Proof:
1. P(A|B) = P (A∧B)

P (B) = P(B|A)·P (A)
P (B)

...okay, that was straightforward... what’s the big deal?

▶ (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a single
equation!

This is an extreme overstatement, but there is a grain of truth in it.

Dennis Müller: Artificial Intelligence 2 48 2024-04-14

Bayes’ Rule

▶ Note: By definition, P(A|B) = P (A∧B)
P (B) . In practice, we often know the conditional probability

already, and use it to compute the probability of the conjunction instead:
P (A ∧ B) = P(A|B) · P (B) = P(B|A) · P (A).

▶ Theorem 1.23 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and P (B) ̸= 0, we
have:

P(A|B) = P(B|A) · P (A)

P (B)

▶ Proof:
1. P(A|B) = P (A∧B)

P (B) = P(B|A)·P (A)
P (B)

...okay, that was straightforward... what’s the big deal?

▶ (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a single
equation!

This is an extreme overstatement, but there is a grain of truth in it.

Dennis Müller: Artificial Intelligence 2 48 2024-04-14

Bayes’ Rule

▶ Note: By definition, P(A|B) = P (A∧B)
P (B) . In practice, we often know the conditional probability

already, and use it to compute the probability of the conjunction instead:
P (A ∧ B) = P(A|B) · P (B) = P(B|A) · P (A).

▶ Theorem 1.24 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and P (B) ̸= 0, we
have:

P(A|B) = P(B|A) · P (A)

P (B)

▶ Proof:
1. P(A|B) = P (A∧B)

P (B) = P(B|A)·P (A)
P (B)

...okay, that was straightforward... what’s the big deal?

▶ (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a single
equation!

This is an extreme overstatement, but there is a grain of truth in it.

Dennis Müller: Artificial Intelligence 2 48 2024-04-14

Bayes’ Theorem - Why the Hype?

Say we have a hypothesis H about the world. (e.g. “The universe had a beginning”)
We have some prior belief P (H).
We gather evidence E . (e.g. “We observe a cosmic microwave background at 2.7K everywhere”)

Bayes’ Rule tells us how to update our belief in H based on H’s ability to predict E (the likelihood
P(E |H)) – and, importantly, the ability of competing hypotheses to predict the same evidence. (This is
actually how scientific hypotheses should be evaluated)

P(H|E)︸ ︷︷ ︸
posterior

=
P(E |H) · P (H)

P (E)
=

likelihood︷ ︸︸ ︷
P(E |H) ·

prior︷ ︸︸ ︷
P (H)

P(E |H)︸ ︷︷ ︸
likelihood

P (H)︸ ︷︷ ︸
prior

+P(E |¬H)P (¬H)︸ ︷︷ ︸
competition

...if I keep gathering evidence and update, ultimately the impact of the prior belief will diminish.

“You’re entitled to your own priors, but not your own likelihoods”

Dennis Müller: Artificial Intelligence 2 49 2024-04-14

Independence

▶ Question: What is the probability that S = 7 and the patient has a toothache?
Or less contrived: What is the probability that the patient has a gingivitis and a cavity?
▶ Definition 1.25. Two events A and B are called independent, iff P (A ∧ B) = P (A) · P (B).

Two random variables X1,X2 are called independent, iff for all x1 ∈ dom(X1) and x2 ∈ dom(X2), the
events X1 = x1 and X2 = x2 are independent.
We write A ⊥ B or X1 ⊥ X2, respectively.
▶ Theorem 1.26. Equivalently: Given events A and B with P (B) ̸= 0, then A and B are independent

iff P(A|B) = P (A) (equivalently: P(B|A) = P (B)).
▶ Proof:

1. ⇒ By definition, P(A|B) = P (A∧B)
P (B) = P (A)·P (B)

P (B) = P (A),
2. ⇐ Assume P(A|B) = P (A). Then P (A ∧ B) = P(A|B) · P (B) = P (A) · P (B).

▶ Note: Independence asserts that two events are “not related” – the probability of one does not
depend on the other.
Mathematically, we can determine independence by checking whether P (A ∧ B) = P (A) · P (B).
In practice, this is impossible to check. Instead, we assume independence based on domain knowledge,
and then exploit this to compute P (A ∧ B).

Dennis Müller: Artificial Intelligence 2 50 2024-04-14

Independence (Examples)

▶ Example 1.27.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72

▶ But: P ((First = a) ∧ (S = 7)) = 1
36 = 1

6 · 1
6 = P (First = a) · P (S = 7) – so the events First = a and

S = 7 are independent. (Why?)
▶ Example 1.28.
▶ Are cavity and toothache independent?

...since cavities can cause a toothache, that would probably be a bad design decision...
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

Dennis Müller: Artificial Intelligence 2 51 2024-04-14

Independence (Examples)

▶ Example 1.29.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.30.
▶ Are cavity and toothache independent?

...since cavities can cause a toothache, that would probably be a bad design decision...
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

Dennis Müller: Artificial Intelligence 2 51 2024-04-14

Independence (Examples)

▶ Example 1.31.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.32.
▶ Are cavity and toothache independent?

...since cavities can cause a toothache, that would probably be a bad design decision...
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

Dennis Müller: Artificial Intelligence 2 51 2024-04-14

Independence (Examples)

▶ Example 1.33.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.34.
▶ Are cavity and toothache independent?

...since cavities can cause a toothache, that would probably be a bad design decision...

▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause
cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

Dennis Müller: Artificial Intelligence 2 51 2024-04-14

Independence (Examples)

▶ Example 1.35.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.36.
▶ Are cavity and toothache independent?

...since cavities can cause a toothache, that would probably be a bad design decision...
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)

Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

Dennis Müller: Artificial Intelligence 2 51 2024-04-14

Independence (Examples)

▶ Example 1.37.
▶ First = 2 and Second = 3 are independent – more generally, First and Second are independent (The

outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓
▶ First and S are not independent. (The outcome of the first die affects the sum of the two dice.)

Counterexample: P ((First = 1) ∧ (S = 4)) = 1
36 ̸= P (First = 1) · P (S = 4) = 1

6 · 1
2 = 1

72
▶ But: P ((First = a) ∧ (S = 7)) = 1

36 = 1
6 · 1

6 = P (First = a) · P (S = 7) – so the events First = a and
S = 7 are independent. (Why?)

▶ Example 1.38.
▶ Are cavity and toothache independent?

...since cavities can cause a toothache, that would probably be a bad design decision...
▶ Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis does not cause

cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
Probably not! A patient who has cavities has probably worse dental hygiene than those who don’t, and is
thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not directly causally
related.

Dennis Müller: Artificial Intelligence 2 51 2024-04-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache|cavity) = 0.6,
P(toothache|¬cavity) = 0.1, P(catch|cavity) = 0.9, and P(catch|¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity|toothache ∧ catch)?

⇒ Use Bayes’ rule:

P(cavity|toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity) + P(toothache ∧ catch|¬cavity) · P (¬cavity)

⇒ Now we’re only missing P(toothache ∧ catch|cavity = b) for b ∈ {T,F}.
... Now what?
▶ Are toothache and catch independent, maybe? No: Both have a common (possible) cause, cavity.

Also, there’s this pesky P(·|cavity) in the way.wait a minute...

Dennis Müller: Artificial Intelligence 2 52 2024-04-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache|cavity) = 0.6,
P(toothache|¬cavity) = 0.1, P(catch|cavity) = 0.9, and P(catch|¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity|toothache ∧ catch)?

⇒ Use Bayes’ rule:

P(cavity|toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity) + P(toothache ∧ catch|¬cavity) · P (¬cavity)

⇒ Now we’re only missing P(toothache ∧ catch|cavity = b) for b ∈ {T,F}.
... Now what?

▶ Are toothache and catch independent, maybe? No: Both have a common (possible) cause, cavity.
Also, there’s this pesky P(·|cavity) in the way.wait a minute...

Dennis Müller: Artificial Intelligence 2 52 2024-04-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache|cavity) = 0.6,
P(toothache|¬cavity) = 0.1, P(catch|cavity) = 0.9, and P(catch|¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity|toothache ∧ catch)?

⇒ Use Bayes’ rule:

P(cavity|toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity) + P(toothache ∧ catch|¬cavity) · P (¬cavity)

⇒ Now we’re only missing P(toothache ∧ catch|cavity = b) for b ∈ {T,F}.
... Now what?
▶ Are toothache and catch independent, maybe?

No: Both have a common (possible) cause, cavity.
Also, there’s this pesky P(·|cavity) in the way.wait a minute...

Dennis Müller: Artificial Intelligence 2 52 2024-04-14

Conditional Independence – Motivation
▶ A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.
▶ Say we know from clinical studies that P (cavity) = 0.2, P(toothache|cavity) = 0.6,
P(toothache|¬cavity) = 0.1, P(catch|cavity) = 0.9, and P(catch|¬cavity) = 0.2.
▶ Assume the patient complains about a toothache, and our probe indeed catches in the aching tooth.

What is the likelihood of having a cavity P(cavity|toothache ∧ catch)?

⇒ Use Bayes’ rule:

P(cavity|toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity)

P (toothache ∧ catch)

▶ Note: P (toothache ∧ catch) =
P(toothache ∧ catch|cavity) · P (cavity) + P(toothache ∧ catch|¬cavity) · P (¬cavity)

⇒ Now we’re only missing P(toothache ∧ catch|cavity = b) for b ∈ {T,F}.
... Now what?
▶ Are toothache and catch independent, maybe? No: Both have a common (possible) cause, cavity.

Also, there’s this pesky P(·|cavity) in the way.wait a minute...

Dennis Müller: Artificial Intelligence 2 52 2024-04-14

Conditional Independence – Definition
▶ Assuming the patient has (or does not have) a cavity, the events toothache and catch are

independent: Both are caused by a cavity, but they don’t influence each other otherwise.
i.e. cavity “contains all the information” that links toothache and catch in the first place.

▶ Definition 1.39. Given events A,B,C with P (C) ̸= 0, then A and B are called conditionally
independent given C , iff P(A ∧ B|C) = P(A|C) · P(B|C).
Equivalently: iff P(A|B ∧ C) = P(A|C), or P(B|A ∧ C) = P(B|C).

Let Y be a random variable. We call two random variables X1,X2 conditionally independent given Y ,
iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y), the events X1 = x1 and X2 = x2 are
conditionally independent given Y = y .

▶ Example 1.40. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:
P(cavity|toothache ∧ catch) = P(toothache∧catch|cavity)·P (cavity)

P (toothache∧catch)

= P(toothache|cavity)·P(catch|cavity)·P (cavity)
P(toothache|cavity)·P(catch|cavity)·P (cavity)+P(toothache|¬cavity)·P(catch|¬cavity)·P (¬cavity)

= 0.6·0.9·0.2
0.6·0.9·0.2+0.1·0.2·0.8=0.87

Dennis Müller: Artificial Intelligence 2 53 2024-04-14

Conditional Independence – Definition
▶ Assuming the patient has (or does not have) a cavity, the events toothache and catch are

independent: Both are caused by a cavity, but they don’t influence each other otherwise.
i.e. cavity “contains all the information” that links toothache and catch in the first place.

▶ Definition 1.41. Given events A,B,C with P (C) ̸= 0, then A and B are called conditionally
independent given C , iff P(A ∧ B|C) = P(A|C) · P(B|C).
Equivalently: iff P(A|B ∧ C) = P(A|C), or P(B|A ∧ C) = P(B|C).

Let Y be a random variable. We call two random variables X1,X2 conditionally independent given Y ,
iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y), the events X1 = x1 and X2 = x2 are
conditionally independent given Y = y .

▶ Example 1.42. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:
P(cavity|toothache ∧ catch) = P(toothache∧catch|cavity)·P (cavity)

P (toothache∧catch)

= P(toothache|cavity)·P(catch|cavity)·P (cavity)
P(toothache|cavity)·P(catch|cavity)·P (cavity)+P(toothache|¬cavity)·P(catch|¬cavity)·P (¬cavity)

= 0.6·0.9·0.2
0.6·0.9·0.2+0.1·0.2·0.8=0.87

Dennis Müller: Artificial Intelligence 2 53 2024-04-14

Conditional Independence – Definition
▶ Assuming the patient has (or does not have) a cavity, the events toothache and catch are

independent: Both are caused by a cavity, but they don’t influence each other otherwise.
i.e. cavity “contains all the information” that links toothache and catch in the first place.

▶ Definition 1.43. Given events A,B,C with P (C) ̸= 0, then A and B are called conditionally
independent given C , iff P(A ∧ B|C) = P(A|C) · P(B|C).
Equivalently: iff P(A|B ∧ C) = P(A|C), or P(B|A ∧ C) = P(B|C).

Let Y be a random variable. We call two random variables X1,X2 conditionally independent given Y ,
iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y), the events X1 = x1 and X2 = x2 are
conditionally independent given Y = y .

▶ Example 1.44. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:
P(cavity|toothache ∧ catch) = P(toothache∧catch|cavity)·P (cavity)

P (toothache∧catch)

= P(toothache|cavity)·P(catch|cavity)·P (cavity)
P(toothache|cavity)·P(catch|cavity)·P (cavity)+P(toothache|¬cavity)·P(catch|¬cavity)·P (¬cavity)

= 0.6·0.9·0.2
0.6·0.9·0.2+0.1·0.2·0.8=0.87

Dennis Müller: Artificial Intelligence 2 53 2024-04-14

Conditional Independence
▶ Lemma 1.45. If A and B are conditionally independent given C , then P(A|B ∧ C) = P(A|C)

Proof:
P(A|B ∧ C) = P (A∧B∧C)

P (B∧C) = P(A∧B|C)·P (C)
P (B∧C) = P(A|C)·P(B|C)·P (C)

P (B∧C) = P(A|C)·P (B∧C)
P (B∧C) = P(A|C)

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent?

No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

Dennis Müller: Artificial Intelligence 2 54 2024-04-14

Conditional Independence
▶ Lemma 1.46. If A and B are conditionally independent given C , then P(A|B ∧ C) = P(A|C)

Proof:
P(A|B ∧ C) = P (A∧B∧C)

P (B∧C) = P(A∧B|C)·P (C)
P (B∧C) = P(A|C)·P(B|C)·P (C)

P (B∧C) = P(A|C)·P (B∧C)
P (B∧C) = P(A|C)

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C?

No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

Dennis Müller: Artificial Intelligence 2 54 2024-04-14

Conditional Independence
▶ Lemma 1.47. If A and B are conditionally independent given C , then P(A|B ∧ C) = P(A|C)

Proof:
P(A|B ∧ C) = P (A∧B∧C)

P (B∧C) = P(A∧B|C)·P (C)
P (B∧C) = P(A|C)·P(B|C)·P (C)

P (B∧C) = P(A|C)·P (B∧C)
P (B∧C) = P(A|C)

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.

▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally
independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

Dennis Müller: Artificial Intelligence 2 54 2024-04-14

Conditional Independence
▶ Lemma 1.48. If A and B are conditionally independent given C , then P(A|B ∧ C) = P(A|C)

Proof:
P(A|B ∧ C) = P (A∧B∧C)

P (B∧C) = P(A∧B|C)·P (C)
P (B∧C) = P(A|C)·P(B|C)·P (C)

P (B∧C) = P(A|C)·P (B∧C)
P (B∧C) = P(A|C)

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now?

Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

Dennis Müller: Artificial Intelligence 2 54 2024-04-14

Conditional Independence
▶ Lemma 1.49. If A and B are conditionally independent given C , then P(A|B ∧ C) = P(A|C)

Proof:
P(A|B ∧ C) = P (A∧B∧C)

P (B∧C) = P(A∧B|C)·P (C)
P (B∧C) = P(A|C)·P(B|C)·P (C)

P (B∧C) = P(A|C)·P (B∧C)
P (B∧C) = P(A|C)

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?

We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

Dennis Müller: Artificial Intelligence 2 54 2024-04-14

Conditional Independence
▶ Lemma 1.50. If A and B are conditionally independent given C , then P(A|B ∧ C) = P(A|C)

Proof:
P(A|B ∧ C) = P (A∧B∧C)

P (B∧C) = P(A∧B|C)·P (C)
P (B∧C) = P(A|C)·P(B|C)·P (C)

P (B∧C) = P(A|C)·P (B∧C)
P (B∧C) = P(A|C)

▶ Question: If A and B are conditionally independent given C , does this imply that A and B are
independent? No. See previous slides for a counterexample.
▶ Question: If A and B are independent, does this imply that A and B are also conditionally

independent given C? No. For example: First and Second are independent, but not conditionally
independent given S = 4.
▶ Question: Okay, so what if A, B and C are all pairwise independent? Are A and B conditionally

independent given C now? Still no. Remember: First = a, Second = b and S = 7 are all
independent, but First and Second are not conditionally independent given S = 7.
▶ Question: When can we infer conditional independence from a “more general” notion of

independence?
We need mutual independence. Roughly: A set of events is called mutually independent, if every event
is independent from any conjunction of the others. (Not really relevant for this course though)

Dennis Müller: Artificial Intelligence 2 54 2024-04-14

Summary

▶ Probability spaces serve as a mathematical model (and hence justification) for everything related to
probabilities.
▶ The “atoms” of any statement of probability are the random variables. (Important special cases:

Boolean and finite domain)
▶ We can define probabilities on compund (propositional logical) statements, with (outcomes of)

random variables as “propositional variables”.
▶ Conditional probabilities represent posterior probabilities given some observed outcomes.
▶ independence and conditional independence are strong assumptions that allow us to simplify

computations of probabilities
▶ Bayes’ Theorem

Dennis Müller: Artificial Intelligence 2 55 2024-04-14

So much about the math...

We now have a mathematical setup for probabilities.

But: The math does not tell us what probabilities are:
Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3. What
does this even mean?

▶ Frequentist: The probability of an event is the limit of its relative frequency in a large number of
trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”

Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%” –
does this mean anything, if I only take the exam once? Am I comparable to “similar students”? What
counts as sufficiently “similar”?
▶ Bayesian: Probabilities are degrees of belief. It means you should be 30% confident that it will rain

tomorrow.
Objection: And why should I? Is this not purely subjective then?

Dennis Müller: Artificial Intelligence 2 56 2024-04-14

So much about the math...

We now have a mathematical setup for probabilities.

But: The math does not tell us what probabilities are:
Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3. What
does this even mean?
▶ Frequentist: The probability of an event is the limit of its relative frequency in a large number of

trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”

Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%” –
does this mean anything, if I only take the exam once? Am I comparable to “similar students”? What
counts as sufficiently “similar”?
▶ Bayesian: Probabilities are degrees of belief. It means you should be 30% confident that it will rain

tomorrow.
Objection: And why should I? Is this not purely subjective then?

Dennis Müller: Artificial Intelligence 2 56 2024-04-14

So much about the math...

We now have a mathematical setup for probabilities.

But: The math does not tell us what probabilities are:
Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3. What
does this even mean?
▶ Frequentist: The probability of an event is the limit of its relative frequency in a large number of

trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”

Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%” –
does this mean anything, if I only take the exam once? Am I comparable to “similar students”? What
counts as sufficiently “similar”?

▶ Bayesian: Probabilities are degrees of belief. It means you should be 30% confident that it will rain
tomorrow.

Objection: And why should I? Is this not purely subjective then?

Dennis Müller: Artificial Intelligence 2 56 2024-04-14

So much about the math...

We now have a mathematical setup for probabilities.

But: The math does not tell us what probabilities are:
Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3. What
does this even mean?
▶ Frequentist: The probability of an event is the limit of its relative frequency in a large number of

trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”

Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%” –
does this mean anything, if I only take the exam once? Am I comparable to “similar students”? What
counts as sufficiently “similar”?
▶ Bayesian: Probabilities are degrees of belief. It means you should be 30% confident that it will rain

tomorrow.

Objection: And why should I? Is this not purely subjective then?

Dennis Müller: Artificial Intelligence 2 56 2024-04-14

So much about the math...

We now have a mathematical setup for probabilities.

But: The math does not tell us what probabilities are:
Assume we can mathematically derive this to be the case: the probability of rain tomorrow is 0.3. What
does this even mean?
▶ Frequentist: The probability of an event is the limit of its relative frequency in a large number of

trials.
In other words: “In 30% of the cases where we have similar weather conditions, it rained the next day.”

Objection: Okay, but what about unique events? “The probability of me passing the exam is 80%” –
does this mean anything, if I only take the exam once? Am I comparable to “similar students”? What
counts as sufficiently “similar”?
▶ Bayesian: Probabilities are degrees of belief. It means you should be 30% confident that it will rain

tomorrow.
Objection: And why should I? Is this not purely subjective then?

Dennis Müller: Artificial Intelligence 2 56 2024-04-14

Pragmatics

Pragmatically, both interpretations amount to the same thing: I should act as if I’m 30% confident that
it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases, it rained.)
Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary Kolmogorov

axioms?

▶ [DF31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a combination
of “bets” on propositions so that the agent always loses money.
▶ In other words: If your beliefs are not consistent with the mathematics, and you act in accordance

with your beliefs, there is a way to exploit this inconsistency to your disadvantage.
▶ ...and, more importantly, your AI agents! ,

Dennis Müller: Artificial Intelligence 2 57 2024-04-14

Pragmatics

Pragmatically, both interpretations amount to the same thing: I should act as if I’m 30% confident that
it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases, it rained.)
Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary Kolmogorov

axioms?
▶ [DF31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a combination

of “bets” on propositions so that the agent always loses money.
▶ In other words: If your beliefs are not consistent with the mathematics, and you act in accordance

with your beliefs, there is a way to exploit this inconsistency to your disadvantage.

▶ ...and, more importantly, your AI agents! ,

Dennis Müller: Artificial Intelligence 2 57 2024-04-14

Pragmatics

Pragmatically, both interpretations amount to the same thing: I should act as if I’m 30% confident that
it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases, it rained.)
Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary Kolmogorov

axioms?
▶ [DF31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a combination

of “bets” on propositions so that the agent always loses money.
▶ In other words: If your beliefs are not consistent with the mathematics, and you act in accordance

with your beliefs, there is a way to exploit this inconsistency to your disadvantage.
▶ ...and, more importantly, your AI agents! ,

Dennis Müller: Artificial Intelligence 2 57 2024-04-14

3.2 Probabilistic Reasoning Techniques

Dennis Müller: Artificial Intelligence 2 57 2024-04-14

Okay, now how do I implement this?

This is a computer science course. We need to implement this stuff.

Do we... implement random variables as functions? Is a probability space a... class maybe?

No. As mentioned, we rarely know the probability space entirely. Instead we will use probability
distributions, which are just arrays (of arrays of...) of probabilities.

And then we represent those are sparse as possible, by exploiting independence, conditional
independence, ...

Dennis Müller: Artificial Intelligence 2 58 2024-04-14

Okay, now how do I implement this?

This is a computer science course. We need to implement this stuff.

Do we... implement random variables as functions? Is a probability space a... class maybe?

No. As mentioned, we rarely know the probability space entirely. Instead we will use probability
distributions, which are just arrays (of arrays of...) of probabilities.

And then we represent those are sparse as possible, by exploiting independence, conditional
independence, ...

Dennis Müller: Artificial Intelligence 2 58 2024-04-14

Probability Distributions

▶ Definition 2.1. The probability distribution for a random variable X , written P(X), is the vector of
probabilities for the (ordered) domain of X .
▶ Note: The values in a probability distribution are all positive and sum to 1. (Why?)
▶ Example 2.2. P(First) = P(Second) = ⟨ 1

6 ,
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ⟩. (Both First and Second are uniformly

distributed)
▶ Example 2.3. The probability distribution P(S) is ⟨ 1

36 ,
1
18 ,

1
12 ,

1
9 ,

5
36 ,

1
6 ,

5
36 ,

1
9 ,

1
12 ,

1
18 ,

1
36 ⟩. Note the

symmetry, with a “peak” at 7 – the random variable is (approximately, because our domain is discrete
rather than continuous) normally distributed (or gaussian distributed, or follows a bell-curve,...).
▶ Example 2.4. Probability distributions for Boolean random variables are naturally pairs (probabilities

for T and F), e.g.:

P(toothache) = ⟨0.15, 0.85⟩
P(cavity) = ⟨0.122, 0.878⟩

▶ More generally:
Definition 2.5. A probability distribution is a vector v of values vi ∈ [0,1] such that

∑
i vi = 1.

Dennis Müller: Artificial Intelligence 2 59 2024-04-14

The Full Joint Probability Distribution
▶ Definition 2.6. Given random variables X 1, . . .,X n, the full joint probability distribution, denoted
P(X 1, . . .,X n), is the n-dimensional array of size |D1 × . . .× Dn| that lists the probabilities of all
conjunctions of values of the random variables.
▶ Example 2.7. P(cavity, toothache, gingivitis) could look something like this:

toothache ¬toothache
gingivitis ¬gingivitis gingivitis ¬gingivitis

cavity 0.007 0.06 0.005 0.05
¬cavity 0.08 0.003 0.045 0.75

▶ Example 2.8. P(First,S)
First \ S 2 3 4 5 6 7 8 9 10 11 12

1 1
36

1
36

1
36

1
36

1
36

1
36 0 0 0 0 0

2 0 1
36

1
36

1
36

1
36

1
36

1
36 0 0 0 0

3 0 0 1
36

1
36

1
36

1
36

1
36

1
36 0 0 0

4 0 0 0 1
36

1
36

1
36

1
36

1
36

1
36 0 0

5 0 0 0 0 1
36

1
36

1
36

1
36

1
36

1
36 0

6 0 0 0 0 0 1
36

1
36

1
36

1
36

1
36

1
36

Note that if we know the value of First, the value of S is completely determined by the value of
Second.

Dennis Müller: Artificial Intelligence 2 60 2024-04-14

Conditional Probability Distributions
▶ Definition 2.9. Given random variables X and Y , the conditional probability distribution of X given
Y , written P(X |Y) is the table of all conditional probabilities of values of X given values of Y .
▶ For sets of variables analogously: P(X 1, . . .,X n|Y 1, . . .,Ym).
▶ Example 2.10. P(cavity|toothache):

toothache ¬toothache
cavity P(cavity|toothache) = 0.45 P(cavity|¬toothache) = 0.065
¬cavity P(¬cavity|toothache) = 0.55 P(¬cavity|¬toothache) = 0.935

▶ Example 2.11. P(First|S)
First \ S 2 3 4 5 6 7 8 9 10 11 12

1 1 1
2

1
3

1
4

1
5

1
6 0 0 0 0 0

2 0 1
2

1
3

1
4

1
5

1
6

1
5 0 0 0 0

3 0 0 1
3

1
4

1
5

1
6

1
5

1
4 0 0 0

4 0 0 0 1
4

1
5

1
6

1
5

1
4

1
3 0 0

5 0 0 0 0 1
5

1
6

1
5

1
4

1
3

1
2 0

6 0 0 0 0 0 1
6

1
5

1
4

1
3

1
2 1

▶ Note: Every “column” of a conditional probability distribution is itself a probability distribution.
(Why?)

Dennis Müller: Artificial Intelligence 2 61 2024-04-14

Convention

We now “lift” multiplication and division to the level of whole probability distributions:
▶ Definition 2.12. Whenever we use P in an equation, we take this to mean a system of equations, for

each value in the domains of the random variables involved.
Example 2.13.
▶ P(X ,Y) = P(X |Y) · P(Y) represents the system of equations
P (X = x ∧ Y = y) = P(X = x |Y = y) · P (Y = y) for all x , y in the respective domains.

▶ P(X |Y):=P(X ,Y)
P(Y) represents the system of equations P(X = x |Y = y):=P ((X=x)∧(Y=y))

P (Y=y)

▶ Bayes’ Theorem: P(X |Y) = P(Y |X)·P(X)
P(Y) represents the system of equations

P(X = x |Y = y) = P(Y=y |X=x)·P (X=x)
P (Y=y)

Dennis Müller: Artificial Intelligence 2 62 2024-04-14

So, what’s the point?

▶ Obviously, the probability distribution contains all the information about a specific random variable
we need.
▶ Observation: The full joint probability distribution of variables X 1, . . .,X n contains all the

information about the random variables and their conjunctions we need.
▶ Example 2.14. We can read off the probability P (toothache) from the full joint probability

distribution as 0.007 + 0.06 + 0.08 + 0.003=0.15, and the probability P (toothache ∧ cavity) as
0.007 + 0.06 = 0.067
▶ We can actually implement this! (They’re just (nested) arrays)

But just as we often don’t have a fully specified probability space to work in, we often don’t have a full
joint probability distribution for our random variables either.
▶ Also: Given random variables X 1, . . .,X n, the full joint probability distribution has

∏n
i=1 |dom(X i)|

entries! (P(First,S) already has 60 entries!)
⇒ The rest of this section deals with keeping things small, by computing probabilities instead of storing

them all.

Dennis Müller: Artificial Intelligence 2 63 2024-04-14

Probabilistic Reasoning

▶ Probabilistic reasoning refers to inferring probabilities of events from the probabilities of other
events
as opposed to determining the probabilities e.g. empirically, by gathering (sufficient amounts of
representative) data and counting.
▶ Note: In practice, we are primarily interested in, and have access to, conditional probabilities rather

than the unconditional probabilities of conjunctions of events:
▶ We don’t reason in a vacuum: Usually, we have some evidence and want to infer the posterior probability of

some related event. (e.g. infer a plausible cause given some symptom)
⇒ we are interested in the conditional probability P(hypothesis|observation).

▶ “80% of patients with a cavity complain about a toothache” (i.e. P(toothache|cavity)) is more the kind of
data people actually collect and publish than “1.2% of the general population have both a cavity and a
toothache” (i.e. P (cavity ∧ toothache)).

▶ Consider the probe catching in a cavity. The probe is a diagnostic tool, which is usually evaluated in terms
of its sensitivity P(catch|cavity) and specificity P(¬catch|¬cavity). (You have probably heard these words
a lot since 2020...)

Dennis Müller: Artificial Intelligence 2 64 2024-04-14

Naive Bayes Models

Consider again the dentistry example with random variables cavity, toothache, and catch. We assume
cavity causes both toothache and catch, and that toothache and catch are conditionally independent
given cavity:

Toothache Catch

Cavity

We likely know the sensitivity P(catch|cavity) and specificity P(¬catch|¬cavity), which jointly give us
P(catch|cavity), and from medical studies, we should be able to determine P (cavity) (the prevalence of
cavities in the population) and P(toothache|cavity).

This kind of situation is surprisingly common, and deserves a name

Dennis Müller: Artificial Intelligence 2 65 2024-04-14

Naive Bayes Models

Toothache Catch

Cavity

Definition 2.15. A naive Bayes model (or, less accurately, Bayesian classifier, or, derogatorily, idiot
Bayes model) consists of:
1. random variables C ,E 1, . . .,E n such that all the E 1, . . .,E n are conditionally independent given C ,
2. the probability distribution P(C), and
3. the conditional probability distributions P(E i |C).
We call C the cause and the E 1, . . .,E n the effects of the model.

Convention: Whenever we draw a graph of random variables, we take the arrows to connect causes to
their direct effects, and assert that unconnected nodes are conditionally independent given all their
ancestors. We will make this more precise later.

Can we compute the full joint probability distribution P(cavity, toothache, catch) from this information?

Dennis Müller: Artificial Intelligence 2 66 2024-04-14

Recovering the Full Joint Probability Distribution
▶ Lemma 2.16 (Product rule). P(X ,Y) = P(X |Y) · P(Y).

We can generalize this to more than two variables, by repeatedly applying the product rule:
▶ Lemma 2.17 (Chain rule). For any sequence of random variables X 1, . . .,X n:

P(X 1, . . .,X n) = P(X 1|X 2, . . .,X n) · P(X 2|X 3, . . .X n) · . . . · P(X n−1|X n) · P (X n)

.
Hence:
▶ Theorem 2.18. Given a naive Bayes model with effects E 1, . . .,E n and cause C , we have

P(C ,E 1, . . .,E n) = P(C) ·
n∏

i=1

P(E i |C).

Proof: Using the chain rule:
1. P(E 1, . . .,E n,C) = P(E 1|E 2, . . .,E n,C) · . . . · P(E n|C) · P(C)
2. Since all the E i are conditionally independent, we can drop them on the right hand sides of the
P(E j |...,C)

Dennis Müller: Artificial Intelligence 2 67 2024-04-14

Marginalization
Great, so now we can compute P(C |E 1, . . .,E n) =

P(C ,E1,...,E n)
P(E1,...,E n)

...
...except that we don’t know P(E 1, . . .,E n) :-/
...except that we can compute the full joint probability distribution, so we can recover it:

Lemma 2.19 (Marginalization). Given random variables X 1, . . .,X n and Y 1, . . .,Ym, we have
P(X 1, . . .,X n) =

∑
y1∈dom(Y 1),...,ym∈dom(Ym)

P(X 1, . . .,X n,Y 1 = y1, . . .,Ym = ym).
(This is just a fancy way of saying “we can add the relevant entries of the full joint probability

distribution”)

Example 2.20. Say we observed toothache = T and catch = T. Using marginalization, we can compute

P(cavity|toothache ∧ catch)=
P (cavity ∧ toothache ∧ catch)

P (toothache ∧ catch)

=
P (cavity ∧ toothache ∧ catch)∑

c∈{cavity,¬cavity} P (c ∧ toothache ∧ catch)

=
P (cavity) · P(toothache|cavity) · P(catch|cavity)∑
c∈{cavity,¬cavity} P (c) · P(toothache|c) · P(catch|c)

Dennis Müller: Artificial Intelligence 2 68 2024-04-14

Unknowns

What if we don’t know catch? (I’m not a dentist, I don’t have a probe...)
We split our effects into {E 1, . . .,E n} = {O1, . . .,OnO} ∪ {U1, . . .,UnU} – the observed and unknown
random variables.
Let DU :=dom(U1)× . . .× dom(Unu). Then

P(C |O1, . . .,OnO)=
P(C ,O1, . . .,OnO)

P(O1, . . .,OnO)

=

∑
u∈DU

P(C ,O1, . . .,OnO ,U1 = u1, . . .,Unu = unu)∑
c∈dom(C)

∑
u∈DU

P(O1, . . .,OnO ,C = c ,U1 = u1, . . .,Unu = unu)

=

∑
u∈DU

P(C) ·∏nO
i=1 P(O i |C) ·∏nU

j=1 P(U j = uj |C)
∑

c∈dom(C)

∑
u∈DU

P (C = c) ·∏nO
i=1 P(O i |C = c) ·∏nU

j=1 P(U j = uj |C = c)

=
P(C) ·∏nO

i=1 P(O i |C) · (∑u∈DU

∏nU
j=1 P(U j = uj |C))

∑
c∈dom(C) P (C = c) ·∏nO

i=1 P(O i |C = c) · (∑u∈DU

∏nU
j=1 P(U j = uj |C = c))

...oof...

Dennis Müller: Artificial Intelligence 2 69 2024-04-14

Unknowns

P(C |O1, . . .,OnO) =
P(C) ·∏nO

i=1 P(O i |C) · (∑u∈DU

∏nU
j=1 P(U j = uj |C))

∑
c∈dom(C) P (C = c) ·∏nO

i=1 P(O i |C = c) · (∑u∈DU

∏nU
j=1 P(U j = uj |C = c))

First, note that
∑

u∈DU

∏nU
j=1 P(U j = uj |C = c) = 1 (We’re summing over all possible events on the

(conditionally independent) U1, . . .,UnU given C = c)

P(C |O1, . . .,OnO) =
P(C) ·∏nO

i=1 P(O i |C)∑
c∈dom(C) P (C = c) ·∏nO

i=1 P(O i |C = c)

Secondly, note that the denominator is
1. the same for any given observations O1, . . .,OnO , independent of the value of C , and
2. the sum over all the numerators in the full distribution.
That is: The denominator only serves to scale what is almost already the distribution P(C |O1, . . .,OnO)
to sum up to 1.

Dennis Müller: Artificial Intelligence 2 70 2024-04-14

Normalization
Definition 2.21 (Normalization). Given a vector w :=⟨w1, . . .,wk⟩ of numbers in [0,1] where∑k

i=1 w i ≤ 1.
Then the normalized vector α(w) is defined (component-wise) as

(α(w))i :=
w i∑k
j=1 w j

.

Note that
∑k

i=1 α(w)i = 1, i.e. α(w) is a probability distribution.

This finally gives us:
Theorem 2.22 (Inference in a Naive Bayes model). Let C ,E 1, . . .,E n a naive Bayes model and
E 1, . . .,E n = O1, . . .,OnO ,U1, . . .,UnU .
Then

P(C |O1 = o1, . . .,OnO = onO) = α(P(C) ·
nO∏

i=1

P(O i = oi |C))

Note, that this is entirely independent of the unknown random variables U1, . . .,UnU !
Also, note that this is just a fancy way of saying “first, compute all the numerators, then divide all of
them by their sums”.

Dennis Müller: Artificial Intelligence 2 71 2024-04-14

Dentistry Example

Putting things together, we get:

P(cavity|toothache = T)=α(P(cavity) · P(toothache = T|cavity))
=α(⟨P (cavity) · P(toothache|cavity),P (¬cavity) · P(toothache|¬cavity)⟩)

Say we have P (cavity) = 0.1, P(toothache|cavity) = 0.8, and P(toothache|¬cavity) = 0.05. Then

P(cavity|toothache = T) = α(⟨0.1 · 0.8, 0.9 · 0.05⟩) = α(⟨0.08, 0.045⟩)

0.08 + 0.045 = 0.125, hence

P(cavity|toothache = T) = ⟨ 0.08
0.125

,
0.045
0.125

⟩ = ⟨0.64, 0.36⟩

Dennis Müller: Artificial Intelligence 2 72 2024-04-14

Naive Bayes Classification

We can use a naive Bayes model as a very simple classifier:
▶ Assume we want to classify newspaper articles as one of the categories politics, sports, business, fluff,

etc. based on the words they contain.
▶ Given a large set of articles, we can determine the relevant probabilities by counting the occurrences

of the categories P(category), and of words per category – i.e. P(wordi |category) for some (huge) list
of words (wordi)

n
i=1.

▶ We assume that the occurrence of each word is conditionally independent of the occurrence of any
other word given the category of the document. (This assumption is clearly wrong, but it makes the
model simple and often works well in practice.) (⇒ “Idiot Bayes model”)
▶ Given a new article, we just count the occurrences ki of the words in it and compute

P(category|word1 = k1, . . .,wordn = kn) = α(P(category) ·
n∏

i=1

P(wordi = ki |category))

▶ We then choose the category with the highest probability.

Dennis Müller: Artificial Intelligence 2 73 2024-04-14

Inference by Enumeration

The rules we established for naive Bayes models, i.e. Bayes’s theorem, the product rule and chain rule,
marginalization and normalization, are general techniques for probabilistic reasoning, and their usefulness
is not limited to the naive Bayes models.
More generally:
Theorem 2.23. Let Q,E 1, . . .,E nE ,U1, . . .,UnU be random variables and
D:=dom(U1)× . . .× dom(UnU). Then

P(Q|E 1 = e1, . . .,E nE = ene) = α(
∑

u∈D

P(Q,E 1 = e1, . . .,E nE = ene ,U1 = u1, . . .,UnU = unU))

.
We call Q the query variable, E 1, . . .,E nE the evidence, and U1, . . .,UnU the unknown (or hidden)
variables, and computing a conditional probability this way enumeration.

Note that this is just a “mathy” way of saying we
1. sum over all relevant entries of the full joint probability distribution of the variables, and
2. normalize the result to yield a probability distribution.

Dennis Müller: Artificial Intelligence 2 74 2024-04-14

Example: The Wumpus is Back

▶ We have a maze where
▶ Every cell except [1, 1] possibly contains a pit, with 20% probability.
▶ pits cause a breeze in neighboring cells (we forget the wumpus and the gold

for now)
▶ Where should the agent go, if there is a breeze at [1, 2] and [2, 1]?
▶ Pure logical inference can conclude nothing about which square is most

likely to be safe!

We can model this using the Boolean random variables:
▶ P i,j for i , j ∈ {1, 2, 3, 4}, stating there is a pit at square [i , j], and
▶ B i,j for (i , j) ∈ {(1, 1), (1, 2), (2, 1)}, stating there is a breeze at square [i , j]

⇒ let’s apply our machinery!

Dennis Müller: Artificial Intelligence 2 75 2024-04-14

Wumpus: Probabilistic Model

First: Let’s try to compute the full joint probability distribution
P(P1,1, . . .,P4,4,B1,1,B1,2,B2,1).
1. By the product rule, this is equal to
P(B1,1,B1,2,B2,1|P1,1, . . .,P4,4) · P(P1,1, . . .,P4,4).

2. Note that P(B1,1,B1,2,B2,1|P1,1, . . .,P4,4) is either 1 (if all the B i,j are
consistent with the positions of the pits Pk,l) or 0 (otherwise).

3. Since the pits are spread independently, we have
P(P1,1, . . .,P4,4) =

∏4,4
i,j=1,1 P(P i,j)

⇒ We know all of these probabilities.
⇒ We can now use enumeration to compute
P(P i,j | < known >) = α(

∑
<unknowns> P(P i,j , < known >,< unknowns >))

Dennis Müller: Artificial Intelligence 2 76 2024-04-14

Wumpus Continued

Problem: We only know P i,j for three fields. If we want to compute e.g. P1,3 via enumeration, that
leaves 242−4 = 4096 terms to sum over!
Let’s do better.
▶ Let b:=¬B1,1 ∧ B1,2 ∧ B2,1 (All the breezes we know about)
▶ Let p:=¬P1,1 ∧ ¬P1,2 ∧ ¬P2,1. (All the pits we know about)
▶ Let F :={P3,1 ∧ P2,2,¬P3,1 ∧ P2,2,P3,1 ∧ ¬P2,2,P3,1 ∧ ¬P2,2} (the

current “frontier”)
▶ Let O be (the set of assignments for) all the other variables P i,j . (i.e.

except p, F and our query P1,3)
Then the observed breezes b are conditionally independent of O given p and
F . (Whether there is a pit anywhere else does not influence the breezes we
observe.)

⇒ P(b|P1,3, p,O,F) = P(b|P1,3, p,F). Let’s exploit this!

Dennis Müller: Artificial Intelligence 2 77 2024-04-14

Optimized Wumpus

P(P1,3|p, b)=α(
∑

o∈O,f∈F

P(P1,3, b, p, f , o))=α(
∑

o∈O,f∈F

P(b|p, o, f) · P(P1,3, p, f , o))

=α(
∑

f∈F

∑

o∈O

P(b|p, f) · P(P1,3, p, f , o))=α(
∑

f∈F

P(b|p, f) · (
∑

o∈O

P(P1,3, p, f , o)))

=α(
∑

f∈F

P(b|p, f) · (
∑

o∈O

P(P1,3) · P (p) · P (f) · P (o)))

=α(P(P1,3) · P (p) · (
∑

f∈F

P(b|p, f)︸ ︷︷ ︸
∈{0,1}

·P (f) · (
∑

o∈O

P (o))

︸ ︷︷ ︸
=1

))

⇒ this is just a sum over the frontier, i.e. 4 terms ,
So: P(P1,3|p, b) =
α(⟨0.2 · (0.8)3 · (1 · 0.04+ 1 · 0.16+ 1 · 0.16+ 0), 0.8 · (0.8)3 · (1 · 0.04+ 1 · 0.16+ 0+ 0)⟩) ≈ ⟨0.31, 0.69⟩
Analogously: P(P3,1|p, b) = ⟨0.31, 0.69⟩ and P(P2,2|p, b) = ⟨0.86, 0.14⟩ (⇒ avoid [2, 2]!)

Dennis Müller: Artificial Intelligence 2 78 2024-04-14

Cooking Recipe

In general, when you want to reason probabilistically, a good heuristic is:
1. Try to frame the full joint probability distribution in terms of the probabilities you know. Exploit

product rule/chain rule, independence, conditional independence, marginalization and domain
knowledge (as e.g. P(b|p, f) ∈ {0, 1})

⇒ the problem can be solved at all!
2. Simplify: Start with the equation for enumeration:

P(Q|E1, ...) = α(
∑

u∈U

P(Q,E1, ...,U1 = u1, ...))

3. Substitute by the result of 1., and again, exploit all of our machinery
4. Implement the resulting (system of) equation(s)
5. ???
6. Profit

Dennis Müller: Artificial Intelligence 2 79 2024-04-14

Summary

▶ Probability distributions and conditional probability distributions allow us to represent random
variables as convenient datastructures in an implementation (Assuming they are finite domain...)
▶ The full joint probability distribution allows us to compute all probabilities of statements about the

random variables contained (But possibly inefficient)
▶ Marginalization and normalization are the specific techniques for extracting the specific probabilities

we are interested in from the full joint probability distribution.
▶ The product and chain rule, exploiting (conditional) independence, Bayes’ Theorem, and of course

domain specific knowledge allow us to do so much more efficiently.
▶ Naive Bayes models are one example where all these techniques come together.

Dennis Müller: Artificial Intelligence 2 80 2024-04-14

Chapter 4
Probabilistic Reasoning: Bayesian Networks

Dennis Müller: Artificial Intelligence 2 80 2024-04-14

4.1 Introduction

Dennis Müller: Artificial Intelligence 2 80 2024-04-14

John, Mary, and My Brand-New Alarm

Example 1.1 (From Russell/Norvig).
▶ I got very valuable stuff at home. So I bought an alarm. Unfortunately, the alarm just rings at home,

doesn’t call me on my mobile.
▶ I’ve got two neighbors, Mary and John, who’ll call me if they hear the alarm.
▶ The problem is that, sometimes, the alarm is caused by an earthquake.
▶ Also, John might confuse the alarm with his telephone, and Mary might miss the alarm altogether

because she typically listens to loud music.
⇒ Random variables: Burglary, Earthquake, Alarm, John, Mary.

Given that both John and Mary call me, what is the probability of a burglary?

⇒ This is almost a naive Bayes model, but with multiple causes (Burglary and Earthquake) for the
Alarm, which in turn may cause John and/or Mary.

Dennis Müller: Artificial Intelligence 2 81 2024-04-14

John, Mary, and My Alarm: Assumptions

We assume:
▶ We (should) know P(Alarm|Burglary, Earthquake),
P(John|Alarm), and P(Mary|Alarm).
▶ Burglary and Earthquake are independent.
▶ John and Mary are conditionally independent given Alarm.
▶ Moreover: Both John and Mary are conditionally

independent of any other random variables in the graph
given Alarm. (Only Alarm causes them, and everything else
only causes them indirectly through Alarm)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

First Step: Construct the full joint probability distribution,
Second Step: Use enumeration to compute P(Burglary|John = T, Mary = T).

Dennis Müller: Artificial Intelligence 2 82 2024-04-14

John, Mary, and My Alarm: The Distribution

P(John, Mary, Alarm, Burglary, Earthquake)
=P(John|Mary, Alarm, Burglary, Earthquake) · P(Mary|Alarm, Burglary, Earthquake)
· P(Alarm|Burglary, Earthquake) · P(Burglary|Earthquake) · P(Earthquake)

=P(John|Alarm) · P(Mary|Alarm) · P(Alarm|Burglary, Earthquake) · P(Burglary) · P(Earthquake)

We plug into the equation for enumeration:

P(Burglary|John = T, Mary = T)=α(P(Burglary)
∑

a∈{T,F}
P(John|Alarm = a) · P(Mary|Alarm = a)

·
∑

q∈{T,F}
P(Alarm = a|Burglary, Earthquake = q)P (Earthquake = q))

⇒ Now let’s scale things up to arbitrarily many variables!

Dennis Müller: Artificial Intelligence 2 83 2024-04-14

Bayesian Networks: Definition

Definition 1.2. A Bayesian network consists of
1. a directed acyclic graph ⟨X ,E ⟩ of random variables X = {X 1, . . .,X n}, and
2. a conditional probability distribution P(X i |Parents(X i)) for every X i ∈ X (also called the CPT for

conditional probability table)
such that every X i is conditionally independent of any conjunctions of non-descendents of X i given
Parents(X i).

Definition 1.3. Let ⟨X ,E ⟩ be a directed acyclic graph, X ∈ X , and E∗ the reflexive transitive closure of
E . The non-descendents of X are the elements of the set NonDesc(X):={Y |(X ,Y) ̸∈ E∗}\Parents(X).

Note that the roots of the graph are conditionally independent given the empty set; i.e. they are
independent.
Theorem 1.4. The full joint probability distribution of a Bayesian network ⟨X ,E ⟩ is given by

P(X 1, . . .,X n) =
∏

X i∈X
P(X i |Parents(X i))

Dennis Müller: Artificial Intelligence 2 84 2024-04-14

Some Applications

▶ A ubiquitous problem: Observe “symptoms”, need to infer “causes”.
Medical Diagnosis Face Recognition

Self-Localization Nuclear Test Ban

Dennis Müller: Artificial Intelligence 2 85 2024-04-14

4.2 Constructing Bayesian Networks

Dennis Müller: Artificial Intelligence 2 85 2024-04-14

Compactness of Bayesian Networks
▶ Definition 2.1. Given random variables X 1, . . .,X n with finite domains D1, . . .,Dn, the size of
B:=⟨{X 1, . . .,X n},E ⟩ is defined as

size(B):=
n∑

i=1

|D i | ·
∏

X j∈Parents(X i)

|D j |

▶ Note: size(B) =̂ The total number of entries in the conditional probability distributions.

▶ Note: Smaller BN ; need to assess less probabilities, more efficient inference.
▶ Observation 2.2. Explicit full joint probability distribution has size

∏n
i=1 |D i |.

▶ Observation 2.3. If |Parents(X i)| ≤ k for every X i , and Dmax is the largest random variable
domain, then size(B) ≤ n|Dmax|k+1.
▶ Example 2.4. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a Bayesian

network of size ≤ 20 · 25 = 640 . . . !
▶ In the worst case, size(B) = n ·∏n

i=1 |D i |, namely if every variable depends on all its predecessors in
the chosen variable ordering.
▶ Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only by few of

its predecessor variables.

Dennis Müller: Artificial Intelligence 2 86 2024-04-14

Compactness of Bayesian Networks
▶ Definition 2.5. Given random variables X 1, . . .,X n with finite domains D1, . . .,Dn, the size of
B:=⟨{X 1, . . .,X n},E ⟩ is defined as

size(B):=
n∑

i=1

|D i | ·
∏

X j∈Parents(X i)

|D j |

▶ Note: size(B) =̂ The total number of entries in the conditional probability distributions.
▶ Note: Smaller BN ; need to assess less probabilities, more efficient inference.
▶ Observation 2.6. Explicit full joint probability distribution has size

∏n
i=1 |D i |.

▶ Observation 2.7. If |Parents(X i)| ≤ k for every X i , and Dmax is the largest random variable
domain, then size(B) ≤ n|Dmax|k+1.

▶ Example 2.8. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a Bayesian
network of size ≤ 20 · 25 = 640 . . . !
▶ In the worst case, size(B) = n ·∏n

i=1 |D i |, namely if every variable depends on all its predecessors in
the chosen variable ordering.
▶ Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only by few of

its predecessor variables.

Dennis Müller: Artificial Intelligence 2 86 2024-04-14

Compactness of Bayesian Networks
▶ Definition 2.9. Given random variables X 1, . . .,X n with finite domains D1, . . .,Dn, the size of
B:=⟨{X 1, . . .,X n},E ⟩ is defined as

size(B):=
n∑

i=1

|D i | ·
∏

X j∈Parents(X i)

|D j |

▶ Note: size(B) =̂ The total number of entries in the conditional probability distributions.
▶ Note: Smaller BN ; need to assess less probabilities, more efficient inference.
▶ Observation 2.10. Explicit full joint probability distribution has size

∏n
i=1 |D i |.

▶ Observation 2.11. If |Parents(X i)| ≤ k for every X i , and Dmax is the largest random variable
domain, then size(B) ≤ n|Dmax|k+1.
▶ Example 2.12. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a Bayesian

network of size ≤ 20 · 25 = 640 . . . !
▶ In the worst case, size(B) = n ·∏n

i=1 |D i |, namely if every variable depends on all its predecessors in
the chosen variable ordering.
▶ Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only by few of

its predecessor variables.

Dennis Müller: Artificial Intelligence 2 86 2024-04-14

Keeping Networks Small

To keep our Bayesian networks small, we can:
1. Reduce the number of edges: ⇒ Order the variables to allow for exploiting conditional

independence (causes before effects), or
2. represent the conditional probability distributions efficiently:

2.1 For Boolean random variables X , we only need to store P(X = T|Parents(X))
(P(X = F|Parents(X)) = 1 − P(X = T|Parents(X))) (Cuts the number of entries in half!)

2.2 Introduce different kinds of nodes exploiting domain knowledge; e.g. deterministic and noisy disjunction
nodes.

Dennis Müller: Artificial Intelligence 2 87 2024-04-14

Reducing Edges: Variable Order Matters

Given a set of random variables X 1, . . .,X n, consider the following (impractical, but illustrative)
pseudo-algorithm for constructing a Bayesian network:

▶ Definition 2.13 (BN construction algorithm).
1. Initialize BN:=⟨{X 1, . . .,X n},E⟩ where E = ∅.
2. Fix any variable ordering, X 1, . . .,X n.
3. for i := 1, . . . , n do

a. Choose a minimal set Parents(X i) ⊆ {X 1, . . . ,X i−1} such that

P(X i |X i−1, . . . ,X 1) = P(X i |Parents(X i))

b. For each X j ∈ Parents(X i), insert (X j ,X i) into E .
c. Associate X i with P(X i |Parents(X i)).

▶ Attention: Which variables we need to include into Parents(X i) depends on what “{X 1, . . . ,X i−1}”
is . . . !
▶ Thus: The size of the resulting BN depends on the chosen variable ordering X 1, . . .,X n.
▶ In Particular: The size of a Bayesian network is not a fixed property of the domain. It depends on

the skill of the designer.

Dennis Müller: Artificial Intelligence 2 88 2024-04-14

John and Mary Depend on the Variable Order!

▶ Example 2.14. Mary, John, Alarm, Burglary, Earthquake.

Dennis Müller: Artificial Intelligence 2 89 2024-04-14

John and Mary Depend on the Variable Order!

▶ Example 2.15. Mary, John, Alarm, Burglary, Earthquake.

Dennis Müller: Artificial Intelligence 2 89 2024-04-14

John and Mary Depend on the Variable Order! Ctd.

▶ Example 2.16. Mary, John, Earthquake, Burglary, Alarm.

Dennis Müller: Artificial Intelligence 2 90 2024-04-14

John and Mary Depend on the Variable Order! Ctd.

▶ Example 2.17. Mary, John, Earthquake, Burglary, Alarm.

Dennis Müller: Artificial Intelligence 2 90 2024-04-14

John and Mary, What Went Wrong?

▶ Intuition: These BNs link from effects to their causes!
⇒ Even though Mary and John are conditionally independent given Alarm, this is not exploited, since
Alarm is not ordered before Mary and John!

⇒ Rule of Thumb: We should order causes before symptoms.

Dennis Müller: Artificial Intelligence 2 91 2024-04-14

John and Mary, What Went Wrong?

▶ Intuition: These BNs link from effects to their causes!
⇒ Even though Mary and John are conditionally independent given Alarm, this is not exploited, since
Alarm is not ordered before Mary and John!

⇒ Rule of Thumb: We should order causes before symptoms.

Dennis Müller: Artificial Intelligence 2 91 2024-04-14

John and Mary, What Went Wrong?

▶ Intuition: These BNs link from effects to their causes!
⇒ Even though Mary and John are conditionally independent given Alarm, this is not exploited, since
Alarm is not ordered before Mary and John!

⇒ Rule of Thumb: We should order causes before symptoms.

Dennis Müller: Artificial Intelligence 2 91 2024-04-14

Representing Conditional Distributions: Deterministic Nodes

Definition 2.18. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

Example 2.19. The sum of two dice throws S is entirely determined by the values of the two dice First
and Second .
Example 2.20. In the Wumpus example, the breezes are entirely determined by the pits

⇒ Deterministic nodes model direct, causal relationships.
⇒ If X is deterministic, then P(X |Parents(X)) ∈ {0, 1}
⇒ we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

Dennis Müller: Artificial Intelligence 2 92 2024-04-14

Representing Conditional Distributions: Deterministic Nodes

Definition 2.21. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

Example 2.22. The sum of two dice throws S is entirely determined by the values of the two dice First
and Second .

Example 2.23. In the Wumpus example, the breezes are entirely determined by the pits

⇒ Deterministic nodes model direct, causal relationships.
⇒ If X is deterministic, then P(X |Parents(X)) ∈ {0, 1}
⇒ we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

Dennis Müller: Artificial Intelligence 2 92 2024-04-14

Representing Conditional Distributions: Deterministic Nodes

Definition 2.24. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

Example 2.25. The sum of two dice throws S is entirely determined by the values of the two dice First
and Second .
Example 2.26. In the Wumpus example, the breezes are entirely determined by the pits

⇒ Deterministic nodes model direct, causal relationships.
⇒ If X is deterministic, then P(X |Parents(X)) ∈ {0, 1}
⇒ we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

Dennis Müller: Artificial Intelligence 2 92 2024-04-14

Representing Conditional Distributions: Deterministic Nodes

Definition 2.27. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

Example 2.28. The sum of two dice throws S is entirely determined by the values of the two dice First
and Second .
Example 2.29. In the Wumpus example, the breezes are entirely determined by the pits

⇒ Deterministic nodes model direct, causal relationships.
⇒ If X is deterministic, then P(X |Parents(X)) ∈ {0, 1}

⇒ we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

Dennis Müller: Artificial Intelligence 2 92 2024-04-14

Representing Conditional Distributions: Deterministic Nodes

Definition 2.30. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

Example 2.31. The sum of two dice throws S is entirely determined by the values of the two dice First
and Second .
Example 2.32. In the Wumpus example, the breezes are entirely determined by the pits

⇒ Deterministic nodes model direct, causal relationships.
⇒ If X is deterministic, then P(X |Parents(X)) ∈ {0, 1}
⇒ we can replace the conditional probability distribution P(X |Parents(X)) by a boolean function.

Dennis Müller: Artificial Intelligence 2 92 2024-04-14

Representing Conditional Distributions: Noisy Nodes

Sometimes, values of nodes are “almost deterministic”:
Example 2.33 (Inhibited Causal Dependencies).
Assume the network on the right contains all possible causes of fever.(Or add
a dummy-node for “other causes”)
If there is a fever, then one of them (at least) must be the cause, but none of
them necessarily cause a fever: The causal relation between parent and child
is inhibited.

Cold

Flu

Malaria

Fever

⇒ We can model the inhibitions by individual inhibition factors qd .

Definition 2.34. The conditional probability distribution of a noisy disjunction node X with
Parents(X) = X 1, . . .,X n in a Bayesian network is given by P(X |X 1, . . .,X n) = 1 −∏

{j|X j=T} qj , where
the qi are the inhibition factors of X i ∈ Parents(X), defined as
qi :=P(¬X |¬X 1, . . .,¬X i−1,X i ,¬X i+1, . . .,¬X n)

⇒ Instead of a distribution with 2k parameters, we only need k parameters!

Dennis Müller: Artificial Intelligence 2 93 2024-04-14

Representing Conditional Distributions: Noisy Nodes
▶ Example 2.35. Assume the following inhibition factors for 2.33:

qcold = P(¬fever|cold,¬flu,¬malaria) = 0.6
qflu = P(¬fever|¬cold, flu,¬malaria) = 0.2

qmalaria = P(¬fever|¬cold,¬flu,malaria) = 0.1

If we model Fever as a noisy disjunction node, then the general rule
P(X i |Parents(X i)) =

∏
{j|X j=T} qj for the CPT gives the following table:

Cold Flu Malaria P(Fever) P(¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2 · 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 · 0.1
T T F 0.88 0.12 = 0.6 · 0.2
T T T 0.988 0.012 = 0.6 · 0.2 · 0.1

Dennis Müller: Artificial Intelligence 2 94 2024-04-14

Representing Conditional Distributions: Summary

▶ Note that deterministic nodes and noisy disjunction nodes are just two examples of “specialized” kinds
of nodes in a Bayesian network.
▶ In general, noisy logical relationships in which a variable depends on k parents can be described by
O(k) parameters instead of O(2k) for the full conditional probability table. This can make assessment
(and learning) tractable.
▶ Example 2.36. The CPCS network [Pra+94] uses noisy-OR and noisy-MAX distributions to model

relationships among diseases and symptoms in internal medicine. With 448 nodes and 906 links, it
requires only 8,254 values instead of 133,931,430 for a network with full conditional probability
distributions.

Dennis Müller: Artificial Intelligence 2 95 2024-04-14

4.3 Inference in Bayesian Networks

Dennis Müller: Artificial Intelligence 2 95 2024-04-14

Probabilistic Inference Tasks in Bayesian Networks
Remember:
Definition 3.1 (Probabilistic Inference Task). Let X 1, . . .,X n = Q1, . . .,QnQ ,E 1, . . .,E nE ,U1, . . .,UnU

be a set of random variables, a probabilistic inference task.
We wish to compute the conditional probability distribution P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE).
We call
▶ a Q1, . . .,QnQ the query variables,
▶ a E 1, . . .,E nE the evidence variables, and
▶ U1, . . .,UnU the hidden variables.

We know the full joint probability distribution: P(X 1, . . .,X n) =
∏n

i=1 P(X i |Parents(X i))
And we know about enumeration:

P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE)=

α(
∑

u∈DU

P(Q1, . . .,QnQ ,E 1 = e1, . . .,E nE = enE ,U1 = u1, . . .,UnU = unU))

(where DU = dom(U1)× . . .× dom(UnU))

Dennis Müller: Artificial Intelligence 2 96 2024-04-14

Enumeration: The Alarm-Example

Remember our example: P(Burglary|John, Mary)
(hidden variables: Alarm, Earthquake)

=α(
∑

ba,be∈{T,F} P (John, Mary, Alarm = ba, Earthquake = be , Burglary))
=α(

∑
ba,be∈{T,F} P(John|Alarm = ba) · P(Mary|Alarm = ba)

·P(Alarm = ba|Earthquake = be , Burglary) · P (Earthquake = be) · P(Burglary))
⇒ These are 5 factors in 4 summands (ba, be ∈ {T,F}) over two cases (Burglary ∈ {T,F}),
⇒ 38 arithmetic operations (+3 for α)

General worst case: O(n2n)

Let’s do better!

Dennis Müller: Artificial Intelligence 2 97 2024-04-14

Enumeration: First Improvement

Some abbreviations: j :=John,m:=Mary, a:=Alarm, e:=Earthquake, b:=Burglary,

P(b|j ,m) = α(
∑

ba,be∈{T,F}
P(j |a = ba) · P(m|a = ba) · P(a = ba|e = be , b) · P (e = be) · P(b))

Let’s “optimize”:

P(b|j ,m) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

⇒ 3 factors in 2 summand + 2 factors in 2 summands + two factors in the outer product, over two
cases = 28 arithmetic operations (+3 for α)

Dennis Müller: Artificial Intelligence 2 98 2024-04-14

Second Improvement: Variable Elimination 1

Consider P(j |b = T). Using enumeration:

=α(P (b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ae∈{T,F}
P(a = ae |e = be , b) · P(j |a = ae) · (

∑

am∈{T,F}
P(m = am|a = ae))

︸ ︷︷ ︸
=1

)))

⇒ P(John|Burglary = T) does not depend on Mary (duh...)

More generally:
Lemma 3.2. Given a query P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE), we can ignore (and remove) all
hidden leafs of the Bayesian network.

...doing so yields new leafs, which we can then ignore again, etc., until:
Lemma 3.3. Given a query P(Q1, . . .,QnQ |E 1 = e1, . . .,E nE = enE), we can ignore (and remove) all
hidden variables that are not ancestors of any of the Q1, . . .,QnQ or E 1, . . .,E nE .

Dennis Müller: Artificial Intelligence 2 99 2024-04-14

Enumeration: First Algorithm

Assume the X 1, . . .,X n are topologically sorted (causes before effects)

function Enumerate-Query(Q,⟨E1 = e1, . . .,EnE = enE ⟩)
P:=⟨⟩ /* = P(Q|E i = e i) */
X 1, . . .,X n:= variables filtered according to ??, topologically sorted
for all q ∈ dom(Q) do

Pi :=EnumAll(⟨X 1, . . .,X n⟩,⟨E1 = e1, . . .,EnE = enE ,Q = q⟩)
return α(P)

function EnumAll(⟨Y 1, . . .,Y nY ⟩,⟨A1 = a1, . . .,AnA = anA ⟩)
/* By construction, Parents(Y 1)⊂{A1, . . .,AnA} */

if ny = 0 then return 1.0
else if Y 1 = Aj then return P(Aj = aj |Parents(Aj))·EnumAll(⟨Y 2, . . .,Y nY ⟩,⟨A1 = a1, . . .,AnA = anA ⟩)
else return

∑
y∈dom(Y 1)

P(Y 1 = y |Parents(Y 1))·EnumAll(⟨Y 2, . . .,Y nY ⟩,⟨A1 = a1, . . .,AnA = anA ,Y 1 = y⟩)

General worst case: O(2n) – better, but still not great

Dennis Müller: Artificial Intelligence 2 100 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

Enumerate-Query(b, ⟨j = T,m = T⟩)

P(b|j = T,m = T) =

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

Enumerate-Query(b, ⟨j = T,m = T⟩)

P(b|j = T,m = T) =

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)
▶ P1 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α()

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)︸ ︷︷ ︸
=P (b)·EnumAll(⟨e,a,j,m⟩,⟨j=T,m=T,b=T⟩)

▶ P1 := EnumAll(⟨b, e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)︸ ︷︷ ︸
=P (¬b)·EnumAll(⟨e,a,j,m⟩,⟨j=T,m=T,b=F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b)·)

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)
▶ P1 := P (¬b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b)·)

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = T⟩)︸ ︷︷ ︸
=(

∑
be∈{T,F} P (e=be)·EnumAll(⟨a,j,m⟩·⟨j=T,m=T,b=T,e=be⟩))

▶ P1 := P (¬b) · EnumAll(⟨e, a, j ,m⟩, ⟨j = T,m = T, b = F⟩)︸ ︷︷ ︸
=(

∑
be∈{T,F} P (e=be)·EnumAll(⟨a,j,m⟩·⟨j=T,m=T,b=F,e=be⟩))

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be)·))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·
[
+

P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = T⟩)
P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = F⟩)

▶ P1 := P (¬b) ·
[
+

P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = T⟩)
P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be)·))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+
P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = T⟩)︸ ︷︷ ︸

=(
∑

ba∈{T,F} P(a=ba|b,e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=T,e=T,a=ba⟩))
P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = T, e = F⟩)︸ ︷︷ ︸

=(
∑

ba∈{T,F} P(a=ba|b,¬e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=T,e=F,a=ba⟩))

▶ P1 := P (¬b) ·

+
P (e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = T⟩)︸ ︷︷ ︸

=(
∑

ba∈{T,F} P(a=ba|¬b,e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=F,e=T,a=ba⟩))
P (¬e) · EnumAll(⟨a, j ,m⟩, ⟨j = T,m = T, b = F, e = F⟩)︸ ︷︷ ︸

=(
∑

ba∈{T,F} P(a=ba|¬b,¬e)·EnumAll(⟨j,m⟩·⟨j=T,m=T,b=F,e=F,a=ba⟩))

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · ·)))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a|b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a|b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a|¬b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a|¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · ·)))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example
Variable order: b, e, a, j ,m

▶ P0 := P (b) ·


+

P (e) ·

+
P(a|b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)︸ ︷︷ ︸

=P(j|a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=T,a=T⟩)
P(¬a|b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)︸ ︷︷ ︸

=P(j|¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=T,a=F⟩)

P (¬e) ·

+
P(a|b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)︸ ︷︷ ︸

=P(j|a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=F,a=T⟩)
P(¬a|b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)︸ ︷︷ ︸

=P(j|¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=T,e=F,a=F⟩)

▶ P1 := P (¬b) ·


+

P (e) ·

+
P(a|¬b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)︸ ︷︷ ︸

=P(j|a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=T,a=T⟩)
P(¬a|¬b, e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)︸ ︷︷ ︸

=P(j|¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=T,a=F⟩)

P (¬e) ·

+
P(a|¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)︸ ︷︷ ︸

=P(j|a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=F,a=T⟩)
P(¬a|¬b,¬e) · EnumAll(⟨j ,m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)︸ ︷︷ ︸

=P(j|¬a)·EnumAll(⟨m⟩,⟨j=T,m=T,b=F,e=F,a=F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba)·)))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a|b, e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|b,¬e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a|b,¬e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a|¬b, e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|¬b,¬e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a|¬b,¬e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba)·)))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example
Variable order: b, e, a, j ,m

▶ P0 := P (b) ·


+

P (e) ·

+
P(a|b, e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)︸ ︷︷ ︸

=P(m|a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=T,a=T⟩)
P(¬a|b, e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)︸ ︷︷ ︸

=P(m|¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=T,a=F⟩)

P (¬e) ·

+
P(a|b,¬e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)︸ ︷︷ ︸

=P(m|a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=F,a=T⟩)
P(¬a|b,¬e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)︸ ︷︷ ︸

=P(m|¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=T,e=F,a=F⟩)

▶ P1 := P (¬b) ·


+

P (e) ·

+
P(a|¬b, e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)︸ ︷︷ ︸

=P(m|a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=T,a=T⟩)
P(¬a|¬b, e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)︸ ︷︷ ︸

=P(m|¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=T,a=F⟩)

P (¬e) ·

+
P(a|¬b,¬e) · P(j |a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)︸ ︷︷ ︸

=P(m|a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=F,a=T⟩)
P(¬a|¬b,¬e) · P(j |¬a) · EnumAll(⟨m⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)︸ ︷︷ ︸

=P(m|¬a)·EnumAll(⟨⟩,⟨j=T,m=T,b=F,e=F,a=F⟩)
⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a|b, e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|b,¬e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a|b,¬e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 :=

P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a|¬b, e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|¬b,¬e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a|¬b,¬e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = T⟩)
P(¬a|b, e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|b,¬e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = T⟩)
P(¬a|b,¬e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = T, e = F, a = F⟩)

▶ P1 :=

P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = T⟩)
P(¬a|¬b, e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = T, a = F⟩)

P (¬e) ·
[
+

P(a|¬b,¬e) · P(j |a) · P(m|a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = T⟩)
P(¬a|¬b,¬e) · P(j |¬a) · P(m|¬a) · EnumAll(⟨⟩, ⟨j = T,m = T, b = F, e = F, a = F⟩)

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · P(j |a) · P(m|a) · 1.0
P(¬a|b, e) · P(j |¬a) · P(m|¬a) · 1.0

P (¬e) ·
[
+

P(a|b,¬e) · P(j |a) · P(m|a) · 1.0
P(¬a|b,¬e) · P(j |¬a) · P(m|¬a) · 1.0

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · P(j |a) · P(m|a) · 1.0
P(¬a|¬b, e) · P(j |¬a) · P(m|¬a) · 1.0

P (¬e) ·
[
+

P(a|¬b,¬e) · P(j |a) · P(m|a) · 1.0
P(¬a|¬b,¬e) · P(j |¬a) · P(m|¬a) · 1.0

⇐ α(⟨P0,P1⟩)

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · P(j |a) · P(m|a) · 1.0
P(¬a|b, e) · P(j |¬a) · P(m|¬a) · 1.0

P (¬e) ·
[
+

P(a|b,¬e) · P(j |a) · P(m|a) · 1.0
P(¬a|b,¬e) · P(j |¬a) · P(m|¬a) · 1.0

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · P(j |a) · P(m|a) · 1.0
P(¬a|¬b, e) · P(j |¬a) · P(m|¬a) · 1.0

P (¬e) ·
[
+

P(a|¬b,¬e) · P(j |a) · P(m|a) · 1.0
P(¬a|¬b,¬e) · P(j |¬a) · P(m|¬a) · 1.0

⇐ α(⟨P0,P1⟩)︸ ︷︷ ︸
=⟨ P0

P0+P1
,

P1
P0+P1

⟩

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

Enumeration: Example

Variable order: b, e, a, j ,m

▶ P0 := P (b) ·

+ P (e) ·
[
+

P(a|b, e) · P(j |a) · P(m|a) · 1.0
P(¬a|b, e) · P(j |¬a) · P(m|¬a) · 1.0

P (¬e) ·
[
+

P(a|b,¬e) · P(j |a) · P(m|a) · 1.0
P(¬a|b,¬e) · P(j |¬a) · P(m|¬a) · 1.0

▶ P1 := P (¬b) ·

+ P (e) ·
[
+

P(a|¬b, e) · P(j |a) · P(m|a) · 1.0
P(¬a|¬b, e) · P(j |¬a) · P(m|¬a) · 1.0

P (¬e) ·
[
+

P(a|¬b,¬e) · P(j |a) · P(m|a) · 1.0
P(¬a|¬b,¬e) · P(j |¬a) · P(m|¬a) · 1.0

⇐ ⟨ P0
P0+P1

, P1
P0+P1

⟩

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Dennis Müller: Artificial Intelligence 2 101 2024-04-14

The Evaluation of P(b|j ,m) as a “Search Tree”

P(b|j ,m) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Note: Enumerate-Query corresponds to depth-first traversal of an arithmetic expression-tree:

Dennis Müller: Artificial Intelligence 2 102 2024-04-14

The Evaluation of P(b|j ,m) as a “Search Tree”

P(b|j ,m) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

Note: Enumerate-Query corresponds to depth-first traversal of an arithmetic expression-tree:

Dennis Müller: Artificial Intelligence 2 102 2024-04-14

Variable Elimination 2

P(b|j ,m) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba))))

The last two factors P(j |a = ba),P(m|a = ba) only depend on a, but are “trapped” behind the
summation over e, hence computed twice in two distinct recursive calls to EnumAll

Idea: Instead of left-to-right (top-down DFS), operate right-to-left (bottom-up) and store intermediate
“factors” along with their “dependencies”:

α(P(b)︸︷︷︸
f7(b)

· (
∑

be∈{T,F}
P (e = be)︸ ︷︷ ︸

f5(e)

· (
∑

ba∈{T,F}
P(a = ba|e = be , b)︸ ︷︷ ︸

f3(a,b,e)

·P(j |a = ba)︸ ︷︷ ︸
f2(a)

·P(m|a = ba)︸ ︷︷ ︸
f1(a)

)

︸ ︷︷ ︸
f4(b,e)

)

︸ ︷︷ ︸
f6(b)

)

Dennis Müller: Artificial Intelligence 2 103 2024-04-14

Variable Elimination: Example

We only show variable elimination by example: (implementation details get tricky, but the idea is simple)
P(b) · (∑be∈{T,F} P (e = be) · (

∑
ba∈{T,F} P(a = ba|e = be , b) · P(j |a = ba) · P(m|a = ba)))

Assume reverse topological order of variables: m, j , a, e, b

▶ m is an evidence variable with value T and dependency a, which is a hidden variable. We introduce a
new “factor” f(a):=f1(a):=⟨P(m|a),P(m|¬a)⟩.

▶ j works analogously, f2(a):=⟨P(j |a),P(j |¬a)⟩. We “multiply” with the existing factor, yielding
f(a):=⟨f1(a) · f2(a), f1(¬a) · f2(¬a)⟩=⟨P(m|a) · P(j |a),P(m|¬a) · P(j |¬a)⟩

▶ a is a hidden variable with dependencies e (hidden) and b (query).

1. We introduce a new “factor” f3(a, e, b), a 2 × 2 × 2 table with the relevant conditional probabilities
P(a|e, b).

2. We multiply each entry of f3 with the relevant entries of the existing factor f, yielding f(a, e, b).
3. We “sum out” the resulting factor over a, yielding a new factor f(e, b) = f(a, e, b) + f(¬a, e, b).

▶ ...
⇒ can speed things up by a factor of 1000! (or more, depending on the order of variables!)

Dennis Müller: Artificial Intelligence 2 104 2024-04-14

The Complexity of Exact Inference

▶ Definition 3.4. A graph G is called singly connected, or a polytree (otherwise multiply connected), if
there is at most one undirected path between any two nodes in G .
▶ Theorem 3.5 (Good News). On singly connected Bayesian networks, variable elimination runs in

polynomial time.

▶ Is our BN for Mary & John a polytree? (Yes.)
▶ Theorem 3.6 (Bad News). For multiply connected Bayesian networks, probabilistic inference is
#P-hard. (#P is harder than NP, i.e. NP ⊆ #P)
▶ So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds and

approximate.
▶ Example 3.7. Sampling techniques as in MCTS.

Dennis Müller: Artificial Intelligence 2 105 2024-04-14

The Complexity of Exact Inference

▶ Definition 3.8. A graph G is called singly connected, or a polytree (otherwise multiply connected), if
there is at most one undirected path between any two nodes in G .
▶ Theorem 3.9 (Good News). On singly connected Bayesian networks, variable elimination runs in

polynomial time.
▶ Is our BN for Mary & John a polytree? (Yes.)

▶ Theorem 3.10 (Bad News). For multiply connected Bayesian networks, probabilistic inference is
#P-hard. (#P is harder than NP, i.e. NP ⊆ #P)
▶ So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds and

approximate.
▶ Example 3.11. Sampling techniques as in MCTS.

Dennis Müller: Artificial Intelligence 2 105 2024-04-14

The Complexity of Exact Inference

▶ Definition 3.12. A graph G is called singly connected, or a polytree (otherwise multiply connected),
if there is at most one undirected path between any two nodes in G .
▶ Theorem 3.13 (Good News). On singly connected Bayesian networks, variable elimination runs in

polynomial time.
▶ Is our BN for Mary & John a polytree? (Yes.)
▶ Theorem 3.14 (Bad News). For multiply connected Bayesian networks, probabilistic inference is
#P-hard. (#P is harder than NP, i.e. NP ⊆ #P)
▶ So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds and

approximate.
▶ Example 3.15. Sampling techniques as in MCTS.

Dennis Müller: Artificial Intelligence 2 105 2024-04-14

4.4 Conclusion

Dennis Müller: Artificial Intelligence 2 105 2024-04-14

Summary

▶ Bayesian networks (BN) are a wide-spread tool to model uncertainty, and to reason about it. A BN
represents conditional independence relations between random variables. It consists of a graph
encoding the variable dependencies, and of conditional probability tables (CPTs).
▶ Given a variable ordering, the BN is small if every variable depends on only a few of its predecessors.
▶ Probabilistic inference requires to compute the probability distribution of a set of query variables,

given a set of evidence variables whose values we know. The remaining variables are hidden.
▶ Inference by enumeration takes a BN as input, then applies Normalization+Marginalization, the chain

rule, and exploits conditional independence. This can be viewed as a tree search that branches over all
values of the hidden variables.
▶ Variable elimination avoids unnecessary computation. It runs in polynomial time for poly-tree BNs. In

general, exact probabilistic inference is #P-hard. Approximate probabilistic inference methods exist.

Dennis Müller: Artificial Intelligence 2 106 2024-04-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.

▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.

▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model
counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).

▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over
time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.

▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.

▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language
developed by Stuart Russel and co-workers.

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Topics We Didn’t Cover Here

▶ Inference by sampling: A whole zoo of methods for doing this exists.
▶ Clustering: Pre-combining subsets of variables to reduce the running time of inference.
▶ Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model

counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the probability of an
atomic event).
▶ Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic behavior over

time.
▶ Relational BN: BN with predicates and object variables.
▶ First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG language

developed by Stuart Russel and co-workers.

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Chapter 5
Temporal Probability Models

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

5.1 Modeling Time and Uncertainty

Dennis Müller: Artificial Intelligence 2 107 2024-04-14

Stochastic Processes
The world changes in stochastically predictable ways.
Example 1.1.
▶ The weather changes, but the weather tomorrow is somewhat predictable given today’s weather and

other factors, (which in turn (somewhat) depends on yesterday’s weather, which in turn...)
▶ the stock market changes, but the stock price tomorrow is probably related to today’s price,
▶ A patient’s blood sugar changes, but their blood sugar is related to their blood sugar 10 minutes ago

(in particular if they didn’t eat anything in between)

How do we model this?

Definition 1.2. Let ⟨Ω,P ⟩ a probability space and ⟨S ,⪯⟩ a (not necessarily totally) ordered set.
A sequence of random variables (X t)t∈S with dom(X t) = D is called a stochastic process over the time
structure S .
Intuition: X t models the outcome of the random variable X at time step t. The sample space Ω
corresponds to the set of all possible sequences of outcomes.
Note: We will almost exclusively use ⟨S ,⪯⟩ = ⟨N,≤⟩.
Definition 1.3. Given a stochastic process X t over S and a, b ∈ S with a ⪯ b, we write Xa:b for the
sequence X a,X a+1, . . .,X b−1,X b and E=e

a:b for E a = ea, . . .,E b = eb.

Dennis Müller: Artificial Intelligence 2 108 2024-04-14

Stochastic Processes
The world changes in stochastically predictable ways.
Example 1.4.
▶ The weather changes, but the weather tomorrow is somewhat predictable given today’s weather and

other factors, (which in turn (somewhat) depends on yesterday’s weather, which in turn...)
▶ the stock market changes, but the stock price tomorrow is probably related to today’s price,
▶ A patient’s blood sugar changes, but their blood sugar is related to their blood sugar 10 minutes ago

(in particular if they didn’t eat anything in between)

How do we model this?

Definition 1.5. Let ⟨Ω,P ⟩ a probability space and ⟨S ,⪯⟩ a (not necessarily totally) ordered set.
A sequence of random variables (X t)t∈S with dom(X t) = D is called a stochastic process over the time
structure S .
Intuition: X t models the outcome of the random variable X at time step t. The sample space Ω
corresponds to the set of all possible sequences of outcomes.
Note: We will almost exclusively use ⟨S ,⪯⟩ = ⟨N,≤⟩.
Definition 1.6. Given a stochastic process X t over S and a, b ∈ S with a ⪯ b, we write Xa:b for the
sequence X a,X a+1, . . .,X b−1,X b and E=e

a:b for E a = ea, . . .,E b = eb.

Dennis Müller: Artificial Intelligence 2 108 2024-04-14

Stochastic Processes (Running Example)

Example 1.7 (Umbrellas). You are a security guard in a secret underground facility, want to know it if
is raining outside. Your only source of information is whether the director comes in with an umbrella.
▶ We have a stochastic process Rain0, Rain1, Rain2, . . . of hidden variables, and
▶ a related stochastic process Umbrella0, Umbrella1, Umbrella2, . . . of evidence variables.
...and a combined stochastic process ⟨Rain0, Umbrella0⟩, ⟨Rain1, Umbrella1⟩, . . .
Note that Umbrellat only depends on Raint , not on e.g. Umbrellat−1 (except indirectly through Raint
/ Raint−1).

Definition 1.8. We call a stochastic process of hidden variables a state variable.

Dennis Müller: Artificial Intelligence 2 109 2024-04-14

Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)
...without everything exploding in size...?

Definition 1.9. Let (X t)t∈S a stochastic process. X has the (nth order) Markov property iff X t only
depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have
P(X t |X 0, . . .X t−1) = P(X t |X t−n, . . .X t−1) for some n ∈ S .
A stochastic process with the Markov property for some n is called a (nth order) Markov process.

Important special cases:
Definition 1.10.
▶ First-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.
▶ Second-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

Dennis Müller: Artificial Intelligence 2 110 2024-04-14

Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)
...without everything exploding in size...?

Definition 1.11. Let (X t)t∈S a stochastic process. X has the (nth order) Markov property iff X t only
depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have
P(X t |X 0, . . .X t−1) = P(X t |X t−n, . . .X t−1) for some n ∈ S .
A stochastic process with the Markov property for some n is called a (nth order) Markov process.

Important special cases:
Definition 1.12.
▶ First-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.
▶ Second-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

Dennis Müller: Artificial Intelligence 2 110 2024-04-14

Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)
...without everything exploding in size...?

Definition 1.13. Let (X t)t∈S a stochastic process. X has the (nth order) Markov property iff X t only
depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have
P(X t |X 0, . . .X t−1) = P(X t |X t−n, . . .X t−1) for some n ∈ S .
A stochastic process with the Markov property for some n is called a (nth order) Markov process.

Important special cases:
Definition 1.14.
▶ First-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.
▶ Second-order Markov property: P(Xt |X0:t−1) = P(Xt |Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

Dennis Müller: Artificial Intelligence 2 110 2024-04-14

Markov Process Example: The Umbrella

Example 1.15 (Umbrellas continued). We model the situation in a Bayesian network:

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Problem: This network does not actually have the First-order Markov property...

Possible fixes: We have two ways to fix this:
1. Increase the order of the Markov process. (more dependencies ⇒ more complex inference)
2. Add more state variables, e.g., Tempt , Pressuret . (more information sources)

Dennis Müller: Artificial Intelligence 2 111 2024-04-14

Markov Process Example: The Umbrella

Example 1.16 (Umbrellas continued). We model the situation in a Bayesian network:

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Problem: This network does not actually have the First-order Markov property...

Possible fixes: We have two ways to fix this:
1. Increase the order of the Markov process. (more dependencies ⇒ more complex inference)
2. Add more state variables, e.g., Tempt , Pressuret . (more information sources)

Dennis Müller: Artificial Intelligence 2 111 2024-04-14

Markov Process Example: Robot Motion
Example 1.17 (Random Robot Motion). Assume we want to track a robot wandering randomly on
the X/Y plane, whose position we can only observe roughly (e.g. by approximate GPS coordinates:)
Markov chain

Vt−1 Vt Vt+1

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

▶ the velocity V i may change unpredictably.
▶ the exact position X i depends on previous position X i−1 and velocity V i−1

▶ the position X i influences the observed position Z i .

Example 1.18 (Battery Powered Robot). If the robot has a battery, the Markov property is violated!
▶ Battery exhaustion has a systematic effect on the change in velocity.
▶ This depends on how much power was used by all previous manoeuvres.

Dennis Müller: Artificial Intelligence 2 112 2024-04-14

Markov Process Example: Robot Motion
Idea: We can restore the Markov property by including a state variable for the charge level B t . (Better
still: Battery level sensor)
Example 1.19 (Battery Powered Robot Motion).

Mt−1 Mt Mt+1

Bt−1 Bt Bt+1

Vt−1 Vt Vt+1

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

▶ Battery level B i is influenced by previous level B i−1and velocity V i−1.
▶ Velocity V i is influenced by previous level B i−1and velocity V i−1.
▶ Battery meter M i is only influenced by Battery level B i .

Dennis Müller: Artificial Intelligence 2 113 2024-04-14

Stationary Markov Processes as Transition Models
Remark 1.20. Given a stochastic process with state variables X t and evidence variables E t , then
P(X t |X0:t) is a transition model and P(E t |X0:t ,E1:t−1) a sensor model in the sense of a model-based
agent.
Note that we assume that the X t do not depend on the E t .
Also note that with the Markov property, the transition model simplifies to P(Xt |Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)

Definition 1.21. A Markov chain is called stationary if the transition model is independent of time, i.e.
P(X t |X t−1) is the same for all t.

Example 1.22 (Umbrellas are stationary). P(Raint |Raint−1) does not depend on t. (need only one
table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.

Dennis Müller: Artificial Intelligence 2 114 2024-04-14

Stationary Markov Processes as Transition Models
Remark 1.23. Given a stochastic process with state variables X t and evidence variables E t , then
P(X t |X0:t) is a transition model and P(E t |X0:t ,E1:t−1) a sensor model in the sense of a model-based
agent.
Note that we assume that the X t do not depend on the E t .
Also note that with the Markov property, the transition model simplifies to P(Xt |Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)
Definition 1.24. A Markov chain is called stationary if the transition model is independent of time, i.e.
P(X t |X t−1) is the same for all t.

Example 1.25 (Umbrellas are stationary). P(Raint |Raint−1) does not depend on t. (need only one
table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.

Dennis Müller: Artificial Intelligence 2 114 2024-04-14

Stationary Markov Processes as Transition Models
Remark 1.26. Given a stochastic process with state variables X t and evidence variables E t , then
P(X t |X0:t) is a transition model and P(E t |X0:t ,E1:t−1) a sensor model in the sense of a model-based
agent.
Note that we assume that the X t do not depend on the E t .
Also note that with the Markov property, the transition model simplifies to P(Xt |Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)
Definition 1.27. A Markov chain is called stationary if the transition model is independent of time, i.e.
P(X t |X t−1) is the same for all t.

Example 1.28 (Umbrellas are stationary). P(Raint |Raint−1) does not depend on t. (need only one
table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.

Dennis Müller: Artificial Intelligence 2 114 2024-04-14

Markov Sensor Models

Recap: The sensor model P(E t |X0:t ,E1:t−1) allows us (using Bayes rule et al) to update our belief state
about X t given the observations E0:t .
Problem: The evidence variables E t could depend on any of the variables X0:t ,E1:t−1...

Definition 1.29. We say that a sensor model has the sensor Markov property, iff
P(E t |X0:t ,E1:t−1) = P(E t |X t) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(E t |X t) is fixed for all t.

Definition 1.30 (Note).
▶ If a Markov chain X is stationary and discrete, we can represent the transition model as a matrix

Tij :=P(X t = j |X t−1 = i).
▶ If a sensor model has the sensor Markov property, we can represent each observation E t = et at time
t as the diagonal matrix Ot with Ot ii :=P(E t = et |X t = i).
▶ A pair ⟨X ,E ⟩ where X is a (stationary) Markov chains, E i only depends on X i , and E has the sensor

Markov property is called a (stationary) Hidden Markov Model (HMM). (X and E are single variables)

Dennis Müller: Artificial Intelligence 2 115 2024-04-14

Markov Sensor Models

Recap: The sensor model P(E t |X0:t ,E1:t−1) allows us (using Bayes rule et al) to update our belief state
about X t given the observations E0:t .
Problem: The evidence variables E t could depend on any of the variables X0:t ,E1:t−1...

Definition 1.31. We say that a sensor model has the sensor Markov property, iff
P(E t |X0:t ,E1:t−1) = P(E t |X t) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(E t |X t) is fixed for all t.

Definition 1.32 (Note).
▶ If a Markov chain X is stationary and discrete, we can represent the transition model as a matrix

Tij :=P(X t = j |X t−1 = i).
▶ If a sensor model has the sensor Markov property, we can represent each observation E t = et at time
t as the diagonal matrix Ot with Ot ii :=P(E t = et |X t = i).
▶ A pair ⟨X ,E ⟩ where X is a (stationary) Markov chains, E i only depends on X i , and E has the sensor

Markov property is called a (stationary) Hidden Markov Model (HMM). (X and E are single variables)

Dennis Müller: Artificial Intelligence 2 115 2024-04-14

Markov Sensor Models

Recap: The sensor model P(E t |X0:t ,E1:t−1) allows us (using Bayes rule et al) to update our belief state
about X t given the observations E0:t .
Problem: The evidence variables E t could depend on any of the variables X0:t ,E1:t−1...

Definition 1.33. We say that a sensor model has the sensor Markov property, iff
P(E t |X0:t ,E1:t−1) = P(E t |X t) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(E t |X t) is fixed for all t.

Definition 1.34 (Note).
▶ If a Markov chain X is stationary and discrete, we can represent the transition model as a matrix

Tij :=P(X t = j |X t−1 = i).
▶ If a sensor model has the sensor Markov property, we can represent each observation E t = et at time
t as the diagonal matrix Ot with Ot ii :=P(E t = et |X t = i).
▶ A pair ⟨X ,E ⟩ where X is a (stationary) Markov chains, E i only depends on X i , and E has the sensor

Markov property is called a (stationary) Hidden Markov Model (HMM). (X and E are single variables)

Dennis Müller: Artificial Intelligence 2 115 2024-04-14

Umbrellas, the full Story

Example 1.35 (Umbrellas, Transition & Sensor Models).

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P(Rt)

T 0.7
F 0.3 Rt P(Ut)

T 0.9
F 0.2

This is a hidden Markov model
Observation 1.36. If we know the initial prior probabilities P(X 0) (=̂ time t = 0), then we can compute
the full joint probability distribution as

P(X0:t ,E1:t) = P(X 0) ·
t∏

i=1

P(X i |X i−1) · P(E i |X i)

Dennis Müller: Artificial Intelligence 2 116 2024-04-14

5.2 Inference: Filtering, Prediction, and Smoothing

Dennis Müller: Artificial Intelligence 2 116 2024-04-14

Inference tasks

Definition 2.1. Given a Markov process with state variables X t and evidence variables E t , we are
interested in the following Markov inference tasks:
▶ Filtering (or monitoring) P(X t |E=e

1:t): Given the sequence of observations up until time t, compute the
likely state of the world at current time t.
▶ Prediction (or state estimation) P(X t+k |E=e

1:t) for k > 0: Given the sequence of observations up until
time t, compute the likely future state of the world at time t + k .
▶ Smoothing (or hindsight) P(X t−k |E=e

1:t) for 0 < k < t: Given the sequence of observations up until
time t, compute the likely past state of the world at time t − k .
▶ Most likely explanation argmax

x1:t

(P(X=x
1:t |E=e

1:t)): Given the sequence of observations up until time t,

compute the most likely sequence of states that led to these observations.

Note: The most likely sequence of states is not (necessarily) the sequence of most likely states ;-)
In this section, we assume X and E to represent multiple variables, where X jointly forms a Markov
chain and the E jointly have the sensor Markov property.
In the case where X and E are stationary single variables, we have a stationary hidden Markov model
and can use the matrix forms.

Dennis Müller: Artificial Intelligence 2 117 2024-04-14

Filtering (Computing the Belief State given Evidence)

Note:
▶ Using the full joint probability distribution, we can compute any conditional probability we want, but

not necessarily efficiently.
▶ We want to use filtering to update our ‘‘world model” P(X t) based on a new observation E t = et and

our previous world model P(X t−1).
⇒ We want a function P(X t |E=e

1:t) = F (et ,P(X t−1|E=e
1:t−1)︸ ︷︷ ︸

F (et−1,...)

)

Spoiler:
F (et ,P(X t−1|E=e

1:t−1)) = α(Ot · TT · P(X t−1|E=e
1:t−1))

Dennis Müller: Artificial Intelligence 2 118 2024-04-14

Filtering (Computing the Belief State given Evidence)

Note:
▶ Using the full joint probability distribution, we can compute any conditional probability we want, but

not necessarily efficiently.
▶ We want to use filtering to update our ‘‘world model” P(X t) based on a new observation E t = et and

our previous world model P(X t−1).
⇒ We want a function P(X t |E=e

1:t) = F (et ,P(X t−1|E=e
1:t−1)︸ ︷︷ ︸

F (et−1,...)

)

Spoiler:
F (et ,P(X t−1|E=e

1:t−1)) = α(Ot · TT · P(X t−1|E=e
1:t−1))

Dennis Müller: Artificial Intelligence 2 118 2024-04-14

Filtering Derivation

P(X t |E=e
1:t) = P(X t |E t = et ,E

=e
1:t−1) (dividing up evidence)

= α(P(E t = et |X t ,E
=e
1:t−1) · P(X t |E=e

1:t−1)) (using Bayes’ rule)
= α(P(E t = et |X t) · P(X t |E=e

1:t−1)) (sensor Markov property)
= α(P(E t = et |X t) · (

∑

x∈dom(X)

P(X t |X t−1 = x ,E=e
1:t−1) · P(X t−1 = x |E=e

1:t−1))) (marginalization)

= α(P(E t = et |X t)︸ ︷︷ ︸
sensor model

·(
∑

x∈dom(X)

P(X t |X t−1 = x)︸ ︷︷ ︸
transition model

·P(X t−1 = x |E=e
1:t−1)︸ ︷︷ ︸

recursive call

)) (conditional independence)

Reminder: In a stationary HMM, we have the matrices Tij = P(X t = j |X t−1 = i) and
Ot ii = P(E t = et |X t = i).
Then interpreting P(X t−1|E=e

1:t−1) as a vector, the above corresponds exactly to the matrix multiplication
α(Ot · TT · P(X t−1|E=e

1:t−1))

Definition 2.2. We call the inner part of the above expression the forward algorithm, i.e.
P(X t |E=e

1:t) = α(FORWARD(et ,P(X t−1|E=e
1:t−1))) =: f1:t .

Dennis Müller: Artificial Intelligence 2 119 2024-04-14

Filtering Derivation

P(X t |E=e
1:t) = P(X t |E t = et ,E

=e
1:t−1) (dividing up evidence)

= α(P(E t = et |X t ,E
=e
1:t−1) · P(X t |E=e

1:t−1)) (using Bayes’ rule)
= α(P(E t = et |X t) · P(X t |E=e

1:t−1)) (sensor Markov property)
= α(P(E t = et |X t) · (

∑

x∈dom(X)

P(X t |X t−1 = x ,E=e
1:t−1) · P(X t−1 = x |E=e

1:t−1))) (marginalization)

= α(P(E t = et |X t)︸ ︷︷ ︸
sensor model

·(
∑

x∈dom(X)

P(X t |X t−1 = x)︸ ︷︷ ︸
transition model

·P(X t−1 = x |E=e
1:t−1)︸ ︷︷ ︸

recursive call

)) (conditional independence)

Reminder: In a stationary HMM, we have the matrices Tij = P(X t = j |X t−1 = i) and
Ot ii = P(E t = et |X t = i).
Then interpreting P(X t−1|E=e

1:t−1) as a vector, the above corresponds exactly to the matrix multiplication
α(Ot · TT · P(X t−1|E=e

1:t−1))

Definition 2.3. We call the inner part of the above expression the forward algorithm, i.e.
P(X t |E=e

1:t) = α(FORWARD(et ,P(X t−1|E=e
1:t−1))) =: f1:t .

Dennis Müller: Artificial Intelligence 2 119 2024-04-14

Filtering the Umbrellas
Example 2.4. Let’s assume:
▶ P(R0) = ⟨0.5, 0.5⟩, (Note that with growing t (and evidence), the impact of the prior at t = 0

vanishes anyway)
▶ P(Rt+1|Rt) = 0.6, P(¬Rt+1|¬Rt) = 0.8, P(Ut |Rt) = 0.9 and P(¬Ut |¬Rt) = 0.85

⇒ T =

(
0.6 0.4
0.2 0.8

)

▶ The director carries an umbrella on days 1 and 2, and not on day 3.

⇒ O1 = O2 =

(
0.9 0
0 0.1

)
and O3 =

(
0.15 0
0 0.85

)
.

Then:
▶ f1:1 := P(R1|U1 = T) = α(P(U1 = T|R1) · (

∑

b∈{T,F}
P(R1|R0 = b) · P (R0 = b)))

=α(⟨0.9, 0.1⟩ · (⟨0.6, 0.4⟩ · 0.5 + ⟨0.2, 0.8⟩ · 0.5)) = α(⟨0.36, 0.06⟩) = ⟨0.857, 0.143⟩
▶ Using matrices: α(O1 · TT ·

(
0.5
0.5

)
) = α(

(
0.9 0
0 0.1

)
·
(

0.6 0.2
0.4 0.8

)
·
(

0.5
0.5

)
)

=α(

(
0.9 · 0.6 0.9 · 0.2
0.1 · 0.4 0.1 · 0.8

)
·
(

0.5
0.5

)
) = α(

(
0.9 · 0.6 · 0.5 + 0.9 · 0.2 · 0.5
0.1 · 0.4 · 0.5 + 0.1 · 0.8 · 0.5

)
) = α(

(
0.36
0.06

)
)

Dennis Müller: Artificial Intelligence 2 120 2024-04-14

Filtering the Umbrellas (Continued)

Example 2.5. f1:1 := P(R1|U1 = T) = ⟨0.857, 0.143⟩
▶ f1:2 := P(R2|U2 = T, U1 = T) = α(O2 · TT · f1:1) = α(P(U2 = T|R2) · (

∑

b∈{T,F}
P(R2|R1 = b) · f1:1(b)))

=α(⟨0.9, 0.1⟩ · (⟨0.6, 0.4⟩ · 0.857 + ⟨0.2, 0.8⟩ · 0.143)) = α(⟨0.489, 0.046⟩) = ⟨0.91, 0.09⟩
▶ f1:3 := P(R3|U3 = F, U2 = T, U1 = T) = α(O3 · TT · f1:2)
=α(P(U3 = F|R3) · (

∑

b∈{T,F}
P(R3|R2 = b) · f1:2(b)))

=α(⟨0.15, 0.85⟩ · (⟨0.6, 0.4⟩ · 0.91 + ⟨0.2, 0.8⟩ · 0.09)) = α(⟨0.085, 0.37⟩) = ⟨0.187, 0.813⟩

Dennis Müller: Artificial Intelligence 2 121 2024-04-14

Prediction in Markov Chains

Prediction: P(X t+k |E=e
1:t) for k > 0.

Intuition: Prediction is filtering without new evidence – i.e. we can use filtering until t, and then
continue as follows:
Lemma 2.6. By the same reasoning as filtering:

P(X t+k+1|E=e
1:t) =

∑

x∈dom(X)

P(X t+k+1|X t+k = x)︸ ︷︷ ︸
transition model

·P(X t+k = x |E=e
1:t)︸ ︷︷ ︸

recursive call

=TT · P(X t+k = x |E=e
1:t)︸ ︷︷ ︸

HMM

Observation 2.7. As k → ∞, P(X t+k |E=e
1:t) converges towards a fixed point called the stationary

distribution of the Markov chain. (which we can compute from the equation S = TT · S)
⇒ the impact of the evidence vanishes.
⇒ The stationary distribution only depends on the transition model.
⇒ There is a small window of time (depending on the transition model) where the evidence has enough
impact to allow for prediction beyond the mere stationary distribution, called the mixing time of the
Markov chain.
⇒ Predicting the future is difficult, and the further into the future, the more difficult it is (Who knew...)

Dennis Müller: Artificial Intelligence 2 122 2024-04-14

Prediction in Markov Chains

Prediction: P(X t+k |E=e
1:t) for k > 0.

Intuition: Prediction is filtering without new evidence – i.e. we can use filtering until t, and then
continue as follows:
Lemma 2.8. By the same reasoning as filtering:

P(X t+k+1|E=e
1:t) =

∑

x∈dom(X)

P(X t+k+1|X t+k = x)︸ ︷︷ ︸
transition model

·P(X t+k = x |E=e
1:t)︸ ︷︷ ︸

recursive call

=TT · P(X t+k = x |E=e
1:t)︸ ︷︷ ︸

HMM

Observation 2.9. As k → ∞, P(X t+k |E=e
1:t) converges towards a fixed point called the stationary

distribution of the Markov chain. (which we can compute from the equation S = TT · S)
⇒ the impact of the evidence vanishes.
⇒ The stationary distribution only depends on the transition model.
⇒ There is a small window of time (depending on the transition model) where the evidence has enough
impact to allow for prediction beyond the mere stationary distribution, called the mixing time of the
Markov chain.
⇒ Predicting the future is difficult, and the further into the future, the more difficult it is (Who knew...)

Dennis Müller: Artificial Intelligence 2 122 2024-04-14

Smoothing

Smoothing: P(X t−k |E=e
1:t) for k > 0.

Intuition: Use filtering to compute P(X t |E=e
1:t−k), then recurse backwards from t until t − k .

P(X t−k |E=e
1:t) = P(X t−k |E=e

t−(k−1):t ,E
=e
1:t−k) (Divide the evidence)

= α(P(E=e
t−(k−1):t |X t−k ,E

=e
1:t−k) · P(X t−k |E=e

1:t−k)) (Bayes Rule)
= α(P(E=e

t−(k−1):t |X t−k)︸ ︷︷ ︸
=:bt−(k−1):t

·P(X t−k |E=e
1:t−k)︸ ︷︷ ︸

=f1:t−k

) (cond. independence)

= α(f1:t−k × bt−(k−1):t)

(where × denotes component-wise multiplication)

Dennis Müller: Artificial Intelligence 2 123 2024-04-14

Smoothing (continued)
Definition 2.10 (Backward message). bt−k:t = P(E=e

t−k:t |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t |X t−k = x ,X t−(k+1)) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t |X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k ,E
=e
t−(k−1):t |X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k |X t−k = x)︸ ︷︷ ︸
sensor model

·P(E=e
t−(k−1):t |X t−k = x)

︸ ︷︷ ︸
=bt−(k−1):t

·P(X t−k = x |X t−(k+1))︸ ︷︷ ︸
transition model

Note: in a stationary hidden Markov model, we get the matrix formulation bt−k:t = T ·Ot−k ·bt−(k−1):t

Definition 2.11. We call the associated algorithm the backward algorithm, i.e.
P(X t−k |E=e

1:t) = α(FORWARD(et−k , f1:t−(k+1))︸ ︷︷ ︸
f1:t−k

×BACKWARD(et−(k−1), bt−(k−2):t)︸ ︷︷ ︸
bt−(k−1):t

).

As a starting point for the recursion, we let bt+1:t the uniform vector with 1 in every component.

Dennis Müller: Artificial Intelligence 2 124 2024-04-14

Smoothing (continued)
Definition 2.12 (Backward message). bt−k:t = P(E=e

t−k:t |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t |X t−k = x ,X t−(k+1)) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t |X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k ,E
=e
t−(k−1):t |X t−k = x) · P(X t−k = x |X t−(k+1))

=
∑

x∈dom(X)

P(E t−k = et−k |X t−k = x)︸ ︷︷ ︸
sensor model

·P(E=e
t−(k−1):t |X t−k = x)

︸ ︷︷ ︸
=bt−(k−1):t

·P(X t−k = x |X t−(k+1))︸ ︷︷ ︸
transition model

Note: in a stationary hidden Markov model, we get the matrix formulation bt−k:t = T ·Ot−k ·bt−(k−1):t

Definition 2.13. We call the associated algorithm the backward algorithm, i.e.
P(X t−k |E=e

1:t) = α(FORWARD(et−k , f1:t−(k+1))︸ ︷︷ ︸
f1:t−k

×BACKWARD(et−(k−1), bt−(k−2):t)︸ ︷︷ ︸
bt−(k−1):t

).

As a starting point for the recursion, we let bt+1:t the uniform vector with 1 in every component.
Dennis Müller: Artificial Intelligence 2 124 2024-04-14

Smoothing example
Example 2.14 (Smoothing Umbrellas). Reminder: We assumed P(R0) = ⟨0.5, 0.5⟩,
P(Rt+1|Rt) = 0.6, P(¬Rt+1|¬Rt) = 0.8, P(Ut |Rt) = 0.9, P(¬Ut |¬Rt) = 0.85

⇒ T =

(
0.6 0.4
0.2 0.8

)
, O1 = O2 =

(
0.9 0
0 0.1

)
and O3 =

(
0.15 0
0 0.85

)
. (The director carries an

umbrella on days 1 and 2, and not on day 3)
f1:1 = ⟨0.857, 0.143⟩, f1:2 = ⟨0.91, 0.09⟩ and f1:3 = ⟨0.187, 0.813⟩
Let’s compute

P(R1|U1 = T, U2 = T, U3 = F) = α(f1:1 × b2:3)

▶ We need to compute b2:3 and b3:3:

▶ b3:3 = T · O3 · b4:3 =

(
0.6 0.4
0.2 0.8

)
·
(

0.15 0
0 0.85

)
·
(

1
1

)
=

(
0.43
0.71

)

▶ b2:3 = T · O2 · b3:3 =

(
0.6 0.4
0.2 0.8

)
·
(

0.9 0
0 0.1

)
·
(

0.43
0.71

)
=

(
0.261
0.134

)

⇒ α(

(
0.857
0.143

)
×
(

0.261
0.134

)
) = α(

(
0.224
0.02

)
) =

(
0.918
0.082

)

⇒ Given the evidence U2,¬U3, the posterior probability for R1 went up from 0.857 to 0.918!

Dennis Müller: Artificial Intelligence 2 125 2024-04-14

Forward/Backward Algorithm for Smoothing

Definition 2.15. Forward backward algorithm: returns the sequence of posterior distributions
P(X 1). . .P(X t) given evidence e1, . . ., et :

function Forward-Backward(⟨e1, . . ., et⟩,P(X 0))
f :=⟨P(X 0)⟩
b:=⟨1, 1, . . .⟩
S:=⟨P(X 0)⟩
for i = 1, . . . , t do

fi :=FORWARD(fi−1, e i) /* filtering */
for i = t, . . . , 1 do

Si :=α(fi × b) /* smoothing */
b:=BACKWARD(b, e i)

return S

(Note the discrepancy wrt normalization between the derivation and the algorithm... why is this okay? ;))
Time complexity linear in t (polytree inference), Space complexity O(t · |f|).

Dennis Müller: Artificial Intelligence 2 126 2024-04-14

Country dance algorithm

Idea: If T and Oi are invertible, we can avoid storing all forward messages in the smoothing algorithm
by running filtering backwards:

f1:i+1 = α(Oi+1 · TT · f1:i)

⇒ f1:i = α(TT−1 · Oi+1
−1 · f1:i+1)

⇒ we can trade space complexity for time complexity:
▶ In the first for-loop, we only compute the final f1:t (No need to store the intermediate results)
▶ In the second for-loop, we compute both f1:i and bt−i :t (Only one copy of f1:i , bt−i :t is stored)
⇒ constant space.

But: Requires that both matrices are invertible, i.e. every observation must be possible in every state.
(Possible hack: increase the probabilities of 0 to “negligibly small”)

Dennis Müller: Artificial Intelligence 2 127 2024-04-14

Most Likely Explanation

Smoothing allows us to compute the sequence of most likely states X 1, . . .,X t given E=e
1:t . What if we

want the most likely sequence of states? i.e. max
x1,...,x t

(P(X=x
1:t |E=e

1:t))?

Example 2.16. Given the sequence U1, U2,¬U3, U4, U5, the most likely state for R3 is F, but the most
likely sequence might be that it rained throughout...
Prominent Application: In speech recognition, we want to find the most likely word sequence, given
what we have heard. (can be quite noisy)

Idea:
▶ For every x t ∈ dom(X) and 0 ≤ i ≤ t, recursively compute the most likely path X 1, . . .,X i ending in
X i = x i given the observed evidence.
▶ remember the x i−1 that most likely leads to x i .
▶ Among the resulting paths, pick the one to the X t = x t with the most likely path,
▶ and then recurse backwards.
⇒ we want to know max

x1,...,x t−1
P(X=x

1:t−1,X t |E=e
1:t), and then pick the x t with the maximal value.

Dennis Müller: Artificial Intelligence 2 128 2024-04-14

Most Likely Explanation (continued)
By the same reasoning as for filtering:

max
x1,...,x t−1

P(X=x
1:t−1,X t |E=e

1:t)

= α(P(E t = et |X t)︸ ︷︷ ︸
sensor model

·max
x t−1

(P(X t |X t−1 = x t−1)︸ ︷︷ ︸
transition model

· max
x1,...,x t−2

(P(X=x
1:t−2,X t−1 = x t−1|E=e

1:t−1))

︸ ︷︷ ︸
=:m1:t−1(x t−1)

))

m1:t(i) gives the maximal probability that the most likely path up to t leads to state X t = i .
Note that we can leave out the α, since we’re only interested in the maximum.
Example 2.17. For the sequence [T,T,F,T,T]:

Section 15.2. Inference in Temporal Models 577

Rain1

m1:1

true

Rain5

m1:5

true

Rain4

m1:4

true

Rain3

m1:3

false

Rain2

m1:2

trueUmbrellat

(a)

(b)
.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false

Figure 15.5 (a) Possible state sequences for Raint can be viewed as paths through a graph
of the possible states at each time step. (States are shown as rectangles to avoid confusion
with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella obser-
vation sequence [true, true, false, true, true]. For each t, we have shown the values of the
message m1:t, which gives the probability of the best sequence reaching each state at time t.
Also, for each state, the bold arrow leading into it indicates its best predecessor as measured
by the product of the preceding sequence probability and the transition probability. Following
the bold arrows back from the most likely state in m1:5 gives the most likely sequence.

butions over single time steps, whereas to find the most likely sequence we must consider
joint probabilities over all the time steps. The results can in fact be quite different. (See
Exercise 15.4.)

There is a linear-time algorithm for finding the most likely sequence, but it requires a
little more thought. It relies on the same Markov property that yielded efficient algorithms for
filtering and smoothing. The easiest way to think about the problem is to view each sequence
as a path through a graph whose nodes are the possible states at each time step. Such a
graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding
the most likely path through this graph, where the likelihood of any path is the product of
the transition probabilities along the path and the probabilities of the given observations at
each state. Let’s focus in particular on paths that reach the state Rain5 = true . Because of
the Markov property, it follows that the most likely path to the state Rain5 = true consists of
the most likely path to some state at time 4 followed by a transition to Rain5 = true; and the
state at time 4 that will become part of the path to Rain5 = true is whichever maximizes the
likelihood of that path. In other words, there is a recursive relationship between most likely
paths to each state xt+1 and most likely paths to each state xt. We can write this relationship
as an equation connecting the probabilities of the paths:

max
x1...xt

P(x1, . . . , xt, Xt+1 | e1:t+1)

= α P(et+1 | Xt+1)max
xt

(
P(Xt+1 | xt) max

x1...xt−1

P (x1, . . . , xt−1, xt | e1:t)

)
. (15.11)

Equation (15.11) is identical to the filtering equation (15.5) except that

bold arrows: best predecessor measured by “best preceding sequence probability × transition probability”
Dennis Müller: Artificial Intelligence 2 129 2024-04-14

The Viterbi Algorithm

Definition 2.18. The Viterbi algorithm now proceeds as follows:

function Viterbi(⟨e1, . . ., et⟩,P(X 0))
m:=⟨P(X 0)⟩ /* m1:i */
prev:=⟨⟩ /* the most likely predecessor of each possible x i */
for i = 1, . . . , t do

mi :=max
x i−1

(P(E i = e i |X i) · P(X i |X i−1 = x i−1) ·mi−1(x i−1))

previ :=argmax
x i−1

(P(E i = e i |X i) · P(X i |X i−1 = x i−1) ·mi−1(x i−1))

P:=⟨0, 0, ..., max
(x∈dom(X))

prevt(vx)⟩
for i = t − 1, . . . , 1 do

Pi :=mxi (Pi+1)
return P

Observation 2.19. Viterbi has linear time complexity and linear space complexity (needs to keep the
most likely sequence leading to each state).

Dennis Müller: Artificial Intelligence 2 130 2024-04-14

5.3 Hidden Markov Models – Extended Example

Dennis Müller: Artificial Intelligence 2 130 2024-04-14

Example: Robot Localization using Common Sense

Example 3.1 (Robot Localization in a Maze). A robot has four sonar sensors that tell it about
obstacles in four directions: N, S, W, E.
We write the result where the sensor that detects obstacles in the north, south, and east as N S E.

We filter out the impossible states:

a) Possible robot locations after e1 = N S W

Remark 3.2. This only works for perfect sensors. (else no impossible states)
What if our sensors are imperfect?

Dennis Müller: Artificial Intelligence 2 131 2024-04-14

Example: Robot Localization using Common Sense

Example 3.3 (Robot Localization in a Maze). A robot has four sonar sensors that tell it about
obstacles in four directions: N, S, W, E.
We write the result where the sensor that detects obstacles in the north, south, and east as N S E.

We filter out the impossible states:

b) Possible robot locations after e1 = N S W and e2 = N S

Remark 3.4. This only works for perfect sensors. (else no impossible states)
What if our sensors are imperfect?

Dennis Müller: Artificial Intelligence 2 131 2024-04-14

HMM Example: Robot Localization (Modeling)
Example 3.5 (HMM-based Robot Localization). We have the following setup:
▶ A hidden Random variable X t for robot location (domain: 42 empty squares)
▶ Let N(i) be the set of neighboring fields of the field X i = x i
▶ The Transition matrix for the move action (T has 422 = 1764 entries)

P(X t+1 = j |X t = i) = Tij =

{ 1
|N(i)| if j ∈ N(i)

0 else

▶ We do not know where the robot starts: P (X 0) =
1
n (here n = 42)

▶ Evidence variable E t : four bit presence/absence of obstacles in N, S, W, E. Let dit be the number of
wrong bits and ϵ the error rate of the sensor. Then

P(E t = et |X t = i) = Ot ii = (1 − ϵ)4−dit · ϵdit

(We assume the sensors are independent)
For example, the probability that the sensor on a square with obstacles in north and south would
produce N S E is (1 − ϵ)3 · ϵ1.

We can now use filtering for localization, smoothing to determine e.g. the starting location, and the
Viterbi algorithm to find out how the robot got to where it is now.

Dennis Müller: Artificial Intelligence 2 132 2024-04-14

HMM Example: Robot Localization

We use HMM filtering equation f1:t+1 = α ·Ot+1Tt f1:t to compute posterior distribution over locations.
(i.e. robot localization)

Example 3.6. Redoing ??, with ϵ = 0.2.

582 Chapter 15. Probabilistic Reasoning over Time

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 Posterior distribution over robot location: (a) one observation E1 =NSW ;
(b) after a second observation E2 =NS. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate is ε =0.2.

NS, for example, to mean that the north and south sensors report an obstacle and the east and
west do not. Suppose that each sensor’s error rate is ε and that errors occur independently for
the four sensor directions. In that case, the probability of getting all four bits right is (1 − ε)4

and the probability of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the
number of bits that are different—between the true values for square i and the actual reading
et, then the probability that a robot in square i would receive a sensor reading et is

P (Et = et | Xt = i) = Otii = (1 − ε)4−ditεdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading NSE is (1 − ε)3ε1.

Given the matrices T and Ot, the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the
distributions P(X1 |E1 = NSW) and P(X2 |E1 =NSW,E2 = NS). This is the same maze
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most
likely with noisy sensing, but now every location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing
(Equation (15.13)) to work out where it was at any given past time—for example, where it
began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

a) Posterior distribution over robot location after E1 = N S W

Still the same locations as in the “perfect sensing” case, but now other locations have non-zero
probability.

Dennis Müller: Artificial Intelligence 2 133 2024-04-14

HMM Example: Robot Localization

We use HMM filtering equation f1:t+1 = α ·Ot+1Tt f1:t to compute posterior distribution over locations.
(i.e. robot localization)

Example 3.7. Redoing ??, with ϵ = 0.2.

582 Chapter 15. Probabilistic Reasoning over Time

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 Posterior distribution over robot location: (a) one observation E1 =NSW ;
(b) after a second observation E2 =NS. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate is ε =0.2.

NS, for example, to mean that the north and south sensors report an obstacle and the east and
west do not. Suppose that each sensor’s error rate is ε and that errors occur independently for
the four sensor directions. In that case, the probability of getting all four bits right is (1 − ε)4

and the probability of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the
number of bits that are different—between the true values for square i and the actual reading
et, then the probability that a robot in square i would receive a sensor reading et is

P (Et = et | Xt = i) = Otii = (1 − ε)4−ditεdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading NSE is (1 − ε)3ε1.

Given the matrices T and Ot, the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the
distributions P(X1 |E1 = NSW) and P(X2 |E1 =NSW,E2 = NS). This is the same maze
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most
likely with noisy sensing, but now every location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing
(Equation (15.13)) to work out where it was at any given past time—for example, where it
began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

b) Posterior distribution over robot location after E1 = N S W and E2 = N S

Still the same locations as in the “perfect sensing” case, but now other locations have non-zero
probability.

Dennis Müller: Artificial Intelligence 2 133 2024-04-14

HMM Example: Further Inference Applications

Idea: We can use smoothing: bk+1:t = TOk+1bk+2:t to find out where it started and the Viterbi
algorithm to find the most likely path it took.
Example 3.8.Performance of HMM localization vs. observation length (various error rates ϵ)

Section 15.3. Hidden Markov Models 583

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20 25 30 35 40

L
oc

al
iz

at
io

n
er

ro
r

Number of observations

¡ = 0.20
¡ = 0.10
¡ = 0.05
¡ = 0.02
¡ = 0.00

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40

Pa
th

 a
cc

ur
ac

y

Number of observations

¡ = 0.00
¡ = 0.02
¡ = 0.05
¡ = 0.10
¡ = 0.20

(a) (b)

Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ε; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy
for various values of the per-bit sensor error rate ε. Even when ε is 20%—which means that
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its
location within two squares after 25 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
on the location sequence by the transition model. When ε is 10%, the performance after
a half-dozen observations is hard to distinguish from the performance with perfect sensing.
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in
the prior distribution P(X0) and in the transition model itself. Broadly speaking, high levels
of localization and path accuracy are maintained even in the face of substantial errors in the
models used.

The state variable for the example we have considered in this section is a physical
location in the world. Other problems can, of course, include other aspects of the world.
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
(randomly selected) heading. To model this robot, each state in the model consists of a
(location, heading) pair. For the environment in Figure 15.7, which has 42 empty squares,
this leads to 168 states and a transition matrix with 1682 = 28, 224 entries—still a manageable
number. If we add the possibility of dirt in the squares, the number of states is multiplied by
242 and the transition matrix ends up with more than 1029 entries—no longer a manageable
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with
many state variables. If we allow the robot to move continuously rather than in a discrete
grid, the number of states becomes infinite; the next section shows how to handle this case.

Section 15.3. Hidden Markov Models 583

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20 25 30 35 40

L
oc

al
iz

at
io

n
er

ro
r

Number of observations

¡ = 0.20
¡ = 0.10
¡ = 0.05
¡ = 0.02
¡ = 0.00

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40

Pa
th

 a
cc

ur
ac

y

Number of observations

¡ = 0.00
¡ = 0.02
¡ = 0.05
¡ = 0.10
¡ = 0.20

(a) (b)

Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ε; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy
for various values of the per-bit sensor error rate ε. Even when ε is 20%—which means that
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its
location within two squares after 25 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
on the location sequence by the transition model. When ε is 10%, the performance after
a half-dozen observations is hard to distinguish from the performance with perfect sensing.
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in
the prior distribution P(X0) and in the transition model itself. Broadly speaking, high levels
of localization and path accuracy are maintained even in the face of substantial errors in the
models used.

The state variable for the example we have considered in this section is a physical
location in the world. Other problems can, of course, include other aspects of the world.
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
(randomly selected) heading. To model this robot, each state in the model consists of a
(location, heading) pair. For the environment in Figure 15.7, which has 42 empty squares,
this leads to 168 states and a transition matrix with 1682 = 28, 224 entries—still a manageable
number. If we add the possibility of dirt in the squares, the number of states is multiplied by
242 and the transition matrix ends up with more than 1029 entries—no longer a manageable
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with
many state variables. If we allow the robot to move continuously rather than in a discrete
grid, the number of states becomes infinite; the next section shows how to handle this case.

Localization error (Manhattan dis-
tance from true location)

Viterbi path accuracy (fraction of
correct states on Viterbi path)

Dennis Müller: Artificial Intelligence 2 134 2024-04-14

5.4 Dynamic Bayesian Networks

Dennis Müller: Artificial Intelligence 2 134 2024-04-14

Dynamic Bayesian networks

▶ Definition 4.1. A Bayesian network D is called dynamic (a DBN), iff its random variables are indexed
by a time structure. We assume that D is
▶ time sliced, i.e. that the time slices Dt – the subgraphs of t-indexed random variables and the edges

between them – are isomorphic.
▶ a stationary Markov chain, i.e. that variables Xt can only have parents in Dt and Dt−1.
▶ Xt , Et contain arbitrarily many variables in a replicated Bayesian network.
▶ Example 4.2.

Umbrellas Robot Motion

Dennis Müller: Artificial Intelligence 2 135 2024-04-14

DBNs vs. HMMs

▶ Observation 4.3.
▶ Every HMM is a single-variable DBN. (trivially)
▶ Every discrete DBN is an HMM. (combine variables into tuple)
▶ DBNs have sparse dependencies ; exponentially fewer parameters;

▶ Example 4.4 (Sparse Dependencies). With 20 Boolean state variables, three parents each, a DBN
has 20 · 23 = 160 parameters, the corresponding HMM has 220 · 220 ≈ 1012.

Dennis Müller: Artificial Intelligence 2 136 2024-04-14

Exact inference in DBNs

▶ Definition 4.5 (Naive method). Unroll the network and run any exact algorithm.
Rain0 Rain1

Umbrella1

P(R0)

0.7
R0 P(R1)

T 0.7
F 0.3 R1 P(U1)

T 0.9
F 0.2

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

P(R0)

0.7

R0 P(R1)

T 0.7
F 0.3

R1 P(U1)

T 0.9
F 0.2

R1 P(R2)

T 0.7
F 0.3

R2 P(U2)

T 0.9
F 0.2

R2 P(R3)

T 0.7
F 0.3

R3 P(U3)

T 0.9
F 0.2

R3 P(R4)

T 0.7
F 0.3

R4 P(U4)

T 0.9
F 0.2

R4 P(R5)

T 0.7
F 0.3

R5 P(U5)

T 0.9
F 0.2

▶ Problem: Inference cost for each update grows with t.
▶ Definition 4.6. Rollup filtering: add slice t + 1, “sum out” slice t using variable elimination.
▶ Observation: Largest factor is O(dn+1), update cost O(dn+2), where d is the maximal domain size.
▶ Note: Much better than the HMM update cost of O(d2n)

Dennis Müller: Artificial Intelligence 2 137 2024-04-14

Summary

▶ Temporal probability models use state and evidence variables replicated over time.
▶ Markov property and stationarity assumption, so we need both
▶ a transition model and P(Xt |Xt−1)
▶ a sensor model P(Et |Xt).
▶ Tasks are filtering, prediction, smoothing, most likely sequence; (all done recursively with constant

cost per time step)
▶ Hidden Markov models have a single discrete state variable; (used for speech recognition)
▶ DBNs subsume HMMs, exact update intractable.

Dennis Müller: Artificial Intelligence 2 138 2024-04-14

Chapter 6
Making Simple Decisions Rationally

Dennis Müller: Artificial Intelligence 2 138 2024-04-14

6.1 Introduction

Dennis Müller: Artificial Intelligence 2 138 2024-04-14

Overview
We now know how to update our world model, represented as (a set of) random variables, given
observations. Now we need to act.

For that we need to answer two questions:
Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we
can model/query P(X |A = ai).
▶ Assign numerical values to the outcomes of actions (i.e. a function u : dom(X)→R).
▶ Choose the action that maximizes the expected value of u

Definition 1.1. Decision theory investigates decision problems, i.e. how a model-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function u on states s ∈ S : i.e. u : S→R.

Dennis Müller: Artificial Intelligence 2 139 2024-04-14

Overview
We now know how to update our world model, represented as (a set of) random variables, given
observations. Now we need to act.

For that we need to answer two questions:
Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we
can model/query P(X |A = ai).
▶ Assign numerical values to the outcomes of actions (i.e. a function u : dom(X)→R).
▶ Choose the action that maximizes the expected value of u

Definition 1.2. Decision theory investigates decision problems, i.e. how a model-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function u on states s ∈ S : i.e. u : S→R.

Dennis Müller: Artificial Intelligence 2 139 2024-04-14

Overview
We now know how to update our world model, represented as (a set of) random variables, given
observations. Now we need to act.

For that we need to answer two questions:
Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we
can model/query P(X |A = ai).
▶ Assign numerical values to the outcomes of actions (i.e. a function u : dom(X)→R).
▶ Choose the action that maximizes the expected value of u

Definition 1.3. Decision theory investigates decision problems, i.e. how a model-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function u on states s ∈ S : i.e. u : S→R.

Dennis Müller: Artificial Intelligence 2 139 2024-04-14

Overview
We now know how to update our world model, represented as (a set of) random variables, given
observations. Now we need to act.

For that we need to answer two questions:
Questions:
▶ Given a world model and a set of actions, what will the likely consequences of each action be?
▶ How “good” are these consequences?

Idea:
▶ Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}. Then we
can model/query P(X |A = ai).
▶ Assign numerical values to the outcomes of actions (i.e. a function u : dom(X)→R).
▶ Choose the action that maximizes the expected value of u

Definition 1.4. Decision theory investigates decision problems, i.e. how a model-based agent a deals
with choosing among actions based on the desirability of their outcomes given by a real-valued utility
function u on states s ∈ S : i.e. u : S→R.

Dennis Müller: Artificial Intelligence 2 139 2024-04-14

Decision Theory

If our states are random variables, then we obtain a random variable for the utility function:
Observation: Let X i : Ω→D i random variables on a probability model ⟨Ω,P⟩ and
f : D1 × . . .× Dn→E . Then F (x):=f (X 0(x), . . .,X n(x)) is a random variable Ω→ E .

Definition 1.5. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→D with D ⊆ R, then
E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X . (Assuming the

sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en is
defined as E (X |e1, . . ., en):=

∑
x∈D P(X = x |e1, . . ., en) · x .

Putting things together:
Definition 1.6. Let A : Ω→D a random variable (where D is a set of actions) X i : Ω→D i random
variables (the state), and u : D1 × . . .×Dn→R a utility function. Then the expected utility of the action
a ∈ D is the expected value of u (interpreted as a random variable) given A = a ; i.e.

EU(a):=
∑

⟨x1,...,xn⟩∈D1×...×Dn

P(X 1 = x1, . . .,X n = xn|A = a) · u(x1, . . ., xn)

Dennis Müller: Artificial Intelligence 2 140 2024-04-14

Decision Theory

If our states are random variables, then we obtain a random variable for the utility function:
Observation: Let X i : Ω→D i random variables on a probability model ⟨Ω,P⟩ and
f : D1 × . . .× Dn→E . Then F (x):=f (X 0(x), . . .,X n(x)) is a random variable Ω→ E .

Definition 1.7. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→D with D ⊆ R, then
E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X . (Assuming the

sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en is
defined as E (X |e1, . . ., en):=

∑
x∈D P(X = x |e1, . . ., en) · x .

Putting things together:
Definition 1.8. Let A : Ω→D a random variable (where D is a set of actions) X i : Ω→D i random
variables (the state), and u : D1 × . . .×Dn→R a utility function. Then the expected utility of the action
a ∈ D is the expected value of u (interpreted as a random variable) given A = a ; i.e.

EU(a):=
∑

⟨x1,...,xn⟩∈D1×...×Dn

P(X 1 = x1, . . .,X n = xn|A = a) · u(x1, . . ., xn)

Dennis Müller: Artificial Intelligence 2 140 2024-04-14

Decision Theory

If our states are random variables, then we obtain a random variable for the utility function:
Observation: Let X i : Ω→D i random variables on a probability model ⟨Ω,P⟩ and
f : D1 × . . .× Dn→E . Then F (x):=f (X 0(x), . . .,X n(x)) is a random variable Ω→ E .

Definition 1.9. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→D with D ⊆ R, then
E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X . (Assuming the

sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en is
defined as E (X |e1, . . ., en):=

∑
x∈D P(X = x |e1, . . ., en) · x .

Putting things together:
Definition 1.10. Let A : Ω→D a random variable (where D is a set of actions) X i : Ω→D i random
variables (the state), and u : D1 × . . .×Dn→R a utility function. Then the expected utility of the action
a ∈ D is the expected value of u (interpreted as a random variable) given A = a ; i.e.

EU(a):=
∑

⟨x1,...,xn⟩∈D1×...×Dn

P(X 1 = x1, . . .,X n = xn|A = a) · u(x1, . . ., xn)

Dennis Müller: Artificial Intelligence 2 140 2024-04-14

Utility-based Agents
▶ Definition 1.11. A utility-based agent uses a world model along with a utility function that models

its preferences among the states of that world. It chooses the action that leads to the best expected
utility.
▶ Agent Schema:

54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

Dennis Müller: Artificial Intelligence 2 141 2024-04-14

Maximizing Expected Utility (Ideas)

Definition 1.12 (MEU principle for Rationality). We call an action rational if it maximizes expected
(MEU). An utility-based agent is called rational, iff it always chooses a rational action.
Hooray: This solves all of AI. (in principle)
Problem: There is a long, long way towards an operationalization ;)

Note: An agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities.

Example 1.13. A simple reflex agent for tic tac toe based on a perfect lookup table is rational if we
take (the negative of) “winning/drawing in n steps” as the utility function.

Example 1.14 (AI1). Heuristics in tree search (greedy search, A∗) and game-play (minimax, alpha-beta
pruning) maximize “expected” utility.
⇒ In fully observable, deterministic environments, “expected utility” reduces to a specific determined
utility value:
EU(a) = U(T (S(s, e), a)), where e the most recent percept, s the current state, S the sensor function
and T the transition function.

Now let’s figure out how to actually assign utilities!

Dennis Müller: Artificial Intelligence 2 142 2024-04-14

6.2 Preferences and Utilities

Dennis Müller: Artificial Intelligence 2 142 2024-04-14

Preferences in Deterministic Environments

Problem: How do we determine the utility of a state? (We cannot directly measure our
satisfaction/happiness in a possibly future state...) (What unit would we even use?)
Example 2.1. I have to decide whether to go to class today (or sleep in). What is the utility of this
lecture? (obviously 42)

Idea: We can let people/agents choose between two states (subjective preference) and derive a utility
from these choices.
Example 2.2. Give me your cell-phone or I will give you a bloody nose. ;
To make a decision in a deterministic environment, the agent must determine whether it prefers a state
without phone to one with a bloody nose?

Definition 2.3. Given states A and B (we call them prizes) and agent can express preferences of the
form
▶ A≻B A prefered over B
▶ A∼B indifference between A and B

▶ A⪰B B not prefered over A
i.e. Given a set S (of states), we define binary relations ≻ and ∼ on S.

Dennis Müller: Artificial Intelligence 2 143 2024-04-14

Preferences in Non-Deterministic Environments

Problem: In nondeterministic environments we do not have full information about the states we choose
between.
Example 2.4 (Airline Food). Do you want chicken or pasta (but we cannot see through the tin foil)

Definition 2.5.

Let S a set of states. We call a random variable X with domain D ⊆ S a lottery
and write [p1,A1 ; . . . ; pn,An], where pi = P(X = Ai).

L

A

B

p

1 − p

Idea: A lottery represents the result of a nondeterministic action that can have outcomes Ai with prior
probability pi . For the binary case, we use [p,A;1−p,B]. We can then extend preferences to include
lotteries, as a measure of how strongly we prefer one prize over another.

Convention: We assume S to be closed under lotteries, i.e. lotteries themselves are also states. That
allows us to consider lotteries such as [p,A;1−p,[q,B;1−q,C]].

Dennis Müller: Artificial Intelligence 2 144 2024-04-14

Rational Preferences

Note: Preferences of a rational agent must obey certain constraints – An agent with rational
preferences can be described as an MEU-agent.

Definition 2.6. We call a set ≻ of preferences rational, iff the following constraints hold:

Orderability A≻B ∨ B≻A ∨ A∼B
Transitivity A≻B ∧ B≻C ⇒ A≻C
Continuity A≻B≻C ⇒ (∃p [p,A;1−p,C]∼B)
Substitutability A∼B ⇒ [p,A;1−p,C]∼[p,B;1−p,C]
Monotonicity A≻B ⇒ (p > q)⇔ [p,A;1−p,B]≻[q,A;1−q,B]
Decomposability [p,A;1−p,[q,B;1−q,C]]∼[p,A ; ((1 − p)q),B ; ((1 − p)(1 − q)),C]

From a set of rational preferences, we can obtain a meaningful utility function.

Dennis Müller: Artificial Intelligence 2 145 2024-04-14

Rational preferences contd.

▶ Violating the rationality constraints from ?? leads to self-evident irrationality.
▶ Example 2.7. An agent with intransitive preferences can be induced to give away all its money:
▶ If B≻C , then an agent who has C would pay (say) 1 cent to get B
▶ If A≻B, then an agent who has B would pay (say) 1 cent to get A
▶ If C≻A, then an agent who has A would pay (say) 1 cent to get C

Dennis Müller: Artificial Intelligence 2 146 2024-04-14

6.3 Utilities and Money

Dennis Müller: Artificial Intelligence 2 146 2024-04-14

Ramseys Theorem and Value Functions

▶ Theorem 3.1. (Ramsey, 1931; von Neumann and Morgenstern, 1944)
Given a rational set of preferences there exists a real valued function U such that U(A) ≥ U(B), iff
A⪰B and U([p1,S1 ; . . . ; pn,Sn]) =

∑
i piU(Si)

▶ This is an existence theorem, uniqueness not guaranteed.
▶ Note: Agent behavior is invariant w.r.t. positive linear transformations, i.e. an agent with utility

function U ′(x) = k1U(x) + k2 where k1 > 0 behaves exactly like one with U.
▶ Observation: With deterministic prizes only (no lottery choices), only a total ordering on prizes can

be determined.
▶ Definition 3.2. We call a total ordering on states a value function or ordinal utility function.

Dennis Müller: Artificial Intelligence 2 147 2024-04-14

Maximizing Expected Utility (Definitions)

▶ We first formalize the notion of expectation of a random variable.
▶ Definition 3.3. Given a probability model ⟨Ω,P⟩ and a random variable X : Ω→D with D ⊆ R, then
E (X):=

∑
x∈D P(X = x) · x is called the expected value (or expectation) of X .

▶ Idea: Apply this idea to get the expected utility of an action, this is stochastic:
▶ In partially observable environments, we do not know the current state.
▶ In nondeterministic environments, we cannot be sure of the result of an action.
▶ Definition 3.4. Let A be an agent with a set Ω of states and a utility function U : Ω→R+

0 , then for
each action a, we define a random variable Ra whose values are the results of performing a in the
current state.
▶ Definition 3.5. The expected utility EU(a|e) of an action a (given evidence e) is

EU(a|e):=
∑

s∈Ω

P(Ra = s|a, e) · U(s)

Dennis Müller: Artificial Intelligence 2 148 2024-04-14

Utilities

▶ Intuition: Utilities map states to real numbers.
▶ Question: Which numbers exactly?
▶ Definition 3.6 (Standard approach to assessment of human utilities). Compare a given state A

to a standard lottery Lp that has
▶ “best possible prize” u⊤ with probability p
▶ “worst possible catastrophe” u⊥ with probability 1 − p

adjust lottery probability p until A∼Lp. Then U(A) = p.
▶ Example 3.7. Choose u⊤ =̂ current state, u⊥ =̂ instant death

pay $30∼L

continue as before

instant death

0.999999

0.000001

Dennis Müller: Artificial Intelligence 2 149 2024-04-14

Measuring Utility
▶ Definition 3.8. Normalized utilities: u⊤ = 1, u⊥ = 0.
▶ Definition 3.9. Micromorts: one millionth chance of instant death.
▶ Micromorts are useful for Russian roulette, paying to reduce product risks, etc.
▶ Problem: What is the value of a micromort?
▶ Ask them directly: What would you pay to avoid playing Russian roulette with a million-barrelled

revolver? (very large numbers)
▶ But their behavior suggests a lower price:
▶ Driving in a car for 370km incurs a risk of one micromort;
▶ Over the life of your car – say, 150, 000km that’s 400 micromorts.
▶ People appear to be willing to pay about 10, 000 more for a safer car that halves the risk of death. (; 25

per micromort)
▶ This figure has been confirmed across many individuals and risk types.
▶ Of course, this argument holds only for small risks. Most people won’t agree to kill themselves for

25M.
▶ Definition 3.10. QALYs: quality adjusted life years
▶ Application: QALYs are useful for medical decisions involving substantial risk.

Dennis Müller: Artificial Intelligence 2 150 2024-04-14

Money vs. Utility
▶ Money does not behave as a utility function should.
▶ Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)), i.e., people

are risk averse.
▶ Utility curve: For what probability p am I indifferent between a prize x and a lottery [p,M$;1−p,0$]

for large numbers M?
▶ Typical empirical data, extrapolated with risk prone behavior for debitors:

▶ Empirically: Comes close to the logarithm on the positive numbers.

Dennis Müller: Artificial Intelligence 2 151 2024-04-14

6.4 Multi-Attribute Utility

Dennis Müller: Artificial Intelligence 2 151 2024-04-14

Utility Functions on Attributes

▶ Recap: So far we understand how to obtain utility functions u : S→R on states s ∈ S from
(rational) preferences.
▶ But in a partially observable, stochastic environment, we cannot know the current state.

(utilities/preferences useless?)
▶ Idea: Base utilities/preferences on random variables that we can model.
▶ Definition 4.1. Let X 1, . . .,X n be random variables with domains D1, . . .,Dn. Then we call a

function u : D1 × . . .× Dn→R a (multi-attribute) utility function on attributes X 1, . . .,X n.
▶ Intuition: Given a probabilistic belief state that includes random variables X 1, . . .,X n, and a utility

function on attributes X 1, . . .,X n, we can still maximize expected utility! (MEU principle)
▶ Preview: Understand multi attribute utility functions and use Bayesian networks as representations

of belief states.

Dennis Müller: Artificial Intelligence 2 152 2024-04-14

Multi-Attribute Utility: Example

▶ Example 4.2 (Assessing an Airport Site).

Construction

Litigation

Air Traffic Deaths

Noise

Cost

▶ Attributes: Deaths,
Noise, Cost.

▶ Question: What is
U(Deaths,Noise,Cost)
for a projected airport?

▶ How can complex utility function be assessed from preference behaviour?
▶ Idea 1: Identify conditions under which decisions can be made without complete identification of
U(X 1, . . .,X n).
▶ Idea 2: Identify various types of independence in preferences and derive consequent canonical forms

for U(X 1, . . .,X n).

Dennis Müller: Artificial Intelligence 2 153 2024-04-14

Strict Dominance

▶ Typically define attributes such that U is monotone in each argument. (wlog. growing)
▶ Definition 4.3. Choice B strictly dominates choice A iff Xi (B) ≥ Xi (A) for all i (and hence
U(B) ≥ U(A))

▶ Observation: Strict dominance seldom holds in practice (life is difficult) but is useful for narrowing
down the field of contenders.
▶ For uncertain attributes strict dominance is even more unlikely.

Dennis Müller: Artificial Intelligence 2 154 2024-04-14

Stochastic Dominance
▶ Definition 4.4. A distribution p2 stochastically dominates distribution p1 iff the cummulative

distribution of p2 strictly dominates that for p1 for all t, i.e.

−∞∫

t

p1(x)dx ≤
−∞∫

t

p2(x)dx

▶ Example 4.5. Even if the distributions (left) overlap considerably the cummulative distribution
(right) strictly dominates.

Dennis Müller: Artificial Intelligence 2 155 2024-04-14

Stochastic dominance contd.

▶ Observation 4.6. If U is monotone in x , then A1 with outcome distribution p1 stochastically
dominates A2 with outcome distribution p2:

−∞∫

∞

p1(x)U(x)dx ≥
−∞∫

∞

p2(x)U(x)dx

▶ Multi-attribute case: stochastic dominance on all attributes ; optimal.
▶ Observation: Stochastic dominance can often be determined without exact distributions using

qualitative reasoning.
▶ Example 4.7 (Construction cost increases with distance). If airport location S1 is closer to the

city than S2 ; S1 stochastically dominates S2 on cost.q
▶ Example 4.8. Injury increases with collision speed.
▶ Idea: Annotate Bayesian networks with stochastic dominance information.

▶ Definition 4.9. X +→Y (X positively influences Y) means that P(Y |X 1, z) stochastically dominates
P(Y |X 2, z) for every value z of Y ’s other parents Z and all X 1 and X 2 with X 1 ≥ X 2.

Dennis Müller: Artificial Intelligence 2 156 2024-04-14

Label the arcs + or – for influence in a Bayesian Network

Dennis Müller: Artificial Intelligence 2 157 2024-04-14

Label the arcs + or – for influence in a Bayesian Network

Dennis Müller: Artificial Intelligence 2 157 2024-04-14

Label the arcs + or – for influence in a Bayesian Network

Dennis Müller: Artificial Intelligence 2 157 2024-04-14

Label the arcs + or – for influence in a Bayesian Network

Dennis Müller: Artificial Intelligence 2 157 2024-04-14

Label the arcs + or – for influence in a Bayesian Network

Dennis Müller: Artificial Intelligence 2 157 2024-04-14

Label the arcs + or – for influence in a Bayesian Network

Dennis Müller: Artificial Intelligence 2 157 2024-04-14

Preference Structure and Multi-Attribute Utility

▶ Observation 4.10. With n attributes with d values each ; need dn parameters for the utility
function U(X 1, . . .,X n). (worst case)
▶ Assumption: Preferences of real agents have much more structure.
▶ Approach: Identify regularities and prove representation theorems based on these:

U(X 1, . . .,X n) = F (f 1(X 1), . . . , f n(f n)X n)

where F is simple, e.g. addition.
▶ Note the similarity to Bayesian networks that decompose the full joint probability distribution.

Dennis Müller: Artificial Intelligence 2 158 2024-04-14

Preference structure: Deterministic

▶ Recall: In deterministic environments an agent has a value function.
▶ Definition 4.11. X 1 and X 2 preferentially independent of X 3 iff preference between ⟨x1, x2, z⟩ and
⟨x ′1, x ′2, z⟩ does not depend on z .
▶ Example 4.12. E.g., ⟨Noise,Cost, Safety⟩: are preferentially independent

⟨20,000 suffer, 4.6 G$, 0.06 deaths/mpm⟩ vs.⟨70,000 suffer, 4.2 G$, 0.06 deaths/mpm⟩
▶ Theorem 4.13 (Leontief, 1947). If every pair of attributes is preferentially independent of its

complement, then every subset of attributes is preferentially independent of its complement: mutual
preferential independence.
▶ Theorem 4.14 (Debreu, 1960). Mutual preferential independence implies that there is an additive

value function: V (S) =
∑

i Vi (Xi (S)), where Vi is a value function referencing just one variable Xi .
▶ Hence assess n single-attribute functions. (often a good approximation)
▶ Example 4.15. The value function for the airport decision might be

V (noise, cost, deaths) = −noise · 104 − cost − deaths · 1012

Dennis Müller: Artificial Intelligence 2 159 2024-04-14

Preference structure: Stochastic

▶ Need to consider preferences over lotteries and real utitlity functions (not just value functions)
▶ Definition 4.16. X is utility independent of Y iff preferences over lotteries in X do not depend on

particular values in Y.
▶ Definition 4.17. A set X is mutually utility independent (MUI), iff each subset is utility independent

of its complement.
▶ Example 4.18. Arguably, the attributes of 4.2 are MUI.
▶ Theorem 4.19. For MUI sets of attributes, there is a multiplicative utility function: [Kee74]
▶ Definition 4.20. We “define” a multiplicative utility function by example: For three attributes we

have:

U = k1U1 + k2U2 + k3U3 + k1k2U1U2 + k2k3U2U3 + k3k1U3U1 + k1k2k3U1U2U3

▶ System Support: Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions.

Dennis Müller: Artificial Intelligence 2 160 2024-04-14

6.5 Decision Networks

Dennis Müller: Artificial Intelligence 2 160 2024-04-14

Utility-Based Agents (Recap)

▶

54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

Dennis Müller: Artificial Intelligence 2 161 2024-04-14

Decision networks

▶ Definition 5.1. A decision network is a Bayesian network with added action nodes and utility nodes
(also called value node) that enable decision making.
▶ Example 5.2 (Choosing an Airport Site).

▶ Algorithm: For each value of action node
compute expected value of utility node given action, evidence
Return MEU action (via argmax)

Dennis Müller: Artificial Intelligence 2 162 2024-04-14

Decision Networks: Example
▶ Example 5.3 (A Decision-Network for Aortic Coarctation). from [Luc96]

Dennis Müller: Artificial Intelligence 2 163 2024-04-14

Knowledge Eng. for Decision-Theoretic Expert Systems

▶ Question: How do you create a model like the one from 5.3?
▶ Answer: By a systematic process of the form: (after [Luc96])

1. Create a causal model: a graph with nodes for symptoms, disorders, treatments, outcomes, and their
influences (edges).

2. Simplify to a qualitative decision model: remove random variables not involved in treatment decisions.

3. Assign probabilities: (; Bayesian network)
e.g. from patient databases, literature studies, or the expert’s subjective assessments

4. Assign utilities. (e.g. in QALYs or micromorts)

5. Verify and refine the model wrt. a gold standard given by experts
e.g. refine by “running the model backwards” and compare with the literature.

6. Perform sensitivity analysis: (important step in practice)
▶ is the optimal treatment decision robust against small changes in the parameters? (if yes ; great! if not, collect

better data)

Dennis Müller: Artificial Intelligence 2 164 2024-04-14

Knowledge Eng. for Decision-Theoretic Expert Systems

▶ Question: How do you create a model like the one from 5.3?
▶ Answer: By a systematic process of the form: (after [Luc96])

1. Create a causal model: a graph with nodes for symptoms, disorders, treatments, outcomes, and their
influences (edges).

2. Simplify to a qualitative decision model: remove random variables not involved in treatment decisions.
3. Assign probabilities: (; Bayesian network)

e.g. from patient databases, literature studies, or the expert’s subjective assessments

4. Assign utilities. (e.g. in QALYs or micromorts)

5. Verify and refine the model wrt. a gold standard given by experts
e.g. refine by “running the model backwards” and compare with the literature.

6. Perform sensitivity analysis: (important step in practice)
▶ is the optimal treatment decision robust against small changes in the parameters? (if yes ; great! if not, collect

better data)

Dennis Müller: Artificial Intelligence 2 164 2024-04-14

Knowledge Eng. for Decision-Theoretic Expert Systems

▶ Question: How do you create a model like the one from 5.3?
▶ Answer: By a systematic process of the form: (after [Luc96])

1. Create a causal model: a graph with nodes for symptoms, disorders, treatments, outcomes, and their
influences (edges).

2. Simplify to a qualitative decision model: remove random variables not involved in treatment decisions.
3. Assign probabilities: (; Bayesian network)

e.g. from patient databases, literature studies, or the expert’s subjective assessments
4. Assign utilities. (e.g. in QALYs or micromorts)
5. Verify and refine the model wrt. a gold standard given by experts

e.g. refine by “running the model backwards” and compare with the literature.

6. Perform sensitivity analysis: (important step in practice)
▶ is the optimal treatment decision robust against small changes in the parameters? (if yes ; great! if not, collect

better data)

Dennis Müller: Artificial Intelligence 2 164 2024-04-14

Knowledge Eng. for Decision-Theoretic Expert Systems

▶ Question: How do you create a model like the one from 5.3?
▶ Answer: By a systematic process of the form: (after [Luc96])

1. Create a causal model: a graph with nodes for symptoms, disorders, treatments, outcomes, and their
influences (edges).

2. Simplify to a qualitative decision model: remove random variables not involved in treatment decisions.
3. Assign probabilities: (; Bayesian network)

e.g. from patient databases, literature studies, or the expert’s subjective assessments
4. Assign utilities. (e.g. in QALYs or micromorts)
5. Verify and refine the model wrt. a gold standard given by experts

e.g. refine by “running the model backwards” and compare with the literature.
6. Perform sensitivity analysis: (important step in practice)
▶ is the optimal treatment decision robust against small changes in the parameters? (if yes ; great! if not, collect

better data)

Dennis Müller: Artificial Intelligence 2 164 2024-04-14

6.6 The Value of Information

Dennis Müller: Artificial Intelligence 2 164 2024-04-14

What if we do not have all information we need?

▶ It is Well-Known: One of the most important parts of decision making is knowing what questions
to ask.
▶ Example 6.1 (Medical Diagnosis).
▶ We do not expect a doctor to already know the results of the diagnostic tests when the patient comes in.
▶ Tests are often expensive, and sometimes hazardous. (directly or by delaying treatment)
▶ Therefore: Only test, if
▶ knowing the results lead to a significantly better treatment plan,
▶ information from test results is not drowned out by a-priori likelihood.

▶ Definition 6.2. Information value theory enables the agent to make decisions on information
gathering rationally.
▶ Intuition: Simple form of sequential decision making. (action only impacts belief state).
▶ Intuition: With the new information, we can base the action choice to the actual information, rather

than the average.

Dennis Müller: Artificial Intelligence 2 165 2024-04-14

Value of Information by Example

▶ Idea: Compute value of acquiring each possible piece of evidence.
▶ We will see: This can be done directly from a decision network.
▶ Example 6.3 (Buying Oil Drilling Rights). There are n blocks of rights, exactly one has oil, worth
k , in particular
▶ Prior probabilities 1/n each, mutually exclusive.
▶ Current price of each block is k/n.
▶ “Consultant” offers accurate survey of block 3. What’s a fair price?
▶ Solution: Compute expected value of information =̂ expected value of best action given the

information minus expected value of best action without information.
▶ Example 6.4 (Oil Drilling Rights contd.).
▶ Survey may say oil in block 3 with probability 1/n ; buy block 3 for k/n make profit of (k − k/n).
▶ Survey may say no oil in block 3 with probability (n − 1)/n ; buy another block, make profit of

k/(n − 1)− k/n.
▶ Expected profit is 1

n
· (n−1)k

n
+ n−1

n
· k
n(n−1) =

k
n
.

▶ So, we should pay up to k/n for the information. (as much as block 3 is worth)

Dennis Müller: Artificial Intelligence 2 166 2024-04-14

General formula (VPI)
▶ Given current evidence E , possible actions a ∈ A with outcomes in Sa, and current best action α

EU(α|E) = max
a∈A

(
∑

s∈Sa

U(s) · P(s|E , a))

▶ Suppose we knew F = f (new evidence), then we would choose αf s.t.

EU(αf |E ,F = f) = max
a∈A

(
∑

s∈Sa

U(s) · P(s|E , a,F = f))

here, F is a random variable with domain D whose value is currently unknown.
▶ Idea: So we must compute the expected gain over all possible values f ∈ D.
▶ Definition 6.5. Let F be a random variable with domain D, then the value of perfect information

(VPI) on F given evidence E is defined as

VPIE (F):=(
∑

f∈D

P(F = f |E) · EU(αf |E ,F = f))− EU(α|E)

where αf = argmax
a∈A

EU(a|E ,F = f) and A the set of possible actions.

Dennis Müller: Artificial Intelligence 2 167 2024-04-14

Properties of VPI

▶ Observation 6.6 (VPI is Non-negative).
VPIE (F) ≥ 0 for all j and E (in expectation, not post hoc)
▶ Observation 6.7 (VPI is Non-additive).

VPIE (F ,G) ̸= VPIE (F) + VPIE (G) (consider, e.g., obtaining F twice)
▶ Observation 6.8 (VPI is Order-independent).

VPIE (F ,G) = VPIE (F) + VPIE ,F (G) = VPIE (G) + VPIE ,G (F)

▶ Note: When more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
; evidence-gathering becomes a sequential decision problem.

Dennis Müller: Artificial Intelligence 2 168 2024-04-14

Qualitative behavior of VPI

▶ Question: Say we have three distributions for P(U|Ej)

Qualitatively: What is the value of information (VPI) in these three cases?

▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little
b) Choice is non-obvious (unclear) ; information worth a lot

c) Choice is non-obvious (unclear) but makes little difference ; information worth little

Dennis Müller: Artificial Intelligence 2 169 2024-04-14

Qualitative behavior of VPI

▶ Question: Say we have three distributions for P(U|Ej)

Qualitatively: What is the value of information (VPI) in these three cases?
▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little

b) Choice is non-obvious (unclear) ; information worth a lot
c) Choice is non-obvious (unclear) but makes little difference ; information worth little

Dennis Müller: Artificial Intelligence 2 169 2024-04-14

Qualitative behavior of VPI

▶ Question: Say we have three distributions for P(U|Ej)

Qualitatively: What is the value of information (VPI) in these three cases?
▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little
b) Choice is non-obvious (unclear) ; information worth a lot

c) Choice is non-obvious (unclear) but makes little difference ; information worth little

Dennis Müller: Artificial Intelligence 2 169 2024-04-14

Qualitative behavior of VPI
▶ Question: Say we have three distributions for P(U|Ej)

Qualitatively: What is the value of information (VPI) in these three cases?
▶ Answers: qualitatively:

a) Choice is obvious (a1 almost certainly better) ; information worth little
b) Choice is non-obvious (unclear) ; information worth a lot
c) Choice is non-obvious (unclear) but makes little difference ; information worth little
Note two things
▶ The difference between (b) and (c) is the width of the distribution, i.e. how close the possible outcomes are

together
▶ The fact that U2 has a high peak in (c) means that its expected value is known with higher certainty than

U1. (irrelevant to the argument)
Dennis Müller: Artificial Intelligence 2 169 2024-04-14

A simple Information-Gathering Agent

▶ Definition 6.9. A simple information gathering agent. (gathers info before acting)

function Information−Gathering−Agent (percept) returns an action
persistent: D, a decision network
integrate percept into D
j := argmax

k
VPIE (Ek)/Cost(Ek)

if VPIE (Ej) > Cost(Ej) return Request(Ej)
else return the best action from D

The next percept after Request(Ej) provides a value for Ej .
▶ Problem: The information gathering implemented here is myopic, i.e. calculating VPI as if only a

single evidence variable will be acquired. (cf. greedy search)
▶ But it works relatively well in practice. (e.g. outperforms humans for selecting diagnostic tests)

Dennis Müller: Artificial Intelligence 2 170 2024-04-14

Chapter 7
Making Complex Decisions

Dennis Müller: Artificial Intelligence 2 170 2024-04-14

Outline

▶ Markov decision processes (MDPs) for sequential environments.
▶ Value/policy iteration for computing utilities in MDPs.
▶ Partially observable MDP (POMDPs).
▶ Decision theoretic agents for POMDPs.

Dennis Müller: Artificial Intelligence 2 171 2024-04-14

7.1 Sequential Decision Problems

Dennis Müller: Artificial Intelligence 2 171 2024-04-14

Sequential Decision Problems
▶ Definition 1.1. In sequential decision problems, the agent’s utility depends on a sequence of

decisions (or their result states).
▶ Definition 1.2. Utility functions on action sequences are often expressed in terms of immediate

rewards that are incurred upon reaching a (single) state.
▶ Methods: depend on the environment:
▶ If it is fully observable ; Markov decision process (MDPs)
▶ else ; partially observable MDP (POMDP).
▶ Sequential decision problems incorporate utilities, uncertainty, and sensing.
▶ Preview: Search problems and planning tasks are special cases.

Search

Planning

Decision-theoretic
Planning

Markov Decision
Problems (MDPs)

Partially observable
MDPs (POMDPs)

explicit actions
and subgoals

uncertainty
and utility

uncertainty
and utility

uncertain
sensing

explicit actions
and subgoals belief states

Dennis Müller: Artificial Intelligence 2 172 2024-04-14

Markov Decision Problem: Running Example
▶ Example 1.3 (Running Example: The 4x3 World). A (fully observable) 4 × 3 environment with

non-deterministic actions:

▶ States s ∈ S, actions a ∈ Act(s).
▶ Transition model: P(s ′|s, a) =̂ probability that a in s leads to s ′.
▶ reward function:

R(s):=

{
−0.04 if (small penalty) for nonterminal states

±1 if for terminal states

Dennis Müller: Artificial Intelligence 2 173 2024-04-14

Markov Decision Process

▶ Motivation: We are interested in sequential decision problems in a fully observable, stochastic
environment with Markovian transition models and additive reward functions.
▶ Definition 1.4. A Markov decision process (MDP) ⟨S ,Act, T , s0 ,R ⟩ consists of
▶ a set of S of states (with initial state s0 ∈ S),
▶ sets Act(s) of actions for each state s.
▶ a transition model T (s, a) = s ′ with P(s ′|s, a), and
▶ a reward function R : S→R we call R(s) a reward.

Dennis Müller: Artificial Intelligence 2 174 2024-04-14

Solving MDPs
▶ Recall: In search problems, the aim is to find an optimal sequence of actions.
▶ In MDPs, the aim is to find an optimal policy π(s) i.e., best action for every possible state s.

(because can’t predict where one will end up)
▶ Definition 1.5. In an MDP, a policy is a mapping from states to actions. An optimal policy

maximizes (say) the expected sum of rewards. (MEU)
▶ Example 1.6. Optimal policy when state penalty R(s) is 0.04:

Note: When you run against a wall, you stay in your square.
Dennis Müller: Artificial Intelligence 2 175 2024-04-14

Risk and Reward

▶ Example 1.7. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!

▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).
3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away

from the −1 ; cannot fall in by accident.
4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

Dennis Müller: Artificial Intelligence 2 176 2024-04-14

Risk and Reward

▶ Example 1.8. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.

2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and
is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).

3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away
from the −1 ; cannot fall in by accident.

4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

Dennis Müller: Artificial Intelligence 2 176 2024-04-14

Risk and Reward

▶ Example 1.9. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).

3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away
from the −1 ; cannot fall in by accident.

4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

Dennis Müller: Artificial Intelligence 2 176 2024-04-14

Risk and Reward

▶ Example 1.10. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).
3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away

from the −1 ; cannot fall in by accident.

4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

Dennis Müller: Artificial Intelligence 2 176 2024-04-14

Risk and Reward

▶ Example 1.11. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0

–1

+1

–1

+1

–1

+1

R(s) > 0

– 0.4278 < R(s) < – 0.0850

▶ Question: Explain what you see in a qualitative manner!
▶ Answer: Careful risk/reward balancing is characteristic of MDPs.

1. −∞ ≤ R(s) ≤ −1.6284 ; Life is so painful that agent heads for the next exit.
2. −0.4278 ≤ R(s) ≤ −0.0850, life is quite unpleasant; the agent takes the shortest route to the +1 state and

is willing to risk falling into the −1 state by accident. In particular, the agent takes the shortcut from (3,1).
3. Life is slightly dreary (−0.0221 < R(s) < 0) ; take no risks at all. In (4,1) and (3,2) head directly away

from the −1 ; cannot fall in by accident.
4. If R(s) > 0, then life is positively enjoyable ; avoid both exits ; reap infinite rewards.

Dennis Müller: Artificial Intelligence 2 176 2024-04-14

7.2 Utilities over Time

Dennis Müller: Artificial Intelligence 2 176 2024-04-14

Utility of state sequences

▶ Recall: We cannot observe/assess utility functions, only preferences ⇝induce utility functions from
rational preferences
▶ Problem: In MDPs we need to understand preferences between sequences of states.
▶ Definition 2.1. We call preferences on reward sequences stationary, iff

[r , r0, r1, r2, . . .]≻[r , r ′0, r
′
1, r

′
2, . . .]⇔ [r0, r1, r2, . . .]≻[r ′0, r

′
1, r

′
2, . . .]

▶ Theorem 2.2. For stationary preferences, there are only two ways to combine rewards over time.
▶ additive rewards: U([s0, s1, s2, . . .]) = R(s0) + R(s1) + R(s2) + · · ·
▶ discounted rewards: U([s0, s1, s2, . . .]) = R(s0) + γR(s1) + γ2R(s2) + · · · where γ is called discount factor.

Dennis Müller: Artificial Intelligence 2 177 2024-04-14

Utilities of State Sequences
▶ Problem: Infinite lifetimes ; additive utilities become infinite.
▶ Possible Solutions:

1. Finite horizon: terminate utility computation at a fixed time T

U([s0, . . . , s∞]) = R(s0) + · · ·+ R(sT)

; nonstationary policy: π(s) depends on time left.
2. If there are absorbing states: for any policy π agent eventually “dies” with probability 1 ; expected utility

of every state is finite.
3. Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, . . . , s∞]) =
∞∑
t=0

γtR(st) ≤
∞∑
t=0

γtRmax = Rmax/(1 − γ)

Smaller γ ; shorter horizon.
▶ Idea: Maximize system gain =̂ average reward per time step.
▶ Theorem 2.3. The optimal policy has constant gain after initial transient.
▶ Example 2.4. Taxi driver’s daily scheme cruising for passengers.

Dennis Müller: Artificial Intelligence 2 178 2024-04-14

Utility of States

▶ Intuition: Utility of a state =̂ expected (discounted) sum of rewards (until termination) assuming
optimal actions.
▶ Definition 2.5. Given a policy π, let st be the state the agent reaches at time t starting at state s0.

Then the expected utility obtained by executing π starting in s is given by

Uπ(s):=E

[∞∑

t=0

γtR(st)

]

we define π∗
s :=argmax

π
Uπ(s).

▶ Observation 2.6. π∗
s is independent of the state s.

▶ Proof sketch: If π∗
a and π∗

b reach point c , then there is no reason to disagree – or with π∗
c

▶ Definition 2.7. We call π∗:=π∗
s for some s the optimal policy.

▶ 2.6 does not hold for finite horizon policies.
▶ Definition 2.8. The utility U(s) of a state s is Uπ∗

(s).

Dennis Müller: Artificial Intelligence 2 179 2024-04-14

Utility of States (continued)
▶ Remark: R(s) =̂ “short-term reward”, whereas U =̂ “long-term reward”.
▶ Given the utilities of the states, choosing the best action is just MEU:
▶ maximize the expected utility of the immediate successor states

π∗(s) = argmax
a∈A(s)

(
∑
s′

P(s ′|s, a) · U(s ′))

▶ Example 2.9 (Running Example Continued).
Expected Utility Optimal Policy

▶ Question: Why do we go left in (3, 1) and not up? (follow the utility)

Dennis Müller: Artificial Intelligence 2 180 2024-04-14

7.3 Value/Policy Iteration

Dennis Müller: Artificial Intelligence 2 180 2024-04-14

Dynamic programming: the Bellman equation
▶ Problem: We have defined U(s) via the optimal policy: U(s):=Uπ∗

(s), but how to compute it
without knowing π∗?
▶ Observation: A simple relationship among utilities of neighboring states:

expected sum of rewards = current reward + γ · exp. reward sum after best action

▶ Theorem 3.1 (Bellman equation (1957)).

U(s) = R(s) + γ · max
a∈A(s)

∑

s′

U(s ′) · P(s ′|s, a)

We call this equation the Bellman equation
▶ Example 3.2. U(1, 1) = −0.04

+ γ max{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), up
0.9U(1, 1) + 0.1U(1, 2) left
0.9U(1, 1) + 0.1U(2, 1) down
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} right

▶ Problem: One equation/state ; n nonlinear (max isn’t) equations in n unknowns.
; cannot use linear algebra techniques for solving them.

Dennis Müller: Artificial Intelligence 2 181 2024-04-14

Value Iteration Algorithm
▶ Idea: We use a simple iteration scheme to find a fixpoint:

1. start with arbitrary utility values,
2. update to make them locally consistent with the Bellman equation,
3. everywhere locally consistent ; global optimality.
▶ Definition 3.3. The value iteration algorithm for utilitysutility function is given by

function VALUE−ITERATION (mdp,ϵ) returns a utility fn.
inputs: mdp, an MDP with states S , actions A(s), transition model P(s′|s, a),

rewards R(s), and discount γ
ϵ, the maximum error allowed in the utility of any state

local variables: U, U′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U := U′; δ := 0
for each state s in S do
U′[s] := R(s) + γ · max

a∈A(s)
(
∑

s′ U[s′] · P(s′|s, a))
if |U′[s]− U[s]| > δ then δ := |U′[s]− U[s]|

until δ < ϵ(1 − γ)/γ
return U

▶ Remark: Retrieve the optimal policy with π[s]:=argmax
a∈A(s)

(
∑

s′ U[s ′] · P(s ′|s, a))

Dennis Müller: Artificial Intelligence 2 182 2024-04-14

Value Iteration Algorithm (Example)

▶ Example 3.4 (Iteration on 4x3).

Section 17.2. Value Iteration 653

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),

rewards R(s), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ ← 0
for each state s in S do

U ′[s] ←R(s) + γ max
a ∈ A(s)

∑

s′
P (s′ | s, a) U [s′]

if |U ′[s] − U [s]| > δ then δ ← |U ′[s] − U [s]|
until δ < ε(1 − γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina-
tion condition is from Equation (17.8).

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

1

10

100

1000

10000

100000

1e+06

1e+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

It
er

at
io

ns
 re

qu
ir

ed

Discount factor a

c = 0.0001
c = 0.001

c = 0.01
c = 0.1

(a) (b)

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations k required to guarantee an error of at most
ε = c · Rmax, for different values of c, as a function of the discount factor γ.

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained
using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is shown in
Figure 17.4.

We can apply value iteration to the 4× 3 world in Figure 17.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ-

Section 17.2. Value Iteration 653

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),

rewards R(s), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ ← 0
for each state s in S do

U ′[s] ←R(s) + γ max
a ∈ A(s)

∑

s′
P (s′ | s, a) U [s′]

if |U ′[s] − U [s]| > δ then δ ← |U ′[s] − U [s]|
until δ < ε(1 − γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina-
tion condition is from Equation (17.8).

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

U
til

ity
 e

st
im

at
es

Number of iterations

(4,3)
(3,3)

(1,1)
(3,1)

(4,1)

1

10

100

1000

10000

100000

1e+06

1e+07

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

It
er

at
io

ns
 re

qu
ir

ed

Discount factor a

c = 0.0001
c = 0.001
c = 0.01
c = 0.1

(a) (b)

Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations k required to guarantee an error of at most
ε = c · Rmax, for different values of c, as a function of the discount factor γ.

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained
using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is shown in
Figure 17.4.

We can apply value iteration to the 4× 3 world in Figure 17.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ-

Dennis Müller: Artificial Intelligence 2 183 2024-04-14

Convergence

▶ Definition 3.5. The maximum norm ∥U∥ = max
s

|U(s)|, so ∥U − V ∥ = maximum difference
between U and V .
▶ Let U t and U t+1 be successive approximations to the true utility U.
▶ Theorem 3.6. For any two approximations U t and V t

∥∥U t+1 − V t+1
∥∥ ≤ γ

∥∥U t − V t
∥∥

I.e., any distinct approximations must get closer to each other
so, in particular, any approximation must get closer to the true U
and value iteration converges to a unique, stable, optimal solution.
▶ Theorem 3.7. If

∥∥U t+1 − U t
∥∥ < ϵ, then

∥∥U t+1 − U
∥∥ < 2ϵγ/1 − γ

I.e., once the change in U t becomes small, we are almost done.
▶ Remark: MEU policy using U t may be optimal long before convergence of values.

Dennis Müller: Artificial Intelligence 2 184 2024-04-14

Policy Iteration

▶ Recap: Value iteration computes utilities ; optimal policy by MEU.
▶ This even works if the utility estimate is inaccurate. (⇝policy loss small)
▶ Idea: Search for optimal policy and utility values simultaneously [How60]: Iterate
▶ policy evaluation: given policy πi , calculate Ui = Uπi , the utility of each state were πi to be executed.
▶ policy improvement: calculate a new MEU policy πi+1 using 1 lookahead

Terminate if policy improvement yields no change in computed utilities.
▶ Observation 3.8. Upon termination Ui is a fixpoint of Bellman update
; Solution to Bellman equation ; πi is an optimal policy.
▶ Observation 3.9. Policy improvement improves policy and policy space is finite ; termination.

Dennis Müller: Artificial Intelligence 2 185 2024-04-14

Policy Iteration Algorithm

▶ Definition 3.10. The policy iteration algorithm is given by the following pseudocode:
function POLICY−ITERATION(mdp) returns a policy

inputs: mdp, and MDP with states S , actions A(s), transition model P(s′|s, a)
local variables: U a vector of utilities for states in S , initially zero

π a policy indexed by state, initially random,
repeat

U := POLICY−EVALUATION(π,U,mdp)
unchanged? := true
foreach state s in X do

if max
a∈A(s)

(
∑

s′ P(s′|s, a) · U(s′)) >
∑

s′ P(s′|s, π[s′]) · U(s′) then do

π[s] := argmax
b∈A(s)

(
∑

s′ P(s′|s, b) · U(s′))

unchanged? := false
until unchanged?
return π

Dennis Müller: Artificial Intelligence 2 186 2024-04-14

Policy Evaluation

▶ Problem: How to implement the POLICY−EVALUATION algorithm?
▶ Solution: To compute utilities given a fixed π: For all s we have

U(s) = R(s) + γ(
∑

s′

U(s ′) · P(s ′|s, π(s)))

▶ Example 3.11 (Simplified Bellman Equations for π).

U i (1, 1) = −0.04 + 0.8U i (1, 2) + 0.1U i (1, 1) + 0.1U i (2, 1)

U i (1, 2) = −0.04 + 0.8U i (1, 3) + 0.1U i (1, 2)

...

▶ Observation 3.12. n simultaneous linear equations in n unknowns, solve in O(n3) with standard
linear algebra methods.

Dennis Müller: Artificial Intelligence 2 187 2024-04-14

Modified Policy Iteration

▶ Policy iteration often converges in few iterations, but each is expensive.
▶ Idea: Use a few steps of value iteration (but with π fixed)

starting from thevalue function produced the last time
to produce an approximate value determination step.
▶ Often converges much faster than pure VI or PI.
▶ Leads to much more general algorithms where Bellman value updates and Howard policy updates can

be performed locally in any order.
▶ Remark: Reinforcement learning algorithms operate by performing such updates based on the

observed transitions made in an initially unknown environment.

Dennis Müller: Artificial Intelligence 2 188 2024-04-14

7.4 Partially Observable MDPs

Dennis Müller: Artificial Intelligence 2 188 2024-04-14

Partial Observability

▶ Definition 4.1. A partially observable MDP (a POMDP for short) is a MDP together with an
observation model O that has the sensor Markov property and is stationary: O(s, e) = P(e|s).
▶ Example 4.2 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

▶ Problem: Agent does not know which state it is in ; makes no sense to talk about policy π(s)!
▶ Theorem 4.3 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where b is the

belief state (probability distribution over states).
▶ Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the probability that

the new belief state is b′ given that the current belief state is b and the agent does a. I.e., essentially
a filtering update step.

Dennis Müller: Artificial Intelligence 2 189 2024-04-14

Partial Observability

▶ Definition 4.4. A partially observable MDP (a POMDP for short) is a MDP together with an
observation model O that has the sensor Markov property and is stationary: O(s, e) = P(e|s).
▶ Example 4.5 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

▶ Problem: Agent does not know which state it is in ; makes no sense to talk about policy π(s)!

▶ Theorem 4.6 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where b is the
belief state (probability distribution over states).
▶ Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the probability that

the new belief state is b′ given that the current belief state is b and the agent does a. I.e., essentially
a filtering update step.

Dennis Müller: Artificial Intelligence 2 189 2024-04-14

Partial Observability

▶ Definition 4.7. A partially observable MDP (a POMDP for short) is a MDP together with an
observation model O that has the sensor Markov property and is stationary: O(s, e) = P(e|s).
▶ Example 4.8 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

▶ Problem: Agent does not know which state it is in ; makes no sense to talk about policy π(s)!
▶ Theorem 4.9 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where b is the

belief state (probability distribution over states).
▶ Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the probability that

the new belief state is b′ given that the current belief state is b and the agent does a. I.e., essentially
a filtering update step.

Dennis Müller: Artificial Intelligence 2 189 2024-04-14

POMDP: Filtering at the Belief State Level

▶ Recap: Filtering updates the belief state for new evidence.
▶ For POMDPs, we also need to consider actions. (but the effect is the same)
▶ If b is the previous belief state and agent does action a and then perceives e, then the new belief

state is
b′(s ′) = α · P(e|s ′) · (

∑

s

P(s ′|s, a) · b(s))

We write b′ = FORWARD(b, a, e) in analogy to recursive state estimation.
▶ Fundamental Insight for POMDPs: The optimal action only depends on the agent’s current belief

state. (good, it does not know the state!)
▶ Consequence: The optimal policy can be written as a function π∗(b) from belief states to actions.
▶ Definition 4.10. The POMDP decision cycle is to iterate over

1. Given the current belief state b, execute the action a = π∗(b)
2. Receive percept e.
3. Set the current belief state to FORWARD(b, a, e) and repeat.
▶ Intuition: POMDP decision cycle is search in belief state space.

Dennis Müller: Artificial Intelligence 2 190 2024-04-14

Partial Observability contd.

▶ Recap: The POMDP decision cycle is search in belief state space.
▶ Observation 4.11. Actions change the belief state, not just the (physical) state.
▶ Thus POMDP solutions automatically include information gathering behavior.
▶ Problem: The belief state is continuous: If there are n states, b is an n-dimensional real-valued

vector.
▶ Example 4.12. The belief state of the 4x3 world is a 11 dimensional continuous space. (11 states)
▶ Theorem 4.13. Solving POMDPs is very hard! (actually, PSPACE hard)
▶ In particular, none of the algorithms we have learned applies. (discreteness assumption)
▶ The real world is a POMDP (with initially unknown transition model T and sensor model O)

Dennis Müller: Artificial Intelligence 2 191 2024-04-14

Reducing POMDPs to Belief-State MDPs I

▶ Idea: Calculating the probability that an agent in belief state b reaches belief state b′ after
executing action a.
▶ if we knew the action and the subsequent percept, then b′ = FORWARD(b, a, e). (deterministic update to

the belief state)
▶ but we don’t, so b′ depends on e. (let’s calculate P(e|a, b))
▶ Idea: To compute P(e|a, b) — the probability that e is perceived after executing a in belief state b

— sum up over all actual states the agent might reach:

P(e|a, b) =
∑

s′

P(e|a, s ′, b) · P(s ′|a, b)

=
∑

s′

P(e|s ′) · P(s ′|a, b)

=
∑

s′

P(e|s ′) · (
∑

s

P(s ′|s, a), b(s))

Dennis Müller: Artificial Intelligence 2 192 2024-04-14

Reducing POMDPs to Belief-State MDPs II
Write the probability of reaching b′ from b, given action a, as P(b′|b, a), then

P(b′|b, a) = P(b′|a, b) =
∑

e

P(b′|e, a, b) · P(e|a, b)

=
∑

e

P(b′|e, a, b) · (
∑

s′

P(e|s ′) · (
∑

s

P(s ′|s, a), b(s)))

where P(b′|e, a, b) is 1 if b′ = FORWARD(b, a, e) and 0 otherwise.
▶ Observation: This equation defines a transition model for belief state space!
▶ Idea: We can also define a reward function for belief states:

ρ(b):=
∑

s

b(s) · R(s)

i.e., the expected reward for the actual states the agent might be in.

Dennis Müller: Artificial Intelligence 2 193 2024-04-14

Reducing POMDPs to Belief-State MDPs III

▶ Together, P(b′|b, a) and ρ(b) define an (observable) MDP on the space of belief states.
▶ Theorem 4.14. An optimal policy π∗(b) for this MDP, is also an optimal policy for the original

POMDP.
▶ Upshot: Solving a POMDP on a physical state space can be reduced to solving an MDP on the

corresponding belief state space.
▶ Remember: The belief state is always observable to the agent, by definition.

Dennis Müller: Artificial Intelligence 2 194 2024-04-14

Ideas towards Value-Iteration on POMDPs

▶ Recap: The value iteration algorithm from ?? computes one utility value per state.
▶ Problem: We have infinitely many belief states ; be more creative!
▶ Observation: Consider an optimal policy π∗

▶ applied in a specific belief state b: π∗ generates an action,
▶ for each subsequent percept, the belief state is updated and a new action is generated . . .

For this specific b: π∗ =̂ a conditional plan!
▶ Idea: Think about conditional plans and how the expected utility of executing a fixed conditional

plan varies with the initial belief state. (instead of optimal policies)

Dennis Müller: Artificial Intelligence 2 195 2024-04-14

Expected Utilities of Conditional Plans on Belief States

▶ Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.
▶ the expected utility of p in belief state b is

∑
s b(s) · αp(s) =̂ b·αp as vectors.

▶ the expected utility of a fixed conditional plan varies linearly with b
▶ ; it corresponds to a hyperplane in belief state space.

▶ Observation 2: Let π∗ be the optimal policy. At any given belief state b,
▶ π∗ will choose to execute the conditional plan with highest expected utility
▶ the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

▶ If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b;

▶ if we bound the depth of the conditional plans, then there are only finitely many such plans
▶ the continuous space of belief states will generally be divided into regions, each corresponding to a

particular conditional plan that is optimal in that region.
▶ Observation 3 (conbined): The utility function U(b) on belief states, being the maximum of a

collection of hyperplanes, is defined piecewise linear and convex.

Dennis Müller: Artificial Intelligence 2 196 2024-04-14

Expected Utilities of Conditional Plans on Belief States

▶ Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.
▶ the expected utility of p in belief state b is

∑
s b(s) · αp(s) =̂ b·αp as vectors.

▶ the expected utility of a fixed conditional plan varies linearly with b
▶ ; it corresponds to a hyperplane in belief state space.
▶ Observation 2: Let π∗ be the optimal policy. At any given belief state b,
▶ π∗ will choose to execute the conditional plan with highest expected utility
▶ the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

▶ If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b;

▶ if we bound the depth of the conditional plans, then there are only finitely many such plans
▶ the continuous space of belief states will generally be divided into regions, each corresponding to a

particular conditional plan that is optimal in that region.

▶ Observation 3 (conbined): The utility function U(b) on belief states, being the maximum of a
collection of hyperplanes, is defined piecewise linear and convex.

Dennis Müller: Artificial Intelligence 2 196 2024-04-14

Expected Utilities of Conditional Plans on Belief States

▶ Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.
▶ the expected utility of p in belief state b is

∑
s b(s) · αp(s) =̂ b·αp as vectors.

▶ the expected utility of a fixed conditional plan varies linearly with b
▶ ; it corresponds to a hyperplane in belief state space.
▶ Observation 2: Let π∗ be the optimal policy. At any given belief state b,
▶ π∗ will choose to execute the conditional plan with highest expected utility
▶ the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

▶ If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect that it might
choose to execute p in belief states that are very close to b;

▶ if we bound the depth of the conditional plans, then there are only finitely many such plans
▶ the continuous space of belief states will generally be divided into regions, each corresponding to a

particular conditional plan that is optimal in that region.
▶ Observation 3 (conbined): The utility function U(b) on belief states, being the maximum of a

collection of hyperplanes, is defined piecewise linear and convex.

Dennis Müller: Artificial Intelligence 2 196 2024-04-14

A simple Illustrating Example I
▶ Example 4.15. A world with states 0 and 1, where R(0) = 0 and R(1) = 1 and two actions:
▶ “Stay” stays put with probability 0.9
▶ “Go” switches to the other state with probability 0.9.
▶ The sensor reports the correct state with probability 0.6.

Obviously, the agent should “Stay” when it thinks it’s in state 1 and “Go” when it thinks it’s in state 0.
▶ The belief state has dimension 1. (the two probabilities sum up to 1)
▶ Consider the one-step plans [Stay] and [Go] and their (discounted) rewards:

α([Stay])(0) = R(0) + γ(0.9r(0) + 0.1r(1)) = 0.1
α([stay])(1) = r(1) + γ(0.9r(1) + 0.1r(0)) = 1.9
α([go])(0) = r(0) + γ(0.9r(1) + 0.1r(0)) = 0.9
α([go])(1) = r(1) + γ(0.9r(0) + 0.1r(1)) = 1.1

for now we will assume the discount factor γ = 1.

Dennis Müller: Artificial Intelligence 2 197 2024-04-14

A simple Illustrating Example II
▶ Let us visualize the hyperplanes b·α([Stay]) and b·α([Go]).

662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
U

til
ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

▶ The maximum represents the represents the utility function for the finite-horizon problem that allows just
one action

▶ in each “piece” the optimal action is the first action of the corresponding plan.
▶ Here the optimal one-step policy is to “Stay” when b(1) > 0.5 and “Go” otherwise.

Dennis Müller: Artificial Intelligence 2 198 2024-04-14

A simple Illustrating Example III

▶ compute the utilities for conditional plans of depth 2 by considering
▶ each possible first action,
▶ each possible subsequent percept, and then
▶ each way of choosing a depth-1 plan to execute for each percept:

There are eight of depth 2:

[Stay , if P = 0 then Stay else Stay fi], [Stay , if P = 0 then Stay else Go fi], . . .

Dennis Müller: Artificial Intelligence 2 199 2024-04-14

A simple Illustrating Example IV
662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity
Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

Four of them (dashed lines) are suboptimal for the whole belief space
We call them dominated (they can be ignored)

Dennis Müller: Artificial Intelligence 2 200 2024-04-14

A simple Illustrating Example V

▶ There are four undominated plans, each optimal in their region

662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

Dennis Müller: Artificial Intelligence 2 201 2024-04-14

A simple Illustrating Example VI

662 Chapter 17. Making Complex Decisions

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

[Stay]

[Go]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(a) (b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 0.2 0.4 0.6 0.8 1

U
til

ity

Probability of state 1

(c) (d)

Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

▶ Idea: Repeat for depth 3 and so on.
▶ Theorem 4.16 (POMDP Plan Utility). Let p be a depth-d conditional plan whose initial action is
a and whose depth-d − 1-subplan for percept e is p.e, then

αp(s) = R(s) + γ(
∑

s′

P(s ′|s, a)(
∑

e

P(e|s ′) · αp.e(s
′)))

▶ This recursion naturally gives us a value iteration algorithm,

Dennis Müller: Artificial Intelligence 2 202 2024-04-14

A Value Iteration Algorithm for POMDPs
▶ Definition 4.17. The POMDP value iteration algorithm for POMDPs is given by

function POMDP−VALUE−ITERATION(pomdp, ϵ) returns a utility function
inputs: pomdp, a POMDP with states S , actions A(s), transition model P(s′|s, a),

sensor model P(e|s), rewards R(s), discount γ
ϵ the maximum error allowed in the utility of any state

local variables: U , U′, sets of plans p with associated utility vectors αp

U′ := a set containing just the empty plan [], with α([])(s) = R(s)
repeat
U := U′

U′ := the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed via the POMDP Plan Utility Theorem

U′ := REMOVE−DOMPLANS(U′)
until MAX−DIFF(U,U′) < ϵ(1 − γ)/γ

return U

Where REMOVE−DOMPLANS and MAX−DIFF are implemented as linear programs.

▶ Observations: The complexity depends primarily on the generated plans:
▶ Given #(A) actions and #(E) possible observations, there are are O(#(A)#(E)d−1

) distinct depth-d plans.
▶ Even for the example with d = 8, we have 2255 (144 undominated)
▶ The elimination of dominated plans is essential for reducing this doubly exponential growth (but they are

already constructed)
▶ Hopelessly inefficient in practice – even the 3x4 POMDP is too hard!

Dennis Müller: Artificial Intelligence 2 203 2024-04-14

A Value Iteration Algorithm for POMDPs
▶ Definition 4.18. The POMDP value iteration algorithm for POMDPs is given by

function POMDP−VALUE−ITERATION(pomdp, ϵ) returns a utility function
inputs: pomdp, a POMDP with states S , actions A(s), transition model P(s′|s, a),

sensor model P(e|s), rewards R(s), discount γ
ϵ the maximum error allowed in the utility of any state

local variables: U , U′, sets of plans p with associated utility vectors αp

U′ := a set containing just the empty plan [], with α([])(s) = R(s)
repeat
U := U′

U′ := the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed via the POMDP Plan Utility Theorem

U′ := REMOVE−DOMPLANS(U′)
until MAX−DIFF(U,U′) < ϵ(1 − γ)/γ

return U

Where REMOVE−DOMPLANS and MAX−DIFF are implemented as linear programs.
▶ Observations: The complexity depends primarily on the generated plans:
▶ Given #(A) actions and #(E) possible observations, there are are O(#(A)#(E)d−1

) distinct depth-d plans.
▶ Even for the example with d = 8, we have 2255 (144 undominated)
▶ The elimination of dominated plans is essential for reducing this doubly exponential growth (but they are

already constructed)

▶ Hopelessly inefficient in practice – even the 3x4 POMDP is too hard!

Dennis Müller: Artificial Intelligence 2 203 2024-04-14

A Value Iteration Algorithm for POMDPs
▶ Definition 4.19. The POMDP value iteration algorithm for POMDPs is given by

function POMDP−VALUE−ITERATION(pomdp, ϵ) returns a utility function
inputs: pomdp, a POMDP with states S , actions A(s), transition model P(s′|s, a),

sensor model P(e|s), rewards R(s), discount γ
ϵ the maximum error allowed in the utility of any state

local variables: U , U′, sets of plans p with associated utility vectors αp

U′ := a set containing just the empty plan [], with α([])(s) = R(s)
repeat
U := U′

U′ := the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed via the POMDP Plan Utility Theorem

U′ := REMOVE−DOMPLANS(U′)
until MAX−DIFF(U,U′) < ϵ(1 − γ)/γ

return U

Where REMOVE−DOMPLANS and MAX−DIFF are implemented as linear programs.
▶ Observations: The complexity depends primarily on the generated plans:
▶ Given #(A) actions and #(E) possible observations, there are are O(#(A)#(E)d−1

) distinct depth-d plans.
▶ Even for the example with d = 8, we have 2255 (144 undominated)
▶ The elimination of dominated plans is essential for reducing this doubly exponential growth (but they are

already constructed)
▶ Hopelessly inefficient in practice – even the 3x4 POMDP is too hard!

Dennis Müller: Artificial Intelligence 2 203 2024-04-14

7.5 Online Agents with POMDPs

Dennis Müller: Artificial Intelligence 2 203 2024-04-14

DDN: Decision Networks for POMDPs

▶ Idea: Let’s try to use the computationally efficient representations (dynamic Bayesian networks and
decision networks) for POMDPs.
▶ Definition 5.1. A dynamic decision network (DDN) is a graph-based representation of a POMDP,

where
▶ Transition and sensor model are represented as a DBN.
▶ Action nodes and utility nodes are added as in decision networks.
▶ In a DDN, a filtering algorithm is used to incorporate each new percept and action and to update the

belief state representation.
▶ Decisions are made in DDN by projecting forward possible action sequences and choosing the best

one.
▶ DDNs – like the DBNs they are based on – are factored representations
; typically exponential complexity advantages!

Dennis Müller: Artificial Intelligence 2 204 2024-04-14

Structure of DDNs for POMDPs
▶ DDN for POMDPs: The generic structure of a dymamic decision network at time t is

664 Chapter 17. Making Complex Decisions

Xt–1

At–1

Rt–1

At

Rt

At+2

Rt+2

At+1

Rt+1

At–2

Et–1

Xt+1

Et+1

Xt+2

Et+2

Xt+3

Et+3

Ut+3Xt

Et

Figure 17.10 The generic structure of a dynamic decision network. Variables with known
values are shaded. The current time is t and the agent must decide what to do—that is, choose
a value for At. The network has been unrolled into the future for three steps and represents
future rewards, as well as the utility of the state at the look-ahead horizon.

17.4.3 Online agents for POMDPs

In this section, we outline a simple approach to agent design for partially observable, stochas-
tic environments. The basic elements of the design are already familiar:

• The transition and sensor models are represented by a dynamic Bayesian network
(DBN), as described in Chapter 15.

• The dynamic Bayesian network is extended with decision and utility nodes, as used in
decision networks in Chapter 16. The resulting model is called a dynamic decision
network, or DDN.DYNAMIC DECISION

NETWORK

• A filtering algorithm is used to incorporate each new percept and action and to update
the belief state representation.

• Decisions are made by projecting forward possible action sequences and choosing the
best one.

DBNs are factored representations in the terminology of Chapter 2; they typically have
an exponential complexity advantage over atomic representations and can model quite sub-
stantial real-world problems. The agent design is therefore a practical implementation of the
utility-based agent sketched in Chapter 2.

In the DBN, the single state St becomes a set of state variables Xt, and there may be
multiple evidence variables Et. We will use At to refer to the action at time t, so the transition
model becomes P(Xt+1|Xt, At) and the sensor model becomes P(Et|Xt). We will use Rt to
refer to the reward received at time t and Ut to refer to the utility of the state at time t. (Both
of these are random variables.) With this notation, a dynamic decision network looks like the
one shown in Figure 17.10.

Dynamic decision networks can be used as inputs for any POMDP algorithm, including
those for value and policy iteration methods. In this section, we focus on look-ahead methods
that project action sequences forward from the current belief state in much the same way as do
the game-playing algorithms of Chapter 5. The network in Figure 17.10 has been projected
three steps into the future; the current and future decisions A and the future observations

▶ POMDP state St becomes a set of random variables Xt

▶ there may be multiple evidence variables Et

▶ Action at time t denoted by At . agent must choose a value for At .
▶ Transition model: P(Xt+1|Xt ,At); sensor model: P(Et |Xt).
▶ Reward functions Rt and utility Ut of state St .
▶ Variables with known values are gray, rewards for t = 0, . . . , t + 2, but utility for t + 3(=̂ discounted sum of

rest)
▶ Problem: How do we compute with that?
▶ Answer: All POMDP algorithms can be adapted to DDNs! (only need CPTs)

Dennis Müller: Artificial Intelligence 2 205 2024-04-14

Lookahead: Searching over the Possible Action Sequences
▶ Idea: Search over the tree of possible action sequences (like in game-play)
▶ Part of the lookahead solution of the DDN above (three steps lookahead)

Section 17.4. Partially Observable MDPs 665

. . .
...

.........

. . .

.........

.........

. . .

...

. . .

......

. . .

...

. . .

At in P(Xt | E1:t)

At+1 in P(Xt+1 | E1:t+1)

At+2 in P(Xt+2 | E1:t+2)

U(Xt+3)

Et+1

Et+2

Et+3

10 4 6 3

Figure 17.11 Part of the look-ahead solution of the DDN in Figure 17.10. Each decision
will be taken in the belief state indicated.

E and rewards R are all unknown. Notice that the network includes nodes for the rewards
for Xt+1 and Xt+2, but the utility for Xt+3. This is because the agent must maximize the
(discounted) sum of all future rewards, and U(Xt+3) represents the reward for Xt+3 and all
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate
form: if exact utility values were available, look-ahead beyond depth 1 would be unnecessary.

Figure 17.11 shows part of the search tree corresponding to the three-step look-ahead
DDN in Figure 17.10. Each of the triangular nodes is a belief state in which the agent makes
a decision At+i for i= 0, 1, 2, The round (chance) nodes correspond to choices by the
environment, namely, what evidence Et+i arrives. Notice that there are no chance nodes
corresponding to the action outcomes; this is because the belief-state update for an action is
deterministic regardless of the actual outcome.

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm
takes into account the fact that, for decision At+i, the agent will have available percepts
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this
way, a decision-theoretic agent automatically takes into account the value of information and
will execute information-gathering actions where appropriate.

A decision can be extracted from the search tree by backing up the utility values from
the leaves, taking an average at the chance nodes and taking the maximum at the decision
nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes,
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre-
spond to belief states rather than actual states. The time complexity of an exhaustive search
to depth d is O(|A|d · |E|d), where |A| is the number of available actions and |E| is the num-
ber of possible percepts. (Notice that this is far less than the number of depth-d conditional

▶ circle =̂ chance nodes (the environment decides)
▶ triangle =̂ belief state (each action decision is taken there)Dennis Müller: Artificial Intelligence 2 206 2024-04-14

Designing Online Agents for POMDPsSection 17.4. Partially Observable MDPs 665

. . .
...

.........

. . .

.........

.........

. . .

...

. . .

......

. . .

...

. . .

At in P(Xt | E1:t)

At+1 in P(Xt+1 | E1:t+1)

At+2 in P(Xt+2 | E1:t+2)

U(Xt+3)

Et+1

Et+2

Et+3

10 4 6 3

Figure 17.11 Part of the look-ahead solution of the DDN in Figure 17.10. Each decision
will be taken in the belief state indicated.

E and rewards R are all unknown. Notice that the network includes nodes for the rewards
for Xt+1 and Xt+2, but the utility for Xt+3. This is because the agent must maximize the
(discounted) sum of all future rewards, and U(Xt+3) represents the reward for Xt+3 and all
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate
form: if exact utility values were available, look-ahead beyond depth 1 would be unnecessary.

Figure 17.11 shows part of the search tree corresponding to the three-step look-ahead
DDN in Figure 17.10. Each of the triangular nodes is a belief state in which the agent makes
a decision At+i for i= 0, 1, 2, The round (chance) nodes correspond to choices by the
environment, namely, what evidence Et+i arrives. Notice that there are no chance nodes
corresponding to the action outcomes; this is because the belief-state update for an action is
deterministic regardless of the actual outcome.

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm
takes into account the fact that, for decision At+i, the agent will have available percepts
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this
way, a decision-theoretic agent automatically takes into account the value of information and
will execute information-gathering actions where appropriate.

A decision can be extracted from the search tree by backing up the utility values from
the leaves, taking an average at the chance nodes and taking the maximum at the decision
nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes,
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre-
spond to belief states rather than actual states. The time complexity of an exhaustive search
to depth d is O(|A|d · |E|d), where |A| is the number of available actions and |E| is the num-
ber of possible percepts. (Notice that this is far less than the number of depth-d conditional

▶ Note: belief state update is deterministic irrespective of the action outcome
; no chance nodes for action outcomes
▶ Belief state at triangle computed by filtering with actions/percepts leading to it
▶ for decision At+i will use percepts Et+1:t+i (even if values at time t unknown)
▶ thus a POMDP agent automatically takes into account the value of information and executes information

gathering actions where appropriate.
▶ Observation: Time complexity for exhaustive search up to depth d is O(|A|d · |E|d) (|A| =̂ number

of actions, |E| =̂ number of percepts)
▶ Upshot: Much better than POMDP value iteration with O(#(A)#(E)d−1

).
▶ Empirically: For problems in which the discount factor γ is not too close to 1, a shallow search is

often good enough to give near-optimal decisions.
Dennis Müller: Artificial Intelligence 2 207 2024-04-14

Summary

▶ Decision theoretic agents for sequential environments
▶ Building on temporal, probabilistic models/inference (dynamic Bayesian networks)
▶ MDPs for fully observable case.
▶ Value/Policy Iteration for MDPs ; optimal policies.
▶ POMDPs for partially observable case.
▶ POMDPs=̂ MDP on belief state space.
▶ The world is a POMDP with (initially) unknown transition and sensor models.

Dennis Müller: Artificial Intelligence 2 208 2024-04-14

References I

[DF31] B. De Finetti. “Sul significato soggettivo della probabilita”. In: Fundamenta Mathematicae
17 (1931), pp. 298–329.

[How60] R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[Kee74] R. L. Keeney. “Multiplicative utility functions”. In: Operations Research 22 (1974),
pp. 22–34.

[Luc96] Peter Lucas. “Knowledge Acquisition for Decision-theoretic Expert Systems”. In: AISB
Quarterly 94 (1996), pp. 23–33. url: https://www.researchgate.net/publication/
2460438_Knowledge_Acquisition_for_Decision-theoretic_Expert_Systems.

[Nor+18a] Emily Nordmann et al. Lecture capture: Practical recommendations for students and
lecturers. 2018. url: https://osf.io/huydx/download.

[Nor+18b] Emily Nordmann et al. Vorlesungsaufzeichnungen nutzen: Eine Anleitung für Studierende.
2018. url: https://osf.io/e6r7a/download.

Dennis Müller: Artificial Intelligence 2 208 2024-04-14

https://www.researchgate.net/publication/2460438_Knowledge_Acquisition_for_Decision-theoretic_Expert_Systems
https://www.researchgate.net/publication/2460438_Knowledge_Acquisition_for_Decision-theoretic_Expert_Systems
https://osf.io/huydx/download
https://osf.io/e6r7a/download

References II

[Pra+94] Malcolm Pradhan et al. “Knowledge Engineering for Large Belief Networks”. In: Proceedings
of the Tenth International Conference on Uncertainty in Artificial Intelligence. UAI’94.
Seattle, WA: Morgan Kaufmann Publishers Inc., 1994, pp. 484–490. isbn: 1-55860-332-8.
url: http://dl.acm.org/citation.cfm?id=2074394.2074456.

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd. Prentice
Hall Press, 2009. isbn: 0136042597, 9780136042594.

Dennis Müller: Artificial Intelligence 2 208 2024-04-14

http://dl.acm.org/citation.cfm?id=2074394.2074456

	1 Administrativa
	2 Overview over AI and Topics of AI-II
	2.1 What is Artificial Intelligence?
	2.2 Artificial Intelligence is here today!
	2.3 Ways to Attack the AI Problem
	2.4 AI in the KWARC Group
	2.5 Agents and Environments in AI2
	2.5.1 Recap: Rational Agents as a Conceptual Framework
	2.5.2 Sources of Uncertainty
	2.5.3 Agent Architectures based on Belief States

	1 Reasoning with Uncertain Knowledge
	3 Quantifying Uncertainty
	3.1 Probability Theory
	3.2 Probabilistic Reasoning Techniques

	4 Probabilistic Reasoning: Bayesian Networks
	4.1 Introduction
	4.2 Constructing Bayesian Networks
	4.3 Inference in Bayesian Networks
	4.4 Conclusion

	5 Temporal Probability Models
	5.1 Modeling Time and Uncertainty
	5.2 Inference: Filtering, Prediction, and Smoothing
	5.3 Hidden Markov Models – Extended Example
	5.4 Dynamic Bayesian Networks

	6 Making Simple Decisions Rationally
	6.1 Introduction
	6.2 Preferences and Utilities
	6.3 Utilities and Money
	6.4 Multi-Attribute Utility
	6.5 Decision Networks
	6.6 The Value of Information

	7 Making Complex Decisions
	7.1 Sequential Decision Problems
	7.2 Utilities over Time
	7.3 Value/Policy Iteration
	7.4 Partially Observable MDPs
	7.5 Online Agents with POMDPs
	References

