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1.1 Administrative Ground Rules
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Prerequisites for AI-1

▶ Content Prerequisites: The mandatory courses in CS@FAU; Sem 1-4, in
particular:
▶ Course “Algorithmen und Datenstrukturen”. (Algorithms & Data Structures)
▶ Course “Grundlagen der Logik in der Informatik” (GLOIN). (Logic in CS)
▶ Course “Berechenbarkeit und Formale Sprachen”. (Theoretical CS)

▶ Skillset Prerequisite: Coping with mathematical formulation of the structures
▶ Mathematics is the language of science (in particular computer science)
▶ It allows us to be very precise about what we mean. (good for you)

▶ Intuition: (take them with a kilo of salt)
▶ This is what I assume you know! (I have to assume something)
▶ In most cases, the dependency on these is partial and “in spirit”.
▶ If you have not taken these (or do not remember), read up on them as needed!

▶ Real Prerequisites: Motivation, interest, curiosity, hard work. (AI-1 is
non-trivial)

▶ You can do this course if you want! (and I hope you are successful)
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Assessment, Grades

▶ Overall (Module) Grade:
▶ Grade via the exam (Klausur) ; 100% of the grade.
▶ Up to 10% bonus on-top for an exam with ≥ 50% points. (≤ 50% ; no bonus)
▶ Bonus points =̂ percentage sum of the best 10 tuesday quizzes divided by 100.

▶ Exam: 90 minutes exam conducted in presence on paper (∼ April 1. 2024)
▶ Retake Exam: 90 min exam six months later (∼ October 1. 2024)

▶ You have to register for exams in campo in the first month of classes.
▶ Note: You can de-register from an exam on campo up to three working days

before.
▶ Tuesday Quizzes: Every tuesday we start the lecture with a 10 min online quiz

– the tuesday quiz – about the material from the previous week.(starts in week 2)
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Tuesday Quizzes

▶ Tuesday Quizzes: Every tuesday we start the lecture with a 10 min online quiz
– the tuesday quiz – about the material from the previous week.(starts in week 2)

▶ Motivations: We do this to
▶ keep you prepared and working continuously. (primary)
▶ update the ALeA learner model (fringe benefit)

▶ The tuesday quiz will be given in the ALeA system

▶ https:
//courses.voll-ki.fau.de/quiz-dash/ai-1

▶ You have to be logged into ALeA!
▶ You can take the quiz on your laptop or phone, . . .
▶ . . . in the lecture or at home . . .
▶ . . . via WLAN or 4G Network. (do not overload)
▶ Quizzes will only be available 16:15-16:25!
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Tomorrow: Pretest

▶ Tomorrow we will try out the tuesday quiz infrastructure with a pretest!
▶ Presence: bring your laptop or cellphone.
▶ Online: you can and should take the pretest as well.
▶ Have a recent firefox or chrome (chrome: ≥ March 2023)
▶ Make sure that you are logged into ALeA (via FAU IDM; see below)

▶ Definition 1.1. A pretest is an assessment for evaluating the preparedness of
learners for further studies.

▶ Concretely: This pretest
▶ establishes a baseline for the competency expectations in AI-1 and
▶ tests the ALeA quiz infrastructure for the tuesday quizzes.

▶ Participation in this test is optional; it will not influence your grades in any way.
▶ The test covers the prerequisites of AI-1 and some of the material that may have

been covered in other courses.
▶ The test will be also used to refine the ALeA learner model, which may make

learning experience in ALeA better. (see below)
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Special Admin Conditions

▶ Some degree programs do not “import” the course Artificial Intelligence, and thus
you may not be able to register for the exam via https://campus.fau.de.
▶ Just send me an e-mail and come to the exam, we will issue a “Schein”.
▶ Tell your program coordinator about AI-1/2 so that they remedy this situation

▶ In “Wirtschafts-Informatik” you can only take AI-1 and AI-2 together in the
“Wahlpflichtbereich”.
▶ ECTS credits need to be divisible by five ⇝7.5 + 7.5 = 15.
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1.2 Getting Most out of AI-1
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AI-1 Homework Assignments

▶ Homework Assignments: Small individual problem/programming/proof task
▶ but take time to solve (at least read them directly ; questions)

▶ Homeworks give no bonus points, but without trying you are unlikely to pass
the exam.

▶ Homework/Tutorial Discipline:
▶ Start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen (talking & study group help)
▶ Humans will be trying to understand the text/code/math when grading it.
▶ Go to the tutorials, discuss with your TA! (they are there for you!)

▶ We will not be able to grade all homework assignments!
▶ Graded Assignments: To keep things running smoothly
▶ Homeworks will be posted on StudOn.
▶ Sign up for AI-1 under https://www.studon.fau.de/crs4622069.html.
▶ Homeworks are handed in electronically there. (plain text, program files, PDF)
▶ Do not sign up for the “AI-2 Übungen” on StudOn (we do not use them)

▶ Ungraded Assignments: Are peer-feedbacked in ALeA (see below)
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Tutorials for Artificial Intelligence 1

▶ Approach: Weekly tutorials and homework assignments (first one in week two)
▶ Goal 1: Reinforce what was taught in class. (you need practice)
▶ Goal 2: Allow you to ask any question you have in a protected environment.

▶ Instructor/Lead TA: Florian Rabe (KWARC Postdoc)
▶ Room: 11.137 @ Händler building, florian.rabe@fau.de

▶ Tutorials: One each taught by Florian Rabe (lead); Mahdi Mantash, Robert
Kurin, Florian Guthmann.

▶ Life-saving Advice: Go to your tutorial, and prepare for it by having looked at
the slides and the homework assignments!

▶ Caveat: We cannot grade all submissions with 5 TAs and ∼1000 students.
▶ Also: Group submission has not worked well in the past!(too many freeloaders)
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Collaboration

▶ Definition 2.1. Collaboration (or cooperation) is the process of groups of
agents working or acting together for common, mutual, or some underlying
benefit, as opposed to working in competition for selfish benefit. In a
collaboration, every agent contributes to the common goal.

▶ In learning situations, the benefit is “better learning outcomes”.
▶ Observation: In collaborative learning, the overall result can be significantly

better than in competitive learning.
▶ Good Practice: Form study groups. (long- or short-term)
▶ those learners who work most, learn most
▶ freeloaders – indivicuals who only watch – learn very little!

▶ It is OK to collaborate on homework assignments in AI-1! (no bonus points)
▶ Choose your study group well (We will (eventually) help via ALeA)
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Do I need to attend the lectures

▶ Attendance is not mandatory for the AI-1 lecture

▶ There are two ways of learning AI-1: (both are OK, your mileage may vary)
▶ Approach B: Read a Book
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books do not answer questions (yet! ⇝
we are working on this in AI research)

▶ Approach S: come to the lectures and sleep does not work!
▶ I really mean it: If you come to class, be involved, ask questions, challenge me

with comments, tell me about errors, . . .

▶ I would much rather have a lively discussion than get through all the slides
▶ You learn more, I have more fun (Approach B serves as a backup)
▶ You may have to change your habits, overcome shyness, . . . (please do!)

▶ This is what I get paid for, and I am more expensive than most books (get your
money’s worth)
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1.3 Learning Resources for AI-1
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Textbook, Handouts and Information, Forums, Videos
▶ Textbook: Russel/Norvig: Artificial Intelligence, A modern Approach [RN09].
▶ basically “broad but somewhat shallow”
▶ great to get intuitions on the basics of AI
Make sure that you read the edition ≥ 3 ⇝vastly improved over ≤ 2.

▶ Course notes: will be posted at
http://kwarc.info/teaching/AI/notes.pdf
▶ more detailed than [RN09] in some areas
▶ I mostly prepare them as we go along (semantically preloaded ; research resource)
▶ please e-mail me any errors/shortcomings you notice. (improve for the group)

▶ StudOn Forum: https://www.studon.fau.de/crs4622069.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)

▶ Course Videos: AI-1 will be streamed/recorded at
https://fau.tv/course/id/3595
▶ Organized: Video course nuggets are available at

https://fau.tv/course/id/1690 (short; organized by topic)
▶ Backup: The lectures from WS 2016/17 to SS 2018 have been recorded (in English

and German), see https://www.fau.tv/search/term.html?q=Kohlhase
▶ Do not let the videos mislead you: Coming to class is highly correlated with

passing the course!
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Textbook, Handouts and Information, Forums, Videos
▶ Textbook: Russel/Norvig: Artificial Intelligence, A modern Approach [RN09].
▶ basically “broad but somewhat shallow”
▶ great to get intuitions on the basics of AI
Make sure that you read the edition ≥ 3 ⇝vastly improved over ≤ 2.

▶ Course notes: will be posted at
http://kwarc.info/teaching/AI/notes.pdf
▶ more detailed than [RN09] in some areas
▶ I mostly prepare them as we go along (semantically preloaded ; research resource)
▶ please e-mail me any errors/shortcomings you notice. (improve for the group)

▶ StudOn Forum: https://www.studon.fau.de/crs4622069.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)

▶ Course Videos: AI-1 will be streamed/recorded at
https://fau.tv/course/id/3595
▶ Organized: Video course nuggets are available at

https://fau.tv/course/id/1690 (short; organized by topic)
▶ Backup: The lectures from WS 2016/17 to SS 2018 have been recorded (in English

and German), see https://www.fau.tv/search/term.html?q=Kohlhase
▶ Do not let the videos mislead you: Coming to class is highly correlated with

passing the course!
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Practical recommendations on Lecture Resources

▶ Excellent Guide: [Nor+18a] (german Version at [Nor+18b])

 

Attend lectures.

Take notes.

Be specific.

Catch up.

Ask for help.

Don’t cut corners.

Using lecture 
recordings: 
A guide for students
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1.4 AI-Supported Learning
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ALeA: Adaptive Learning Assistant
▶ Idea: Use AI methods to help teach/learn AI (AI4AI)
▶ Concretely: Provide HTML versions of the AI-1 slides/notes and embed

learning support services into them. (for pre/postparation of lectures)
▶ Definition 4.1. Call a document active, iff it is interactive and adapts to

specific information needs of the readers. (course notes on steroids)
▶ Intuition: ALeA serves active course materials. (PDF mostly inactive)
▶ Goal: Make ALeA more like a teacher + study group than like a book
▶ Example 4.2 (Course Notes). =̂ Slides + Comments

; yellow parts in table of contents (left) already covered in lecture.Michael Kohlhase: Artificial Intelligence 1 12 2024-02-08



VoLL-KI Portal at https://courses.voll-ki.fau.de

▶ Portal for ALeA Courses: https://courses.voll-ki.fau.de

▶ AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1
▶ All details for the course.
▶ recorded syllabus (keep track of material covered in course)
▶ syllabus of the last semester (for over/preview)

▶ ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses
▶ (some) students use the system actively (our logs tell us)
▶ reviews are mostly positive/enthusiastic (error reports pour in)
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Learning Support Services in ALeA

▶ Idea: Embed learning support services into active course materials.

▶ Example 4.3 (Definition on Hover). Hovering on a (cyan) term reference
reminds us of the definition. (even works recursively)

▶ Example 4.4 (More Definitions on Click). Clicking on a (cyan) term
reference shows us more definitions from other contexts.

▶ Example 4.5 (Guided Tour). A guided tour for a concept c assembles
definitions/etc. into a self-contained mini-course culminating at c .

▶ . . . your idea here . . . (the sky is the limit)
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Learning Support Services in ALeA

▶ Idea: Embed learning support services into active course materials.
▶ Example 4.6 (Definition on Hover). Hovering on a (cyan) term reference

reminds us of the definition. (even works recursively)

▶ Example 4.7 (More Definitions on Click). Clicking on a (cyan) term
reference shows us more definitions from other contexts.

▶ Example 4.8 (Guided Tour). A guided tour for a concept c assembles
definitions/etc. into a self-contained mini-course culminating at c .

▶ . . . your idea here . . . (the sky is the limit)
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Learning Support Services in ALeA
▶ Idea: Embed learning support services into active course materials.
▶ Example 4.9 (Definition on Hover). Hovering on a (cyan) term reference

reminds us of the definition. (even works recursively)
▶ Example 4.10 (More Definitions on Click). Clicking on a (cyan) term

reference shows us more definitions from other contexts.

▶ Example 4.11 (Guided Tour). A guided tour for a concept c assembles
definitions/etc. into a self-contained mini-course culminating at c .

▶ . . . your idea here . . . (the sky is the limit)
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Learning Support Services in ALeA
▶ Idea: Embed learning support services into active course materials.
▶ Example 4.12 (Definition on Hover). Hovering on a (cyan) term reference

reminds us of the definition. (even works recursively)
▶ Example 4.13 (More Definitions on Click). Clicking on a (cyan) term

reference shows us more definitions from other contexts.

▶ Example 4.14 (Guided Tour). A guided tour for a concept c assembles
definitions/etc. into a self-contained mini-course culminating at c .

▶ . . . your idea here . . . (the sky is the limit)
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Learning Support Services in ALeA
▶ Idea: Embed learning support services into active course materials.
▶ Example 4.15 (Definition on Hover). Hovering on a (cyan) term reference

reminds us of the definition. (even works recursively)
▶ Example 4.16 (More Definitions on Click). Clicking on a (cyan) term

reference shows us more definitions from other contexts.

▶ Example 4.17 (Guided Tour). A guided tour for a concept c assembles
definitions/etc. into a self-contained mini-course culminating at c .

▶ . . . your idea here . . . (the sky is the limit)
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Learning Support Services in ALeA
▶ Idea: Embed learning support services into active course materials.
▶ Example 4.18 (Definition on Hover). Hovering on a (cyan) term reference

reminds us of the definition. (even works recursively)
▶ Example 4.19 (More Definitions on Click). Clicking on a (cyan) term

reference shows us more definitions from other contexts.
▶ Example 4.20 (Guided Tour). A guided tour for a concept c assembles

definitions/etc. into a self-contained mini-course culminating at c .

c =
countable ;

▶ . . . your idea here . . . (the sky is the limit)

Michael Kohlhase: Artificial Intelligence 1 14 2024-02-08



Learning Support Services in ALeA

▶ Idea: Embed learning support services into active course materials.
▶ Example 4.21 (Definition on Hover). Hovering on a (cyan) term reference

reminds us of the definition. (even works recursively)
▶ Example 4.22 (More Definitions on Click). Clicking on a (cyan) term

reference shows us more definitions from other contexts.
▶ Example 4.23 (Guided Tour). A guided tour for a concept c assembles

definitions/etc. into a self-contained mini-course culminating at c .
▶ . . . your idea here . . . (the sky is the limit)
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(Practice) Problems Everywhere

▶ Problem: Learning requires a mix of understanding and test-driven practice.
▶ Idea: ALeA supplies targeted practice problems everywhere.
▶ Concretely: Revision markers at the end of sections.

▶ A relatively non-intrusive overview over competency
▶ Click to extend it for details.
▶ Practice problems as usual. (targeted to your specific competencies)
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Localized Interactions with the Community

▶ Selecting text brings up localized – i.e. anchored on the selection – interactions:

▶ post a (public) comment or take (private) note
▶ report an error to the course authors/instructors

▶ Localized comments induce a thread in the ALeA forum (like the StudOn
Forum, but targeted towards specific learning objects)

▶ Answering questions gives karma =̂ a public measure of helpfulness
▶ Notes can be anonymous (; generate no karma)
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ALeA=̂ Data-Driven & AI-enabled Learning Assistance

▶ Idea: Do what a teacher does!
Use/maintain four models:

▶ Ingredient 1: Domain model =̂
knowledge/theory graph

▶ Ingredient 2: Learner model =̂
adding competency estimations

▶ Ingredient 3: A collection of
ready-formulated learning objects

▶ Ingredient 4: Educational dialogue
planner ; guided tours

Domain
Model

Learner
Model

Formulation
Model

Rhetoric/Didactic
Model

(Good) teachers
▶ understand the objects and their properties they are talking about
▶ have readimade formulations how to convey them best
▶ and understand how these best work together
▶ model what the learners already know/understand and adapts them accordingly
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ALeA=̂ Data-Driven & AI-enabled Learning Assistance

▶ Idea: Do what a teacher does!
Use/maintain four models:

▶ Ingredient 1: Domain model =̂
knowledge/theory graph

▶ Ingredient 2: Learner model =̂
adding competency estimations

▶ Ingredient 3: A collection of
ready-formulated learning objects

▶ Ingredient 4: Educational dialogue
planner ; guided tours

DyBN POMDP MDP

time pref

N ≤ utility

A theory graph provides (modular representation of the domain)
▶ symbols with URIs for all concepts, objects, and relations
▶ definitions, notations, and verbalizations for all symbols
▶ “object-oriented inheritance” and views between theories.
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ALeA=̂ Data-Driven & AI-enabled Learning Assistance

▶ Idea: Do what a teacher does!
Use/maintain four models:

▶ Ingredient 1: Domain model =̂
knowledge/theory graph

▶ Ingredient 2: Learner model =̂
adding competency estimations

▶ Ingredient 3: A collection of
ready-formulated learning objects

▶ Ingredient 4: Educational dialogue
planner ; guided tours

DyBN POMDPMDP

time pref

⟨N,≤⟩ poset utility

The learner model is a function from learner IDs × symbol URIs to competency
values
▶ competency comes in six cognitive dimensions: remember, understand,

analyze, evaluate, apply, and create.
▶ ALeA logs all learner interactions (keeps data learner-private)
▶ each interaction updates the learner model function.
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ALeA=̂ Data-Driven & AI-enabled Learning Assistance

▶ Idea: Do what a teacher does!
Use/maintain four models:

▶ Ingredient 1: Domain model =̂
knowledge/theory graph

▶ Ingredient 2: Learner model =̂
adding competency estimations

▶ Ingredient 3: A collection of
ready-formulated learning objects

▶ Ingredient 4: Educational dialogue
planner ; guided tours

DyBN POMDPMDP

time pref

⟨N,≤⟩ poset utility

Learning objects are the text fragments learners see and interact with; they are
structured by
▶ didactic relations, e.g. tasks have prerequisites and learning objectives
▶ rhetoric relations, e.g. introduction, elaboration, and transition
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ALeA=̂ Data-Driven & AI-enabled Learning Assistance

▶ Idea: Do what a teacher does!
Use/maintain four models:

▶ Ingredient 1: Domain model =̂
knowledge/theory graph

▶ Ingredient 2: Learner model =̂
adding competency estimations

▶ Ingredient 3: A collection of
ready-formulated learning objects

▶ Ingredient 4: Educational dialogue
planner ; guided tours

DyBN POMDPMDP

time pref

⟨N,≤⟩ poset utility

The dialogue planner assembles learning objects into active course materials using
▶ the domain model and didactic relations to determine the order of LOs
▶ the learner model to determine what to show
▶ the rhetoric relations to make the dialogue coherent
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New Feature: Drilling with Flashcards
▶ Flashcards challenge you with a task (term/problem) on the front. . .

. . . and the definition/answer is on the back.
▶ Self-assessment updates the learner model (before/after)
▶ Idea: Challenge yourself to a card stack, keep drilling/assessing flashcards until

the learner model eliminates all.
▶ Bonus: Flashcards can be generated from existing semantic markup

(educational equivalent to free beer)
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Learner Data and Privacy in ALeA
▶ Observation: Most learning support services in ALeA use the learner model;

they
▶ need the learner model data to adapt to the invidivual learner!
▶ collect learner interaction data (to update the learner model)

▶ Consequence: You need to be logged in (via your FAU IDM credentials) for
useful learning support services!

▶ Problem: Learner model data is highly sensitive personal data!
▶ ALeA Promise: The ALeA team does the utmost to keep your personal data

safe. (SSO via FAU IDM/eduGAIN, ALeA trust zone)
▶ ALeA Privacy Axioms:

1. ALeA only collects learner models data about logged in users.
2. Personally identifiable learner model data is only accessible to its subject (delegation

possible)
3. Learners can always query the learner model about its data.
4. All learner model data can be purged without negative consequences (except

usability deterioration)
5. Logging into ALeA is completely optional.

▶ Observation: Authentication for bonus quizzes are somewhat less optional, but
you can always purge the learner model later.
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Concrete Todos for ALeA

▶ Recall: You will use ALeA for the tuesday quizzes (or lose bonus points)
All other use is optional (but AI-supported pre/postparation can be helpful)

▶ To use the ALeA system, you will have to log in via SSO (do it now)
▶ go to https://courses.voll-ki.fau.de/course-home/ai-1

▶ in the upper right hand corner you see
▶ log in via your FAU IDM credentials. (you should have them by now)

▶ You get access to your personal ALeA profile via
(plus feature notifications, manual, and language chooser)

▶ Problem: Most ALeA services depend on the learner model (to adapt to you)
▶ Solution: Initialize your learner model with your educational history!
▶ Concretely: enter taken CS courses (FAU equivalents) and grades
▶ ALeA uses that to estimate your CS/AI competencies (for your benefit)
▶ then ALeA knows about you; I don’t (ALeA trust zone)
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Chapter 2
Artificial Intelligence – Who?, What?, When?,

Where?, and Why?
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Plot for this chapter

▶ Motivation, overview, and finding out what you already know
▶ What is Artificial Intelligence?
▶ What has AI already achieved?
▶ A (very) quick walk through the AI-1 topics.
▶ How can you get involved with AI at KWARC?
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2.1 What is Artificial Intelligence?
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What is Artificial Intelligence? Definition

▶ Definition 1.1 (According to Wikipedia).
Artificial Intelligence (AI) is intelligence
exhibited by machines

▶ Definition 1.2 (also). Artificial Intelligence
(AI) is a sub-field of computer science that is
concerned with the automation of intelligent
behavior.

▶ BUT: it is already difficult to define
intelligence precisely.

▶ Definition 1.3 (Elaine Rich). Artificial
Intelligence (AI) studies how we can make
the computer do things that humans can still
do better at the moment.
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What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans
can still do better at the moment.

▶ This needs a combination of
the ability to learn
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What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans
can still do better at the moment.

▶ This needs a combination of
Inference
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What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans
can still do better at the moment.

▶ This needs a combination of
Perception
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What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans
can still do better at the moment.

▶ This needs a combination of
Language understanding
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What is Artificial Intelligence? Components

▶ Elaine Rich: AI studies how we can make the computer do things that humans
can still do better at the moment.

▶ This needs a combination of
Emotion
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2.2 Artificial Intelligence is here today!
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Artificial Intelligence is here today!

▶ in outer space
▶ in outer space systems need

autonomous control:
▶ remote control impossible due

to time lag

▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ for safety/security
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Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ the user controls the prosthesis

via existing nerves, can e.g.
grip a sheet of paper.

▶ in household appliances
▶ in hospitals
▶ for safety/security
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Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ The iRobot Roomba vacuums,

mops, and sweeps in corners,
. . . , parks, charges, and
discharges.

▶ general robotic household help
is on the horizon.

▶ in hospitals
▶ for safety/security
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Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ in the USA 90% of the prostate

operations are carried out by
RoboDoc

▶ Paro is a cuddly robot that
eases solitude in nursing homes.

▶ for safety/security
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Artificial Intelligence is here today!

▶ in outer space
▶ in artificial limbs
▶ in household appliances
▶ in hospitals
▶ for safety/security
▶ e.g. Intel verifies correctness of

all chips after the “Pentium 5
disaster”
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And here’s what you all have been waiting for . . .

CC-BY-SA: Buster Benson@
https://www.flickr.com/photos/erikbenson/25717574115

▶ AlphaGo is a program by Google DeepMind to play the board game go.
▶ In March 2016, it beat Lee Sedol in a five-game match, the first time a go

program has beaten a 9 dan professional without handicaps.
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CC-BY-SA: Buster Benson@
https://www.flickr.com/photos/erikbenson/25717574115

▶ AlphaGo is a program by Google DeepMind to play the board game go.

In December 2017 AlphaZero, a successor of AlphaGo “learned” the games go,
chess, and shogi in 24 hours, achieving a superhuman level of play in these three
games by defeating world-champion programs.
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And here’s what you all have been waiting for . . .

CC-BY-SA: Buster Benson@
https://www.flickr.com/photos/erikbenson/25717574115

▶ AlphaGo is a program by Google DeepMind to play the board game go.

By September 2019, AlphaStar, a variant of AlphaGo, attained “grandmaster
level” in Starcraft II, a real time strategy game with partially observable state.
AlphaStar now among the top 0.2% of human players.
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The AI Conundrum

▶ Observation: Reserving the term “Artificial Intelligence” has been quite a land
grab!

▶ But: researchers at the Dartmouth Conference (1956) really thought they
would solve/reach AI in two/three decades.

▶ Consequence: AI still asks the big questions.
▶ Another Consequence: AI as a field is an incubator for many innovative

technologies.
▶ AI Conundrum: Once AI solves a subfield it is called “computer science”.

(becomes a separate subfield of CS)
▶ Example 2.1. Functional/Logic Programming, automated theorem proving,

Planning, machine learning, Knowledge Representation, . . .
▶ Still Consequence: AI research was alternatingly flooded with money and cut

off brutally.
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2.3 Ways to Attack the AI Problem
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Four Main Approaches to Artificial Intelligence
▶ Definition 3.1. Symbolic AI is a subfield of AI based on the assumption that

many aspects of intelligence can be achieved by the manipulation of symbols,
combining them into meaning-carrying structures (expressions) and manipulating
them (using processes) to produce new expressions.

▶ Definition 3.2. Statistical AI remedies the two shortcomings of symbolic AI
approaches: that all concepts represented by symbols are crisply defined, and
that all aspects of the world are knowable/representable in principle. Statistical
AI adopts sophisticated mathematical models of uncertainty and uses them to
create more accurate world models and reason about them.

▶ Definition 3.3. Subsymbolic AI (also called connectionism or neural AI) is a
subfield of AI that posits that intelligence is inherently tied to brains, where
information is represented by a simple sequence pulses that are processed in
parallel via simple calculations realized by neurons, and thus concentrates on
neural computing.

▶ Definition 3.4. Embodied AI posits that intelligence cannot be achieved by
reasoning about the state of the world (symbolically, statistically, or
connectivist), but must be embodied i.e. situated in the world, equipped with a
“body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

Michael Kohlhase: Artificial Intelligence 1 27 2024-02-08



Four Main Approaches to Artificial Intelligence
▶ Definition 3.5. Symbolic AI is a subfield of AI based on the assumption that

many aspects of intelligence can be achieved by the manipulation of symbols,
combining them into meaning-carrying structures (expressions) and manipulating
them (using processes) to produce new expressions.

▶ Definition 3.6. Statistical AI remedies the two shortcomings of symbolic AI
approaches: that all concepts represented by symbols are crisply defined, and
that all aspects of the world are knowable/representable in principle. Statistical
AI adopts sophisticated mathematical models of uncertainty and uses them to
create more accurate world models and reason about them.

▶ Definition 3.7. Subsymbolic AI (also called connectionism or neural AI) is a
subfield of AI that posits that intelligence is inherently tied to brains, where
information is represented by a simple sequence pulses that are processed in
parallel via simple calculations realized by neurons, and thus concentrates on
neural computing.

▶ Definition 3.8. Embodied AI posits that intelligence cannot be achieved by
reasoning about the state of the world (symbolically, statistically, or
connectivist), but must be embodied i.e. situated in the world, equipped with a
“body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.

Michael Kohlhase: Artificial Intelligence 1 27 2024-02-08



Four Main Approaches to Artificial Intelligence
▶ Definition 3.9. Symbolic AI is a subfield of AI based on the assumption that

many aspects of intelligence can be achieved by the manipulation of symbols,
combining them into meaning-carrying structures (expressions) and manipulating
them (using processes) to produce new expressions.

▶ Definition 3.10. Statistical AI remedies the two shortcomings of symbolic AI
approaches: that all concepts represented by symbols are crisply defined, and
that all aspects of the world are knowable/representable in principle. Statistical
AI adopts sophisticated mathematical models of uncertainty and uses them to
create more accurate world models and reason about them.

▶ Definition 3.11. Subsymbolic AI (also called connectionism or neural AI) is a
subfield of AI that posits that intelligence is inherently tied to brains, where
information is represented by a simple sequence pulses that are processed in
parallel via simple calculations realized by neurons, and thus concentrates on
neural computing.

▶ Definition 3.12. Embodied AI posits that intelligence cannot be achieved by
reasoning about the state of the world (symbolically, statistically, or
connectivist), but must be embodied i.e. situated in the world, equipped with a
“body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.
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Four Main Approaches to Artificial Intelligence
▶ Definition 3.13. Symbolic AI is a subfield of AI based on the assumption that

many aspects of intelligence can be achieved by the manipulation of symbols,
combining them into meaning-carrying structures (expressions) and manipulating
them (using processes) to produce new expressions.

▶ Definition 3.14. Statistical AI remedies the two shortcomings of symbolic AI
approaches: that all concepts represented by symbols are crisply defined, and
that all aspects of the world are knowable/representable in principle. Statistical
AI adopts sophisticated mathematical models of uncertainty and uses them to
create more accurate world models and reason about them.

▶ Definition 3.15. Subsymbolic AI (also called connectionism or neural AI) is a
subfield of AI that posits that intelligence is inherently tied to brains, where
information is represented by a simple sequence pulses that are processed in
parallel via simple calculations realized by neurons, and thus concentrates on
neural computing.

▶ Definition 3.16. Embodied AI posits that intelligence cannot be achieved by
reasoning about the state of the world (symbolically, statistically, or
connectivist), but must be embodied i.e. situated in the world, equipped with a
“body” that can interact with it via sensors and actuators. Here, the main
method for realizing intelligent behavior is by learning from the world.
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Two ways of reaching Artificial Intelligence?

▶ We can classify the AI approaches by their coverage and the analysis depth(they
are complementary)

Deep symbolic not there yet
AI-1 cooperation?

Shallow no-one wants this statistical/sub symbolic
AI-2

Analysis ↑
vs. Narrow Wide

Coverage →
▶ This semester we will cover foundational aspects of symbolic AI (deep/narrow

processing)
▶ next semester concentrate on statistical/subsymbolic AI.

(shallow/wide-coverage)
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Environmental Niches for both Approaches to AI

▶ Observation: There are two kinds of applications/tasks in AI
▶ Consumer tasks: consumer grade applications have tasks that must be fully generic

and wide coverage. ( e.g. machine translation like Google Translate)
▶ Producer tasks: producer grade applications must be high-precision, but can be

domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage
▶ General Rule: Subsymbolic AI is well suited for consumer tasks, while symbolic

AI is better suited for producer tasks.
▶ A domain of producer tasks I am interested in: mathematical/technical

documents.
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To get this out of the way . . .

CC-BY-SA: Buster Benson@ https://www.flickr.com/photos/erikbenson/25717574115

▶ AlphaGo = search + neural networks (symbolic + subsymbolic AI)
▶ we do search this semester and cover neural networks in AI-2.
▶ I will explain AlphaGo a bit in .
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2.4 Strong vs. Weak AI
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Strong AI vs. Narrow AI

▶ Definition 4.1. With the term narrow AI (also weak AI, instrumental AI,
applied AI) we refer to the use of software to study or accomplish specific
problem solving or reasoning tasks (e.g. playing chess/go, controlling elevators,
composing music, . . . )

▶ Definition 4.2. With the term strong AI (also full AI, AGI) we denote the quest
for software performing at the full range of human cognitive abilities.

▶ Definition 4.3. Problems requiring strong AI to solve are called AI hard.
▶ In short: We can characterize the difference intuitively:
▶ narrow AI: What (most) computer scientists think AI is / should be.
▶ strong AI: What Hollywood authors think AI is / should be.

▶ Needless to say we are only going to cover narrow AI in this course!
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A few words on AGI. . .

▶ The conceptual and mathematical framework (agents, environments etc.) is the
same for strong AI and weak AI.

▶ AGI research focuses mostly on abstract aspects of machine learning
(reinforcement learning, neural nets) and decision/game theory (“which goals
should an AGI pursue?”).

▶ Academic respectability of AGI fluctuates massively, recently increased (again).
(correlates somewhat with AI winters and golden years)

▶ Public attention increasing due to talk of “existential risks of AI” (e.g. Hawking,
Musk, Bostrom, Yudkowsky, Obama, . . . )

▶ Kohlhase’s View: Weak AI is here, strong AI is very far off. (not in my
lifetime)
But even if that is true, weak AI will affect all of us deeply in everyday life.

▶ Example 4.4. You should not train to be an accountant or truck driver!
(bots will replace you)
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AGI Research and Researchers

▶ “Famous” research(ers) / organizations
▶ MIRI (Machine Intelligence Research Institute), Eliezer Yudkowsky (Formerly known

as “Singularity Institute”)
▶ Future of Humanity Institute Oxford (Nick Bostrom),
▶ Google (Ray Kurzweil),
▶ AGIRI / OpenCog (Ben Goertzel),
▶ petrl.org (People for the Ethical Treatment of Reinforcement Learners).

(Obviously somewhat tongue-in-cheek)
▶ Be highly skeptical about any claims with respect to AGI! (Kohlhase’s View)
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2.5 AI Topics Covered
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Topics of AI-1 (Winter Semester)

▶ Getting Started
▶ What is Artificial Intelligence? (situating ourselves)
▶ Logic programming in Prolog (An influential paradigm)
▶ Intelligent Agents (a unifying framework)

▶ Problem Solving
▶ Problem Solving and search (Black Box World States and Actions)
▶ Adversarial search (Game playing) (A nice application of search)
▶ constraint satisfaction problems (Factored World States)

▶ Knowledge and Reasoning
▶ Formal Logic as the mathematics of Meaning
▶ Propositional logic and satisfiability (Atomic Propositions)
▶ First-order logic and theorem proving (Quantification)
▶ Logic programming (Logic + Search; Programming)
▶ Description logics and semantic web

▶ Planning
▶ Planning Frameworks
▶ Planning Algorithms
▶ Planning and Acting in the real world
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Topics of AI-2 (Summer Semester)

▶ Uncertain Knowledge and Reasoning
▶ Uncertainty
▶ Probabilistic reasoning
▶ Making Decisions in Episodic Environments
▶ Problem Solving in Sequential Environments

▶ Foundations of machine learning
▶ Learning from Observations
▶ Knowledge in Learning
▶ Statistical Learning Methods

▶ Communication (If there is time)
▶ Natural Language Processing
▶ Natural Language for Communication
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AI1SysProj: A Systems/Project Supplement to AI-1

▶ The AI-1 course concentrates on concepts, theory, and algorithms of symbolic
AI.

▶ Problem: Engineering/Systems Aspects of AI are very important as well.
▶ Partial Solution: Getting your hands dirty in the homeworks and the Kalah

Challenge

▶ Full Solution: AI1SysProj: AI-1 Systems Project (10 ECTS, 30-50places)
▶ For each Topic of AI-1, where will be a mini-project in AI1SysProj
▶ e.g. for game-play there will be Chinese Checkers (more difficult than Kalah)
▶ e.g. for CSP we will schedule TechFak courses or exams (from real data)
▶ solve challenges by implementing the AI-1 algorithms or use SoA systems

▶ Question: Should I take AI1SysProj in my first semester? (i.e. now)
▶ Answer: It depends . . . (on your situation)
▶ most master’s programs require a 10-ECTS “Master’s Project” (Master AI: two)
▶ there will be a great pressure on project places (so reserve one early)
▶ BUT 10 ECTS =̂ 250-300 hours involvement by definition (1/3 of your time/ECTS)

▶ BTW: There will also be an AI2SysProj next semester! (another chance)
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2.6 AI in the KWARC Group

Michael Kohlhase: Artificial Intelligence 1 36 2024-02-08



The KWARC Research Group

▶ Observation: The ability to represent knowledge about the world and to draw
logical inferences is one of the central components of intelligent behavior.

▶ Thus: reasoning components of some form are at the heart of many AI systems.
▶ KWARC Angle: Scaling up (web-coverage) without dumbing down (too

much)
▶ Content markup instead of full formalization (too tedious)
▶ User support and quality control instead of “The Truth” (elusive anyway)
▶ use Mathematics as a test tube ( Mathematics =̂ Anything Formal )
▶ care more about applications than about philosophy (we cannot help getting this

right anyway as logicians)
▶ The KWARC group was established at Jacobs Univ. in 2004, moved to FAU

Erlangen in 2016
▶ see http://kwarc.info for projects, publications, and links
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Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Active Learning, Semantic Spread-
sheets/CAD/CAM, Change Mangagement, Global Digital Math Library, Math
Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games,
. . .
Foundations of Math:
▶ MathML, OpenMath
▶ advanced Type Theories
▶ Mmt: Meta Meta Theory
▶ Logic Morphisms/Atlas
▶ Theorem Prover/CAS

Interoperability
▶ Mathematical

Models/Simulation

KM & Interaction:
▶ Semantic Interpretation

(aka. Framing)
▶ math-literate interaction
▶ MathHub: math archives

& active docs
▶ Active documents:

embedded semantic
services

▶ Model-based Education

Semantization:
▶ LATEXML: LATEX → XML
▶ STEX: Semantic LATEX
▶ invasive editors
▶ Context-Aware IDEs
▶ Mathematical Corpora
▶ Linguistics of Math
▶ ML for Math Semantics

Extraction

Foundations: Computational Logic, Web Technologies, OMDoc/Mmt
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Research Topics in the KWARC Group

▶ We are always looking for bright, motivated KWARCies.
▶ We have topics in for all levels! (Enthusiast, Bachelor, Master, Ph.D.)
▶ List of current topics: https://gl.kwarc.info/kwarc/thesis-projects/
▶ Automated Reasoning: Maths Representation in the Large
▶ Logics development, (Meta)n-Frameworks
▶ Math Corpus Linguistics: Semantics Extraction
▶ Serious Games, Cognitive Engineering, Math Information Retrieval, Legal Reasoning,

. . .
▶ We always try to find a topic at the intersection of your and our interests.
▶ We also often have positions!. (HiWi, Ph.D.: 1

2 , PostDoc: full)
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Part 1
Getting Started with AI: A Conceptual Framework
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Enough philosophy about “Intelligence” (Artificial or
Natural)

▶ So far we had a nice philosophical chat, about “intelligence” et al.
▶ As of today, we look at technical stuff!

▶ Before we go into the algorithms and data structures proper, we will
1. introduce a programming language for AI-1
2. prepare a conceptual framework in which we can think about “intelligence” (natural

and artificial), and
3. recap some methods and results from theoretical computer science.
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Chapter 3
Logic Programming
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3.1 Introduction to Logic Programming and
ProLog
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Logic Programming

▶ Idea: Use logic as a programming language!
▶ We state what we know about a problem (the program) and then ask for results

(what the program would compute).
▶ Example 1.1.

Program Leibniz is human x + 0 = x
Sokrates is human If x + y = z then x + s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))
▶ How to achieve this? Restrict a logic calculus sufficiently that it can be used

as computational procedure.
▶ Remark: This idea leads a totally new programming paradigm: logic

programming.
▶ Slogan: Computation = Logic + Control (Robert Kowalski 1973; [Kow97])
▶ We will use the programming language Prolog as an example.
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Prolog Terms and Literals

▶ Definition 1.2. Prologs expresses knowledge about the world via
▶ constants denoted by lower case strings,
▶ variables denoted by upper-case strings or starting with _, and
▶ functions and predicates (lower-case strings) applied to terms.

▶ Definition 1.3. A Prolog term is
▶ a Prolog variable, or constant, or
▶ a Prolog function applied to terms.

A Prolog literal is a constant or a predicate applied to terms.
▶ Example 1.4. The following are
▶ Prolog terms: john, X, _, father(john), . . .
▶ Prolog literals: loves(john,mary), loves(john,_), loves(john,wife_of(john)),. . .
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Prolog Programs: Facts and Rules

▶ Definition 1.5. A Prolog program is a sequence of clauses, i.e.
▶ facts of the form l ., where l is a literal, (a literal and a dot)
▶ rules of the form h:−b1,. . .,bn, where h is called the head literal (or simply head)

and the bi are together called the body of the rule.

A rule h: b1,. . .,bn, should be read as h (is true) if b1 and . . . and bn are.
▶ Example 1.6. Write “something is a car if it has a motor and four wheels” as

car(X) :− has_motor(X),has_wheels(X,4). (variables are upper-case) this is just
an ASCII notation for m(x) ∧ w(x , 4)⇒ car(x)

▶ Example 1.7. The following is a Prolog program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

The first three lines are Prolog facts and the last a rule.
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Prolog Programs: Knowledge bases

▶ Intuition: The knowledge base given by a Prolog program is the set of facts
that can be derived from it under the if/and reading above.

▶ Definition 1.8. The knowledge base given by Prolog program is that set of facts
that can be derived from it by Modus Ponens (MP), ∧I and instantiation.

A A⇒ B

B
MP

A B

A ∧ B
∧I A

[B/X ](A)
Subst
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Querying the Knowledge Base: Size Matters

▶ Idea: We want to see whether a fact is in the knowledge base.
▶ Definition 1.9. A query is a list of Prolog terms called goal literal (also subgoals

or simply goals). We write a query as ?−A1, . . .,An. where Ai are goals.
▶ Problem: Knowledge bases can be big and even infinite. (cannot pre compute)
▶ Example 1.10. The knowledge base induced by the Prolog program

nat(zero).
nat(s(X)) :− nat(X).

contains the facts nat(zero), nat(s(zero)), nat(s(s(zero))), . . .
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Querying the Knowledge Base: Backchaining

▶ Definition 1.11. Given a query Q: ?− A1, . . .,An. and rule R: h:− b1,. . .,bn,
backchaining computes a new query by
1. finding terms for all variables in h to make h and A1 equal and
2. replacing A1 in Q with the body literals of R, where all variables are suitably

replaced.
▶ Backchaining motivates the names goal/subgoal:
▶ the literals in the query are “goals” that have to be satisfied,
▶ backchaining does that by replacing them by new “goals”.

▶ Definition 1.12. The Prolog interpreter keeps backchaining from the top to the
bottom of the program until the query
▶ succeeds, i.e. contains no more goals, or (answer: true)
▶ fails, i.e. backchaining becomes impossible. (answer: false)

▶ Example 1.13 (Backchaining). We continue 1.10

?− nat(s(s(zero))).
?− nat(s(zero)).
?− nat(zero).
true
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Querying the Knowledge Base: Failure

▶ If no instance of a query can be derived from the knowledge base, then the
Prolog interpreter reports failure.

▶ Example 1.14. We vary 1.13 using 0 instead of zero.

?− nat(s(s(0))).
?− nat(s(0)).
?− nat(0).
FAIL
false
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Querying the Knowledge base: Answer Substitutions

▶ Definition 1.15. If a query contains variables, then Prolog will return an answer
substitution as the result to the query, i.e the values for all the query variables
accumulated during repeated backchaining.

▶ Example 1.16. We talk about (Bavarian) cars for a change, and use a query
with a variables
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):−has_wheels(X,4),has_motor(X).
?− car(Y) % query
?− has_wheels(Y,4),has_motor(Y). % substitution X = Y
?− has_motor(mybmw). % substitution Y = mybmw
Y = mybmw % answer substitution
true
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PROLOG: Are there Fallible Greeks?

▶ Program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

▶ Example 1.17 (Query). ?−fallible(X),greek(X).
▶ Answer substitution: [sokrates/X ]
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3.2 Programming as Search
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3.2.1 Knowledge Bases and Backtracking
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Depth-First Search with Backtracking

▶ So far, all the examples led to direct success or to failure. (simple KB)
▶ Definition 2.1 (Prolog Search Procedure). The Prolog interpreter employes

top-down, left-right depth first search, concretely, Prolog search:
▶ works on the subgoals in left right order.
▶ matches first query with the head literals of the clauses in the program in top-down

order.
▶ if there are no matches, fail and backtracks to the (chronologically) last backtrack

point.
▶ otherwise backchain on the first match, keep the other matches in mind for

backtracking via backtrack points.

We say that a goal G matches a head H, iff we can make them equal by
replacing variables in H with terms.

▶ We can force backtracking to compute more answers by typing ;.
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Backtracking by Example

▶ Example 2.2. We extend ??:
has_wheels(mytricycle,3).
has_wheels(myrollerblade,3).
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,3),has_motor(X). % cars sometimes have three wheels
car(X):-has_wheels(X,4),has_motor(X). % and sometimes four.
?- car(Y).
?- has_wheels(Y,3),has_motor(Y). % backtrack point 1
Y = mytricycle % backtrack point 2
?- has_motor(mytricycle).
FAIL % fails, backtrack to 2
Y = myrollerblade % backtrack point 2
?- has_motor(myrollerblade).
FAIL % fails, backtrack to 1
?- has_wheels(Y,4),has_motor(Y).
Y = mybmw
?- has_motor(mybmw).
Y=mybmw
true
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3.2.2 Programming Features
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Can We Use This For Programming?

▶ Question: What about functions? E.g. the addition function?
▶ Question: We cannot define functions, in Prolog!
▶ Idea (back to math): use a three-place predicate.
▶ Example 2.3. add(X,Y,Z) stands for X+Y=Z
▶ Now we can directly write the recursive equations X + 0 = X (base case) and

X + s(Y ) = s(X + Y ) into the knowledge base.

add(X,zero,X).
add(X,s(Y),s(Z)) :− add(X,Y,Z).

▶ Similarly with multiplication and exponentiation.

mult(X,zero,zero).
mult(X,s(Y),Z) :− mult(X,Y,W), add(X,W,Z).

expt(X,zero,s(zero)).
expt(X,s(Y),Z) :− expt(X,Y,W), mult(X,W,Z).
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More Examples from elementary Arithmetic
▶ Example 2.4. We can also use the add relation for subtraction without changing

the implementation. We just use variables in the “input positions” and ground
terms in the other two. (possibly very inefficient “generate and test approach”)

?−add(s(zero),X,s(s(s(zero)))).
X = s(s(zero))
true

▶ Example 2.5. Computing the nth Fibonacci number (0, 1, 1, 2, 3, 5, 8, 13,. . . ;
add the last two to get the next), using the addition predicate above.

fib(zero,zero).
fib(s(zero),s(zero)).
fib(s(s(X)),Y):−fib(s(X),Z),fib(X,W),add(Z,W,Y).

▶ Example 2.6. Using Prolog’s internal arithmetic: a goal of the form ?− D ise.
— where e is a ground arithmetic expression binds D to the result of evaluating
e.
fib(0,0).
fib(1,1).
fib(X,Y):− D is X − 1, E is X − 2,fib(D,Z),fib(E,W), Y is Z + W.
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Adding Lists to Prolog

▶ Lists are represented by terms of the form [a,b,c,. . .]
▶ First/rest representation [F|R], where R is a rest list.
▶ predicates for member, append and reverse of lists in default Prolog

representation.

member(X,[X|_]).
member(X,[_|R]):−member(X,R).

append([],L,L).
append([X|R],L,[X|S]):−append(R,L,S).

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).
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Relational Programming Techniques

▶ Example 2.7. Parameters have no unique direction “in” or “out”

?− rev(L,[1,2,3]).
?− rev([1,2,3],L1).
?− rev([1|X],[2|Y]).

▶ Example 2.8. Symbolic programming by structural induction

rev([],[]).
rev([X|Xs],Ys) :− ...

▶ Example 2.9. Generate and test:

sort(Xs,Ys) :− perm(Xs,Ys), ordered(Ys).
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3.2.3 Advanced Relational Programming
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Specifying Control in Prolog

▶ Remark 2.10. The running time of the program from 2.9 is not O(nlog2(n))
which is optimal for sorting algorithms.

sort(Xs,Ys) :− perm(Xs,Ys), ordered(Ys).

▶ Idea: Gain computational efficiency by shaping the search!
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Functions and Predicates in Prolog

▶ Remark 2.11. Functions and predicates have radically different roles in Prolog.
▶ Functions are used to represent data. (e.g. father(john) or s(s(zero)))
▶ Predicates are used for stating properties about and computing with data.

▶ Remark 2.12. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

▶ Example 2.13. Consider again the reverse program for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list
constructors [. . .] are just used to construct lists from arguments.

▶ Example 2.14 (Trees and Leaf Counting). We represent (unlabelled) trees
via the function t from tree lists to trees. For instance, a balanced binary tree of
depth 2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R,W)), Y is Z + W.
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Functions and Predicates in Prolog

▶ Remark 2.15. Functions and predicates have radically different roles in Prolog.
▶ Functions are used to represent data. (e.g. father(john) or s(s(zero)))
▶ Predicates are used for stating properties about and computing with data.

▶ Remark 2.16. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

▶ Example 2.17. Consider again the reverse program for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list
constructors [. . .] are just used to construct lists from arguments.

▶ Example 2.18 (Trees and Leaf Counting). We represent (unlabelled) trees
via the function t from tree lists to trees. For instance, a balanced binary tree of
depth 2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R,W)), Y is Z + W.
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Functions and Predicates in Prolog

▶ Remark 2.19. Functions and predicates have radically different roles in Prolog.
▶ Functions are used to represent data. (e.g. father(john) or s(s(zero)))
▶ Predicates are used for stating properties about and computing with data.

▶ Remark 2.20. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

▶ Example 2.21. Consider again the reverse program for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list
constructors [. . .] are just used to construct lists from arguments.

▶ Example 2.22 (Trees and Leaf Counting). We represent (unlabelled) trees
via the function t from tree lists to trees. For instance, a balanced binary tree of
depth 2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R,W)), Y is Z + W.
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For more information on Prolog

RTFM (=̂ “read the fine manuals”)

▶ RTFM Resources: There are also lots of good tutorials on the web,
▶ I personally like [Fis; LPN],
▶ [Fla94] has a very thorough logic-based introduction,
▶ consult also the SWI Prolog Manual [SWI],
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Chapter 4
Recap of Prerequisites from Math & Theoretical

Computer Science
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4.1 Recap: Complexity Analysis in AI?
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Performance and Scaling

▶ Suppose we have three algorithms to choose from. (which one to select)
▶ Systematic analysis reveals performance characteristics.
▶ Example 1.1. For a problem of size n we have

performance
size linear quadratic exponential
n 100nµs 7n2µs 2nµs
1 100µs 7µs 2µs
5 .5ms 175µs 32µs

10 1ms .7ms 1ms
45 4.5ms 14ms 1.1Y

100 . . . . . . . . .
1 000 . . . . . . . . .

10 000 . . . . . . . . .
1 000 000 . . . . . . . . .
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What?! One year?

▶ 210 = 1 024 (1024µs ≃ 1ms)
▶ 245 = 35 184 372 088 832 (3.5×1013µs ≃ 3.5×107s ≃ 1.1Y )
▶ Example 1.2. we denote all times that are longer than the age of the universe

with −
performance

size linear quadratic exponential
n 100nµs 7n2µs 2nµs
1 100µs 7µs 2µs
5 .5ms 175µs 32µs

10 1ms .7ms 1ms
45 4.5ms 14ms 1.1Y

< 100 100ms 7s 1016Y

1 000 1s 12min −
10 000 10s 20h −

1 000 000 1.6min 2.5mon −
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Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.

▶ Definition: Let S ⊆ N→ N be a set of natural number functions, then we say
that analgorithm α that terminates in time t(n) for all inputs of size n has
running time T (α):=t.
We say that α has time complexity in S (written T (α)∈S or colloquially
T (α)=S), iff t∈S . We say α has space complexity in S , iff α uses only memory
of size s(n) on inputs of size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)
▶ Definition: The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(ln(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f |∃k>0 f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0∈N, such that f (n)≤g(n) for all n>n0.

▶ For k ′>2 and k>1 we have O(1)⊂O(logn)⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.3. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: can be accessed in constant time

▶ variable:
▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.4. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).

▶ variable:
▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.5. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: need the complexity of the value

▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.6. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).

▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.7. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: compose the complexities of the function and the argument

▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.8. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).

▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.9. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: has to compupte the value ; has its complexity

▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.10. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).

▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.11. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: has the maximal complexity of the components

▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.12. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).

▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.13. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: has the maximal complexity of the condition and branches

▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.14. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.15. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: multiplies complexities

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.
▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s

theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.16. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: If α is whileγdoφend, with TΓ(γ)∈O(f ), TΓ∪CΓ(γ)(φ)∈O(g), then
TΓ(α)∈O(f (n) · g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.
▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s

theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.17. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: If α is whileγdoφend, with TΓ(γ)∈O(f ), TΓ∪CΓ(γ)(φ)∈O(g), then
TΓ(α)∈O(f (n) · g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s
theorem.
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Determining the Time/Space Complexity of Algorithms

▶ Definition 1.18. Given a function Γ that maps variables v to sets Γ(v), we
compute TΓ(α) and CΓ(α) of an imperative algorithm α by induction on the
structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v∈dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f ) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: If α is whileγdoφend, with TΓ(γ)∈O(f ), TΓ∪CΓ(γ)(φ)∈O(g), then
TΓ(α)∈O(f (n) · g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.
▶ Recursion is much more difficult to analyze ; recurrence relations and Master’s

theorem.
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Why Complexity Analysis? (General)
▶ Example 1.19. Once upon a time I was trying to invent an efficient algorithm.
▶ My first algorithm attempt didn’t work, so I had to try harder.

▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.
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Why Complexity Analysis? (General)
▶ Example 1.20. Once upon a time I was trying to invent an efficient algorithm.
▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.

▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.
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Why Complexity Analysis? (General)
▶ Example 1.21. Once upon a time I was trying to invent an efficient algorithm.
▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .

▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.
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Why Complexity Analysis? (General)
▶ Example 1.22. Once upon a time I was trying to invent an efficient algorithm.
▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:

▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN
one actually solve this efficiently? – NP hardness was there to rescue me.
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Why Complexity Analysis? (General)
▶ Example 1.23. Once upon a time I was trying to invent an efficient algorithm.
▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.
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Why Complexity Analysis? (General)

▶ Example 1.24. Trying to find a sea route east to India (from Spain) (does not
exist)

▶ Observation: Complexity theory saves you from spending lots of time trying to
invent algorithms that do not exist.
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Reminder (?): NP and PSPACE (details ; e.g. [GJ79])

▶ Turing Machine: Works on a tape consisting of cells, across which its
Read/Write head moves. The machine has internal states. There is a transition
function that specifies – given the current cell content and internal state – what
the subsequent internal state will be, how what the R/W head does (write a
symbol and/or move). Some internal states are accepting.

▶ Decision problems are in NP if there is a non deterministic Turing machine that
halts with an answer after time polynomial in the size of its input. Accepts if at
least one of the possible runs accepts.

▶ Decision problems are in NPSPACE, if there is a non deterministic Turing
machine that runs in space polynomial in the size of its input.

▶ NP vs. PSPACE: Non-deterministic polynomial space can be simulated in
deterministic polynomial space. Thus PSPACE = NPSPACE, and hence
(trivially) NP ⊆ PSPACE.
It is commonly believed that NP ̸⊇PSPACE. (similar to P ⊆ NP)
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The Utility of Complexity Knowledge (NP-Hardness)

▶ Assume: In 3 years from now, you have finished your studies and are working
in your first industry job. Your boss Mr. X gives you a problem and says Solve
It!. By which he means, write a program that solves it efficiently.

▶ Question: Assume further that, after trying in vain for 4 weeks, you got the
next meeting with Mr. X. How could knowing about NP hardness help?

▶ Answer: It helps you save your skin with (theoretical computer) science!
▶ Do you want to say Um, sorry, but I couldn’t find an efficient solution, please don’t

fire me?
▶ Or would you rather say Look, I didn’t find an efficient solution. But neither could all

the Turing-award winners out there put together, because the problem is NP hard?
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The Utility of Complexity Knowledge (NP-Hardness)

▶ Assume: In 3 years from now, you have finished your studies and are working
in your first industry job. Your boss Mr. X gives you a problem and says Solve
It!. By which he means, write a program that solves it efficiently.

▶ Question: Assume further that, after trying in vain for 4 weeks, you got the
next meeting with Mr. X. How could knowing about NP hardness help?

▶ Answer: It helps you save your skin with (theoretical computer) science!
▶ Do you want to say Um, sorry, but I couldn’t find an efficient solution, please don’t

fire me?
▶ Or would you rather say Look, I didn’t find an efficient solution. But neither could all

the Turing-award winners out there put together, because the problem is NP hard?
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4.2 Recap: Formal Languages and Grammars

Michael Kohlhase: Artificial Intelligence 1 66 2024-02-08



The Mathematics of Strings

▶ Definition 2.1. An alphabet A is a finite set; we call each element a∈A a
character, and an n tuple s∈An a string (of length n over A).

▶ Definition 2.2. Note that A0 = {⟨⟩}, where ⟨⟩ is the (unique) 0-tuple. With the
definition above we consider ⟨⟩ as the string of length 0 and call it the empty
string and denote it with ϵ.

▶ Note: Sets ̸= strings, e.g. {1, 2, 3} = {3, 2, 1}, but ⟨1, 2, 3⟩ ≠ ⟨3, 2, 1⟩.
▶ Notation: We will often write a string ⟨c1, . . ., cn⟩ as ”c1. . .cn”, for instance

”abc” for ⟨a, b, c⟩
▶ Example 2.3. Take A = {h, 1, /} as an alphabet. Each of the members h, 1,

and / is a character. The vector ⟨/, /, 1, h, 1⟩ is a string of length 5 over A.
▶ Definition 2.4 (String Length). Given a string s we denote its length with |s|.
▶ Definition 2.5. The concatenation conc(s, t) of two strings s = ⟨s1, ..., sn⟩∈An

and t = ⟨t1, ..., tm⟩∈Am is defined as ⟨s1, ..., sn, t1, ..., tm⟩∈An+m.
We will often write conc(s, t) as s + t or simply st

▶ Example 2.6. conc(”text”, ”book”) = ”text” + ”book” = ”textbook”
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Formal Languages

▶ Definition 2.7. Let A be an alphabet, then we define the sets A+:=
⋃

i∈N+Ai of
nonempty string and A∗:=A+ ∪ {ϵ} of strings.

▶ Example 2.8. If A = {a, b, c}, then
A∗ = {ϵ, a, b, c, aa, ab, ac, ba, . . . , aaa, . . . }.

▶ Definition 2.9. A set L ⊆ A∗ is called a formal language over A.
▶ Definition 2.10. We use c[n] for the string that consists of the character c

repeated n times.
▶ Example 2.11. #[5] = ⟨#,#,#,#,#⟩
▶ Example 2.12. The set M:={ba[n]|n∈N} of strings that start with character b

followed by an arbitrary numbers of a’s is a formal language over A = {a, b}.
▶ Definition 2.13 (Operations on Languages). Let L, L1, and L2 be formal

languages over the same alphabet, then we define language level operations:
The concatenation of L1 and L2; L1L2:={s1s2|s1∈L1 ∧ s2∈L2}, L+:={s+|s∈L},
and L∗:={s∗|s∈L}.
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Phrase Structure Grammars (Theory)

▶ Recap: A formal language is an arbitrary set of symbol sequences.
▶ Problem: This may be infinite and even undecidable even if A is finite.
▶ Idea: Find a way of representing formal languages with structure finitely.
▶ Definition 2.14. A phrase structure grammar (or just grammar) is a tuple

⟨N ,Σ,P ,S ⟩ where
▶ N is a finite set of nonterminal symbols,
▶ Σ is a finite set of terminal symbols, members of Σ ∪ N are called symbols.
▶ P is a finite set of production rules: pairs p:=h→b (also written as h⇒b), where

h∈(Σ ∪ N)∗N(Σ ∪ N)∗ and b∈(Σ ∪ N)∗. The string h is called the head of p and b
the body.

▶ S∈N is a distinguished symbol called the start symbol (also sentence symbol).
▶ Intuition: Production rules map strings with at least one nonterminal to

arbitrary other strings.
▶ Notation: If we have n rules h→bi sharing a head, we often write

h→b1 | . . . | bn instead.
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Phrase Structure Grammars (cont.)

▶ Example 2.15. A simple phrase structure grammar G :

S → NP Vi
NP → Article N

Article → the | a | an
N → dog | teacher | . . .
Vi → sleeps | smells | . . .

Here S , is the start symbol, NP, VP, Article, N, and Vi are nonterminals.
▶ Definition 2.16. The subset of lexical rules, i.e. those whose body consists of a

single terminal is called its lexicon and the set of body symbols the vocabulary
(or alphabet). The nonterminals in their heads are called lexical categories.

▶ Definition 2.17. The non-lexicon production rules are called structural, and the
nonterminals in the heads are called phrasal categories.
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Phrase Structure Grammars (Theory)
▶ Idea: Each symbol sequence in a formal language can be analyzed/generated

by the grammar.
▶ Definition 2.18. Given a phrase structure grammar G :=⟨N ,Σ,P ,S ⟩, we say G

derives t∈(Σ ∪ N)∗ from s∈(Σ ∪ N)∗ in one step, iff there is a production rule
p∈P with p = h→b and there are u, v∈(Σ ∪ N)∗, such that s = suhv and
t = ubv . We write s→p

G t (or s→G t if p is clear from the context) and use →∗
G

for the reflexive transitive closure of →G . We call s→∗
G t a G derivation of t

from s.
▶ Definition 2.19. Given a phrase structure grammar G :=⟨N ,Σ,P ,S ⟩, we say

that s∈(N ∪ Σ)∗ is a sentential form of G , iff S→∗
G s. A sentential form that

does not contain nontermials is called a sentence of G , we also say that G
accepts s.

▶ Definition 2.20. The language L(G ) of G is the set of its sentences.
Definition 2.21. We call two grammars equivalent, iff they have the same
languages.

▶ Definition 2.22. Parsing, syntax analysis, or syntactic analysis is the process of
analyzing a string of symbols, either in a formal or a natural language by means
of a grammar.
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Phrase Structure Grammars (Example)

▶ Example 2.23. In the grammar G from 2.15:

1. Article teacher Vi is a sentential form,

S →G NP Vi

→G Article N Vi

→G Article teacher Vi

2. The teacher sleeps is a sentence.

S →∗
G Article teacher Vi

→G the teacher Vi

→G the teacher sleeps

S → NP Vi
NP → Article N

Article → the | a | an | . . .
N → dog | teacher | . . .
Vi → sleeps | smells | . . .
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Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.24. We call a grammar and the formal language it accepts:

1. context-sensitive, if the bodies of production rules have no less symbols than the
heads,

2. context-free, if the heads have exactly one symbol,
3. regular, if additionally, bodies is empty or consists of a nonterminal, optionally

followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular, iff it is the language of a respective
grammar. Context-free grammars are sometimes CFLs and context-free
languages CFGs.

▶ Example 2.25 (Languages and their Grammars).

▶ Context-sensitive: The language {a[n]b[n]c [n]}
▶ Context-free: The language {a[n]b[n]}
▶ Regular: The language {a[n]}

▶ Observation: Natural languages are probably context-sensitive but parsable in
real time! (like languages low in the hierarchy)
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Grammar Types (Chomsky Hierarchy [Cho65])
▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.26. We call a grammar and the formal language it accepts:

1. context-sensitive, if the bodies of production rules have no less symbols than the
heads,

2. context-free, if the heads have exactly one symbol,
3. regular, if additionally, bodies is empty or consists of a nonterminal, optionally

followed by a terminal symbol.
By extension, a formal language L is called
context-sensitive/context-free/regular, iff it is the language of a respective
grammar. Context-free grammars are sometimes CFLs and context-free
languages CFGs.

▶ Example 2.27 (Languages and their Grammars).
▶ Context-sensitive: The language {a[n]b[n]c [n]} is accepted by

S → a b c | A
A → a A B c | a b c

c B → B c

b B → b b

▶ Context-free: The language {a[n]b[n]}
▶ Regular: The language {a[n]}

▶ Observation: Natural languages are probably context-sensitive but parsable in
real time! (like languages low in the hierarchy)
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Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.28. We call a grammar and the formal language it accepts:

1. context-sensitive, if the bodies of production rules have no less symbols than the
heads,

2. context-free, if the heads have exactly one symbol,
3. regular, if additionally, bodies is empty or consists of a nonterminal, optionally

followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular, iff it is the language of a respective
grammar. Context-free grammars are sometimes CFLs and context-free
languages CFGs.

▶ Example 2.29 (Languages and their Grammars).
▶ Context-sensitive: The language {a[n]b[n]c [n]}
▶ Context-free: The language {a[n]b[n]} is accepted by S→a S b | ϵ.

▶ Regular: The language {a[n]}
▶ Observation: Natural languages are probably context-sensitive but parsable in

real time! (like languages low in the hierarchy)
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Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.30. We call a grammar and the formal language it accepts:

1. context-sensitive, if the bodies of production rules have no less symbols than the
heads,

2. context-free, if the heads have exactly one symbol,
3. regular, if additionally, bodies is empty or consists of a nonterminal, optionally

followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular, iff it is the language of a respective
grammar. Context-free grammars are sometimes CFLs and context-free
languages CFGs.

▶ Example 2.31 (Languages and their Grammars).
▶ Context-sensitive: The language {a[n]b[n]c [n]}
▶ Context-free: The language {a[n]b[n]}
▶ Regular: The language {a[n]} is accepted by S→S a

▶ Observation: Natural languages are probably context-sensitive but parsable in
real time! (like languages low in the hierarchy)
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Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.32. We call a grammar and the formal language it accepts:

1. context-sensitive, if the bodies of production rules have no less symbols than the
heads,

2. context-free, if the heads have exactly one symbol,
3. regular, if additionally, bodies is empty or consists of a nonterminal, optionally

followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular, iff it is the language of a respective
grammar. Context-free grammars are sometimes CFLs and context-free
languages CFGs.

▶ Example 2.33 (Languages and their Grammars).
▶ Context-sensitive: The language {a[n]b[n]c [n]}
▶ Context-free: The language {a[n]b[n]}
▶ Regular: The language {a[n]}

▶ Observation: Natural languages are probably context-sensitive but parsable in
real time! (like languages low in the hierarchy)
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Useful Extensions of Phrase Structure Grammars

▶ Definition 2.34. The Bachus Naur form or Backus normal form (BNF) is a
metasyntax notation for context-free grammars.
It extends the body of a production rule by mutiple (admissible) constructors:
▶ alternative: s1 | . . . | sn,
▶ repetition: s∗ (arbitrary many s) and s+ (at least one s),
▶ optional: [s] (zero or one times), and
▶ grouping: (s1 ; . . . ; sn), useful e.g. for repetition.

▶ Observation: All of these can be eliminated, .e.g (; many more rules)
▶ replace X→Z (s∗) W with the production rules X→Z Y W , Y→ϵ, and Y→Y s.
▶ replace X→Z (s+) W with the production rules X→Z Y W , Y→s, and Y→Y s.
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An Grammar Notation for AI-1
▶ Problem: In grammars, notations for nonterminal symbols should be
▶ short and mnemonic (for the use in the body)
▶ close to the official name of the syntactic category (for the use in the head)

▶ In AI-1 we will only use context-free grammars (simpler, but problem still
applies)

▶ in AI-1: I will try to give “grammar overviews” that combine those, e.g. the
grammar of first-order logic.

variables X ∈ V1
function constants f k ∈ Σf

k

predicate constants pk ∈ Σp
k

terms t ::= X variable
| f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction
| ∀X A quantifier
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4.3 Mathematical Language Recap
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Mathematical Structures

▶ Observation: Mathematicians often cast object classes as mathematical
structures.

▶ We have just seen this: repeated here for convenience.
▶ Definition 3.1. A phrase structure grammar (or just grammar) is a tuple

⟨N ,Σ,P ,S ⟩ where
▶ N is a finite set of nonterminal symbols,
▶ Σ is a finite set of terminal symbols, members of Σ ∪ N are called symbols.
▶ P is a finite set of production rules: pairs p:=h→b (also written as h⇒b), where

h∈(Σ ∪ N)∗N(Σ ∪ N)∗ and b∈(Σ ∪ N)∗. The string h is called the head of p and b
the body.

▶ S∈N is a distinguished symbol called the start symbol (also sentence symbol).
▶ Observation: Even though we call production rules “pairs” above, they are also

mathematical structures ⟨h, b⟩ with a funny notation h→b.
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Mathematical Structures in Programming
▶ Most programming languages have some way of creating “named structures”.

Referencing components is usually done via “dot notation”
▶ Example 3.2 (Structs in C).

// Create strutures grule grammar
struct grule {

char[][] head;
char[][] body;

}

struct grammar {
char[][] nterminals;
char[][] termininals;
grule[] grules;
char[] start;

}

int main() {
struct grule r1;
r1.head = "foo";
r1.body = "bar";

}
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In AI-1 we use a mixture between Math and Programming
Styles

▶ In AI-1 we use mathematical notation, . . .
▶ Definition 3.3. A structure signature combines the components, their “types”,

and accessor names of a mathematical structure in a tabular overview.
▶ Example 3.4.

grammar =

〈 N Set nonterminal symbols,
Σ Set terminal symbols,
P {h→b| . . . } productionrules,
S N start symbol

〉

grule h→b =
〈

h (Σ ∪ N)∗,N, (Σ ∪ N)∗ head,
b (Σ ∪ N)∗ body

〉
Read N Set nonterminal symbols as “N is in set and is a nonterminal symbol”.
Here – and in the future – we will use Set for the class of sets ; “N is a set”.

▶ I will try to give structure signatures where necessary.
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Chapter 5
Rational Agents: a Unifying Framework for

Artificial Intelligence
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5.1 Introduction: Rationality in Artificial
Intelligence
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What is AI? Going into Details

▶ Recap: AI studies how we can make the computer do things that humans can
still do better at the moment. (humans are proud to be rational)

▶ What is AI?: Four possible answers/facets: Systems that

think like humans think rationally
act like humans act rationally

expressed by four different definitions/quotes:

Humanly Rational
Thinking “The exciting new effort

to make computers think
. . . machines with human-like
minds” [Hau85]

“The formalization of mental
faculties in terms of computa-
tional models” [CM85]

Acting “The art of creating machines
that perform actions requiring
intelligence when performed by
people” [Kur90]

“The branch of CS concerned
with the automation of appro-
priate behavior in complex situ-
ations” [LS93]

▶ Idea: Rationality is performance-oriented rather than based on imitation.

Michael Kohlhase: Artificial Intelligence 1 79 2024-02-08



So, what does modern AI do?

▶ Acting Humanly: Turing test, not much pursued outside Loebner prize
▶ =̂ building pigeons that can fly so much like real pigeons that they can fool pigeons
▶ Not reproducible, not amenable to mathematical analysis

▶ Thinking Humanly: ; Cognitive Science.
▶ How do humans think? How does the (human) brain work?
▶ Neural networks are a (extremely simple so far) approximation

▶ Thinking Rationally: Logics, Formalization of knowledge and inference
▶ You know the basics, we do some more, fairly widespread in modern AI

▶ Acting Rationally: How to make good action choices?
▶ Contains logics (one possible way to make intelligent decisions)
▶ We are interested in making good choices in practice (e.g. in AlphaGo)
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Acting humanly: The Turing test
▶ Introduced by Alan Turing (1950) “Computing machinery and

intelligence” [Tur50]:
▶ “Can machines think?” −→ “Can machines behave intelligently?”
▶ Definition 1.1. The Turing test is an operational test for intelligent behavior

based on an imitation game over teletext (arbitrary topic)

▶ It was predicted that by 2000, a machine might have a 30% chance of fooling a
lay person for 5 minutes.

▶ Note: In [Tur50], Alan Turing
▶ anticipated all major arguments against AI in following 50 years and
▶ suggested major components of AI: knowledge, reasoning, language understanding,

learning
▶ Problem: Turing test is not reproducible, constructive, or amenable to

mathematical analysis!
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Thinking humanly: Cognitive Science
▶ 1960s: “cognitive revolution”: information processing psychology replaced

prevailing orthodoxy of behaviorism.
▶ Requires scientific theories of internal activities of the brain
▶ What level of abstraction? “Knowledge” or “circuits”?
▶ How to validate?: Requires

1. Predicting and testing behavior of human subjects or (top-down)
2. Direct identification from neurological data. (bottom-up)

▶ Definition 1.2. Cognitive Science is the interdisciplinary, scientific study of the
mind and its processes. It examines the nature, the tasks, and the functions of
cognition.

▶ Definition 1.3. Cognitive Neuroscience studies the biological processes and
aspects that underlie cognition, with a specific focus on the neural connections
in the brain which are involved in mental processes.

▶ Both approaches/disciplines are now distinct from AI.
▶ Both share with AI the following characteristic: the available theories do not

explain (or engender) anything resembling human-level general intelligence
▶ Hence, all three fields share one principal direction!
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Thinking rationally: Laws of Thought

▶ Normative (or prescriptive) rather than descriptive
▶ Aristotle: what are correct arguments/thought processes?
▶ Several Greek schools developed various forms of logic: notation and rules of

derivation for thoughts; may or may not have proceeded to the idea of
mechanization.

▶ Direct line through mathematics and philosophy to modern AI
▶ Problems:

1. Not all intelligent behavior is mediated by logical deliberation
2. What is the purpose of thinking? What thoughts should I have out of all the

thoughts (logical or otherwise) that I could have?
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Acting Rationally

▶ Idea: Rational behavior =̂ doing the right thing!
▶ Definition 1.4. Rational behavior consists of always doing what is expected to

maximize goal achievement given the available information.
▶ Rational behavior does not necessarily involve thinking e.g., blinking reflex —

but thinking should be in the service of rational action.
▶ Aristotle: Every art and every inquiry, and similarly every action and pursuit, is

thought to aim at some good. (Nicomachean Ethics)
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The Rational Agents

▶ Definition 1.5. An agent is an entity that perceives and acts.
▶ Central Idea: This course is about designing agent that exhibit rational

behavior, i.e. for any given class of environments and tasks, we seek the agent
(or class of agents) with the best performance.

▶ Caveat: Computational limitations make perfect rationality unachievable
; design best program for given machine resources.
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5.2 Agents and Environments as a Framework
for AI
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Agents and Environments

▶ Definition 2.1. An agent is anything that
▶ perceives its environment via sensors (a means of sensing the environment)
▶ acts on it with actuators (means of changing the environment).

▶ Example 2.2. Agents include humans, robots, softbots, thermostats, etc.
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Modeling Agents Mathematically and Computationally

▶ Definition 2.3. A percept is the perceptual input of an agent at a specific time
instant.

▶ Definition 2.4. Any recognizable, coherent employment of the actuators of an
agent is called an action.

▶ Definition 2.5. The agent function f a of an agent a maps from percept
histories to actions:

f a : P∗→A
▶ We assume that agents can always perceive their own actions. (but not

necessarily their consequences)
▶ Problem: agent functions can become very big (theoretical tool only)
▶ Definition 2.6. An agent function can be implemented by an agent program

that runs on a physical agent architecture.
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Agent Schema: Visualizing the Internal Agent Structure

▶ Agent Schema: We will use the following kind of agent schema to visualize
the internal structure of an agent:

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Different agents differ on the contents of the white box in the center.
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Example: Vacuum-Cleaner World and Agent

▶ percepts: location and
contents, e.g., [A,Dirty ]

▶ actions: Left, Right, Suck ,
NoOp

Percept sequence Action
[A,Clean] Right
[A,Dirty ] Suck
[B,Clean] Left
[B,Dirty ] Suck
[A,Clean], [A,Clean] Right
[A,Clean], [A,Dirty ] Suck
[A,Clean], [B,Clean] Left
[A,Clean], [B,Dirty ] Suck
[A,Dirty ], [A,Clean] Right
[A,Dirty ], [A,Dirty ] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right
[A,Clean], [A,Clean], [A,Dirty ] Suck
...

...

▶ Science Question: What is the right agent function?
▶ AI Question: Is there an agent architecture and an agent program that

implements it.
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Example: Vacuum-Cleaner World and Agent

▶ Example 2.7 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left
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Table-Driven Agents

▶ Idea: We can just implement the agent function as a table and look up actions.
▶ We can directly implement this:

function Table−Driven−Agent(percept) returns an action
persistent table /∗ a table of actions indexed by percept sequences ∗/
var percepts /∗ a sequence, initially empty ∗/
append percept to the end of percepts
action := lookup(percepts, table)
return action

▶ Problem: Why is this not a good idea?
▶ The table is much too large: even with n binary percepts whose order of occurrence

does not matter, we have 2n rows in the table.
▶ Who is supposed to write this table anyways, even if it “only” has a million entries?
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5.3 Good Behavior ; Rationality
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Rationality

▶ Idea: Try to design agents that are successful! (aka. “do the right thing”)
▶ Definition 3.1. A performance measure is a function that evaluates a sequence

of environments.
▶ Example 3.2. A performance measure for the vacuum cleaner world could
▶ award one point per square cleaned up in time T?
▶ award one point per clean square per time step, minus one per move?
▶ penalize for > k dirty squares?

▶ Definition 3.3. An agent is called rational, if it chooses whichever action
maximizes the expected value of the performance measure given the percept
sequence to date.

▶ Question: Why is rationality a good quality to aim for?

Michael Kohlhase: Artificial Intelligence 1 92 2024-02-08



Consequences of Rationality: Exploration, Learning,
Autonomy

▶ Note: a rational agent need not be perfect
▶ only needs to maximize expected value (rational ̸= omniscient)
▶ need not predict e.g. very unlikely but catastrophic events in the future

▶ percepts may not supply all relevant information (rational ̸= clairvoyant)
▶ if we cannot perceive things we do not need to react to them.
▶ but we may need to try to find out about hidden dangers (exploration)

▶ action outcomes may not be as expected (rational ̸= successful)
▶ but we may need to take action to ensure that they do (more often) (learning)

▶ Note: rational ; exploration, learning, autonomy
▶ Definition 3.4. An agent is called autonomous, if it does not rely on the prior

knowledge about the environment of the designer.
▶ Autonomy avoids fixed behaviors that can become unsuccessful in a changing

environment. (anything else would be irrational)
▶ The agent has to learn all relevant traits, invariants, properties of the

environment and actions.
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PEAS: Describing the Task Environment

▶ Observation: To design a rational agent, we must specify the task
environment in terms of performance measure, environment, actuators, and
sensors, together called the PEAS components.

▶ Example 3.5. When designing an automated taxi:
▶ Performance measure: safety, destination, profits, legality, comfort, . . .
▶ Environment: US streets/freeways, traffic, pedestrians, weather, . . .
▶ Actuators: steering, accelerator, brake, horn, speaker/display, . . .
▶ Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

▶ Example 3.6 (Internet Shopping Agent).
The task environment:
▶ Performance measure: price, quality, appropriateness, efficiency
▶ Environment: current and future WWW sites, vendors, shippers
▶ Actuators: display to user, follow URL, fill in form
▶ Sensors: HTML pages (text, graphics, scripts)
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Examples of Agents: PEAS descriptions

Agent Type Performance
measure

Environment Actuators Sensors

Chess/Go player win/loose/draw game board moves board position
Medical diagno-
sis system

accuracy of di-
agnosis

patient, staff display ques-
tions, diagnoses

keyboard entry
of symptoms

Part-picking
robot

percentage of
parts in correct
bins

conveyor belt
with parts, bins

jointed arm and
hand

camera, joint
angle sensors

Refinery con-
troller

purity, yield,
safety

refinery, opera-
tors

valves, pumps,
heaters, displays

temperature,
pressure, chem-
ical sensors

Interactive En-
glish tutor

student’s score
on test

set of students,
testing accuracy

display exer-
cises, sugges-
tions, correc-
tions

keyboard entry
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Agents

▶ Which are agents?
(A) James Bond.
(B) Your dog.
(C) Vacuum cleaner.
(D) Thermometer.

▶ Answer:
(A/B) : Definite yes. (James Bond & your dog)

(C) : Yes, if it’s an autonomous vacuum cleaner. Else, no.
(D) : No, because it cannot do anything. (Changing the displayed temperature value

could be considered an “action”, but that is not the intended usage of the term)
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5.4 Classifying Environments
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Environment types
▶ Observation 4.1. Agent design is largely determined by the type of

environment it is intended for.
▶ Problem: There is a vast number of possible kinds of environments in AI.
▶ Solution: Classify along a few “dimensions”. (independent characteristics)
▶ Definition 4.2. For an agent a we classify the environment e of a by its type,

which is one of the following. We call e
1. fully observable, iff the a’s sensors give it access to the complete state of the

environment at any point in time, else partially observable.
2. deterministic, iff the next state of the environment is completely determined by the

current state and a’s action, else stochastic.
3. episodic, iff a’s experience is divided into atomic episodes, where it perceives and

then performs a single action. Crucially, the next episode does not depend on
previous ones. Non-episodic environments are called sequential.

4. dynamic, iff the environment can change without an action performed by a, else
static. If the environment does not change but a’s performance measure does, we
call e semidynamic.

5. discrete, iff the sets of e’s state and a’s actions are countable, else continuous.
6. single agent, iff only a acts on e; else multi agent(when must we count parts of e as

agents?)
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Environment Types (Examples)

▶ Example 4.3. Some environments classified:
Solitaire Backgammon Internet shopping Taxi

fully observable No Yes No No
deterministic Yes No Partly No
episodic No Yes No No
static Yes Semi Semi No
discrete Yes Yes Yes No
single agent Yes No Yes (except auctions) No

▶ Observation 4.4. The real world is (of course) a partially observable,
stochastic, sequential, dynamic, continuous, and multi agent environment.(worst
case for AI)
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5.5 Types of Agents
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Agent types

▶ Observation: So far we have described (and analyzed) agents only by their
behavior (cf. agent function f : P∗→A).

▶ Problem: This does not help us to build agents. (the goal of AI)
▶ To build an agent, we need to fix an agent architecture and come up with an

agent program that runs on it.
▶ Preview: Four basic types of agent architectures in order of increasing

generality:
1. simple reflex agents
2. model-based agents
3. goal-based agents
4. utility-based agents

All these can be turned into learning agents.
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Simple reflex agents

▶ Definition 5.1. A simple reflex agent is an agent a that only bases its actions
on the last percept: so the agent function simplifies to f a : P→A.

▶ Agent Schema:
Section 2.4. The Structure of Agents 49

Agent
E

n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept ) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

▶ Example 5.2 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
if status = Dirty then . . .
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Simple reflex agents (continued)

▶ General Agent Program:
function Simple−Reflex−Agent (percept) returns an action

persistent: rules /∗ a set of condition−action rules∗/

state := Interpret−Input(percept)
rule := Rule−Match(state,rules)
action := Rule−action[rule]
return action

▶ Problem: Simple reflex agents can only react to the perceived state of the
environment, not to changes.

▶ Example 5.3. Automobile tail lights signal braking by brightening. A simple
reflex agent would have to compare subsequent percepts to realize.

▶ Problem: Partially observable environments get simple reflex agents into
trouble.

▶ Example 5.4. Vacuum cleaner robot with defective location sensor ; infinite
loops.

Michael Kohlhase: Artificial Intelligence 1 101 2024-02-08



Model-based Reflex Agents: Idea

▶ Idea: Keep track of the state of the world we cannot see in an internal model.
▶ Agent Schema:

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

Michael Kohlhase: Artificial Intelligence 1 102 2024-02-08



Model-based Reflex Agents: Definition

▶ Definition 5.5. A model-based agent is an agent whose actions depend on
▶ a world model: a set S of possible states.
▶ a sensor model S that given a state s and a percepts p determines a new state

S(s, p).
▶ a transition model T , that predicts a new state T (s, a) from a state s and an action

a.
▶ An action function f that maps (new) states to an actions.

If the world model of a model-based agent A is in state s and A has taken action
a, A will transition to state s ′ = T (S(p, s), a) and take action a′ = f (s ′).

▶ Note: As different percept sequences lead to different states, so the agent
function f a : P∗→A no longer depends only on the last percept.

▶ Example 5.6 (Tail Lights Again). Model-based agents can do the 101 if the
states include a concept of tail light brightness.
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Model-Based Agents (continued)

▶ Observation 5.7. The agent program for a model-based agent is of the
following form:

function Model−Based−Agent (percept) returns an action
var state /∗ a description of the current state of the world ∗/
persistent rules /∗ a set of condition−action rules ∗/
var action /∗ the most recent action, initially none ∗/

state := Update−State(state,action,percept)
rule := Rule−Match(state,rules)
action := Rule−action(rule)
return action

▶ Problem: Having a world model does not always determine what to do
(rationally).

▶ Example 5.8. Coming to an intersection, where the agent has to decide
between going left and right.
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Goal-based Agents

▶ Problem: A world model does not always determine what to do (rationally).
▶ Observation: Having a goal in mind does! (determines future actions)
▶ Agent Schema:
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
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Goal-based agents (continued)

▶ Definition 5.9. A goal-based agent is a model-based agent with transition
model T that deliberates actions based on goals and a world model: It employs
▶ a set G of goals and a goal function f that given a (new) state s ′ selects an action a

to best reach G.

The action function is then s 7→f (T (s),G).
▶ Observation: A goal-based agent is more flexible in the knowledge it can utilize.
▶ Example 5.10. A goal-based agent can easily be changed to go to a new

destination, a model-based agent’s rules make it go to exactly one destination.
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Utility-based Agents

▶ Definition 5.11. A utility-based agent uses a world model along with a utility
function that models its preferences among the states of that world. It chooses
the action that leads to the best expected utility.

▶ Agent Schema:
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
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Utility-based vs. Goal-based Agents

▶ Question: What is the difference between goal-based and utility-based agents?
▶ Utility-based Agents are a Generalization: We can always force

goal-directedness by a utility function that only rewards goal states.
▶ Goal-based Agents can do less: A utility function allows rational decisions

where mere goals are inadequate:
▶ conflicting goals (utility gives tradeoff to make rational decisions)
▶ goals obtainable by uncertain actions (utility × likelihood helps)
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Learning Agents

▶ Definition 5.12. A learning agent is an agent that augments the performance
element – which determines actions from percept sequences with
▶ a learning element which makes improvements to the agent’s components,
▶ a critic which gives feedback to the learning element based on an external

performance standard,
▶ a problem generator which suggests actions that lead to new and informative

experiences.
▶ The performance element is what we took for the whole agent above.
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Learning Agents
▶ Agent Schema:
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Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
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Learning Agents: Example

▶ Example 5.13 (Learning Taxi Agent). It has the components
▶ Performance element: the knowledge and procedures for selecting driving actions.

(this controls the actual driving)
▶ critic: observes the world and informs the learning element (e.g. when passengers

complain brutal braking)
▶ Learning element modifies the braking rules in the performance element (e.g. earlier,

softer)
▶ Problem generator might experiment with braking on different road surfaces

▶ The learning element can make changes to any “knowledge components” of the
diagram, e.g. in the
▶ model from the percept sequence (how the world evolves)
▶ success likelihoods by observing action outcomes (what my actions do)

▶ Observation: here, the passenger complaints serve as part of the “external
performance standard” since they correlate to the overall outcome – e.g. in form
of tips or blacklists.

Michael Kohlhase: Artificial Intelligence 1 111 2024-02-08



Domain-Specific vs. General Agents

▶
Domain-Specific Agent vs. General Agent

vs.
Solver specific to a particular prob-
lem (“domain”).

vs. Solver based on description in a
general problem-description language
(e.g., the rules of any board game).

More efficient. vs. Much less design/maintenance work.
▶ What kind of agent are you?
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5.6 Representing the Environment in Agents
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Representing the Environment in Agents

▶ We have seen various components of agents that answer questions like
▶ What is the world like now?
▶ What action should I do now?
▶ What do my actions do?

▶ Next natural question: How do these work? (see the rest of the course)
▶ Important Distinction: How the agent implements the wold model.
▶ Definition 6.1. We call a state representation
▶ atomic, iff it has no internal structure (black box)
▶ factored, iff each state is characterized by attributes and their values.
▶ structured, iff the state includes representations of objects and their relationships.
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Atomic/Factored/Structured State Representations
▶ Schematically: we can visualize the three kinds by

B C

(a) Atomic (b) Factored (b) Structured

B C

▶ Example 6.2. Consider the problem of finding a driving route from one end of a
country to the other via some sequence of cities.
▶ In an atomic representation the state is represented by the name of a city.

▶ In a factored representation we may have attributes “gps-location”, “gas”,. . . (allows
information sharing between states and uncertainty)

▶ But how to represent a situation, where a large truck blocking the road, since it is
trying to back into a driveway, but a loose cow is blocking its path. (attribute
“TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow” is unlikely)

▶ In a structured representation, we can have objects for trucks, cows, etc. and their
relationships.
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Summary

▶ Agents interact with environments through actuators and sensors.
▶ The agent function describes what the agent does in all circumstances.
▶ The performance measure evaluates the environment sequence.
▶ A perfectly rational agent maximizes expected performance.
▶ Agent programs implement (some) agent functions.
▶ PEAS descriptions define task environments.
▶ Environments are categorized along several dimensions:

fully observable? deterministic? episodic? static? discrete? single agent?
▶ Several basic agent architectures exist:

reflex, model-based, goal-based, utility-based

Michael Kohlhase: Artificial Intelligence 1 115 2024-02-08



Part 2
General Problem Solving
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Chapter 6
Problem Solving and Search
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6.1 Problem Solving
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Problem Solving: Introduction
▶ Recap: Agents perceive the environment and compute an action.
▶ In other words: Agents continually solve “the problem of what to do next”.
▶ AI Goal: Find algorithms that help solving problems in general.
▶ Idea: If we can describe/represent problems in a standardized way, we may

have a chance to find general algorithms.
▶ Concretely: We will use the following two concepts to describe problems
▶ States: A set of possible situations in our problem domain (=̂ environments)
▶ Actions: that get us from one state to another. (=̂ agents)
A sequence of actions is a solution, if it brings us from an initial state to a goal
state. Problem solving computes solutions from problem formulations.

▶ Definition 1.1. In offline problem solving an agent computing an action
sequence based complete knowledge of the environment.

▶ Remark 1.2. Offline problem solving only works in fully observable, deterministic,
static, and episodic environments.

▶ Definition 1.3. In online problem solving an agent computes one action at a
time based on incoming perceptions.

▶ This Semester: We largely restrict ourselves to offline problem solving. (easier)
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Example: Traveling in Romania
▶ Scenario: An agent is on holiday in Romania; currently in Arad; flight home

leaves tomorrow from Bucharest; how to get there? We have a map:
68 Chapter 3. Solving Problems by Searching
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

▶ Formulate the Problem:
▶ States: various cities.
▶ Actions: drive between cities.

▶ Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest
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Problem Formulation

▶ Definition 1.4. A problem formulation models a situation using states and
actions at an appropriate level of abstraction. (do not model things like “put on
my left sock”, etc.)
▶ it describes the initial state (we are in Arad)
▶ it also limits the objectives by specifying goal states. (excludes, e.g. to stay another

couple of weeks.)

A solution is a sequence of actions that leads from the initial state to a goal
state.
Problem solving computes solutions from problem formulations.

▶ Finding the right level of abstraction and the required (not more!) information is
often the key to success.
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The Math of Problem Formulation: Search Problems

▶ Definition 1.5. A search problem ⟨S ,A, T , I ,G⟩ consists of a set S of states, a
set A of actions, and a transition model T : A×S→P(S) that assigns to any
action a∈A and state s∈S a set of successor states.
Certain states in S are designated as goal states (also called terminal state)
(G ⊆ S) and initial states I ⊆ S.

▶ Definition 1.6. We say that an action a∈A is applicable in state s∈S, iff
T (a, s) ̸= ∅. We call T a : S→P(S) with T a(s):=T (a, s) the result relation for a
and T A:=

⋃
a∈AT a the result relation of Π.

▶ Definition 1.7. The graph ⟨S, T A⟩ is called the state space induced by Π.
▶ Definition 1.8. A solution for a search problem ⟨S ,A, T , I ,G⟩ consists of a

sequence a1, . . ., an of actions such that for all 1≤i<n
▶ ai is applicable to state s(i−1), where s0∈I,
▶ s i∈T ai (s(i−1)), and sn∈G.

▶ Idea: A solution bring us from I to a goal state.
▶ Definition 1.9. Often we add a cost function c : A→R+

0 that associates a step
cost c(a) to an action a∈A. The cost of a solution is the sum of the step costs
of its actions.
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Structure Overview: Search Problem

▶ The structure overview for search problems:

search problem =

〈 S Set states,
A Set actions,
T A×S →P(S) transition model,
I S initial state,
G P(S) goal states

〉
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Search Problems in deterministic, fully observable
Environments

▶ This semester, we will restrict ourselves to search problems, where (extend in AI
II)
▶ |T (a, s)|≤1 for the transition models and ( ⇝deterministic environment)
▶ I = {s0} ( ⇝fully observable environment)

Definition 1.11. We call a search problem with transition model T
deterministic, iff |T (a, s)|≤1.

▶
▶ Definition 1.12. In a deterministic search problem, T a induces partial function

Sa : S⇀S whose natural domain is the set of states where a is applicable:
Sa(s):=s ′ if T a = {s ′} and undefined at s otherwise. We call Sa the successor
function for a and Sa(s) the successor state of s.

▶ Definition 1.13. The predicate that tests for goal states is called a goal test.
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Blackbox/Declarative Problem Descriptions
▶ Observation: ⟨S ,A, T , I ,G⟩ from 1.5 is essentially a blackbox description; it

(think programming API)
▶ provides the functionality needed to construct a state space, but
▶ gives the algorithm no information about the problem.

▶ Definition 1.14. A declarative description (also called whitebox description)
describes the problem itself ; problem description language

▶ Example 1.15 (Planning Problems as Declarative Descriptions).
The STRIPS language describes planning problems in terms of
▶ a set P of propositional variables (propositions)
▶ a set I ⊆ P of propositions true in the initial state.
▶ a set G ⊆ P, where state s ⊆ P is a goal state if G ⊆ s
▶ a set A of actions, each a∈A with preconditions prea, add list adda, and delete list

dela: a is applicable, if prea ⊆ s, the result state is then (s ∪ adda)\dela,
▶ a function c that maps all actions a to their cost c(a).

▶ Observation 1.16. Declarative descriptions are strictly more powerful than
blackbox descriptions: they induce blackbox descriptions, but also allow to
analyze/simplify the problem.

▶ We will come back to this later ; planning.
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6.2 Problem Types
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Problem types

▶ Definition 2.1. A search problem is called a single state problem, iff it is
▶ fully observable (at least the initial state)
▶ deterministic (unique successor states)
▶ static (states do not change other than by our own actions)
▶ discrete (a countable number of states)

▶ Definition 2.2. A search problem is called a multi state problem
▶ states partially observable (e.g. multiple initial states)
▶ deterministic, static, discrete

▶ Definition 2.3. A search problem is called a contingency problem, iff
▶ the environment is non deterministic (solution can branch, depending on

contingencies)
▶ the state space is unknown (like a baby, agent has to learn about states and actions)
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Example: vacuum-cleaner world

▶ Single-state Problem:

▶ Start in 5
▶ Solution: [right, suck]

70 Chapter 3. Solving Problems by Searching
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Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

▶ Multiple-state Problem:
▶ Start in {1, 2, 3, 4, 5, 6, 7, 8}
▶ Solution: [right, suck, left, suck] right → {2, 4, 6, 8}

suck → {4, 8}
left → {3, 7}
suck → {7}
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Example: Vacuum-Cleaner World (continued)

▶ Contingency Problem:

▶ Murphy’s Law: suck can dirty a clean
carpet

▶ Local sensing: dirty/notdirty at location
only

▶ Start in: {1, 3}
▶ Solution: [suck, right, suck]

suck → {5, 7}
right → {6, 8}
suck → {6, 8}
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Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

▶ better: [suck , right, if dirt then suck] (decide whether in 6 or 8 using local
sensing)
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Single-state problem formulation

▶ Defined by the following four items
1. Initial state: (e.g. Arad)
2. Successor function Sa(s): (e.g. SgoZer = {(Arad ,Zerind), (goSib,Sibiu), . . . })
3. Goal test: (e.g. x = Bucharest (explicit test)

noDirt(x) (implicit test)
)

4. Path cost (optional): (e.g. sum of distances, number of operators executed, etc.)
▶ Solution: A sequence of actions leading from the initial state to a goal state.
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Selecting a state space

▶ Abstraction: Real world is absurdly complex!
State space must be abstracted for problem solving.

▶ (Abstract) state: Set of real states.
▶ (Abstract) operator: Complex combination of real actions.
▶ Example: Arad → Zerind represents complex set of possible routes.
▶ (Abstract) solution: Set of real paths that are solutions in the real world.
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Example: The 8-puzzle

Section 3.2. Example Problems 71
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Figure 3.4 A typical instance of the 8-puzzle.

• States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

• Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

• Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move
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Example: Vacuum-cleaner
36 Chapter 2. Intelligent Agents

A B

Figure 2.2 A vacuum-cleaner world with just two locations.

Percept sequence Action

[A,Clean ] Right
[A,Dirty ] Suck
[B,Clean ] Left
[B,Dirty ] Suck
[A,Clean ], [A,Clean ] Right
[A,Clean ], [A,Dirty ] Suck
...

...
[A,Clean ], [A,Clean ], [A,Clean ] Right
[A,Clean ], [A,Clean ], [A,Dirty ] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world
shown in Figure 2.2.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.

2.2 GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

A rational agent is one that does the right thing—conceptually speaking, every entry in theRATIONAL AGENT

table for the agent function is filled out correctly. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing?

States integer dirt and robot locations
Actions left, right, suck , noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)
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Example: Robotic assembly

States real-valued coordinates of
robot joint angles and parts of the object to be assembled

Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute
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General Problems

▶ Question: Which are “Problems”?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.

▶ Answer:

(A/B) These are problems in the natural language use of the word, but not “problems” in
the sense defined here.

(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the
robot has perfect knowledge about your apartment (else, it’s not a classical search
problem).

(D) That’s a search problem, but not a classical search problem (because it’s
multi-agent). We’ll tackle this kind of problem in
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6.3 Search
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Tree Search Algorithms

▶ Note: The state space of a search problem ⟨S ,A, T , I ,G⟩ is a graph ⟨S, T A⟩.
▶ As graphs are difficult to compute with, we often compute a corresponding tree

and work on that. (standard trick in graph algorithms)
▶ Definition 3.1. Given a search problem P:=⟨S ,A, T , I ,G⟩, the tree search

algorithm consists of the simulated exploration of state space ⟨S, T A⟩ in a search
tree formed by successively expanding already explored states. (offline algorithm)

procedure Tree−Search (problem, strategy) : <a solution or failure>
<initialize the search tree using the initial state of problem>
loop

if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
else <expand the node and add the resulting nodes to the search tree>
end if

end loop
end procedure

We expand a node n by generating all successors of n and inserting them as
children of n in the search tree.
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Implementation: States vs. nodes
▶ Recap: A state is a (representation of) a physical configuration.
▶ Remark: The nodes of a search tree are implemented as a data structure that

includes accessors for parent, children, depth, path cost, etc.
Section 3.3. Searching for Solutions 79
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Figure 3.10 Nodes are the data structures from which the search tree is constructed. Each
has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

Given the components for a parent node, it is easy to see how to compute the necessary
components for a child node. The function CHILD-NODE takes a parent node and an action
and returns the resulting child node:

function CHILD-NODE(problem ,parent ,action) returns a node
return a node with

STATE = problem .RESULT(parent .STATE,action ),
PARENT = parent , ACTION = action ,
PATH-COST = parent .PATH-COST + problem .STEP-COST(parent .STATE,action )

The node data structure is depicted in Figure 3.10. Notice how the PARENT pointers
string the nodes together into a tree structure. These pointers also allow the solution path to be
extracted when a goal node is found; we use the SOLUTION function to return the sequence
of actions obtained by following parent pointers back to the root.

Up to now, we have not been very careful to distinguish between nodes and states, but in
writing detailed algorithms it’s important to make that distinction. A node is a bookkeeping
data structure used to represent the search tree. A state corresponds to a configuration of the
world. Thus, nodes are on particular paths, as defined by PARENT pointers, whereas states
are not. Furthermore, two different nodes can contain the same world state if that state is
generated via two different search paths.

Now that we have nodes, we need somewhere to put them. The frontier needs to be
stored in such a way that the search algorithm can easily choose the next node to expand
according to its preferred strategy. The appropriate data structure for this is a queue. TheQUEUE

operations on a queue are as follows:

• EMPTY?(queue) returns true only if there are no more elements in the queue.
• POP(queue) removes the first element of the queue and returns it.
• INSERT(element , queue) inserts an element and returns the resulting queue.

▶ Observation: Paths in the search tree correspond to paths in the state space.
▶ Observation: As a search tree node has access to parents, we can read off the

solution from a goal node.
▶ Definition 3.2. A goal node is a node labeled with a goal state
▶ Definition 3.3. We define the path cost of a node n in a search tree T to be

the sum of the step costs on the path from n to the root of T .
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Implementation of Search Algorithms

procedure Tree_Search (problem,strategy)
fringe := insert(make_node(initial_state(problem)))

loop
if fringe <is empty> fail end if
node := first(fringe,strategy)
if NodeTest(State(node)) return State(node)
else fringe := insert_all(expand(node,problem),strategy)
end if

end loop
end procedure

▶ Definition 3.4. The fringe is a list nodes not yet expanded in tree search.
▶ It is ordered by the strategy. (see below)
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Search strategies

▶ Definition 3.5. A strategy is a function that picks a node from the fringe of a
search tree. (equivalently, orders the fringe and picks the first.)

▶ Definition 3.6 (Important Properties of Strategies).
completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least cost solution?

▶ Time and space complexity measured in terms of:
b maximum branching factor of the search tree
d minimal graph depth of a solution in the search tree
m maximum graph depth of the search tree (may be ∞)

Complexity means here always worst-case complexity!
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6.4 Uninformed Search Strategies
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Uninformed search strategies

▶ Definition 4.1. We speak of an uninformed search algorithm, if it only uses the
information available in the problem definition.

▶ Next: Frequently used search algorithms
▶ Breadth first search
▶ Uniform cost search
▶ Depth first search
▶ Depth limited search
▶ Iterative deepening search
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6.4.1 Breadth-First Search Strategies
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.2. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.3 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.4. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.5 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.6. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.7 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.8. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.9 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.10. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.11 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.12. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.13 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search: Romania

Arad
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind
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Breadth-First Search: Romania
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Breadth-First Search: Romania

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj
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Breadth-first search: Properties

▶

Completeness Yes (if b is finite)
Time complexity 1+ b+ b2 + b3 + . . .+ bd , so O(bd), i.e. expo-

nential in d
Space complexity O(bd) (fringe may be whole level)
Optimality Yes (if cost = 1 per step), not optimal in general

▶ Disadvantage: Space is the big problem (can easily generate nodes at
500MB/sec =̂ 1.8TB/h)

▶ Optimal?: No! If cost varies for different steps, there might be better solutions
below the level of the first one.

▶ An alternative is to generate all solutions and then pick an optimal one. This
works only, if m is finite.
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Romania with Step Costs as Distances
68 Chapter 3. Solving Problems by Searching
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.14. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.15. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.16. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Oradea

71

Arad

75
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.17. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.18. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Uniform-cost search: Properties

Completeness Yes (if step costs ≥ ϵ > 0)
Time complexity number of nodes with path cost less than that of opti-

mal solution
Space complexity dito
Optimality Yes
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6.4.2 Depth-First Search Strategies
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Depth-first Search

▶ Idea: Expand deepest unexpanded node.
▶ Definition 4.19. Depth-first search (DFS) is the strategy where the fringe is

organized as a (LIFO) stack i.e. successors go in at front of the fringe.
▶ Definition 4.20. Every node that is pushed to the stack is called a backtrack

point. The action of popping a non-goal node from the stack and continuing the
search with the new top element of the stack (a backtrack point by
construction) is called backtracking, and correspondingly the DFS algorithm
backtracking search.

▶ Note: Depth first search can perform infinite cyclic excursions
Need a finite, non cyclic state space (or repeated state checking)
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Depth-First Search

▶ Example 4.21 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.22 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.23 (Synthetic).

A

B C

D E F G

H I J K L M N O

Michael Kohlhase: Artificial Intelligence 1 145 2024-02-08



Depth-First Search

▶ Example 4.24 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.25 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.26 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.27 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.28 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.29 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.30 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.31 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.32 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.33 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.34 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search: Romania

▶ Example 4.35 (Romania).

Arad
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Depth-First Search: Romania

▶ Example 4.36 (Romania).

Arad

Sibiu Timisoara Zerind
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Depth-First Search: Romania

▶ Example 4.37 (Romania).

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Michael Kohlhase: Artificial Intelligence 1 146 2024-02-08



Depth-First Search: Romania

▶ Example 4.38 (Romania).

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Sibiu Timisoara Zerind

Michael Kohlhase: Artificial Intelligence 1 146 2024-02-08



Depth-first search: Properties

▶

Completeness Yes: if state space finite
No: if search tree contains infinite paths or
loops

Time complexity O(bm)
(we need to explore until max depth m in any
case!)

Space complexity O(bm) (i.e. linear space)
(need at most store m levels and at each level
at most b nodes)

Optimality No (there can be many better solutions in the
unexplored part of the search tree)

▶ Disadvantage: Time terrible if m much larger than d .
▶ Advantage: Time may be much less than breadth first search if solutions are

dense.
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Iterative deepening search

▶ Definition 4.39. Depth limited search is depth first search with a depth limit.
▶ Definition 4.40. Iterative deepening search (IDS) is depth limited search with

ever increasing depth limits.

▶ procedure Tree_Search (problem)
<initialize the search tree using the initial state of problem>
for depth = 0 to ∞

result := Depth_Limited_search(problem,depth)
if depth ̸= cutoff return result end if

end for
end procedure

Michael Kohlhase: Artificial Intelligence 1 148 2024-02-08



Ilustration: Iterative Deepening Search at various Limit
Depths

A A
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Ilustration: Iterative Deepening Search at various Limit
Depths

A

B C

A

B C

A

B C

A

B C
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Ilustration: Iterative Deepening Search at various Limit
Depths

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G
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Ilustration: Iterative Deepening Search at various Limit
Depths
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Iterative deepening search: Properties

▶
Completeness Yes
Time complexity (d+1)·b0+d ·b1+(d−1)·b2+. . .+bd∈O(bd+1)
Space complexity O(b · d)
Optimality Yes (if step cost = 1)

▶ Consequence: IDS used in practice for search spaces of large, infinite, or
unknown depth.
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Comparison BFS (optimal) and IDS (not)
▶ Example 4.41. IDS may fail to be be optimal at step sizes > 1.

Breadth first search Iterative deepening search

Comparison

Breadth-first search Iterative deepening search
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Comparison

Breadth-first search Iterative deepening search
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6.4.3 Further Topics
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Tree Search vs. Graph Search

▶ We have only covered tree search algorithms.
▶ States duplicated in nodes are a huge problem for efficiency.
▶ Definition 4.42. A graph search algorithm is a variant of a tree search

algorithm that prunes nodes whose state has already been considered (duplicate
pruning), essentially using a DAG data structure.

▶ Observation 4.43. Tree search is memory intensive it has to store the fringe so
keeping a list of “explored states” does not lose much.

▶ Graph versions of all the tree search algorithms considered here exist, but are
more difficult to understand (and to prove properties about).

▶ The (time complexity) properties are largely stable under duplicate pruning. (no
gain in the worst case)

▶ Definition 4.44. We speak of a search algorithm, when we do not want to
distinguish whether it is a tree or graph search algorithm. (difference considered
an implementation detail)
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Uninformed Search Summary

▶ Tree/Graph Search Algorithms: Systematically explore the state tree/graph
induced by a search problem in search of a goal state. Search strategies only
differ by the treatment of the fringe.

▶ Search Strategies and their Properties: We have discussed

Criterion
Breadth

first
Uniform

cost
Depth
first

Iterative
deepening

Completeness Yes1 Yes2 No Yes
Time complexity bd ≈ bd bm bd+1

Space complexity bd ≈ bd bm bd
Optimality Yes∗ Yes No Yes∗

Conditions 1 b finite 2 0<ϵ≤cost
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Search Strategies; the XKCD Take

▶ More Search Strategies?: (from https://xkcd.com/2407/)
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6.5 Informed Search Strategies
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Summary: Uninformed Search/Informed Search

▶ Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored.

▶ Variety of uninformed search strategies.
▶ Iterative deepening search uses only linear space and not much more time than

other uninformed algorithms.
▶ Next Step: Introduce additional knowledge about the problem (heuristic

search)
▶ Best-first-, A∗-strategies (guide the search by heuristics)
▶ Iterative improvement algorithms.

▶ Definition 5.1. A search algorithm is called informed, iff it uses some form of
external information – that is not part of the search problem – to guide the
search.
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6.5.1 Greedy Search
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Best-first search

▶ Idea: Order the fringe by estimated “desirability” (Expand most desirable
unexpanded node)

▶ Definition 5.2. An evaluation function assigns a desirability value to each node
of the search tree.

▶ Note: A evaluation function is not part of the search problem, but must be
added externally.

▶ Definition 5.3. In best first search, the fringe is a queue sorted in decreasing
order of desirability.

▶ Special cases: Greedy search, A∗ search
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Greedy search

▶ Idea: Expand the node that appears to be closest to the goal.
▶ Definition 5.4. A heuristic is an evaluation function h on states that estimates

the cost from n to the nearest goal state. We speak of heuristic search if the
search algorithm uses a heuristic in some way.

▶ Note: All nodes for the same state must have the same h-value!
▶ Definition 5.5. Given a heuristic h, greedy search is the strategy where the

fringe is organized as a queue sorted by increasing h value.
▶ Example 5.6. Straight-line distance from/to Bucharest.
▶ Note: Unlike uniform cost search the node evaluation function has nothing to

do with the nodes expanded so far
internal search control ; external search control

partial solution cost ; goal cost estimation
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Romania with Straight-Line Distances
▶ Example 5.7 (Informed Travel).

hSLD(n) = straight − line distance to Bucharest
Arad 366 Mehadia 241 Bucharest 0 Neamt 234
Craiova 160 Oradea 380 Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193 Fragaras 176 Sibiu 253
Giurgiu 77 Timisoara 329 Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199 Lugoj 244 Zerind 374
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Giurgiu

Urziceni

Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75
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111

70

75
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151

140

99
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97
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211
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90

98

142

92

87

86

Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.
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Greedy Search: Romania

Arad

366
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Greedy Search: Romania

Arad

366
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Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

Michael Kohlhase: Artificial Intelligence 1 159 2024-02-08



Greedy Search: Romania

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

Sibiu

253

Bucharest

0
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Heuristic Functions in Path Planning

▶ Example 5.8 (The maze solved). We indicate h∗ by giving the goal distance

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G
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89 7
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6 5

4 3 2 1
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14 14
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15 15
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1617
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20

21

2122

22

22

23

23

2324

24

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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▶ Example 5.9 (Maze Heuristic: the good case). We use the Manhattan
distance to the goal as a heuristic

▶ Example 5.10 (Maze Heuristic: the bad case). We use the Manhattan
distance to the goal as a heuristic again
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Heuristic Functions in Path Planning

▶ Example 5.11 (The maze solved). We indicate h∗ by giving the goal distance
▶ Example 5.12 (Maze Heuristic: the good case). We use the Manhattan

distance to the goal as a heuristic

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
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131415
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9
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9 8
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8 7 6 5 4

345678
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67 5

6

4 3

4 3 2 1

01

910

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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▶ Example 5.13 (Maze Heuristic: the bad case). We use the Manhattan
distance to the goal as a heuristic again
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Heuristic Functions in Path Planning

▶ Example 5.14 (The maze solved). We indicate h∗ by giving the goal distance
▶ Example 5.15 (Maze Heuristic: the good case). We use the Manhattan

distance to the goal as a heuristic
▶ Example 5.16 (Maze Heuristic: the bad case). We use the Manhattan

distance to the goal as a heuristic again

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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Greedy search: Properties

▶

Completeness No: Can get stuck in loops
Complete in finite space with repeated state
checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

▶ Example 5.17. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

▶ Worst-case Time: Same as depth first search.
▶ Worst-case Space: Same as breadth first search.
▶ But: A good heuristic can give dramatic improvements.
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Greedy search: Properties

▶

Completeness No: Can get stuck in loops
Complete in finite space with repeated state
checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

▶ Example 5.18. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

68 Chapter 3. Solving Problems by Searching
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

▶ Worst-case Time: Same as depth first search.
▶ Worst-case Space: Same as breadth first search.
▶ But: A good heuristic can give dramatic improvements.
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Greedy search: Properties

▶

Completeness No: Can get stuck in loops
Complete in finite space with repeated state
checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

▶ Example 5.19. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

▶ Worst-case Time: Same as depth first search.
▶ Worst-case Space: Same as breadth first search.
▶ But: A good heuristic can give dramatic improvements.
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6.5.2 Heuristics and their Properties
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Heuristic Functions

▶ Definition 5.20. Let Π be a search problem with states S. A heuristic function
(or short heuristic) for Π is a function h : S→R+

0 ∪ {∞} so that h(s) = 0
whenever s is a goal state.

▶ h(s) is intended as an estimate the distance between state s and the nearest
goal state.

▶ Definition 5.21. Let Π be a search problem with states S, then the function
h∗ : S→R+

0 ∪ {∞}, where h∗(s) is the cost of a cheapest path from s to a goal
state, or ∞ if no such path exists, is called the goal distance function for Π.

▶ Notes:
▶ h(s) = 0 on goal states: If your estimator returns “I think it’s still a long way” on a

goal state, then its intelligence is, um . . .
▶ Return value ∞: To indicate dead ends, from which the goal state can’t be reached

anymore.
▶ The distance estimate depends only on the state s, not on the node (i.e., the path

we took to reach s).
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Where does the word “Heuristic” come from?

▶ Ancient Greek word ϵυρισκϵιν (=̂ “I find”) (aka. ϵυρϵκα!)
▶ Popularized in modern science by George Polya: “How to solve it” [Pól73]
▶ same word often used for “rule of thumb” or “imprecise solution method”.
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Heuristic Functions: The Eternal Trade-Off

▶ “Distance Estimate”? (h is an arbitrary function in principle)
▶ In practice, we want it to be accurate (aka: informative), i.e., close to the actual

goal distance.
▶ We also want it to be fast, i.e., a small overhead for computing h.
▶ These two wishes are in contradiction!

▶ Example 5.22 (Extreme cases).
▶ h = 0: no overhead at all, completely un-informative.
▶ h = h∗: perfectly accurate, overhead =̂ solving the problem in the first place.

▶ Observation 5.23. We need to trade off the accuracy of h against the overhead
for computing it.
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Properties of Heuristic Functions

▶ Definition 5.24. Let Π be a search problem with states S and actions A. We
say that a heuristic h for Π is admissible if h(s)≤h∗(s) for all s∈S .
We say that h is consistent if h(s)− h(s ′)≤c(a) for all s∈S , a∈A, and
s ′∈T (s, a).

▶ In other words . . . :
▶ h is admissible if it is a lower bound on goal distance.
▶ h is consistent if, when applying an action a, the heuristic value cannot decrease by

more than the cost of a.
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Properties of Heuristic Functions, ctd.

▶ Let Π be a problem, and let h be a heuristic for Π. If h is consistent, then h is
admissible.

▶ Proof: we prove h(s)≤h∗(s) for all s∈S by induction over the length of the cheapest
path to a goal node.

1. base case
1.1. h(s) = 0 by definition of heuristic, so h(s)≤h∗(s) as desired.

2. step case
2.1. We assume that h(s ′)≤h∗(s) for all states s ′ with a cheapest goal node path
of length n.
2.2. Let s be a state whose cheapest goal path has length n + 1 and the first
transition is o = (s,s ′).
2.3. By consistency, we have h(s)− h(s ′)≤c(o) and thus h(s)≤h(s ′) + c(o).
2.4. By construction, h∗(s) has a cheapest goal path of length n and thus, by
induction hypothesis h(s ′)≤h∗(s ′).
2.5. By construction, h∗(s) = h∗(s ′) + c(o).
2.6. Together this gives us h(s)≤h∗(s) as desired.

▶ Consistency is a sufficient condition for admissibility (easier to check)
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Properties of Heuristic Functions: Examples

▶ Example 5.25. Straight line distance is admissible and consistent by the
triangle inequality.
If you drive 100km, then the straight line distance to Rome can’t decrease by
more than 100km.

▶ Observation: In practice, admissible heuristics are typically consistent.
▶ Example 5.26 (An admissible, but inconsistent heuristic). When traveling

to Rome, let h(Munich) = 300 and h(Innsbruck) = 100.
▶ Inadmissible heuristics typically arise as approximations of admissible heuristics

that are too costly to compute. (see later)
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6.5.3 A-Star Search
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A∗ Search: Evaluation Function

▶ Idea: Avoid expanding paths that are already expensive (make use of actual
cost)
The simplest way to combine heuristic and path cost is to simply add them.

▶ Definition 5.27. The evaluation function for A∗ search is given by
f (n) = g(n) + h(n), where g(n) is the path cost for n and h(n) is the estimated
cost to the nearest goal from n.

▶ Thus f (n) is the estimated total cost of the path through n to a goal.
▶ Definition 5.28. Best first search with evaluation function g + h is called A∗

search.
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A∗ Search: Optimality

▶ Theorem 5.29. A∗ search with admissible heuristic is optimal.
▶ Proof: We show that sub-optimal nodes are never expanded by A∗

1. Suppose a suboptimal goal node G has been generated then we are in the
following situation:

start

n

O G

2. Let n be an unexpanded node on a path to an optimality goal node O, then
f (G ) = g(G ) since h(G ) = 0
g(G ) > g(O) since G suboptimal
g(O) = g(n) + h∗(n) n on optimal path
g(n) + h∗(n) ≥ g(n) + h(n) since h is admissible
g(n) + h(n) = f (n)

3. Thus, f (G ) > f (n) and A∗ never expands G .
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A∗ Search Example

Arad

366=0+366
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A∗ Search Example

Arad

Sibiu

393=140+253

Timisoara

447=118+329

Zerind

449=75+374
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

413=220+193
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Sibiu

607=414+193
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.30 (Greedy best-first search, “good case”).

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

11 10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

910

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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We will find a solution with little search.
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.31 (A∗ (g + h), “good case”).

Additional Observations (Not Limited to Path Planning) II

I Example 4.21 (A⇤ (g + h), “good case”).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

18

18

18

18

18 18 18

18 18

18 18

20 20 20

20

20

20 20

20 20

22 22 22 22 22

22

22 22 22

22 22 22 22 22 22 22 22

22

22

22

22 22 22

24

24

24 24 24

2424

24 24 24 24 24 24 24

I A⇤ with a consistent heuristic g + h always increases monotonically (h cannot
decrease mor than g increases)

I We need more search, in the “right upper half”. This is typical: Greedy best-first
search tends to be faster than A⇤.
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▶ In A∗ with a consistent heuristic, g + h always increases monotonically (h cannot
decrease more than g increases)

▶ We need more search, in the “right upper half”. This is typical: Greedy best first
search tends to be faster than A∗.
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.32 (Greedy best-first search, “bad case”).

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
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3

4

5

I
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131415

16

17

18

15 14

15

16 15

14 13

14 13 12

10

1012

11

10
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9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

91017

16

13

12

12

11

11

11

8

8

7 6 5

5

4 3

2

2

11

Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018Search will be mis-guided into the “dead-end street”.
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.33 (A∗ (g + h), “bad case”).

Additional Observations (Not Limited to Path Planning) IV

I Example 4.23 (A⇤ (g + h), “bad case”).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
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4
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I

G
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181818

18
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14 13

24 24 24
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2222

20
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24
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11

22
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24
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26
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30

24

24

24

24

242424242424

We will search less of the “dead-end street”. Sometimes g + h gives better
search guidance than h. (; A⇤ is faster there)
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We will search less of the “dead-end street”. Sometimes g + h gives better
search guidance than h. (; A∗ is faster there)
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.34 (A∗ (g + h) using h∗).

Additional Observations (Not Limited to Path Planning) V

I Example 4.24 (A⇤ (g + h) using h⇤).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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34 36 38

40

42 44 46
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50 52 54

56

58 60 62

64

66

In A⇤, node values always increase monotonically (with any heuristic). If the
heuristic is perfect, they remain constant on optimal paths.
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In A∗, node values always increase monotonically (with any heuristic). If the
heuristic is perfect, they remain constant on optimal paths.
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A∗ search: f -contours

▶ A∗ gradually adds “f -contours” of nodes

Section 3.5. Informed (Heuristic) Search Strategies 97

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

Figure 3.9; because f is nondecreasing along any path, n′ would have lower f -cost than n
and would have been selected first.

From the two preceding observations, it follows that the sequence of nodes expanded
by A∗ using GRAPH-SEARCH is in nondecreasing order of f(n). Hence, the first goal node
selected for expansion must be an optimal solution because f is the true cost for goal nodes
(which have h= 0) and all later goal nodes will be at least as expensive.

The fact that f -costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 3.25 showsCONTOUR

an example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400,
and so on. Then, because A∗ expands the frontier node of lowest f -cost, we can see that an
A∗ search fans out from the start node, adding nodes in concentric bands of increasing f -cost.

With uniform-cost search (A∗ search using h(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C∗ is the cost of the
optimal solution path, then we can say the following:

• A∗ expands all nodes with f(n) < C∗.

• A∗ might then expand some of the nodes right on the “goal contour” (where f(n) = C∗)
before selecting a goal node.

Completeness requires that there be only finitely many nodes with cost less than or equal to
C∗, a condition that is true if all step costs exceed some finite ε and if b is finite.

Notice that A∗ expands no nodes with f(n) > C∗—for example, Timisoara is not
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below
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A∗ search: Properties

▶ Properties or A∗

Completeness Yes (unless there are infinitely many nodes n
with f (n)≤f (0))

Time complexity Exponential in [relative error in h × length of
solution]

Space complexity Same as time (variant of BFS)
Optimality Yes

▶ A∗ expands all (some/no) nodes with f (n)<h∗(n)

▶ The run-time depends on how well we approximated the real cost h∗ with h.
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6.5.4 Finding Good Heuristics

Michael Kohlhase: Artificial Intelligence 1 177 2024-02-08



Admissible heuristics: Example 8-puzzle
Section 3.2. Example Problems 71

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.4 A typical instance of the 8-puzzle.

• States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

• Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

• Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

▶ Example 5.35. Let h1(n) be the number of misplaced tiles in node n.
(h1(S) = 9)

▶ Example 5.36. Let h2(n) be the total Manhattan distance from desired location
of each tile. (h2(S) = 3 + 1 + 2 + 2 + 2 + 3 + 2 + 2 + 3 = 20)

▶ Observation 5.37 (Typical search costs). (IDS =̂ iterative deepening search)

nodes explored IDS A∗(h1) A∗(h2)

d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641
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Dominance

▶ Definition 5.38. Let h1 and h2 be two admissible heuristics we say that h2
dominates h1 if h2(n)≥h1(n) for all n.

▶ Theorem 5.39. If h2 dominates h1, then h2 is better for search than h1.
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Relaxed problems

▶ Observation: Finding good admissible heuristics is an art!
▶ Idea: Admissible heuristics can be derived from the exact solution cost of a

relaxed version of the problem.
▶ Example 5.40. If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then we get heuristic h1.
▶ Example 5.41. If the rules are relaxed so that a tile can move to any adjacent

square, then we get heuristic h2. (Manhattan distance)
▶ Definition 5.42. Let Π:=⟨S ,A, T , I ,G⟩ be a search problem, then we call a

search problem P r :=⟨S,Ar , T r , Ir ,Gr ⟩ a relaxed problem (wrt. Π; or simply
relaxation of Π), iff A ⊆ Ar , T ⊆ T r , I ⊆ Ir , and G ⊆ Gr .

▶ Lemma 5.43. If P r relaxes Π, then every solution for Π is one for P r .
▶ Key point: The optimal solution cost of a relaxed problem is not greater than

the optimal solution cost of the real problem.
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Empirical Performance: A∗ in Path Planning

▶ Example 5.44 (Live Demo vs. Breadth-First Search).

See http://qiao.github.io/PathFinding.js/visual/
▶ Difference to Breadth-first Search?: That would explore all grid cells in a

circle around the initial state!
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6.6 Local Search
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Systematic Search vs. Local Search

▶ Definition 6.1. We call a search algorithm systematic, if it considers all states
at some point.

▶ Example 6.2.
All tree search algorithms (except pure depth first search) are systematic. (given
reasonable assumptions e.g. about costs.)

▶ Observation 6.3. Systematic search algorithms are complete.
▶ Observation 6.4. In systematic search algorithms there is no limit of the

number of nodes that are kept in memory at any time.
▶ Alternative: Keep only one (or a few) nodes at a time
▶ ; no systematic exploration of all options, ; incomplete.
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Local Search Problems

▶ Idea: Sometimes the path to the solution is irrelevant.

▶ Example 6.5 (8 Queens Problem). Place 8
queens on a chess board, so that no two queens
threaten each other.

▶ This problem has various solutions (the one of the
right isn’t one of them)

▶ Definition 6.6. A local search algorithm is a search
algorithm that operates on a single state, the
current state (rather than multiple paths).
(advantage: constant space)

▶ Typically local search algorithms only move to successor of the current state,
and do not retain search paths.

▶ Applications include: integrated circuit design, factory-floor layout, job-shop
scheduling, portfolio management, fleet deployment,. . .
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Local Search: Iterative improvement algorithms

▶ Definition 6.7. The traveling salesman problem (TSP is to find shortest trip
through set of cities such that each city is visited exactly once.

▶ Idea: Start with any complete tour, perform pairwise exchanges

Local Search: Iterative improvement algorithms

I Definition 5.7 (Traveling Salesman Problem). Find shortest trip through set
of cities such that each city is visited exactly once.

I Idea: Start with any complete tour, perform pairwise exchanges

I Definition 5.8 (n-queens problem). Put n queens on n ⇥ n board such that
no two queens in the same row, columns, or diagonal.

I Idea: Move a queen to reduce number of conflicts
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▶ Definition 6.8. The n-queens problem is to put n queens on n × n board such
that no two queen in the same row, columns, or diagonal.

▶ Idea: Move a queen to reduce number of conflicts

Local Search: Iterative improvement algorithms

I Definition 5.7 (Traveling Salesman Problem). Find shortest trip through set
of cities such that each city is visited exactly once.

I Idea: Start with any complete tour, perform pairwise exchanges

I Definition 5.8 (n-queens problem). Put n queens on n ⇥ n board such that
no two queens in the same row, columns, or diagonal.

I Idea: Move a queen to reduce number of conflicts
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Hill-climbing (gradient ascent/descent)

▶ Idea: Start anywhere and go in the direction of the steepest ascent.
▶ Definition 6.9. Hill climbing (also gradient ascent) is a local search algorithm

that iteratively selects the best successor:

procedure Hill−Climbing (problem) /∗ a state that is a local minimum ∗/
local current, neighbor /∗ nodes ∗/
current := Make−Node(Initial−State[problem])
loop

neighbor := <a highest−valued successor of current>
if Value[neighbor] < Value[current] return [current] end if
current := neighbor

end loop
end procedure

▶ Intuition: Like best first search without memory.
▶ Works, if solutions are dense and local maxima can be escaped.
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Example Hill Climbing with 8 Queens

▶ Idea: Consider h =̂ number of
queens that threaten each other.

▶ Example 6.10. An 8-queens state
with heuristic cost estimate h = 17
showing h-values for moving a queen
within its column:

▶ Problem: The state space has local
minima. e.g. the board on the right
has h = 1 but every successor has
h > 1.
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Hill-climbing

▶ Problem: Depending on initial state,
can get stuck on local
maxima/minima and plateaux.

▶ “Hill-climbing search is like climbing
Everest in thick fog with amnesia”.

Section 4.1. Local Search Algorithms and Optimization Problems 121

If the path to the goal does not matter, we might consider a different class of algo-
rithms, ones that do not worry about paths at all. Local search algorithms operate usingLOCAL SEARCH

a single current node (rather than multiple paths) and generally move only to neighborsCURRENT NODE

of that node. Typically, the paths followed by the search are not retained. Although local
search algorithms are not systematic, they have two key advantages: (1) they use very little
memory—usually a constant amount; and (2) they can often find reasonable solutions in large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search algorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objectiveOPTIMIZATION

PROBLEM

function. Many optimization problems do not fit the “standard” search model introduced inOBJECTIVE

FUNCTION

Chapter 3. For example, nature provides an objective function—reproductive fitness—that
Darwinian evolution could be seen as attempting to optimize, but there is no “goal test” and
no “path cost” for this problem.

To understand local search, we find it useful to consider the state-space landscape (asSTATE-SPACE

LANDSCAPE

in Figure 4.1). A landscape has both “location” (defined by the state) and “elevation” (defined
by the value of the heuristic cost function or objective function). If elevation corresponds to
cost, then the aim is to find the lowest valley—a global minimum; if elevation correspondsGLOBAL MINIMUM

to an objective function, then the aim is to find the highest peak—a global maximum. (YouGLOBAL MAXIMUM

can convert from one to the other just by inserting a minus sign.) Local search algorithms
explore this landscape. A complete local search algorithm always finds a goal if one exists;
an optimal algorithm always finds a global minimum/maximum.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum. Hill-climbing search modifies
the current state to try to improve it, as shown by the arrow. The various topographic features
are defined in the text.

▶ Idea: Escape local maxima by allowing some “bad” or random moves.
▶ Example 6.11. local search, simulated annealing, . . .
▶ Properties: All are incomplete, nonoptimal.
▶ Sometimes performs well in practice (if (optimal) solutions are dense)
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Simulated annealing (Idea)

▶ Definition 6.12. Ridges are ascending
successions of local maxima.

▶ Problem: They are extremely difficult to bv
navigate for local search algorithms.

▶ Idea: Escape local maxima by allowing
some “bad” moves, but gradually decrease
their size and frequency.

124 Chapter 4. Beyond Classical Search

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local
maxima that are not directly connected to each other. From each local maximum, all the
available actions point downhill.

Many variants of hill climbing have been invented. Stochastic hill climbing chooses atSTOCHASTIC HILL

CLIMBING

random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes, it finds better solutions. First-choice hill climbing implements stochasticFIRST-CHOICE HILL

CLIMBING

hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.

The hill-climbing algorithms described so far are incomplete—they often fail to find
a goal when one exists because they can get stuck on local maxima. Random-restart hill
climbing adopts the well-known adage, “If at first you don’t succeed, try, try again.” It con-RANDOM-RESTART

HILL CLIMBING

ducts a series of hill-climbing searches from randomly generated initial states,1 until a goal
is found. It is trivially complete with probability approaching 1, because it will eventually
generate a goal state as the initial state. If each hill-climbing search has a probability p of
success, then the expected number of restarts required is 1/p. For 8-queens instances with
no sideways moves allowed, p ≈ 0.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus
(1−p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves,
1/0.94 ≈ 1.06 iterations are needed on average and (1× 21)+ (0.06/0.94)× 64 ≈ 25 steps.
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute.2

1 Generating a random state from an implicitly specified state space can be a hard problem in itself.
2 Luby et al. (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways moves is an example of this idea.

▶ Annealing is the process of heating steel and let it cool gradually to give it time
to grow an optimal cristal structure.

▶ Simulated annealing is like shaking a ping pong ball occasionally on a bumpy
surface to free it. (so it does not get stuck)

▶ Devised by Metropolis et al for physical process modelling [Met+53]
▶ Widely used in VLSI layout, airline scheduling, etc.
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Simulated annealing (Implementation)

▶ Definition 6.13. The following algorithm is called simulated annealing:

procedure Simulated−Annealing (problem,schedule) /∗ a solution state ∗/
local node, next /∗ nodes ∗/
local T /∗ a ‘‘temperature’’ controlling prob.~of downward steps ∗/
current := Make−Node(Initial−State[problem])
for t :=1 to ∞
T := schedule[t]

if T = 0 return current end if
next := <a randomly selected successor of current>
∆(E) := Value[next]−Value[current]
if ∆(E) > 0 current := next
else
current := next <only with probability> e∆(E)/T

end if
end for

end procedure

A schedule is a mapping from time to “temperature”.
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Properties of simulated annealing

▶ At fixed “temperature” T , state occupation probability reaches Boltzman
distribution

p(x) = αe
E(x)
kT

T decreased slowly enough ; always reach best state x∗ because

e
E(x∗)
kT

e
E(x)
kT

= e
E(x∗)−E(x)

kT ≫ 1

for small T .
▶ Question: Is this necessarily an interesting guarantee?
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Local beam search

▶ Definition 6.14. Local beam search is a search algorithm that keep k states
instead of 1 and chooses the top k of all their successors.

▶ Observation: Local beam search is not the same as k searches run in parallel!
(Searches that find good states recruit other searches to join them)

▶ Problem: Quite often, all k searches end up on the same local hill!
▶ Idea: Choose k successors randomly, biased towards good ones. (Observe the

close analogy to natural selection!)
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Genetic algorithms (very briefly)

▶ Definition 6.15. A genetic algorithm is a variant of local beam search that
generates successors by
▶ randomly modifying states (mutation)
▶ mixing pairs of states (sexual reproduction or crossover)

to optimize a fitness function. (survival of the fittest)
▶ Example 6.16. Generating successors for 8 queens
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Figure 4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for
mating in (c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Like beam searches, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.6(b)–(e). In (b),
each state is rated by the objective function, or (in GA terminology) the fitness function. AFITNESS FUNCTION

fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), two pairs are selected at random for reproduction, in accordance with the prob-
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Genetic algorithms (continued)

▶ Problem: Genetic algorithms require states encoded as strings.
▶ Crossover only helps iff substrings are meaningful components.
▶ Example 6.17 (Evolving 8 Queens). First crossover
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mating in (c). They produce offspring in (d), which are subject to mutation in (e).
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Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Like beam searches, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.6(b)–(e). In (b),
each state is rated by the objective function, or (in GA terminology) the fitness function. AFITNESS FUNCTION

fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), two pairs are selected at random for reproduction, in accordance with the prob-

▶ Note: Genetic algorithms ̸= evolution: e.g., real genes also encode replication
machinery!
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Chapter 7
Adversarial Search for Game Playing
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7.1 Introduction
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The Problem

▶ The Problem of Game-Play: cf.
▶ Example 1.1.

▶ Definition 1.2. Adversarial search =̂ Game playing against an opponent.
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Why Game Playing?
▶ What do you think?
▶ Playing a game well clearly requires a form of “intelligence”.
▶ Games capture a pure form of competition between opponents.
▶ Games are abstract and precisely defined, thus very easy to formalize.

▶ Game playing is one of the oldest sub-areas of AI (ca. 1950).
▶ The dream of a machine that plays chess is, indeed, much older than AI!

“Schachtürke” (1769) “El Ajedrecista” (1912)
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“Game” Playing? Which Games?

▶ . . . sorry, we’re not gonna do soccer here.
▶ Definition 1.3 (Restrictions). A game in the sense of AI-1 is one where
▶ Game state discrete, number of game state finite.
▶ Finite number of possible moves.
▶ The game state is fully observable.
▶ The outcome of each move is deterministic.
▶ Two players: Max and Min.
▶ Turn-taking: It’s each player’s turn alternatingly. Max begins.
▶ Terminal game states have a utility u. Max tries to maximize u, Min tries to

minimize u.
▶ In that sense, the utility for Min is the exact opposite of the utility for Max (“zero

sum”).
▶ There are no infinite runs of the game (no matter what moves are chosen, a

terminal state is reached after a finite number of moves).
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An Example Game

▶ Game states: Positions of figures.
▶ Moves: Given by rules.
▶ Players: White (Max), Black (Min).
▶ Terminal states: Checkmate.
▶ Utility of terminal states, e.g.:
▶ +100 if Black is checkmated.
▶ 0 if stalemate.
▶ −100 if White is checkmated.
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“Game” Playing? Which Games Not?

▶ Soccer (sorry guys; not even RoboCup)
▶ Important types of games that we don’t tackle here:
▶ Chance. (E.g., backgammon)
▶ More than two players. (E.g., Halma)
▶ Hidden information. (E.g., most card games)
▶ Simultaneous moves. (E.g., Diplomacy)
▶ Not zero-sum, i.e., outcomes may be beneficial (or detrimental) for both players.

(cf. Game theory: Auctions, elections, economy, politics, . . . )
▶ Many of these more general game types can be handled by similar/extended

algorithms.
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(A Brief Note On) Formalization

▶ Definition 1.4. An adversarial search problem is a search problem
⟨S ,A, T , I ,G⟩, where
1. S = SMax ⊎ SMin ⊎ G and A = AMax ⊎ AMin

2. For a∈AMax, if s a−→ s ′ then s∈SMax and s ′∈(SMin ∪ G).
3. For a∈AMin, if s a−→ s ′ then s∈SMin and s ′∈(SMax ∪ G).
together with a game utility function u : G→R. (the “score” of the game)

▶ Definition 1.5 (Commonly used terminology).
position =̂ state, move =̂ action, end state =̂ terminal state =̂ goal state.

▶ Remark: A round of the game – one move Max, one move Min – is often
referred to as a “move”, and individual actions as “half-moves” (we don’t in AI-1)
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Why Games are Hard to Solve: I

▶ What is a “solution” here?
▶ Definition 1.6. Let Θ be an adversarial search problem, and let

X∈{Max,Min}. A strategy for X is a function σX : SX→AX so that a is
applicable to s whenever σX (s) = a.

▶ We don’t know how the opponent will react, and need to prepare for all
possibilities.

▶ Definition 1.7. A strategy is called optimal if it yields the best possible utility
for X assuming perfect opponent play (not formalized here).

▶ Problem: In (almost) all games, computing a strategy is infeasible.
▶ Solution: Compute the next move “on demand”, given the current state

instead.
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Why Games are hard to solve II

▶ Example 1.8. Number of reachable states in chess: 1040.
▶ Example 1.9. Number of reachable states in go: 10100.
▶ It’s even worse: Our algorithms here look at search trees (game trees), no

duplicate pruning.
▶ Example 1.10.
▶ Chess without duplicate pruning: 35100 ≃ 10154.
▶ Go without duplicate pruning: 200300 ≃ 10690.
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How To Describe a Game State Space?

▶ Like for classical search problems, there are three possible ways to describe a
game: blackbox/API description, declarative description, explicit game state
space.

▶ Question: Which ones do humans use?
▶ Explicit ≈ Hand over a book with all 1040 moves in chess.
▶ Blackbox ≈ Give possible chess moves on demand but don’t say how they are

generated.
▶ Answer: Declarative!

With “game description language” =̂ natural language.
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Specialized vs. General Game Playing

▶ And which game descriptions do computers use?
▶ Explicit: Only in illustrations.
▶ Blackbox/API: Assumed description in (This Chapter)
▶ Method of choice for all those game players out there in the market (Chess computers,

video game opponents, you name it).
▶ Programs designed for, and specialized to, a particular game.
▶ Human knowledge is key: evaluation functions (see later), opening databases (chess!!),

end game databases.
▶ Declarative: General game playing, active area of research in AI.
▶ Generic game description language (GDL), based on logic.
▶ Solvers are given only “the rules of the game”, no other knowledge/input whatsoever (cf.

).
▶ Regular academic competitions since 2005.
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Our Agenda for This Chapter

▶ Minimax Search: How to compute an optimal strategy?
▶ Minimax is the canonical (and easiest to understand) algorithm for solving games,

i.e., computing an optimal strategy.
▶ Evaluation functions: But what if we don’t have the time/memory to solve

the entire game?
▶ Given limited time, the best we can do is look ahead as far as we can. Evaluation

functions tell us how to evaluate the leaf states at the cut off.
▶ Alphabeta search: How to prune unnecessary parts of the tree?
▶ Often, we can detect early on that a particular action choice cannot be part of the

optimal strategy. We can then stop considering this part of the game tree.
▶ State of the art: What is the state of affairs, for prominent games, of

computer game playing vs. human experts?
▶ Just FYI (not part of the technical content of this course).
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7.2 Minimax Search
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“Minimax”?

▶ We want to compute an optimal strategy for player “Max”.
▶ In other words: We are Max, and our opponent is Min.

▶ Recall: We compute the strategy offline, before the game begins.
During the game, whenever it’s our turn, we just look up the corresponding
action.

▶ Idea: Use tree search using an extension û of the utility function u to inner
nodes. û is computed recursively from u during search:
▶ Max attempts to maximize û(s) of the terminal states reachable during play.
▶ Min attempts to minimize û(s).

▶ The computation alternates between minimization and maximization ; hence
“minimax”.
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Example Tic-Tac-Toe

Section 5.2. Optimal Decisions in Games 163

until we reach leaf nodes corresponding to terminal states such that one player has three in
a row or all the squares are filled. The number on each leaf node indicates the utility value
of the terminal state from the point of view of MAX; high values are assumed to be good for
MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal
nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a
theoretical construct that we cannot realize in the physical world. But regardless of the size
of the game tree, it is MAX’s job to search for a good move. We use the term search tree for aSEARCH TREE

tree that is superimposed on the full game tree, and examines enough nodes to allow a player
to determine what move to make.
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Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial
state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to
a goal state—a terminal state that is a win. In adversarial search, MIN has something to say
about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

▶ Game tree, current player and action marked on the left.
▶ Last row: terminal positions with their utility.
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Minimax: Outline

▶ We max, we min, we max, we min . . .
1. Depth first search in game tree, with Max in the root.
2. Apply game utility function to terminal positions.
3. Bottom-up for each inner node n in the search tree, compute the utility û(n) of n as

follows:
▶ If it’s Max’s turn: Set û(n) to the maximum of the utilities of n’s successor nodes.
▶ If it’s Min’s turn: Set û(n) to the minimum of the utilities of n’s successor nodes.

4. Selecting a move for Max at the root: Choose one move that leads to a successor
node with maximal utility.
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Minimax: Example

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

▶ Blue numbers: Utility function u applied to terminal positions.
▶ Red numbers: Utilities of inner nodes, as computed by the minimax algorithm.
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The Minimax Algorithm: Pseudo-Code

▶ Definition 2.1. The minimax algorithm (often just called minimax) is given by
the following functions whose input is a state s∈SMax, in which Max is to move.

function Minimax−Decision(s) returns an action
v := Max−Value(s)
return an action yielding value v in the previous function call

function Max−Value(s) returns a utility value
if Terminal−Test(s) then return u(s)
v := −∞
for each a ∈ Actions(s) do
v := max(v ,Min−Value(ChildState(s,a)))

return v

function Min−Value(s) returns a utility value
if Terminal−Test(s) then return u(s)
v := +∞
for each a ∈ Actions(s) do
v := min(v ,Max−Value(ChildState(s,a)))

return v

We call nodes, where Max/Min acts Max-nodes/Min-nodes.

Michael Kohlhase: Artificial Intelligence 1 209 2024-02-08



Minimax: Example, Now in Detail

Max −∞

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail
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Minimax: Example, Now in Detail
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Minimax: Example, Now in Detail

Max −∞

Min 3

3

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max −∞

Min 3

3 12

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail
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Min 3
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min ∞

2

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min ∞

2

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)

Michael Kohlhase: Artificial Intelligence 1 210 2024-02-08



Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)

Michael Kohlhase: Artificial Intelligence 1 210 2024-02-08



Minimax: Example, Now in Detail
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▶ So which action for Max is returned?

▶ Leftmost branch.
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assuming perfect play of Min, it’s better to go left. (Going right would be
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min ∞

14

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 14

14

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 5

14 5

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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“relying on your opponent to do something stupid”.)
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Minimax, Pro and Contra

▶ Minimax advantages:
▶ Minimax is the simplest possible (reasonable) search algorithm for games.

(If any of you sat down, prior to this lecture, to implement a Tic-Tac-Toe player,
chances are you either looked this up on Wikipedia, or invented it in the process.)

▶ Returns an optimal action, assuming perfect opponent play.
▶ No matter how the opponent plays, the utility of the terminal state reached will be at

least the value computed for the root.
▶ If the opponent plays perfectly, exactly that value will be reached.

▶ There’s no need to re-run minimax for every game state: Run it once, offline before
the game starts. During the actual game, just follow the branches taken in the tree.
Whenever it’s your turn, choose an action maximizing the value of the successor
states.

▶ Minimax disadvantages: It’s completely infeasible in practice.
▶ When the search tree is too large, we need to limit the search depth and apply an

evaluation function to the cut off states.
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7.3 Evaluation Functions
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Evaluation Functions for Minimax

▶ Problem: Search tree are too big to search through in minimax.
▶ Solution: We impose a search depth limit (also called horizon) d , and apply an

evaluation function to the cut-off states, i.e. states s with dp(s) = d .
▶ Definition 3.1. An evaluation function f maps game states to numbers:
▶ f (s) is an estimate of the actual value of s (as would be computed by

unlimited-depth minimax for s).
▶ If cut-off state is terminal: Just use û instead of f .

▶ Analogy to heuristic functions (cf. ): We want f to be both (a) accurate and
(b) fast.

▶ Another analogy: (a) and (b) are in contradiction ; need to trade-off accuracy
against overhead.
▶ In typical game playing algorithms today, f is inaccurate but very fast. (usually no

good methods known for computing accurate f )

Michael Kohlhase: Artificial Intelligence 1 212 2024-02-08



Example Revisited: Minimax With Depth Limit d = 2

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

▶ Blue numbers: evaluation function f , applied to the cut-off states at d = 2.
▶ Red numbers: utilities of inner node, as computed by minimax using f .
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Example Chess

▶ Evaluation function in chess:
▶ Material: Pawn 1, Knight 3, Bishop 3, Rook 5,

Queen 9.
▶ 3 points advantage ; safe win.
▶ Mobility: How many fields do you control?
▶ King safety, Pawn structure, . . .

▶ Note how simple this is! (probably is not how
Kasparov evaluates his positions)
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Linear Evaluation Functions

▶ Problem: How to come up with evaluation functions?
▶ Definition 3.2. A common approach is to use a weighted linear function for f ,

i.e. given a sequence of features f i : S→R and a corresponding sequence of
weights w i∈R, f is of the form f (s):=w1 · f 1(s) + w2 · f 2(s) + · · ·+ wn · f n(s)

▶ Problem: How to obtain these weighted linear functions?
▶ Weights w i can be learned automatically. (learning agent)
▶ The features f i , however, have to be designed by human experts.

▶ Note: Very fast, very simplistic.
▶ Observation: Can be computed incrementally: In transition s

a−→ s ′, adapt f (s)
to f (s ′) by considering only those features whose values have changed.
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The Horizon Problem

▶ Problem: Critical aspects of the game can be cut off by the horizon.

Black to move

▶ Who’s gonna win here?
▶ White wins (pawn cannot be prevented from

becoming a queen.)
▶ Black has a +4 advantage in material, so if we

cut-off here then our evaluation function will say
“100, black wins”.

▶ The loss for black is “beyond our horizon” unless
we search extremely deeply: black can hold off the
end by repeatedly giving check to white’s king.
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So, How Deeply to Search?

▶ Goal: In given time, search as deeply as possible.
▶ Problem: Very difficult to predict search running time. (need an anytime

algorithm)
▶ Solution: Iterative deepening search.
▶ Search with depth limit d = 1, 2, 3, . . .
▶ When time is up: return result of deepest completed search.

▶ Definition 3.3 (Better Solution). The quiescent search algorithm uses a
dynamically adapted search depth d : It searches more deeply in unquiet
positions, where value of evaluation function changes a lot in neighboring states.

▶ Example 3.4. In quiescent search for chess:
▶ piece exchange situations (“you take mine, I take yours”) are very unquiet
▶ ; Keep searching until the end of the piece exchange is reached.
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7.4 Alpha-Beta Search
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When We Already Know We Can Do Better Than This

Max (A)

Max
value: m

Min
value: n

Min (B)

▶ Say n>m.
▶ By choosing to go to the left in

search node (A), Max already can
get utility of at least n in this part
of the game.

▶ So, if “later on” (further down in
the same subtree), in search node
(B) we already know that Min can
force Max to get value m<n.

▶ Then Max will play differently in
(A) so we will never actually get
to (B).
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Alpha Pruning: Basic Idea

▶ Question: Can we save some work here?

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2
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Alpha Pruning: Basic Idea (Continued)

▶ Answer: Yes! We already know at this point that the middle action won’t be
taken by Max.

Max ≥ 3

Min 3

3 12 8

Min ≤ 2

2

Min

▶ Idea: We can use this to prune the search tree ; better algorithm
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Alpha Pruning

▶ Definition 4.1. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

▶ Example 4.2 (Computing alpha values).

Max −∞;α = −∞

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.3. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

▶ Example 4.4 (Computing alpha values).

Max −∞;α = −∞

Min ∞;α = −∞

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.5. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

▶ Example 4.6 (Computing alpha values).

Max −∞;α = −∞

Min ∞;α = −∞

3

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.7. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

▶ Example 4.8 (Computing alpha values).

Max −∞;α = −∞

Min 3;α = −∞

3

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.9. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

▶ Example 4.10 (Computing alpha values).

Max −∞;α = −∞

Min 3;α = −∞

3 12

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.11. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

▶ Example 4.12 (Computing alpha values).

Max −∞;α = −∞

Min 3;α = −∞

3 12 8

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.13. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

▶ Example 4.14 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.15. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

▶ Example 4.16 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min ∞;α = 3

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.17. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

▶ Example 4.18 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min ∞;α = 3

2

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.19. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

▶ Example 4.20 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min 2;α = 3

2

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.21. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

▶ Example 4.22 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min 2;α = 3

2

Min

▶ How to use α?: In a Min-node n, if û(n′)≤α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha-Beta Pruning

▶ Recall:
▶ What is α: For each search node n, the highest Max-node utility that search has

encountered on its path from the root to n.
▶ How to use α: In a Min-node n, if one of the successors already has utility ≤ α(n),

then stop considering n. (Pruning out its remaining successors)
▶ Idea: We can use a dual method for Min!
▶ Definition 4.23. For each node n in a minimax search tree, the beta value β(n)

is the highest Min-node utility that search has encountered on its path from the
root to n.

▶ How to use β: In a Max-node n, if one of the successors already has utility
≥ β(n), then stop considering n. (pruning out its remaining successors)

▶ . . . and of course we can use α and β together! ; alphabeta-pruning
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Alpha-Beta Search: Pseudocode
▶ Definition 4.24. The alphabeta search algorithm is given by the following

pseudocode
function Alpha−Beta−Search (s) returns an action

v := Max−Value(s, −∞, +∞)
return an action yielding value v in the previous function call

function Max−Value(s, α, β) returns a utility value
if Terminal−Test(s) then return u(s)
v := −∞
for each a ∈ Actions(s) do
v := max(v ,Min−Value(ChildState(s,a), α, β))
α := max(α, v)
if v ≥ β then return v /∗ Here: v ≥ β ⇔ α ≥ β ∗/

return v

function Min−Value(s, α, β) returns a utility value
if Terminal−Test(s) then return u(s)
v := +∞
for each a ∈ Actions(s) do

v := min(v ,Max−Value(ChildState(s,a), α, β))
β := min(β, v)
if v ≤ α then return v /∗ Here: v ≤ α⇔ α ≥ β ∗/

return v

=̂ Minimax (slide 209) + α/β book-keeping and pruning.

Michael Kohlhase: Artificial Intelligence 1 223 2024-02-08



Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]
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3 12 8
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2
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▶ Note: We could have saved work by choosing the opposite order for the
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Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 14; [3, 14]

14

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 14; [3, 14]

14 5

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

14 5

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]
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2
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14 5 2
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successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 2; [3, 2]

14 5 2

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

5
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max −∞; [3, 5]
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max −∞; [3, 5]

14
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max 14; [14, 5]

14
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max 14; [14, 5]

14

2
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 2; [3, 2]

5
Max 14; [14, 5]

14

2
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How Much Pruning Do We Get?

▶ Choosing the best moves first yields most pruning in alphabeta search.
▶ The maximizing moves for Max, the minimizing moves for Min.

▶ Observation: Assuming game tree with branching factor b and depth limit d :
▶ Minimax would have to search bd nodes.
▶ Best case: If we always choose the best moves first, then the search tree is reduced

to b
d
2 nodes!

▶ Practice: It is often possible to get very close to the best case by simple
move-ordering methods.

▶ Example 4.25 (Chess).
▶ Move ordering: Try captures first, then threats, then forward moves, then backward

moves.
▶ From 35d to 35

d
2 . E.g., if we have the time to search a billion (109) nodes, then

minimax looks ahead d = 6 moves, i.e., 3 rounds (white-black) of the game.
Alpha-beta search looks ahead 6 rounds.
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7.5 Monte-Carlo Tree Search (MCTS)
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And now . . .

▶ AlphaGo = Monte Carlo tree search (AI-1) + neural networks (AI-2)

CC-BY-SA: Buster Benson@ https://www.flickr.com/photos/erikbenson/25717574115
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Monte-Carlo Tree Search: Basic Ideas
▶ Observation: We do not always have good evaluation functions.
▶ Definition 5.1. For Monte Carlo sampling we evaluate actions through

sampling.
▶ When deciding which action to take on game state s:

while time not up do
select action a applicable to s
run a random sample from a until terminal state t

return an a for s with maximal average u(t)

▶ Definition 5.2. For the Monte Carlo tree search algorithm (MCTS) we maintain
a search tree T , the MCTS tree.
while time not up do

apply actions within T to select a leaf state s ′

select action a′ applicable to s ′, run random sample from a′

add s ′ to T , update averages etc.
return an a for s with maximal average u(t)
When executing a, keep the part of T below a.

▶ Compared to alphabeta search: no exhaustive enumeration.
▶ Pro: running time & memory.
▶ Contra: need good guidance how to select and sample.
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.3 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.4 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.5 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.6 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.7 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.8 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100

10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.9 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.10 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0

Michael Kohlhase: Artificial Intelligence 1 229 2024-02-08



Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.11 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.12 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.13 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70

50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.14 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.15 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.16 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.17 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.18 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0

Michael Kohlhase: Artificial Intelligence 1 229 2024-02-08



Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.19 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.20 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.21 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.22 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50

30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.23 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.24 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.25 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.26 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.27 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70

50

30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.28 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0

Michael Kohlhase: Artificial Intelligence 1 229 2024-02-08



Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.29 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.30 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.31 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.32 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.33 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100

10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.34 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.35 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.36 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.37 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.38 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.39 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.40 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.41 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.42 (Redoing the previous example).

40

70 50 30

100

10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.43 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.44 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.45 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.46 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.47 (Redoing the previous example).

40

70

50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.48 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.49 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.50 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.51 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.52 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.53 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.54 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.55 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.56 (Redoing the previous example).

40

70 50

30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.57 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.58 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.59 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.60 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.61 (Redoing the previous example).

40

70

50

30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.62 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.63 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.64 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.65 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.66 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Michael Kohlhase: Artificial Intelligence 1 230 2024-02-08



Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.67 (Redoing the previous example).

40

70 50 30

100

10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.68 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.69 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.70 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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How to Guide the Search in MCTS?

▶ How to sample?: What exactly is “random”?
▶ Classical formulation: balance exploitation vs. exploration.
▶ Exploitation: Prefer moves that have high average already (interesting regions of

state space)
▶ Exploration: Prefer moves that have not been tried a lot yet (don’t overlook other,

possibly better, options)

▶ UCT: “Upper Confidence bounds applied to Trees” [KS06].
▶ Inspired by Multi-Armed Bandit (as in: Casino) problems.
▶ Basically a formula defining the balance. Very popular (buzzword).
▶ Recent critics (e.g. [FD14]): Exploitation in search is very different from the Casino,

as the “accumulated rewards” are fictitious (we’re only thinking about the game, not
actually playing and winning/losing all the time).

Michael Kohlhase: Artificial Intelligence 1 231 2024-02-08



AlphaGo: Overview

▶ Definition 5.71 (Neural Networks in AlphaGo).
▶ Policy networks: Given a state s, output a probability distribution over the actions

applicable in s.
▶ Value networks: Given a state s, output a number estimating the game value of s.

▶ Combination with MCTS:
▶ Policy networks bias the action choices within the MCTS tree (and hence the leaf

state selection), and bias the random samples.
▶ Value networks are an additional source of state values in the MCTS tree, along

with the random samples.
▶ And now in a little more detail
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Neural Networks in AlphaGo

▶ Neural network training pipeline and architecture:
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sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )

∂
σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ ( | )

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game  
play, sampling each move ~ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Illustration taken from [Sil+16] .
▶ Rollout policy pπ: Simple but fast, ≈ prior work on Go.
▶ SL policy network pσ: Supervised learning, human-expert data (“learn to choose an

expert action”).
▶ RL policy network pρ: Reinforcement learning, self-play (“learn to win”).
▶ Value network vθ: Use self-play games with pρ as training data for game-position

evaluation vθ (“predict which player will win in this state”).
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Neural Networks + MCTS in AlphaGo

▶ Monte Carlo tree search in AlphaGo:
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learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ~…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s

z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

( )∝
( )
+ ( )

u s a
P s a

N s a
,

,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge

∑

∑
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1

where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.

Selectiona b c dExpansion Evaluation Backup

p

p

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

© 2016 Macmillan Publishers Limited. All rights reserved

Illustration taken from [Sil+16]
▶ Rollout policy pπ: Action choice in random samples.
▶ SL policy network pσ: Action choice bias within the UCTS tree (stored as “P”, gets

smaller to “u(P)” with number of visits); along with quality Q.
▶ RL policy network pρ: Not used here (used only to learn vθ).
▶ Value network vθ: Used to evaluate leaf states s, in linear sum with the value

returned by a random sample on s.
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7.6 State of the Art
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State of the Art

▶ Some well-known board games:
▶ Chess: Up next.
▶ Othello (Reversi): In 1997, “Logistello” beat the human world champion. Best

computer players now are clearly better than best human players.
▶ Checkers (Dame): Since 1994, “Chinook” is the offical world champion. In 2007, it

was shown to be unbeatable: Checkers is solved. (We know the exact value of, and
optimal strategy for, the initial state.)

▶ Go: In 2016, AlphaGo beat the Grandmaster Lee Sedol, cracking the “holy grail” of
board games. In 2017, “AlphaZero” – a variant of AlphaGo with zero prior
knowledge beat all reigning champion systems in all board games (including
AlphaGo) 100/0 after 24h of self-play.

▶ Intuition: Board Games are considered a “solved problem” from the AI perspective.
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Computer Chess: “Deep Blue” beat Garry Kasparov in 1997

▶ 6 games, final score 3.5 : 2.5.
▶ Specialized chess hardware, 30 nodes

with 16 processors each.
▶ Alphabeta search plus human

knowledge. (more details in a moment)
▶ Nowadays, standard PC hardware plays

at world champion level.
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Computer Chess: Famous Quotes

▶ The chess machine is an ideal one to start with, since (Claude Shannon (1949))
1. the problem is sharply defined both in allowed operations (the moves) and in the

ultimate goal (checkmate),
2. it is neither so simple as to be trivial nor too difficult for satisfactory solution,
3. chess is generally considered to require “thinking” for skilful play, [. . . ]
4. the discrete structure of chess fits well into the digital nature of modern computers.

▶ Chess is the drosophila of Artificial Intelligence. (Alexander Kronrod (1965))
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Computer Chess: Another Famous Quote

▶ In 1965, the Russian mathematician Alexander Kronrod said, “Chess is the
Drosophila of artificial intelligence.”
However, computer chess has developed much as genetics might have if the
geneticists had concentrated their efforts starting in 1910 on breeding racing
Drosophilae. We would have some science, but mainly we would have very fast
fruit flies. (John McCarthy (1997))
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7.7 Conclusion
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Summary

▶ Games (2-player turn-taking zero-sum discrete and finite games) can be
understood as a simple extension of classical search problems.

▶ Each player tries to reach a terminal state with the best possible utility (maximal
vs. minimal).

▶ Minimax searches the game depth-first, max’ing and min’ing at the respective
turns of each player. It yields perfect play, but takes time O(bd) where b is the
branching factor and d the search depth.

▶ Except in trivial games (Tic-Tac-Toe), minimax needs a depth limit and apply
an evaluation function to estimate the value of the cut-off states.

▶ Alpha-beta search remembers the best values achieved for each player elsewhere
in the tree already, and prunes out sub-trees that won’t be reached in the game.

▶ Monte Carlo tree search (MCTS) samples game branches, and averages the
findings. AlphaGo controls this using neural networks: evaluation function
(“value network”), and action filter (“policy network”).
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Chapter 8
Constraint Satisfaction Problems

Michael Kohlhase: Artificial Intelligence 1 239 2024-02-08



8.1 Constraint Satisfaction Problems:
Motivation
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A (Constraint Satisfaction) Problem
▶ Example 1.1 (Tournament Schedule). Who’s going to play against who,

when and where?
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Constraint Satisfaction Problems (CSPs)

▶ Standard search problem: state is a “black box” any old data structure that
supports goal test, eval, successor state, . . .

▶ Definition 1.2. A constraint satisfaction problem (CSP) is a search problem,
where the states are given by a finite set V :={X 1, . . .,X n} of variables and
domains {Dv |v∈V } and the goal state are specified by a set of constraints
specifying allowable combinations of values for subsets of variables.

▶ Definition 1.3. A constraint network γ is satisfiable, iff it has a solution: a
total, consistent variable assignment φ. We say that φ solves γ.

▶ Definition 1.4. The process of finding solutions to CSPs is called constraint
solving.

▶ Remark 1.5. We are using factored representation for world states now.
▶ Simple example of a formal representation language
▶ Allows useful general-purpose algorithms with more power than standard tree

search algorithm.
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Another Constraint Satisfaction Problem

▶ Example 1.6 (SuDoKu). Fill the cells with row/column/block-unique digits

;
▶ Variables: The 81 cells.
▶ Domains: Numbers 1, . . . , 9.
▶ Constraints: Each number only once in each row, column, block.
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CSP Example: Map-Coloring
▶ Definition 1.7. Given a map M, the map coloring problem is to assign colors to

regions in a map so that no adjoining regions have the same color.
▶ Example 1.8 (Map coloring in Australia).
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Variables: WA, NT, Q, NSW, V, SA, T
▶ Domains: D i = {red, green, blue}
▶ Constraints: adjacent regions must have

different colors e.g.,
WA ̸= NT (if the language allows this), or
⟨WA,NT⟩∈{⟨red, green⟩, ⟨red, blue⟩, ⟨green, red⟩, . . . }

▶ Intuition: solutions map variables to
domain values satisfying all constraints,

▶ e.g., {WA = red,NT = green, . . .}
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Bundesliga Constraints

▶ Variables: vAvs.B where A and B are teams, with domains {1, . . . ,34}: For each
match, the index of the weekend where it is scheduled.

▶ (Some) constraints:

▶ If {A,B} ∩ {C ,D} ̸= ∅: vAvs.B ̸= vCvs.D

(each team only one match per day).
▶ If {A,B} = {C ,D}:

vAvs.B ≤ 17 < vCvs.D or
vCvs.D ≤ 17 < vAvs.B (each pairing
exactly once in each half-season).

▶ If A = C : vAvs.B + 1 ̸= vCvs.D (each team
alternates between home matches and
away matches).

▶ Leading teams of last season meet near
the end of each half-season.

▶ . . .
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How to Solve the Bundesliga Constraints?

▶ 306 nested for-loops (for each of the 306 matches), each ranging from 1 to 306.
Within the innermost loop, test whether the current values are (a) a
permutation and, if so, (b) a legal Bundesliga schedule.
▶ Estimated running time: End of this universe, and the next couple billion ones after

it . . .
▶ Directly enumerate all permutations of the numbers 1, . . . , 306, test for each

whether it’s a legal Bundesliga schedule.
▶ Estimated running time: Maybe only the time span of a few thousand universes.

▶ View this as variables/constraints and use backtracking (this chapter)
▶ Executed running time: About 1 minute.

▶ How do they actually do it?: Modern computers and CSP methods: fractions
of a second. 19th (20th/21st?) century: Combinatorics and manual work.

▶ Try it yourself: with an off-the shelf CSP solver, e.g. Minion [Min]
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More Constraint Satisfaction Problems

Traveling Tournament Problem Scheduling

Timetabling Radio Frequency Assignment
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Our Agenda for This Topic

▶ Our treatment of the topic “Constraint Satisfaction Problems” consists of
Chapters 7 and 8. in [RN03]

▶ This Chapter: Basic definitions and concepts; naïve backtracking search.
▶ Sets up the framework. Backtracking underlies many successful algorithms for

solving constraint satisfaction problems (and, naturally, we start with the simplest
version thereof).

▶ Next Chapter: Constraint propagation and decomposition methods.
▶ Constraint propagation reduces the search space of backtracking. Decomposition

methods break the problem into smaller pieces. Both are crucial for efficiency in
practice.
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Our Agenda for This Chapter

▶ How are constraint networks, and assignments, consistency, solutions: How are
constraint satisfaction problems defined? What is a solution?
▶ Get ourselves on firm ground.

▶ Naïve Backtracking: How does backtracking work? What are its main
weaknesses?
▶ Serves to understand the basic workings of this wide-spread algorithm, and to

motivate its enhancements.
▶ Variable- and Value Ordering: How should we guide backtracking searchs?
▶ Simple methods for making backtracking aware of the structure of the problem, and

thereby reduce search.
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8.2 The Waltz Algorithm
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The Waltz Algorithm

▶ Remark: One of the earliest examples of applied CSPs.
▶ Motivation: Interpret line drawings of polyhedra.

▶ Problem: Are intersections convex or concave? (interpret =̂ label as such)
▶ Idea: Adjacent intersections impose constraints on each other. Use CSP to find

a unique set of labelings.
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Waltz Algorithm on Simple Scenes

▶ Assumptions: All objects
▶ have no shadows or cracks,
▶ have only three-faced vertices,
▶ are in “general position”, i.e. no junctions change with small movements of the eye.

▶ Observation 2.1. Then each line on the images is one of the following:
▶ a boundary line (edge of an object) (<) with right hand of arrow denoting “solid”

and left hand denoting “space”
▶ an interior convex edge (label with “+”)
▶ an interior concave edge (label with “-”)

Michael Kohlhase: Artificial Intelligence 1 250 2024-02-08



18 Legal Kinds of Junctions
▶ Observation 2.2. There are only 18 “legal” kinds of junctions:

▶ Idea: given a representation of a diagram
▶ label each junction in one of these manners (lots of possible ways)
▶ junctions must be labeled, so that lines are labeled consistently

▶ Fun Fact: CSP always works perfectly! (early success story for CSP [Wal75])
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Waltz’s Examples

▶ In his dissertation 1972 [Wal75] David Waltz used the following examples
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Waltz Algorithm (More Examples): Ambiguous Figures
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Waltz Algorithm (More Examples): Impossible Figures
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8.3 CSP: Towards a Formal Definition
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Types of CSPs

▶ Definition 3.1. We call a CSP discrete, iff all of the variables have countable
domains; we have two kinds:
▶ finite domains (size d ; O(dn) solutions)
▶ e.g., Boolean CSPs (solvability =̂ Boolean satisfiability ; NP complete)

▶ infinite domains (e.g. integers, strings, etc.)
▶ e.g., job scheduling, variables are start/end days for each job
▶ need a “constraint language”, e.g., StartJob1 + 5≤StartJob3
▶ linear constraints decidable, nonlinear ones undecidable

▶ Definition 3.2. We call a CSP continuous, iff one domain is uncountable.
▶ Example 3.3. Start/end times for Hubble Telescope observations form a

continuous CSP.
▶ Theorem 3.4. Linear constraints solvable in poly time by linear programming

methods.
▶ Theorem 3.5. There cannot be optimal algorithms for nonlinear constraint

systems.
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Types of Constraints

▶ We classify the constraints by the number of variables they involve.
▶ Definition 3.6. Unary constraints involve a single variable, e.g., SA ̸= green.
▶ Definition 3.7. Binary constraints involve pairs of variables, e.g., SA ̸= WA.
▶ Definition 3.8. Higher-order constraints involve n = 3 or more variables, e.g.,

cryptarithmetic column constraints.
The number n of variables is called the order of the constraint.

▶ Definition 3.9. Preferences (soft constraint) (e.g., red is better than green) are
often representable by a cost for each variable assignment ; constrained
optimization problems.
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Non-Binary Constraints, e.g. “Send More Money”

▶ Example 3.10 (Send More Money). A student writes home:

S E N D
+ M O R E
M O N E Y

Puzzle: letters stand for digits, addition should
work out (parents send MONEY€)

▶ Variables: S ,E ,N,D,M,O,R,Y , each with domain {0, . . . ,9}.
▶ Constraints:

1. all variables should have different values: S ̸= E , S ̸= N, . . .
2. first digits are non-zero: S ̸= 0, M ̸= 0.
3. the addition scheme should work out: i.e.

1000 · S + 100 · E + 10 · N + D + 1000 ·M + 100 · O + 10 · R + E =
10000 ·M + 1000 · 0 + 100 · N + 10 · E + Y .

BTW: The solution is
S 7→ 9,E 7→ 5,N 7→ 6,D 7→ 7,M 7→ 1,O 7→ 0,R 7→ 8,Y 7→ 2 ; parents send
10652

▶ Definition 3.11. Problems like the one in 3.10 are called crypto arithmetic
puzzles.
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Encoding Higher-Order Constraints as Binary ones

▶ Problem: The last constraint is of order 8. (n = 8 variables involved)
▶ Observation 3.12. We can write the addition scheme constraint column wise

using auxiliary variables, i.e. variables that do not “occur” in the original
problem.

D + E = Y + 10 · X1

X1 + N + R = E + 10 · X2

X2 + E + O = N + 10 · X3

X3 + S +M = O + 10 ·M

S E N D
+ M O R E
M O N E Y

These constraints are of order ≤ 5.
▶ General Recipe: For n≥3, encode C (v1, . . . , vn−1, vn) as

C (p1(x), . . . , pn−1(x), vn) ∧ v1 = p1(x) ∧ . . . ∧ vn−1 = pn−1(x)

▶ Problem: The problem structure gets hidden. (search algorithms can get
confused)
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Constraint Graph

▶ Definition 3.13. A binary CSP is a CSP where each constraint is unary or
binary.

▶ Observation 3.14. A binary CSP forms a graph called the constraint graph
whose nodes are variables, and whose edges represent the constraints.

▶ Example 3.15. Australia as a binary CSP
204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
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6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Intuition: General-purpose CSP algorithms use the graph structure to speed up
search. (E.g., Tasmania is an independent subproblem!)
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Real-world CSPs

▶ Example 3.16 (Assignment problems). e.g., who teaches what class
▶ Example 3.17 (Timetabling problems). e.g., which class is offered when and

where?
▶ Example 3.18 (Hardware configuration).
▶ Example 3.19 (Spreadsheets).
▶ Example 3.20 (Transportation scheduling).
▶ Example 3.21 (Factory scheduling).
▶ Example 3.22 (Floorplanning).
▶ Note: many real-world problems involve real-valued variables ; continuous

CSPs.
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8.4 Constrain Networks: Formalizing Binary
CSPs
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Constraint Networks (Formalizing binary CSPs)

▶ Definition 4.1. A constraint network is a triple ⟨V ,D ,C ⟩, where
▶ V is a finite set of variables,
▶ D:={Dv |v∈V } the set of their domains, and
▶ C :={C uv ⊆ Du×Dv |u, v∈V and u ̸= v} is a set of constraints with C uv = C−1

vu .

We call the undirected graph ⟨V , {(u,v)∈V 2|C uv ̸= Du × Dv}⟩, the constraint
graph of γ.

▶ We will talk of CSPs and mean constraint networks.
▶ Remarks: The mathematical formulation gives us a lot of leverage:
▶ C uv ⊆ Du×Dv =̂ possible assignments to variables u and v
▶ Relations are the most general formalization, generally we use symbolic formulations,

e.g. “u = v ” for the relation C uv = {(a,b)|a = b} or “u ̸= v ”.
▶ We can express unary constraints Cu by restricting the domain of v : Dv :=Cv .
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Example: SuDoKu as a Constraint Network

▶ Example 4.2 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 1.6.

▶ Variables:

▶ Domains
▶ Unary constraint:
▶ (Binary) constraint:

Note that the ideas are still the same as 1.6, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network

▶ Example 4.3 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 1.6.

▶ Variables: V = {vij |1 ≤ i , j ≤ 9}: vij =cell row i column j .
▶ Domains

▶ Unary constraint:
▶ (Binary) constraint:

Note that the ideas are still the same as 1.6, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network

▶ Example 4.4 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 1.6.

▶ Variables: V = {vij |1 ≤ i , j ≤ 9}: vij =cell row i column j .
▶ Domains For all v∈V : Dv = D = {1, . . . ,9}.
▶ Unary constraint:

▶ (Binary) constraint:

Note that the ideas are still the same as 1.6, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network

▶ Example 4.5 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 1.6.

▶ Variables: V = {vij |1 ≤ i , j ≤ 9}: vij =cell row i column j .
▶ Domains
▶ Unary constraint: Cvij = {d} if cell i , j is pre-filled with d .
▶ (Binary) constraint:

Note that the ideas are still the same as 1.6, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network
▶ Example 4.6 (Formalize SuDoKu). We use the added formality to encode

SuDoKu as a constraint network, not just as a CSP as 1.6.

▶ Variables: V = {vij |1 ≤ i , j ≤ 9}: vij =cell row i column j .
▶ Domains
▶ Unary constraint:
▶ (Binary) constraint: C vij vi′ j′ =̂ “vij ̸= vi′j′ ”, i.e.

C vij vi′ j′ = {(d ,d ′)∈D × D|d ̸= d ′}, for: i = i ′ (same row), or j = j ′ (same column),

or (⌈ i
3⌉,⌈

j
3⌉) = (⌈ i′

3 ⌉,⌈
j′

3 ⌉) (same block).
Note that the ideas are still the same as 1.6, but in constraint networks we have
a language to formulate things precisely.
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Constraint Networks (Solutions)

▶ Let γ:=⟨V ,D ,C ⟩ be a constraint network.
▶ Definition 4.7. We call a partial function a : V⇀

⋃
u∈VDu a variable assignment

if a(v)∈Dv for all v∈dom(a).
▶ Definition 4.8. Let C:=⟨V ,D ,C ⟩ be a constraint network and a : V⇀

⋃
v∈VDv

a variable assignment. We say that a satisfies (otherwise violates) a constraint
C uv , iff u, v∈dom(a) and (a(u),a(v))∈C uv . a is called consistent in C, iff it
satisfies all constraints in C. A value w∈Du is legal for a variable u in C, iff
{(u,w)} is a consistent assignment in C. A variable with illegal value under a is
called conflicted.

▶ Example 4.9. The empty assignment ϵ is (trivially) consistent in any constraint
network.

▶ Definition 4.10. Let f and g be variable assignments, then we say that f
extends (or is an extension of) g , iff dom(g)⊂dom(f ) and f |dom(g) = g .

▶ Definition 4.11. We call a consistent (total) assignment a solution for γ and γ
itself solvable or satisfiable.
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How it all fits together

▶ Lemma 4.12. Higher-order constraints can be transformed into equi-satisfiable
binary constraints using auxiliary variables.

▶ Corollary 4.13. Any CSP can be represented by a constraint network.
▶ In other words The notion of a constraint network is a refinement of a CSP.
▶ So we will stick to constraint networks in this course.
▶ Observation 4.14. We can view a constraint network as a search problem, if we

take the states as the variable assignments, the actions as assignment
extensions, and the goal states as consistent assignments.

▶ Idea: We will explore that idea for algorithms that solve constraint networks.
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8.5 CSP as Search
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Standard search formulation (incremental)

▶ Idea: Every constraint network induces a single state problem.
▶ State are defined by the values assigned so far

▶ States are variable assignments
▶ Initial state: the empty assignment, ∅
▶ Actions: extend current assignment a by a pair

(x ,v) that does not conflicted with a.
▶ ; fail if no consistent assignments exist (not

fixable!)
▶ Goal test: the current assignment is total.

WA = red WA = green WA = blue

WA = red
NT = green

WA = red
NT = blue

WA = red
NT = green
Q = red

WA = red
NT = green
Q = blue

▶ Remark: This is the same for all CSPs! ,
▶ Observation: Every solution appears at depth n with n variables.
▶ Idea: Use depth first search!
▶ Path is irrelevant, so can also use complete-state formulation
▶ Branching factor b = (n − ℓ)d at depth ℓ, hence n!dn leaves!!!! /
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Backtracking Search

▶ Assignments for different variables are independent!
▶ e.g. first WA = red then NT = green vs. first NT = green then WA = red
▶ ; we only need to consider assignments to a single variable at each node
▶ ; b = d and there are dn leaves.

▶ Definition 5.1. Depth first search for CSPs with single-variable assignment
extensions actions is called backtracking search.

▶ Backtracking search is the basic uninformed algorithm for CSPs.
▶ It can solve the n-queens problem for ≊ n = 25.
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Backtracking Search (Implementation)

▶ Definition 5.2. The generic backtracking search algorithm

procedure Backtracking−Search(csp ) returns solution/failure
return Recursive−Backtracking (∅, csp)

procedure Recursive−Backtracking (assignment) returns soln/failure
if assignment is complete then return assignment
var := Select−Unassigned−Variable(Variables[csp], assignment, csp)
foreach value in Order−Domain−Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result := Recursive−Backtracking(assignment,csp)
if result ̸= failure then return result

remove {var= value} from assignment
return failure

Michael Kohlhase: Artificial Intelligence 1 267 2024-02-08



Backtracking in Australia

▶ Example 5.3. We apply backtracking search for a map coloring problem:
Step 1:
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Backtracking in Australia

▶ Example 5.4. We apply backtracking search for a map coloring problem:
Step 2:
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Backtracking in Australia

▶ Example 5.5. We apply backtracking search for a map coloring problem:
Step 3:
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Backtracking in Australia

▶ Example 5.6. We apply backtracking search for a map coloring problem:
Step 4:
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Improving Backtracking Efficiency

▶ General-purpose methods can give huge gains in speed for backtracking search.
▶ Answering the following questions well helps find powerful heuristics:

1. Which variable should be assigned next? (i.e. a variable ordering heuristic)

2. In what order should its values be tried? (i.e. a value ordering heuristic)
3. Can we detect inevitable failure early? (for pruning strategies)
4. Can we take advantage of problem structure? (; inference)

▶ Observation: Questions 1/2 correspond to the missing subroutines
Select−Unassigned−Variable and Order−Domain−Values from 5.2.
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Heuristic: Minimum Remaining Values (Which Variable)

▶ Definition 5.7. The minimum remaining values (MRV) heuristic for
backtracking search always chooses the variable with the fewest legal values, i.e.
a variable v that given an initial assignment a minimizes
#({d∈Dv |a ∪ {v 7→d} is consistent}).

▶ Intuition: By choosing a most constrained variable v first, we reduce the
branching factor (number of sub trees generated for v) and thus reduce the size
of our search tree.

▶ Extreme case: If #({d∈Dv |a ∪ {v 7→d} is consistent}) = 1, then the value
assignment to v is forced by our previous choices.

▶ Example 5.8. In step 3 of 5.3, there is only one remaining value for SA!
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Degree Heuristic (Variable Order Tie Breaker)

▶ Problem: Need a tie-breaker among MRV variables!(there was no preference in
step 1,2)

▶ Definition 5.9. The degree heuristic in backtracking search always chooses a
most constraining variable, i.e. given an initial assignment a always pick a
variable v with #({v∈(V \dom(a))|C uv∈C}) maximal.

▶ By choosing a most constraining variable first, we detect inconsistencies earlier
on and thus reduce the size of our search tree.

▶ Commonly used strategy combination: From the set of most constrained
variable, pick a most constraining variable.

▶ Example 5.10.

Degree heuristic: SA = 5, T = 0, all others 2 or 3.
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Least Constraining Value Heuristic (Value Ordering)

▶ Definition 5.11. Given a variable v , the least constraining value heuristic
chooses the least constraining value for v : the one that rules out the fewest
values in the remaining variables, i.e. for a given initial assignment a and a
chosen variable v pick a value d∈Dv that minimizes
#({e∈Du|u ̸∈Dv , C uv∈C , and (e,d) ̸∈C uv})

▶ By choosing the least constraining value first, we increase the chances to not
rule out the solutions below the current node.

▶ Example 5.12.

▶ Combining these heuristics makes 1000 queens feasible.
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8.6 Conclusion & Preview
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Summary & Preview

▶ Summary of “CSP as Search”:
▶ Constraint networks γ consist of variables, associated with finite domains, and

constraints which are binary relations specifying permissible value pairs.
▶ A variable assignment a maps some variables to values. a is consistent if it complies

with all constraints. A consistent total assignment is a solution.
▶ The constraint satisfaction problem (CSP) consists in finding a solution for a

constraint network. This has numerous applications including, e.g., scheduling and
timetabling.

▶ Backtracking search assigns variable one by one, pruning inconsistent variable
assignments.

▶ Variable orderings in backtracking can dramatically reduce the size of the search
tree. Value orderings have this potential (only) in solvable sub trees.

▶ Up next: Inference and decomposition, for improved efficiency.
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Chapter 9
Constraint Propagation

Michael Kohlhase: Artificial Intelligence 1 273 2024-02-08



9.1 Introduction
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Illustration: Constraint Propagation

▶ Example 1.1. A constraint network γ:
204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Question: Can we add a constraint without losing any solutions?
▶ Example 1.2. CWAQ := “=”. If WA and Q are assigned different colors, then

NT must be assigned the 3rd color, leaving no color for SA.
▶ Intuition: Adding constraints without losing solutions

=̂ obtaining an equivalent network with a “tighter description”
; a smaller number of consistent (partial) variable assignments
; more efficient search!
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Illustration: Decomposition

▶ Example 1.3. Constraint network γ:
204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ We can separate this into two independent constraint networks.
▶ Tasmania is not adjacent to any other state. Thus we can color Australia first,

and assign an arbitrary color to Tasmania afterwards.
▶ Decomposition methods exploit the structure of the constraint network. They

identify separate parts (sub-networks) whose inter-dependencies are “simple” and
can be handled efficiently.

▶ Example 1.4 (Extreme case). No inter-dependencies at all, as for Tasmania
above.
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Our Agenda for This Chapter

▶ Constraint propagation: How does inference work in principle? What are
relevant practical aspects?
▶ Fundamental concepts underlying inference, basic facts about its use.

▶ Forward checking: What is the simplest instance of inference?
▶ Gets us started on this subject.

▶ Arc consistency: How to make inferences between variables whose value is not
fixed yet?
▶ Details a state of the art inference method.

▶ Decomposition: Constraint graphs, and two simple cases
▶ How to capture dependencies in a constraint network? What are “simple cases”?
▶ Basic results on this subject.

▶ Cutset conditioning: What if we’re not in a simple case?
▶ Outlines the most easily understandable technique for decomposition in the general

case.
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9.2 Constraint Propagation/Inference
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Constraint Propagation/Inference: Basic Facts

▶ Definition 2.1. Constraint propagation (i.e inference in constraint networks)
consists in deducing additional constraints, that follow from the already known
constraints, i.e. that are satisfied in all solutions.

▶ Example 2.2. It’s what you do all the time when playing SuDoKu:

▶ Formally: Replace γ by an equivalent and strictly tighter constraint network γ′.
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Equivalent Constraint Networks

▶ Definition 2.3. We say that two constraint networks γ:=⟨V ,D ,C ⟩ and
γ′:=⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ), if
they have the same solutions.

▶ Example 2.4.

No. Yes.
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Equivalent Constraint Networks

▶ Definition 2.5. We say that two constraint networks γ:=⟨V ,D ,C ⟩ and
γ′:=⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ), if
they have the same solutions.

▶ Example 2.6.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=

Are these constraint networks equivalent?

No. Yes.
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Equivalent Constraint Networks

▶ Definition 2.7. We say that two constraint networks γ:=⟨V ,D ,C ⟩ and
γ′:=⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ), if
they have the same solutions.

▶ Example 2.8.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=

Are these constraint networks equivalent? No.

Yes.
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Equivalent Constraint Networks

▶ Definition 2.9. We say that two constraint networks γ:=⟨V ,D ,C ⟩ and
γ′:=⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ), if
they have the same solutions.

▶ Example 2.10.

No.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Are these constraint networks equivalent?

Yes.
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Equivalent Constraint Networks

▶ Definition 2.11. We say that two constraint networks γ:=⟨V ,D ,C ⟩ and
γ′:=⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ), if
they have the same solutions.

▶ Example 2.12.

No.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Are these constraint networks equivalent? Yes.
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Tightness
▶ Definition 2.13 (Tightness). Let γ:=⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v∈V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv∈C ′: either C ′

uv ̸∈C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

▶ Example 2.14.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Tightness
▶ Definition 2.15 (Tightness). Let γ:=⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v∈V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv∈C ′: either C ′

uv ̸∈C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

▶ Example 2.16.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=
Here, we do have γ′⊑γ.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.

Michael Kohlhase: Artificial Intelligence 1 279 2024-02-08



Tightness
▶ Definition 2.17 (Tightness). Let γ:=⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v∈V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv∈C ′: either C ′

uv ̸∈C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

▶ Example 2.18.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Here, we do have γ′⊑γ.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Tightness
▶ Definition 2.19 (Tightness). Let γ:=⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v∈V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv∈C ′: either C ′

uv ̸∈C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

▶ Example 2.20.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸=

=

Here, we do not have γ′⊑γ!.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Tightness
▶ Definition 2.21 (Tightness). Let γ:=⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v∈V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv∈C ′: either C ′

uv ̸∈C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

▶ Example 2.22.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′
red
blue

v1

red
blue

v2
red
blue

v3

̸=

=

Here, we do not have γ′⊑γ!.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Equivalence + Tightness = Inference

▶ Theorem 2.23. Let γ and γ′ be constraint networks such that γ′≡γ and γ′⊑γ.
Then γ′ has the same solutions as, but fewer consistent assignments than, γ.

▶ ; γ′ is a better encoding of the underlying problem.
▶ Example 2.24. Two equivalent constraint networks (one obviously unsolvable)

γ red
blue

v1

redv2 blue v3

̸= ̸=

γ′
red
blue

v1

redv2 blue v3

̸= ̸=

=

ϵ cannot be extended to a solution (neither in γ nor in γ′ because they’re
equivalent); this is obvious (red ̸= blue) in γ′, but not in γ.
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How to Use Constraint Propagation in CSP Solvers?

▶ Simple: Constraint propagation as a pre-process:
▶ When: Just once before search starts.
▶ Effect: Little running time overhead, little pruning power. (not considered here)

▶ More Advanced: Constraint propagation during search:
▶ When: At every recursive call of backtracking.
▶ Effect: Strong pruning power, may have large running time overhead.

▶ Search vs. Inference: The more complex the inference, the smaller the
number of search nodes, but the larger the running time needed at each node.

▶ Idea: Encode variable assignments as unary constraints (i.e., for a(v) = d , set
the unary constraint Dv = {d}), so that inference reasons about the network
restricted to the commitments already made in the search.
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Backtracking With Inference

▶ Definition 2.25. The general algorithm for backtracking with inference is

1 function BacktrackingWithInference(γ,a) returns a solution, or ‘‘inconsistent’’
2 if a is inconsistent then return ‘‘inconsistent’’
3 if a is a total assignment then return a
4 γ′ := a copy of γ /∗ γ′ = (V γ′ ,Dγ′ ,Cγ′) ∗/
5 γ′ := Inference(γ′)
6 if exists v with Dv = ∅ then return ‘‘inconsistent’’
7 select some variable v for which a is not defined
8 for each d ∈ copy of Dv in some order do
9 a′:=a ∪ {v = d}; Dv :={d} /∗ makes a explicit as a constraint ∗/

10 a′′ := BacktrackingWithInference(γ′,a′)
11 if a′′ ̸= “inconsistent” then return a′′

12 return ‘‘inconsistent’’

▶ Exactly the same as 5.2, only line 5 new!
▶ Inference(): Any procedure delivering a (tighter) equivalent network.
▶ Inference() typically prunes domains; indicate unsolvability by Dv = ∅.
▶ When backtracking out of a search branch, retract the inferred constraints: these

were dependent on a, the search commitments so far.
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9.3 Forward Checking
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Forward Checking

▶ Definition 3.1. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.2. Forward checking in Australia
▶ Definition 3.3 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d∈Du|(d ,d ′)∈C uv}

return γ
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Forward Checking

▶ Definition 3.4. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.5. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

▶ Definition 3.6 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d∈Du|(d ,d ′)∈C uv}

return γ
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Forward Checking

▶ Definition 3.7. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.8. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.9 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d∈Du|(d ,d ′)∈C uv}

return γ
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Forward Checking

▶ Definition 3.10. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.11. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.12 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d∈Du|(d ,d ′)∈C uv}

return γ
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Forward Checking
▶ Definition 3.13. Forward checking propagates information about illegal values:

Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.14. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.15 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d∈Du|(d ,d ′)∈C uv}

return γ
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Forward Checking
▶ Definition 3.16. Forward checking propagates information about illegal values:

Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.17. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.18 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d∈Du|(d ,d ′)∈C uv}

return γ
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Forward Checking: Discussion

▶ Definition 3.19. An inference procedure is called sound, iff for any input γ the
output γ′ have the same solutions.

▶ Lemma 3.20. Forward checking is sound.
Proof sketch: Recall here that the assignment a is represented as unary
constraints inside γ.

▶ Corollary 3.21. γ and γ′ are equivalent.
▶ Incremental computation: Instead of the first for-loop in 3.3, use only the inner

one every time a new assignment a(v) = d ′ is added.
▶ Practical Properties:
▶ Cheap but useful inference method.
▶ Rarely a good idea to not use forward checking (or a stronger inference method

subsuming it).
▶ Up next: A stronger inference method (subsuming forward checking).
▶ Definition 3.22. Let p and q be inference procedures, then p subsumes q, if

p(γ)⊑q(γ) for any input γ.
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9.4 Arc Consistency
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When Forward Checking is Not Good Enough

▶ Problem: Forward checking makes inferences only from assigned to unassigned
variables.

▶ Example 4.1.

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

We could do better here: value 3 for v2 is not consistent with any remaining
value for v3 ; it can be removed!
But forward checking does not catch this.
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Arc Consistency: Definition

▶ Definition 4.2 (Arc Consistency). Let γ:=⟨V ,D ,C ⟩ be a constraint network.
1. A variable u∈V is arc consistent relative to another variable v∈V if either C uv ̸∈C ,

or for every value d∈Du there exists a value d ′∈Dv such that (d ,d ′)∈C uv .
2. The constraint network γ is arc consistent if every variable u∈V is arc consistent

relative to every other variable v∈V .

The concept of arc consistency concerns both levels.
▶ Intuition: Arc consistency =̂ for every domain value and constraint, at least

one value on the other side of the constraint “works”.
▶ Note the asymmetry between u and v : arc consistency is directed.
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Arc Consistency: Example
▶ Definition 4.3 (Arc Consistency). Let γ:=⟨V ,D ,C ⟩ be a constraint network.

1. A variable u∈V is arc consistent relative to another variable v∈V if either C uv ̸∈C ,
or for every value d∈Du there exists a value d ′∈Dv such that (d ,d ′)∈C uv .

2. The constraint network γ is arc consistent if every variable u∈V is arc consistent
relative to every other variable v∈V .

The concept of arc consistency concerns both levels.
▶ Example 4.4 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

▶ Question: On top, middle, is v3 arc consistent relative to v2?

▶ Answer: No. For values 1 and 2, Dv2 does not have a value that works.
▶ Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
▶ Question: And on the right?

▶ Answer: Yes. (But v2 is not arc consistent relative to v3)
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Arc Consistency: Example
▶ Definition 4.5 (Arc Consistency). Let γ:=⟨V ,D ,C ⟩ be a constraint network.

1. A variable u∈V is arc consistent relative to another variable v∈V if either C uv ̸∈C ,
or for every value d∈Du there exists a value d ′∈Dv such that (d ,d ′)∈C uv .

2. The constraint network γ is arc consistent if every variable u∈V is arc consistent
relative to every other variable v∈V .

The concept of arc consistency concerns both levels.
▶ Example 4.6 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

▶ Question: On top, middle, is v3 arc consistent relative to v2?
▶ Answer: No. For values 1 and 2, Dv2 does not have a value that works.
▶ Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
▶ Question: And on the right?

▶ Answer: Yes. (But v2 is not arc consistent relative to v3)
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Arc Consistency: Example
▶ Definition 4.7 (Arc Consistency). Let γ:=⟨V ,D ,C ⟩ be a constraint network.

1. A variable u∈V is arc consistent relative to another variable v∈V if either C uv ̸∈C ,
or for every value d∈Du there exists a value d ′∈Dv such that (d ,d ′)∈C uv .

2. The constraint network γ is arc consistent if every variable u∈V is arc consistent
relative to every other variable v∈V .

The concept of arc consistency concerns both levels.
▶ Example 4.8 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

▶ Question: On top, middle, is v3 arc consistent relative to v2?
▶ Answer: No. For values 1 and 2, Dv2 does not have a value that works.
▶ Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
▶ Question: And on the right?
▶ Answer: Yes. (But v2 is not arc consistent relative to v3)
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Arc Consistency: Example

▶ Definition 4.9 (Arc Consistency). Let γ:=⟨V ,D ,C ⟩ be a constraint network.
1. A variable u∈V is arc consistent relative to another variable v∈V if either C uv ̸∈C ,

or for every value d∈Du there exists a value d ′∈Dv such that (d ,d ′)∈C uv .
2. The constraint network γ is arc consistent if every variable u∈V is arc consistent

relative to every other variable v∈V .

The concept of arc consistency concerns both levels.
▶ Example 4.10.

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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;?

When Forward Checking is Not Good Enough

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

WA NT Q NSW V SA T

;?

Forward checking makes inferences only “from assigned to unassigned” variables.
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▶ Note: SA is not arc consistent relative to NT in 3rd row.
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Enforcing Arc Consistency: General Remarks

▶ Inference, version 2: “Enforcing Arc Consistency” = removing domain values
until γ is arc consistent. (Up next)

▶ Note: Assuming such an inference method AC(γ).
▶ Lemma 4.11. AC(γ) is sound: guarantees to deliver an equivalent network.
▶ Proof sketch: If, for d∈Du, there does not exist a value d ′∈Dv such that

(d ,d ′)∈C uv , then u = d cannot be part of any solution.
▶ Observation 4.12. AC(γ) subsumes forward checking:

AC(γ)⊑ForwardChecking(γ).
▶ Proof: Recall from slide 279 that γ′⊑γ means γ′ is tighter than γ.

1. Forward checking removes d from Du only if there is a constraint C uv such
that Dv = {d ′} (i.e. when v was assigned the value d ′), and (d ,d ′)̸∈C uv .

2. Clearly, enforcing arc consistency of u relative to v removes d from Du as
well.
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.13 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.14. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.15. Revise(γ, v3, v2)

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.16 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.17. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.18. Revise(γ, v3, v2)

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.19 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.20. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.21. Revise(γ, v3, v2)

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.22 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.23. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.24. Revise(γ, v3, v2)

1

v1

2 3v2 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.25 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.26. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.27. Revise(γ, v3, v2)

1

v1

2 3v2 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.28 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.29. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.30. Revise(γ, v3, v2)

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.31 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d∈Du do

if there is no d ′∈Dv with (d ,d ′)∈C uv then Du := Du\{d}
return γ

▶ Lemma 4.32. If d is maximal domain size in γ and the test “(d ,d ′)∈C uv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.33. Revise(γ, v3, v2)

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.34. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C u0v do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.35. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest once

all nd variable values have been removed.
▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?
▶ Redundant computations: u and v are revised even if theirdomains haven’t

changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.36. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C u0v do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.37. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest once

all nd variable values have been removed.

▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?
▶ Redundant computations: u and v are revised even if theirdomains haven’t

changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.38. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C u0v do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.39. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest once

all nd variable values have been removed.
▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?

▶ Redundant computations: u and v are revised even if theirdomains haven’t
changed since the last time.

▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.40. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C u0v do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.41. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest once

all nd variable values have been removed.
▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?
▶ Redundant computations: u and v are revised even if theirdomains haven’t

changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-3: Enforcing Arc Consistency (Version 3)
▶ Idea: Remember the potentially inconsistent variable pairs.
▶ Definition 4.42. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint C uv∈C do
M := M ∪ {(u,v), (v ,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu∈C where w ̸= v do
M := M ∪ {(w ,u)}

return γ
▶ Question: AC − 3(γ) enforces arc consistency because?

▶ Answer: At any time during the while-loop, if (u,v )̸∈M then u is arc consistent
relative to v .

▶ Question: Why only “where w ̸= v ”?
▶ Answer: If w = v is the reason why Du changed, then w is still arc consistent

relative to u: the values just removed from Du did not match any values from
Dw anyway.
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AC-3: Enforcing Arc Consistency (Version 3)
▶ Idea: Remember the potentially inconsistent variable pairs.
▶ Definition 4.43. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint C uv∈C do
M := M ∪ {(u,v), (v ,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu∈C where w ̸= v do
M := M ∪ {(w ,u)}

return γ
▶ Question: AC − 3(γ) enforces arc consistency because?
▶ Answer: At any time during the while-loop, if (u,v )̸∈M then u is arc consistent

relative to v .
▶ Question: Why only “where w ̸= v ”?

▶ Answer: If w = v is the reason why Du changed, then w is still arc consistent
relative to u: the values just removed from Du did not match any values from
Dw anyway.
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AC-3: Enforcing Arc Consistency (Version 3)
▶ Idea: Remember the potentially inconsistent variable pairs.
▶ Definition 4.44. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint C uv∈C do
M := M ∪ {(u,v), (v ,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu∈C where w ̸= v do
M := M ∪ {(w ,u)}

return γ
▶ Question: AC − 3(γ) enforces arc consistency because?
▶ Answer: At any time during the while-loop, if (u,v )̸∈M then u is arc consistent

relative to v .
▶ Question: Why only “where w ̸= v ”?
▶ Answer: If w = v is the reason why Du changed, then w is still arc consistent

relative to u: the values just removed from Du did not match any values from
Dw anyway.
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AC-3: Example

▶ Example 4.45. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
(v1,v3)
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AC-3: Example

▶ Example 4.46. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
(v1,v3)
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AC-3: Example

▶ Example 4.47. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
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AC-3: Example

▶ Example 4.48. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
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AC-3: Example

▶ Example 4.49. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
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AC-3: Example

▶ Example 4.50. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v3,v1)
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AC-3: Example

▶ Example 4.51. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v3,v1)
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AC-3: Example

▶ Example 4.52. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
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AC-3: Example

▶ Example 4.53. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 v3

v2 div v1 = 0 v3 div v1 = 0

M
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AC-3: Runtime

▶ Theorem 4.54 (Runtime of AC-3). Let γ:=⟨V ,D ,C ⟩ be a constraint network
with m constraints, and maximal domain size d . Then AC − 3(γ) runs in time
O(md3).

▶ Proof: by counting how often Revise is called.
1. Each call to Revise(γ, u, v) takes time O(d2) so it suffices to prove that at

most O(md) of these calls are made.
2. The number of calls to Revise(γ, u, v) is the number of iterations of the

while-loop, which is at most the number of insertions into M.
3. Consider any constraint C uv .
4. Two variable pairs corresponding to C uv are inserted in the for-loop. In the

while loop, if a pair corresponding to C uv is inserted into M, then
5. beforehand the domain of either u or v was reduced, which happens at

most 2d times.
6. Thus we have O(d) insertions per constraint, and O(md) insertions overall,

as desired.
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9.5 Decomposition: Constraint Graphs, and
Three Simple Cases
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Reminder: The Big Picture

▶ Say γ is a constraint network with n variables and maximal domain size d .
▶ dn total assignments must be tested in the worst case to solve γ.

▶ Inference: One method to try to avoid/ameliorate this combinatorial explosion
in practice.
▶ Often, from an assignment to some variables, we can easily make inferences

regarding other variables.
▶ Decomposition: Another method to avoid/ameliorate this combinatorial

explosion in practice.
▶ Often, we can exploit the structure of a network to decompose it into smaller parts

that are easier to solve.
▶ Question: What is “structure”, and how to “decompose”?
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Problem Structure

▶ Idea: Tasmania and mainland are “independent
subproblems”

▶ Definition 5.1. Independent subproblems are
identified as connected components of constraint
graphs.

▶ Suppose each independent subproblem has c
variables out of n total. (d is max domain size)

▶ Worst-case solution cost is n div c · dc (linear in n)
▶ E.g., n = 80, d = 2, c = 20
▶ 280 =̂ 4 billion years at 10 million nodes/sec
▶ 4 · 220 =̂ 0.4 seconds at 10 million nodes/sec
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .
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“Decomposition” 1.0: Disconnected Constraint Graphs

▶ Theorem 5.2 (Disconnected Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a
constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a:=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.3. Color Tasmania separately in Australia
▶ Example 5.4 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.5. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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“Decomposition” 1.0: Disconnected Constraint Graphs

▶ Theorem 5.6 (Disconnected Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a
constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a:=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.7. Color Tasmania separately in Australia
▶ Example 5.8 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.9. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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“Decomposition” 1.0: Disconnected Constraint Graphs
▶ Theorem 5.10 (Disconnected Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a

constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a:=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.11. Color Tasmania separately in Australia
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Example 5.12 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.13. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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“Decomposition” 1.0: Disconnected Constraint Graphs

▶ Theorem 5.14 (Disconnected Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a
constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a:=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.15. Color Tasmania separately in Australia
▶ Example 5.16 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.17. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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Tree-structured CSPs

▶ Theorem 5.18. If the constraint graph has no cycles, the CSP can be solved in
O(nd2) time.

▶ Compare to general CSPs, where worst case time is O(dn).
▶ This property also applies to logical and probabilistic reasoning: an important

example of the relation between syntactic restrictions and the complexity of
reasoning.
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Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every
node’s parent precedes it in the ordering

2. For j from n down to 2, apply

RemoveInconsistent(Parent(Xj ,Xj)

3. For j from 1 to n, assign Xj consistently with Parent(Xj)
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Nearly tree-structured CSPs
▶ Definition 5.19. Conditioning: instantiate a variable, prune its neighbors’

domains.
▶ Example 5.20.

▶ Definition 5.21. Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree.

▶ Cutset size c ; running time O(dc(n − c)d2), very fast for small c .
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“Decomposition” 2.0: Acyclic Constraint Graphs

▶ Theorem 5.22 (Acyclic Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a
constraint network with n variables and maximal domain size k , whose
constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be
unsatisfiable, in time O(nk2).

▶ Proof sketch: See the algorithm on the next slide
▶ Constraint networks with acyclic constraint graphs can be solved in (low order)

polynomial time.

▶ Example 5.23. Australia is not acyclic. (But see next section)
▶ Example 5.24 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240.
▶ With decomposition: 40 · 22. Gain: 232.
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“Decomposition” 2.0: Acyclic Constraint Graphs
▶ Theorem 5.25 (Acyclic Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a

constraint network with n variables and maximal domain size k , whose
constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be
unsatisfiable, in time O(nk2).

▶ Proof sketch: See the algorithm on the next slide
▶ Constraint networks with acyclic constraint graphs can be solved in (low order)

polynomial time.
▶ Example 5.26. Australia is not acyclic. (But see next section)
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Example 5.27 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240.
▶ With decomposition: 40 · 22. Gain: 232.

Michael Kohlhase: Artificial Intelligence 1 301 2024-02-08



“Decomposition” 2.0: Acyclic Constraint Graphs

▶ Theorem 5.28 (Acyclic Constraint Graphs). Let γ:=⟨V ,D ,C ⟩ be a
constraint network with n variables and maximal domain size k , whose
constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be
unsatisfiable, in time O(nk2).

▶ Proof sketch: See the algorithm on the next slide
▶ Constraint networks with acyclic constraint graphs can be solved in (low order)

polynomial time.
▶ Example 5.29. Australia is not acyclic. (But see next section)
▶ Example 5.30 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240.
▶ With decomposition: 40 · 22. Gain: 232.
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Acyclic Constraint Graphs: How To

▶ Definition 5.31. Algorithm AcyclicCG(γ):
1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable v as

the root, and directing edges outwards.1

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n − 1, . . . , 2 do:
3.1 Revise(γ, vparent(i), v i ).
3.2 if Dvparent(i) = ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.
4. Run BacktrackingWithInference with forward checking, using the variable order

v1, . . ., vn.
▶ Lemma 5.32. This algorithm will find a solution without ever having to

backtrack!

1We assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.
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Acyclic Constraint Graphs: How To

▶ Definition 5.33. Algorithm AcyclicCG(γ):
1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable v as

the root, and directing edges outwards.1

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n − 1, . . . , 2 do:
3.1 Revise(γ, vparent(i), v i ).
3.2 if Dvparent(i) = ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.
4. Run BacktrackingWithInference with forward checking, using the variable order

v1, . . ., vn.
▶ Lemma 5.34. This algorithm will find a solution without ever having to

backtrack!

1We assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.
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Acyclic Constraint Graphs: How To

▶ Definition 5.35. Algorithm AcyclicCG(γ):
1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable v as

the root, and directing edges outwards.1

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n − 1, . . . , 2 do:
3.1 Revise(γ, vparent(i), v i ).
3.2 if Dvparent(i) = ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.
4. Run BacktrackingWithInference with forward checking, using the variable order

v1, . . ., vn.
▶ Lemma 5.36. This algorithm will find a solution without ever having to

backtrack!

1We assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.
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AcyclicCG(γ): Example

▶ Example 5.37 (AcyclicCG() execution).

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Input network γ.
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AcyclicCG(γ): Example

▶ Example 5.38 (AcyclicCG() execution).

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Step 1: Directed tree for root v1.
Step 2: Order v1, v2, v3.
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AcyclicCG(γ): Example

▶ Example 5.39 (AcyclicCG() execution).

1 2 3

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v2, v3).
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AcyclicCG(γ): Example

▶ Example 5.40 (AcyclicCG() execution).

1

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v1, v2).
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AcyclicCG(γ): Example

▶ Example 5.41 (AcyclicCG() execution).

1

v1

2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v1) := 1 and forward checking.
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AcyclicCG(γ): Example

▶ Example 5.42 (AcyclicCG() execution).

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v2) := 2 and forward checking.
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AcyclicCG(γ): Example

▶ Example 5.43 (AcyclicCG() execution).

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v3) := 3 (and forward checking).
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9.6 Cutset Conditioning
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“Almost” Acyclic Constraint Graphs

▶ Example 6.1 (Coloring Australia).

▶ Cutset Conditioning: Idea:
1. Recursive call of backtracking search on a s.t. the subgraph of the constraint graph

induced by {v∈V |a(v) is undefined} is acyclic.
▶ Then we can solve the remaining sub-problem with AcyclicCG().

2. Choose the variable ordering so that removing the first d variables renders the
constraint graph acyclic.
▶ Then with (1) we won’t have to search deeper than d . . . !
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“Decomposition” 3.0: Cutset Conditioning
▶ Definition 6.2 (Cutset). Let γ:=⟨V ,D ,C ⟩ be a constraint network, and

V0 ⊆ V . Then V0 is a cutset for γ if the subgraph of γ’s constraint graph
induced by V \V0 is acyclic. V0 is called optimal if its size is minimal among all
cutsets for γ.

▶ Definition 6.3. The cutset conditioning algorithm, computes an optimal cutset,
from γ and an existing cutset V0.
function CutsetConditioning(γ,V0,a) returns a solution, or ‘‘inconsistent’’
γ′ := a copy of γ; γ′ := ForwardChecking(γ′,a)
if ex. v with Dv = ∅ then return ‘‘inconsistent’’
if ex. v∈V0 s.t. a(v) is undefined then select such v
else a′ := AcyclicCG(γ′);
if a′ ̸= “inconsistent” then return a ∪ a′ else return ‘‘inconsistent’’
for each d∈copy of Dv in some order do
a′ := a ∪ {v = d}; Dv := {d};
a′′ := CutsetConditioning(γ′,V0,a′)

if a′′ ̸= “inconsistent” then return a′′ else return ‘‘inconsistent’’

▶ Forward checking is required so that “a ∪ AcyclicCG(γ′)” is consistent in γ.
▶ Observation 6.4. Running time is exponential only in #(V0), not in #(V )!
▶ Remark 6.5. Finding optimal cutsets is NP hard, but good approximations exist.
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9.7 Constraint Propagation with Local Search
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Iterative algorithms for CSPs

▶ Local search algorithms like hill climbing and simulated annealing typically work
with “complete” states, i.e., all variables are assigned

▶ To apply to CSPs: allow states with unsatisfied constraints, actions reassign
variable values.

▶ Variable selection: Randomly select any conflicted variable.
▶ Value selection by min conflicts heuristic: choose value that violates the fewest

constraints i.e., hill climb with h(n):=total number of violated constraints.

Michael Kohlhase: Artificial Intelligence 1 306 2024-02-08



Example: 4-Queens

▶ States: 4 queens in 4 columns (44 = 256 states)
▶ Actions: Move queen in column
▶ Goal state: No conflicts
▶ Heuristic: h(n) =̂ number of conflict
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Performance of min-conflicts
▶ Given a random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)
▶ The same appears to be true for any randomly-generated CSP except in a

narrow range of the ratio

R =
number of constraints
number of variables
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9.8 Conclusion & Summary
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Conclusion & Summary

▶ γ and γ′ are equivalent if they have the same solutions. γ′ is tighter than γ if it
is more constrained.

▶ Inference tightens γ without losing equivalence, during backtracking search.
This reduces the amount of search needed; that benefit must be traded off
against the running time overhead for making the inferences.

▶ Forward checking removes values conflicting with an assignment already made.

▶ Arc consistency removes values that do not comply with any value still available
at the other end of a constraint. This subsumes forward checking.

▶ The constraint graph captures the dependencies between variables. Separate
connected components can be solved independently. Networks with acyclic
constraint graphs can be solved in low order polynomial time.

▶ A cutset is a subset of variables removing which renders the constraint graph
acyclic. Cutset conditioning backtracks only on such a cutset, and solves a
sub-problem with acyclic constraint graph at each search leaf.
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Topics We Didn’t Cover Here
▶ Path consistency, k-consistency: Generalizes arc consistency to size k

subsets of variables. Path consistency =̂ 3-consistency.
▶ Tree decomposition: Instead of instantiating variables until the leaf nodes are

trees, distribute the variables and constraints over sub-CSPs whose connections
form a tree.

▶ Backjumping: Like backtracking search, but with ability to back up across
several levels (to a previous variable assignment identified to be responsible for
failure).

▶ No-Good Learning: Inferring additional constraints based on information
gathered during backtracking search.

▶ Local search: In space of total (but not necessarily consistent) assignments.
(E.g., 8 queens in )

▶ Tractable CSP: Classes of CSPs that can be solved in P.
▶ Global Constraints: Constraints over many/all variables, with associated

specialized inference methods.
▶ Constraint Optimization Problems (COP): Utility function over solutions,

need an optimal one.
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Part 3
Knowledge and Inference
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Chapter 10
Propositional Logic & Reasoning, Part I:

Principles
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10.1 Introduction
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The Wumpus World

Definition 1.1. The Wumpus world is a
simple game where an agent explores a
cave with 16 cells that can contain pits,
gold, and the Wumpus with the goal of
getting back out alive with the gold.

▶ Definition 1.2 (Actions). The agent can perform the following actions:
goForward, turnRight (by 90◦), turnLeft (by 90◦), shoot arrow in direction
you’re facing (you got exactly one arrow), grab an object in current cell, leave
cave if you’re in cell [1, 1].

▶ Definition 1.3 (Initial and Terminal States). Initially, the agent is in cell [1, 1]
facing east. If the agent falls down a pit or meets live Wumpus it dies.
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The Wumpus World

Definition 1.5. The Wumpus world is a
simple game where an agent explores a
cave with 16 cells that can contain pits,
gold, and the Wumpus with the goal of
getting back out alive with the gold.

▶ Definition 1.8 (Percepts). The agent can experience the following percepts:
stench, breeze, glitter, bump, scream, none.
▶ Cell adjacent (i.e. north, south, west, east) to Wumpus: stench (else: none).
▶ Cell adjacent to pit: breeze (else: none).
▶ Cell that contains gold: glitter (else: none).
▶ You walk into a wall: bump (else: none).
▶ Wumpus shot by arrow: scream (else: none).
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Reasoning in the Wumpus World

▶ Example 1.9 (Reasoning in the Wumpus World). A: agent, V: visited, OK:
safe, P: pit, W: Wumpus, B: breeze, S: stench, G: gold.

(1) Initial state

(2) One step to right (3) Back, and up to [1,2]
▶ The Wumpus is in [1,3]! How do we know?
▶ No stench in [2,1], so the stench in [1,2] can only come from [1,3].
▶ There’s a pit in [3,1]! How do we know?
▶ No breeze in [1,2], so the breeze in [2,1] can only come from [3,1].
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Reasoning in the Wumpus World

▶ Example 1.10 (Reasoning in the Wumpus World). A: agent, V: visited, OK:
safe, P: pit, W: Wumpus, B: breeze, S: stench, G: gold.

(1) Initial state (2) One step to right

(3) Back, and up to [1,2]
▶ The Wumpus is in [1,3]! How do we know?
▶ No stench in [2,1], so the stench in [1,2] can only come from [1,3].
▶ There’s a pit in [3,1]! How do we know?
▶ No breeze in [1,2], so the breeze in [2,1] can only come from [3,1].
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Reasoning in the Wumpus World

▶ Example 1.11 (Reasoning in the Wumpus World). A: agent, V: visited, OK:
safe, P: pit, W: Wumpus, B: breeze, S: stench, G: gold.

(1) Initial state (2) One step to right (3) Back, and up to [1,2]
▶ The Wumpus is in [1,3]! How do we know?

▶ No stench in [2,1], so the stench in [1,2] can only come from [1,3].
▶ There’s a pit in [3,1]! How do we know?
▶ No breeze in [1,2], so the breeze in [2,1] can only come from [3,1].
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Reasoning in the Wumpus World

▶ Example 1.12 (Reasoning in the Wumpus World). A: agent, V: visited, OK:
safe, P: pit, W: Wumpus, B: breeze, S: stench, G: gold.

(1) Initial state (2) One step to right (3) Back, and up to [1,2]
▶ The Wumpus is in [1,3]! How do we know?
▶ No stench in [2,1], so the stench in [1,2] can only come from [1,3].
▶ There’s a pit in [3,1]! How do we know?

▶ No breeze in [1,2], so the breeze in [2,1] can only come from [3,1].
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Reasoning in the Wumpus World

▶ Example 1.13 (Reasoning in the Wumpus World). A: agent, V: visited, OK:
safe, P: pit, W: Wumpus, B: breeze, S: stench, G: gold.

(1) Initial state (2) One step to right (3) Back, and up to [1,2]
▶ The Wumpus is in [1,3]! How do we know?
▶ No stench in [2,1], so the stench in [1,2] can only come from [1,3].
▶ There’s a pit in [3,1]! How do we know?
▶ No breeze in [1,2], so the breeze in [2,1] can only come from [3,1].
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Agents that Think Rationally

▶ Idea: Think Before You Act!
“Thinking” = Inference about knowledge represented using logic.

▶ Definition 1.14. A logic-based agent is a model-based agent that represents the
world state as a logical formula and uses inference to think about the state of
the environment and its own actions.

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For
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Agents that Think Rationally

▶ Idea: Think Before You Act!
“Thinking” = Inference about knowledge represented using logic.

▶ Definition 1.15. A logic-based agent is a model-based agent that represents the
world state as a logical formula and uses inference to think about the state of
the environment and its own actions.
function KB−AGENT (percept) returns an action

persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))
action := ASK(KB, MAKE−ACTION−QUERY(t))
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+1

return action
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Logic: Basic Concepts (Representing Knowledge)

▶ Definition 1.16. Syntax: What are legal statements (formulae) A in the logic?
▶ Example 1.17. “W ” and “W ⇒ S”. (W =̂ Wumpus is here, S=̂ it stinks)

▶ Definition 1.18. Semantics: Which formulas A are true under which assignment
φ, written φ|=A?

▶ Example 1.19. If φ:={W 7→T,S 7→F}, then φ|=W but φ̸|=W ⇒ S .
▶ Intuition: Knowledge about the state of the world is described by formulae,

interpretations evaluate them in the current world (they should turn out true!)
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Logic: Basic Concepts (Representing Knowledge)

▶ Definition 1.20. Syntax: What are legal statements (formulae) A in the logic?
▶ Example 1.21. “W ” and “W ⇒ S”. (W =̂ Wumpus is here, S=̂ it stinks)
▶ Definition 1.22. Semantics: Which formulas A are true under which assignment
φ, written φ|=A?

▶ Example 1.23. If φ:={W 7→T,S 7→F}, then φ|=W but φ̸|=W ⇒ S .
▶ Intuition: Knowledge about the state of the world is described by formulae,

interpretations evaluate them in the current world (they should turn out true!)

Michael Kohlhase: Artificial Intelligence 1 314 2024-02-08



Logic: Basic Concepts (Reasoning about Knowledge)

▶ Definition 1.24. Entailment: Which B follow from A, written A |=B, meaning
that, for all φ with φ|=A, we have φ|=B? E.g., P ∧ (P ⇒ Q) |=Q.

▶ Intuition: Entailment =̂ ideal outcome of reasoning, everything that we can
possibly conclude. e.g. determine Wumpus position as soon as we have enough
information

▶ Definition 1.25. Deduction: Which statements B can be derived from A using a
set C of inference rules (a calculus), written A⊢CB?

▶ Example 1.26. If C contains
A A ⇒ B

B
then P,P ⇒ Q⊢CQ

▶ Intuition: Deduction =̂ process in an actual computer trying to reason about
entailment. E.g. a mechanical process attempting to determine Wumpus
position.

▶ Definition 1.27. Soundness: whenever A⊢CB, we also have A |=B.
▶ Definition 1.28. Completeness: whenever A |=B, we also have A⊢CB.
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Logic: Basic Concepts (Reasoning about Knowledge)

▶ Definition 1.29. Entailment: Which B follow from A, written A |=B, meaning
that, for all φ with φ|=A, we have φ|=B? E.g., P ∧ (P ⇒ Q) |=Q.

▶ Intuition: Entailment =̂ ideal outcome of reasoning, everything that we can
possibly conclude. e.g. determine Wumpus position as soon as we have enough
information

▶ Definition 1.30. Deduction: Which statements B can be derived from A using a
set C of inference rules (a calculus), written A⊢CB?

▶ Example 1.31. If C contains
A A ⇒ B

B
then P,P ⇒ Q⊢CQ

▶ Intuition: Deduction =̂ process in an actual computer trying to reason about
entailment. E.g. a mechanical process attempting to determine Wumpus
position.

▶ Definition 1.32. Soundness: whenever A⊢CB, we also have A |=B.
▶ Definition 1.33. Completeness: whenever A |=B, we also have A⊢CB.
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Logic: Basic Concepts (Reasoning about Knowledge)

▶ Definition 1.34. Entailment: Which B follow from A, written A |=B, meaning
that, for all φ with φ|=A, we have φ|=B? E.g., P ∧ (P ⇒ Q) |=Q.

▶ Intuition: Entailment =̂ ideal outcome of reasoning, everything that we can
possibly conclude. e.g. determine Wumpus position as soon as we have enough
information

▶ Definition 1.35. Deduction: Which statements B can be derived from A using a
set C of inference rules (a calculus), written A⊢CB?

▶ Example 1.36. If C contains
A A ⇒ B

B
then P,P ⇒ Q⊢CQ

▶ Intuition: Deduction =̂ process in an actual computer trying to reason about
entailment. E.g. a mechanical process attempting to determine Wumpus
position.

▶ Definition 1.37. Soundness: whenever A⊢CB, we also have A |=B.
▶ Definition 1.38. Completeness: whenever A |=B, we also have A⊢CB.
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Logic: Basic Concepts (Reasoning about Knowledge)

▶ Definition 1.39. Entailment: Which B follow from A, written A |=B, meaning
that, for all φ with φ|=A, we have φ|=B? E.g., P ∧ (P ⇒ Q) |=Q.

▶ Intuition: Entailment =̂ ideal outcome of reasoning, everything that we can
possibly conclude. e.g. determine Wumpus position as soon as we have enough
information

▶ Definition 1.40. Deduction: Which statements B can be derived from A using a
set C of inference rules (a calculus), written A⊢CB?

▶ Example 1.41. If C contains
A A ⇒ B

B
then P,P ⇒ Q⊢CQ

▶ Intuition: Deduction =̂ process in an actual computer trying to reason about
entailment. E.g. a mechanical process attempting to determine Wumpus
position.

▶ Definition 1.42. Soundness: whenever A⊢CB, we also have A |=B.
▶ Definition 1.43. Completeness: whenever A |=B, we also have A⊢CB.
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General Problem Solving using Logic

▶ Idea: Any problem that can be formulated as reasoning about logic. ; use
off-the-shelf reasoning tool.

▶ Very successful using propositional logic and modern SAT solvers!
(Propositional satisfiability testing; )
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Propositional Logic and Its Applications

▶ Propositional logic = canonical form of knowledge + reasoning.
▶ Syntax: Atomic propositions that can be either true or false, connected by “and, or,

and not”.
▶ Semantics: Assign value to every proposition, evaluate connectives.

▶ Applications: Despite its simplicity, widely applied!
▶ Product configuration (e.g., Mercedes). Check consistency of customized

combinations of components.
▶ Hardware verification (e.g., Intel, AMD, IBM, Infineon). Check whether a circuit

has a desired property p.
▶ Software verification: Similar.
▶ CSP applications: propositional logic can be (successfully!) used to formulate and

solve constraint satisfaction problems. (see )

▶ gives an example for verification.
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Our Agenda for This Topic

▶ This section: Basic definitions and concepts; tableaux, resolution.
▶ Sets up the framework. Resolution is the quintessential reasoning procedure

underlying most successful SAT solvers.
▶ Next Section (): The Davis Putnam procedure and clause learning; practical

problem structure.
▶ State-of-the-art algorithms for reasoning about propositional logic, and an important

observation about how they behave.
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Our Agenda for This Chapter

▶ Propositional logic: What’s the syntax and semantics? How can we capture
deduction?
▶ We study this logic formally.

▶ Tableaux, Resolution: How can we make deduction mechanizable? What are
its properties?
▶ Formally introduces the most basic machine-oriented reasoning methods.

▶ Killing a Wumpus: How can we use all this to figure out where the Wumpus
is?
▶ Coming back to our introductory example.
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10.2 Propositional Logic (Syntax/Semantics)
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Propositional Logic (Syntax)

▶ Definition 2.1 (Syntax). The formulae of propositional logic (write PL0) are
made up from
▶ propositional variables: V0:={P,Q,R,P1,P2, . . .} (countably infinite)
▶ A propositional signature: constants/constructors called connectives:

Σ0:={T ,F ,¬,∨,∧,⇒,⇔, . . .}
We define the set wff0(V0) of well-formed propositional formula (wffs) as
▶ propositional variables,
▶ the logical constants T and F ,
▶ negations ¬A,
▶ conjunctions A ∧ B(A and B are called conjuncts),
▶ disjunctions A ∨ B (A and B are called disjuncts),
▶ implications A ⇒ B, and
▶ equivalences (or biimplication). A ⇔ B,

where A,B∈wff0(V0) themselves.
▶ Example 2.2. P ∧ Q,P ∨ Q, (¬P ∨ Q)⇔ (P ⇒ Q)∈wff0(V0)

▶ Definition 2.3. Propositional formulae without connectives are called atomic (or
an atom) and complex otherwise.
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Propositional Logic Grammar Overview

▶ Grammar for Propositional Logic:

propositional variables X ::= V0 = {P,Q,R, . . . , . . .} variables
propositional formulae A ::= X variable

| ¬A negation
| A1 ∧ A2 conjunction
| A1 ∨ A2 disjunction
| A1 ⇒ A2 implication
| A1 ⇔ A2 equivalence
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Alternative Notations for Connectives

Here Elsewhere
¬A ∼A A
A ∧ B A & B A • B A,B
A ∨ B A + B A | B A ; B
A ⇒ B A → B A ⊃ B
A ⇔ B A ↔ B A ≡ B
F ⊥ 0
T ⊤ 1
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Semantics of PL0 (Models)

▶ Definition 2.4. A model M:=⟨Do , I⟩ for propositional logic consists of
▶ the universe Do = {T,F}
▶ the interpretation I that assigns values to essential connectives.
▶ I(¬) : Do→Do ;T7→F,F7→T
▶ I(∧) : Do ×Do→Do ; ⟨α, β⟩7→T, iff α = β = T

We call a constructor a logical constant, iff its value is fixed by the
interpretation.

▶ Treat the other connectives as abbreviations, e.g. A ∨ B=̂ ¬(¬A ∧ ¬B) and
A ⇒ B=̂ ¬A ∨ B, and T =̂ P ∨ ¬P (only need to treat ¬,∧ directly)
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Semantics of PL0 (Evaluation)

▶ Problem: The interpretation function only assigns meaning to connectives.
▶ Definition 2.5. A variable assignment φ : V0→Do assigns values to

propositional variables.
▶ Definition 2.6. The value function Iφ : wff0(V0)→Do assigns values to PL0

formulae. It is recursively defined,
▶ Iφ(P) = φ(P) (base case)
▶ Iφ(¬A) = I(¬)(Iφ(A)).
▶ Iφ(A ∧ B) = I(∧)(Iφ(A), Iφ(B)).

▶ Note that Iφ(A ∨ B) = Iφ(¬(¬A ∧ ¬B)) is only determined by Iφ(A) and
Iφ(B), so we think of the defined connectives as logical constants as well.

▶ Definition 2.7. Two formulae A and B are called equivalent, iff Iφ(A) = Iφ(B)
for all variable assignments φ.
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Computing Semantics
▶ Example 2.8. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.9. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.10. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.11. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.12. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.13. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.14. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.15. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.16. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))

= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.17. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))

= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!

Michael Kohlhase: Artificial Intelligence 1 325 2024-02-08



Computing Semantics
▶ Example 2.18. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))

= I(∨)(T,T)
= T

▶ What a mess!
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Computing Semantics
▶ Example 2.19. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)

= T

▶ What a mess!
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Computing Semantics
▶ Example 2.20. Let φ:=[T/P1], [F/P2], [T/P3], [F/P4], . . . then

Iφ(P1 ∨ P2 ∨ ¬(¬P1 ∧ P2) ∨ P3 ∧ P4)

= I(∨)(Iφ(P1 ∨ P2), Iφ(¬(¬P1 ∧ P2) ∨ P3 ∧ P4))

= I(∨)(I(∨)(Iφ(P1), Iφ(P2)), I(∨)(Iφ(¬(¬P1 ∧ P2)), Iφ(P3 ∧ P4)))

= I(∨)(I(∨)(φ(P1), φ(P2)), I(∨)(I(¬)(Iφ(¬P1 ∧ P2)), I(∧)(Iφ(P3), Iφ(P4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P1), Iφ(P2))), I(∧)(φ(P3), φ(P4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P1)), φ(P2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

▶ What a mess!
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Propositional Identities

▶ We have the following identities in propositional logic:
Name for ∧ for ∨
Idenpotence φ ∧ φ = φ φ ∨ φ = φ
Identity φ ∧ T = φ φ ∨ F = φ
Absorption I φ ∧ F = F φ ∨ T = T
Commutativity φ ∧ ψ = ψ ∧ φ φ ∨ ψ = ψ ∨ φ
Associativity φ ∧ (ψ ∧ θ) = (φ ∧ ψ) ∧ θ φ ∨ (ψ ∨ θ) = (φ ∨ ψ) ∨ θ
Distributivity φ ∧ (ψ ∨ θ) = φ ∧ ψ ∨ φ ∧ θ φ ∨ ψ ∧ θ = (φ ∨ ψ) ∧ (φ ∨ θ)
Absorption II φ ∧ (φ ∨ θ) = φ φ ∨ φ ∧ θ = φ
De Morgan ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ
Double negation ¬¬φ = φ
Definitions φ⇒ ψ = ¬φ ∨ ψ φ⇔ ψ = (φ⇒ ψ) ∧ (ψ⇒ φ)
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Semantic Properties of Propositional Formulae

▶ Definition 2.21. Let M:=⟨U , I⟩ be our model, then we call A
▶ true under φ (φ satisfies A) in M, iff Iφ(A) = T, (write M|=φA)
▶ false under φ (φ falsifies A) in M, iff Iφ(A) = F, (write M̸|=φA)
▶ satisfiable in M, iff Iφ(A) = T for some assignment φ,
▶ valid in M, iff M|=φA for all variable assignments φ,
▶ falsifiable in M, iff Iφ(A) = F for some assignments φ, and
▶ unsatisfiable in M, iff Iφ(A) = F for all assignments φ.

▶ Example 2.22. x ∨ x is satisfiable and falsifiable.
▶ Example 2.23. x ∨ ¬x is valid and x ∧ ¬x is unsatisfiable.
▶ Alternative Notation: Write [[A]]Iφ for Iφ(A), if M = ⟨U , I⟩.(and [[A]]I , if A is

ground, and [[A]]I , if M is clear)
▶ Definition 2.24 (Entailment). (aka. logical consequence)

We say that A entails B (A |=B), iff Iφ(B) = T for all φ with Iφ(A) = T (i.e.
all assignments that make A true also make B true)
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A better mouse-trap: Truth Tables

▶ Truth tables visualize truth functions:

¬
⊤ F
⊥ T

∧ ⊤ ⊥
⊤ T F
⊥ F F

∨ ⊤ ⊥
⊤ T T
⊥ T F

▶ If we are interested in values for all assignments (e.g z ∧ x ∨ ¬(z ∧ y))
assignments intermediate results full
x y z e1:=z ∧ y e2:=¬e1 e3:=z ∧ x e3 ∨ e2
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T
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Hair Color in Propositional Logic
▶ There are three persons, Stefan, Nicole, and Jochen.

1. Their hair colors are black, red, or green.
2. Their study subjects are AI, Physics, or Chinese at least one studies AI.

2.1 Persons with red or green hair do not study AI.
2.2 Neither the Physics nor the Chinese students have black hair.
2.3 Of the two male persons, one studies Physics, and the other studies Chinese.

▶ Question: Who studies AI?
(A) Stefan (B) Nicole (C) Jochen (D) Nobody

▶ Answer: You can solve this using PL0, if we accept bla(S), etc. as propositional variables.
We first express what we know: For every x∈{S,N, J} (Stefan, Nicole, Jochen) we have

1. bla(x) ∨ red(x) ∨ gre(x); (note: three formulae)
2. ai(x) ∨ phy(x) ∨ chi(x) and ai(S) ∨ ai(N) ∨ ai(J)

2.1 ai(x)⇒¬red(x) ∧ ¬gre(x).
2.2 phy(x)⇒¬bla(x) and chi(x)⇒¬bla(x).
2.3 phy(S) ∧ chi(J) ∨ phy(J) ∧ chi(S).

Now, we obtain new knowledge via entailment steps:

3. 1. together with 2.1 entails that ai(x)⇒ bla(x) for every x∈{S ,N, J},
4. thus ¬bla(S) ∧ ¬bla(J) by 3. and 2.2 and
5. so ¬ai(S) ∧ ¬ai(J) by 3. and 4.
6. With 2.3 the latter entails ai(N).
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Hair Color in Propositional Logic
▶ There are three persons, Stefan, Nicole, and Jochen.

1. Their hair colors are black, red, or green.
2. Their study subjects are AI, Physics, or Chinese at least one studies AI.

2.1 Persons with red or green hair do not study AI.
2.2 Neither the Physics nor the Chinese students have black hair.
2.3 Of the two male persons, one studies Physics, and the other studies Chinese.

▶ Question: Who studies AI?
(A) Stefan (B) Nicole (C) Jochen (D) Nobody

▶ Answer: You can solve this using PL0, if we accept bla(S), etc. as propositional variables.
We first express what we know: For every x∈{S,N, J} (Stefan, Nicole, Jochen) we have

1. bla(x) ∨ red(x) ∨ gre(x); (note: three formulae)
2. ai(x) ∨ phy(x) ∨ chi(x) and ai(S) ∨ ai(N) ∨ ai(J)

2.1 ai(x)⇒¬red(x) ∧ ¬gre(x).
2.2 phy(x)⇒¬bla(x) and chi(x)⇒¬bla(x).
2.3 phy(S) ∧ chi(J) ∨ phy(J) ∧ chi(S).

Now, we obtain new knowledge via entailment steps:

3. 1. together with 2.1 entails that ai(x)⇒ bla(x) for every x∈{S ,N, J},
4. thus ¬bla(S) ∧ ¬bla(J) by 3. and 2.2 and
5. so ¬ai(S) ∧ ¬ai(J) by 3. and 4.
6. With 2.3 the latter entails ai(N).
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10.3 Inference in Propositional Logics
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Agents that Think Rationally

▶ Idea: Think Before You Act!
“Thinking” = Inference about knowledge represented using logic.

▶ Definition 3.1. A logic-based agent is a model-based agent that represents the
world state as a logical formula and uses inference to think about the state of
the environment and its own actions.

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For
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Agents that Think Rationally

▶ Idea: Think Before You Act!
“Thinking” = Inference about knowledge represented using logic.

▶ Definition 3.2. A logic-based agent is a model-based agent that represents the
world state as a logical formula and uses inference to think about the state of
the environment and its own actions.
function KB−AGENT (percept) returns an action

persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))
action := ASK(KB, MAKE−ACTION−QUERY(t))
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+1

return action
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A Simple Formal System: Prop. Logic with Hilbert-Calculus
▶ Formulae: Built from propositional variables: P,Q,R. . . and implication: ⇒
▶ Semantics: Iφ(P) = φ(P) and Iφ(A ⇒ B) = T, iff Iφ(A) = F or Iφ(B) = T.
▶ Definition 3.3. The Hilbert calculus H0 consists of the inference rules:

P ⇒ Q ⇒ P
K

(P ⇒ Q ⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R
S

A ⇒ B A
B

MP
A

[B/X ](A)
Subst

▶ Example 3.4. A H0 theorem C ⇒ C and its proof
Proof: We show that ∅⊢H0C ⇒ C

1. (C ⇒ (C ⇒ C)⇒ C)⇒ (C ⇒ C ⇒ C)⇒ C ⇒ C (S with
[C/P], [C ⇒ C/Q], [C/R])

2. C ⇒ (C ⇒ C)⇒ C (K with [C/P], [C ⇒ C/Q])

3. (C ⇒ C ⇒ C)⇒ C ⇒ C (MP on P.1 and P.2)

4. C ⇒ C ⇒ C (K with [C/P], [C/Q])
5. C ⇒ C (MP on P.3 and P.4)
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Soundness and Completeness

▶ Definition 3.5. Let L:=⟨L,K, |=⟩ be a logical system, then we call a calculus C
for L,
▶ sound (or correct), iff H |=A, whenever H⊢CA, and
▶ complete, iff H⊢CA, whenever H |=A.

▶ Goal: Find calculi C , such that ⊢CA iff |=A (provability and validity coincide)
▶ To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

▶
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The miracle of logics

▶ Purely formal derivations are true in the real world!
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10.4 Propositional Natural Deduction Calculus
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Calculi: Natural Deduction (ND0; Gentzen [Gen34])
▶ Idea: ND0 tries to mimic human argumentation for theorem proving.
▶ Definition 4.1. The propositional natural deduction calculus ND0 has inference

rules for the introduction and elimination of connectives:
Introduction Elimination Axiom
A B
A ∧ B

ND0∧I
A ∧ B

A
ND0∧El

A ∧ B
B

ND0∧Er

A ∨ ¬A
ND0TND

[A]1

B
A ⇒ B

ND0 ⇒I 1 A ⇒ B A
B

ND0 ⇒E
⇒I proves A ⇒ B by exhibiting a ND0 derivation D (depicted by the double
horizontal lines) of B from the local hypothesis A; ⇒I then discharges (get rid of
A, which can only be used in D) the hypothesis and concludes A ⇒ B. This
mode of reasoning is called hypothetical reasoning.

▶ Definition 4.2. Given a set H ⊆ wff0(V0) of assumptions and a conclusion C,
we write H⊢ND0C, iff there is a ND0 derivation tree whose leaves are in H.

▶ Note: ND0TND is used only in classical logic. (otherwise
constructive/intuitionistic)
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Natural Deduction: Examples

▶ Example 4.3 (Inference with Local Hypotheses).

[A ∧ B]1
ND0∧Er

B

[A ∧ B]1
ND0∧El

A
ND0∧I

B ∧ A
ND0 ⇒I 1

A ∧ B ⇒ B ∧ A

[A]1

[B]2

A ND0 ⇒I 2
B ⇒ A

ND0 ⇒I 1
A⇒ B ⇒ A
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A Deduction Theorem for ND0

▶ Theorem 4.4. H,A⊢ND0B, iff H⊢ND0A ⇒ B.
▶ Proof: We show the two directions separately

1. If H,A⊢ND0B, then H⊢ND0A ⇒ B by ND0 ⇒I , and
2. If H⊢ND0A ⇒ B, then H,A⊢ND0A ⇒ B by weakening and H,A⊢ND0B by

ND0 ⇒E .
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More Rules for Natural Deduction
▶ Note: ND0 does not try to be minimal, but comfortable to work in!
▶ Definition 4.5. ND0 has the following additional inference rules for the

remaining connectives.

A
A ∨ B

ND0∨Il
B

A ∨ B
ND0∨Ir

A ∨ B

[A]1

...
C

[B]1

...
C

C
ND0∨E 1

[A]1

...
C

[A]1

...
¬C

¬A
ND0¬I 1

¬¬A
A

ND0¬E

¬A A
F

ND0FI
F

A
ND0FE

▶ Again: ND0¬E is used only in classical logic (otherwise
constructive/intuitionistic)
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Natural Deduction in Sequent Calculus Formulation

▶ Idea: Represent hypotheses explicitly. (lift calculus to judgments)
▶ Definition 4.6. A judgment is a meta statement about the provability of

propositions.
▶ Definition 4.7. A sequent is a judgment of the form H⊢A about the provability

of the formula A from the set H of hypotheses. We write ⊢A for ∅⊢A.
▶ Idea: Reformulate ND0 inference rules so that they act on sequents.
▶ Example 4.8.We give the sequent style version of 4.3:

ND0
⊢Ax

A ∧ B⊢A ∧ B
ND0

⊢ ∧ Er
A ∧ B⊢B

ND0
⊢Ax

A ∧ B⊢A ∧ B
ND0

⊢ ∧ El
A ∧ B⊢A

ND0
⊢ ∧ I

A ∧ B⊢B ∧ A
ND0

⊢ ⇒I
⊢A ∧ B ⇒ B ∧ A

ND0
⊢Ax

A,B⊢A
ND0

⊢ ⇒I
A⊢B ⇒ A

ND0
⊢ ⇒I

⊢A ⇒ B ⇒ A

▶ Note: Even though the antecedent of a sequent is written like a sequences, it is
actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction
▶ Definition 4.9. The following inference rules make up the propositional sequent

style natural deduction calculus ND0
⊢:

Γ,A⊢A
ND0

⊢Ax
Γ⊢B

Γ,A⊢B
ND0

⊢weaken
Γ⊢A ∨ ¬A

ND0
⊢TND

Γ⊢A Γ⊢B
Γ⊢A ∧ B

ND0
⊢ ∧ I

Γ⊢A ∧ B
Γ⊢A

ND0
⊢ ∧ El

Γ⊢A ∧ B
Γ⊢B

ND0
⊢ ∧ Er

Γ⊢A
Γ⊢A ∨ B

ND0
⊢ ∨Il

Γ⊢B
Γ⊢A ∨ B

ND0
⊢ ∨Ir

Γ⊢A ∨ B Γ,A⊢C Γ,B⊢C
Γ⊢C

ND0
⊢ ∨E

Γ,A⊢B
Γ⊢A ⇒ B

ND0
⊢ ⇒I

Γ⊢A ⇒ B Γ⊢A
Γ⊢B

ND0
⊢ ⇒E

Γ,A⊢F
Γ⊢¬A

ND0
⊢¬I

Γ⊢¬¬A
Γ⊢A

ND0
⊢¬E

ND0
⊢FI

Γ⊢¬A Γ⊢A
Γ⊢F ND0

⊢FE
Γ⊢F
Γ⊢A
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Linearized Notation for (Sequent-Style) ND Proofs

▶ Linearized notation for sequent-style ND proofs
1. H1 ⊢ A1 (J 1)
2. H2 ⊢ A2 (J 2)
3. H3 ⊢ A3 (J 31, 2)

corresponds to
H1⊢A1 H2⊢A2

H3⊢A3
R

▶ Example 4.10. We show a linearized version of the ND0 examples 4.8

ND0
⊢Ax

A ∧ B⊢A ∧ B
ND0

⊢ ∧ Er
A ∧ B⊢B

ND0
⊢Ax

A ∧ B⊢A ∧ B
ND0

⊢ ∧ El
A ∧ B⊢A

ND0
⊢ ∧ I

A ∧ B⊢B ∧ A
ND0

⊢ ⇒I
⊢A ∧ B ⇒ B ∧ A

ND0
⊢Ax

A,B⊢A
ND0

⊢ ⇒I
A⊢B ⇒ A

ND0
⊢ ⇒I

⊢A ⇒ B ⇒ A

# hyp ⊢ formula NDjust
1. 1 ⊢ A ∧ B ND0

⊢Ax
2. 1 ⊢ B ND0

⊢ ∧ Er 1
3. 1 ⊢ A ND0

⊢ ∧ El 1
4. 1 ⊢ B ∧ A ND0

⊢ ∧ I 2, 3
5. ⊢ A ∧ B ⇒ B ∧ A ND0

⊢ ⇒I 4

# hyp ⊢ formula NDjust
1. 1 ⊢ A ND0

⊢Ax
2. 2 ⊢ B ND0

⊢Ax
3. 1, 2 ⊢ A ND0

⊢weaken 1, 2
4. 1 ⊢ B ⇒ A ND0

⊢ ⇒I 3
5. ⊢ A ⇒ B ⇒ A ND0

⊢ ⇒I 4
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10.5 Predicate Logic Without Quantifiers
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Issues with Propositional Logic

▶ Awkward to write for humans: E.g., to model the Wumpus world we had to
make a copy of the rules for every cell . . .
R1:=¬S1,1 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,1
R2:=¬S2,1 ⇒¬W 1,1 ∧ ¬W 2,1 ∧ ¬W 2,2 ∧ ¬W 3,1
R3:=¬S1,2 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,2 ∧ ¬W 1,3
Compared to

Cell adjacent to Wumpus: Stench (else: None)

that is not a very nice description language . . .
▶ Can we design a more human-like logic?: Yep!
▶ Idea: Introduce explict representations for
▶ individuals, e.g. the wumpus, the gold, numbers, . . .
▶ functions on individuals, e.g. the cell at i , j , . . .
▶ relations between them, e.g. being in a cell, being adjacent, . . .

This is essentially the same as PL0, so we can reuse the calculi. (up next)
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Individuals and their Properties/Relations
▶ Observation: We want to talk about individuals like Stefan, Nicole, and Jochen

and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

▶ Idea: Re-use PL0, but replace propositional variables with something more
expressive! (instead of fancy variable name trick)

▶ Definition 5.1. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp:=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary relations
among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each k∈N.
▶ Definition 5.2. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction
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Individuals and their Properties/Relations
▶ Observation: We want to talk about individuals like Stefan, Nicole, and Jochen

and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

▶ Idea: Re-use PL0, but replace propositional variables with something more
expressive! (instead of fancy variable name trick)

▶ Definition 5.3. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp:=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary relations
among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each k∈N.

▶ Definition 5.4. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction
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Individuals and their Properties/Relations
▶ Observation: We want to talk about individuals like Stefan, Nicole, and Jochen

and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

▶ Idea: Re-use PL0, but replace propositional variables with something more
expressive! (instead of fancy variable name trick)

▶ Definition 5.5. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp:=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary relations
among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each k∈N.
▶ Definition 5.6. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction
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PLnq Semantics

▶ Definition 5.7. Domains D0 = {T,F} of truth values and Dι ̸= ∅ of individuals.
▶ Definition 5.8. Interpretation I assigns values to constants, e.g.
▶ I(¬) : D0→D0;T7→F;F 7→T and I(∧) = . . . (as in PL0)
▶ I : Σf

0→Dι (interpret individual constants as individuals)
▶ I : Σf

k→Dιk →Dι (interpret function constants as functions)
▶ I : Σp

k→P(Dιk) (interpret predicate constants as relations)

▶ Definition 5.9. The value function I assigns values to formulae: (recursively)
▶ I(f (A1, . . .,Ak)):=I(f )(I(A1), . . . , I(Ak))
▶ I(p(A1, . . .,Ak)):=T, iff ⟨I(A1), . . . , I(Ak)⟩∈I(p)
▶ I(¬A) = I(¬)(I(A)) and I(A ∧ B) = I(∧)(I(A), I(G)) (just as in PL0)

▶ Definition 5.10. Model: M = ⟨Dι, I⟩ varies in Dι and I.
▶ Theorem 5.11. PLnq is isomorphic to PL0 (interpret atoms as prop. variables)
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A Model for PLnq

▶ Example 5.12. Let L:={a, b, c , d , e,P,Q,R,S}, we set the universe
D:={♣,♠,♡,♢}, and specify the interpretation function I by setting
▶ a 7→♣, b 7→♠, c 7→♡, d 7→♢, and e 7→♢ for constants,
▶ P 7→{♣,♠} and Q 7→{♠,♢}, for unary predicate constants.
▶ R 7→{⟨♡,♢⟩, ⟨♢,♡⟩}, and S 7→{⟨♢,♠⟩, ⟨♠,♣⟩} for binary predicate constants.

▶ Example 5.13 (Computing Meaning in this Model).
▶ I(R(a, b) ∧ P(c)) = T, iff
▶ I(R(a, b)) = T and I(P(c)) = T, iff
▶ ⟨I(a), I(b)⟩∈I(R) and I(c)∈I(P), iff
▶ ⟨♣,♠⟩∈{⟨♡,♢⟩, ⟨♢,♡⟩} and ♡∈{♣,♠}
So, I(R(a, b) ∧ P(c)) = F.
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PLnq and PL0 are Isomorphic
▶ Observation: For every choice of Σ of signature, the set AΣ of atomic PLnq

formulae is countable, so there is a VΣ ⊆ V0 and a bijection θΣ : AΣ→VΣ.
θΣ can be extended to formulae as PLnq and PL0 share connectives.

▶ Lemma 5.14. For every model M = ⟨Dι, I⟩, there is a variable assignment
φM, such that IφM(A) = I(A).

▶ Proof sketch: We just define φM(X ):=I(θ−1
Σ (X ))

▶ Lemma 5.15. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

▶ Proof sketch: see next slide
▶ Corollary 5.16. PLnq is isomorphic to PL0, i.e. the following diagram commutes:

PLnq(Σ) PL0(AΣ)
θΣ

⟨Dψ, Iψ⟩ VΣ →{T,F}
ψ 7→ Mψ

Iψ() IφM()

▶ Note: This constellation with a language isomorphism and a corresponding
model isomorphism (in converse direction) is typical for a logic isomorphism.
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Valuation and Satisfiability

▶ Lemma 5.17. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

▶ Proof: We construct Mψ = ⟨Dψ, Iψ⟩ and show that it works as desired.
1. Let Dψ be the set of PLnq terms over Σ, and
▶ Iψ(f ) : Dιk→Dψk

;⟨A1, . . .,Ak⟩7→f (A1, . . .,Ak) for f ∈Σf
k

▶ Iψ(p):={⟨A1, . . .,Ak⟩|ψ(θ−1
ψ p(A1, . . .,Ak)) = T} for p∈Σp.

2. We show Iψ(A) = A for terms A by induction on A
2.1. If A = c , then Iψ(A) = Iψ(c) = c = A
2.2. If A = f (A1, . . . ,An) then
Iψ(A) = Iψ(f )(I(A1), . . . , I(An)) = Iψ(f )(A1, . . .,Ak) = A.

3. For a PLnq formula A we show that Iψ(A) = Iψ(A) by induction on A.
3.1. If A = p(A1, . . .,Ak), then Iψ(A) = Iψ(p)(I(A1), . . . , I(An)) = T, iff
⟨A1, . . .,Ak⟩∈Iψ(p), iff ψ(θ−1

ψ A) = T, so Iψ(A) = Iψ(A) as desired.
3.2. If A = ¬B, then Iψ(A) = T, iff Iψ(B) = F, iff Iψ(B) = Iψ(B), iff
Iψ(A) = Iψ(A).
3.3. If A = B ∧ C then we argue similarly

4. Hence Iψ(A) = Iψ(A) for all PLnq formulae and we have concluded the
proof.
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10.6 Conclusion
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Summary

▶ Sometimes, it pays off to think before acting.
▶ In AI, “thinking” is implemented in terms of reasoning to deduce new knowledge

from a knowledge base represented in a suitable logic.
▶ Logic prescribes a syntax for formulas, as well as a semantics prescribing which

interpretations satisfy them. A entails B if all interpretations that satisfy A also
satisfy B. Deduction is the process of deriving new entailed formulae.

▶ Propositional logic formulas are built from atomic propositions, with the
connectives and, or, not.
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Issues with Propositional Logic

▶ Time: For things that change (e.g., Wumpus moving according to certain
rules), we need time-indexed propositions (like, S t=7

2,1 ) to represent validity over
time ; further expansion of the rules.

▶ Can we design a more human-like logic?: Yep
▶ Predicate logic: quantification of variables ranging over individuals. (cf. and )
▶ . . . and a whole zoo of logics much more powerful still.
▶ Note: In applications, propositional CNF encodings are generated by computer

programs. This mitigates (but does not remove!) the inconveniences of
propositional modeling.
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Chapter 11
Machine-Oriented Calculi for Propositional Logic
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Automated Deduction as an Agent Inference Procedure

▶ Recall: Our knowledge of the cave entails a definite Wumpus position!
(slide 312)

▶ Problem: That was human reasoning, can we build an agent function that
does this?

▶ Answer: As for constraint networks, we use inference, here
resolution/tableaux.
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Unsatisfiability Theorem

▶ Theorem 0.1 (Unsatisfiability Theorem). H |=A iff H∪{¬A} is unsatisfiable.
▶ Proof: We prove both directions separately

1. “⇒”: Say H |=A
1.1. For any φ with φ|=H we have φ|=A and thus φ̸|=¬A.

2. “⇐”: Say H ∪ {¬A} is unsatisfiable.
2.1. For any φ with φ|=H we have φ̸|=¬A and thus φ|=A.

▶ Observation 0.2. Entailment can be tested via satisfiability.
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Test Calculi: A Paradigm for Automating Inference
▶ Definition 0.3. Given a logical system L and a conjecture C , theorem proving

consists of finding a calculus for L and establising that C is valid in the induced
formal system: Given a formal system ⟨L,K, |=, C⟩, the task of theorem proving
consists in determining whether H⊢CC for a conjecture C∈L and hypotheses
H ⊆ L.

▶ Definition 0.4. Automated theorem proving (ATP) is the automation of
theorem proving: Given a logical system L:=⟨L,K, |=⟩, the task of automated
theorem proving consists of developing calculi for L and programs – called
(automated) theorem provers – that given a set H ⊆ L of hypotheses and a
conjecture A∈L determine whether H |=A (usually by searching for
C-derivations H⊢CA in a calculus C).

▶ Idea: ATP with a calculus C for ⟨L,K, |=⟩ induces a search problem
Π:=⟨S ,A, T , I ,G⟩, where the states S are sets of formulae in L, the actions A
are the inference rules from C, the initial state I = {H}, and the goal states are
those with A∈S.

▶ Problem: ATP as a search problem does not admit good heuristics, since these
need to take the conjecture A into account.

▶ Idea: Turn the search around – using the unsatisfiability theorem (0.1).
▶ Definition 0.5. For a given conjecture A and hypotheses H a test calculus T

tries to derive H,A⊢T ⊥ instead of H⊢A, where A is unsatisfiable iff A is valid
and ⊥, an “obviously” unsatisfiable formula.
A derivation H,A⊢T ⊥ is called a refutation of A (from H, if H ̸= ∅).

▶ Observation: A test calculus C induces a search problem where the initial state
is H ∪ {¬A} and S∈S is a goal state iff ⊥∈S . (proximity of ⊥ easier for
heuristics)
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Test Calculi: A Paradigm for Automating Inference
▶ Definition 0.6. Given a logical system L and a conjecture C , theorem proving

consists of finding a calculus for L and establising that C is valid in the induced
formal system: Given a formal system ⟨L,K, |=, C⟩, the task of theorem proving
consists in determining whether H⊢CC for a conjecture C∈L and hypotheses
H ⊆ L.

▶ Definition 0.7. Automated theorem proving (ATP) is the automation of
theorem proving: Given a logical system L:=⟨L,K, |=⟩, the task of automated
theorem proving consists of developing calculi for L and programs – called
(automated) theorem provers – that given a set H ⊆ L of hypotheses and a
conjecture A∈L determine whether H |=A (usually by searching for
C-derivations H⊢CA in a calculus C).

▶ Idea: ATP with a calculus C for ⟨L,K, |=⟩ induces a search problem
Π:=⟨S ,A, T , I ,G⟩, where the states S are sets of formulae in L, the actions A
are the inference rules from C, the initial state I = {H}, and the goal states are
those with A∈S.

▶ Problem: ATP as a search problem does not admit good heuristics, since these
need to take the conjecture A into account.

▶ Idea: Turn the search around – using the unsatisfiability theorem (0.1).
▶ Definition 0.8. For a given conjecture A and hypotheses H a test calculus T

tries to derive H,A⊢T ⊥ instead of H⊢A, where A is unsatisfiable iff A is valid
and ⊥, an “obviously” unsatisfiable formula.
A derivation H,A⊢T ⊥ is called a refutation of A (from H, if H ̸= ∅).

▶ Observation: A test calculus C induces a search problem where the initial state
is H ∪ {¬A} and S∈S is a goal state iff ⊥∈S . (proximity of ⊥ easier for
heuristics)
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Test Calculi: A Paradigm for Automating Inference
▶ Definition 0.9. Given a logical system L and a conjecture C , theorem proving

consists of finding a calculus for L and establising that C is valid in the induced
formal system: Given a formal system ⟨L,K, |=, C⟩, the task of theorem proving
consists in determining whether H⊢CC for a conjecture C∈L and hypotheses
H ⊆ L.

▶ Definition 0.10. Automated theorem proving (ATP) is the automation of
theorem proving: Given a logical system L:=⟨L,K, |=⟩, the task of automated
theorem proving consists of developing calculi for L and programs – called
(automated) theorem provers – that given a set H ⊆ L of hypotheses and a
conjecture A∈L determine whether H |=A (usually by searching for
C-derivations H⊢CA in a calculus C).

▶ Idea: ATP with a calculus C for ⟨L,K, |=⟩ induces a search problem
Π:=⟨S ,A, T , I ,G⟩, where the states S are sets of formulae in L, the actions A
are the inference rules from C, the initial state I = {H}, and the goal states are
those with A∈S.

▶ Problem: ATP as a search problem does not admit good heuristics, since these
need to take the conjecture A into account.

▶ Idea: Turn the search around – using the unsatisfiability theorem (0.1).
▶ Definition 0.11. For a given conjecture A and hypotheses H a test calculus T

tries to derive H,A⊢T ⊥ instead of H⊢A, where A is unsatisfiable iff A is valid
and ⊥, an “obviously” unsatisfiable formula.
A derivation H,A⊢T ⊥ is called a refutation of A (from H, if H ̸= ∅).

▶ Observation: A test calculus C induces a search problem where the initial state
is H ∪ {¬A} and S∈S is a goal state iff ⊥∈S . (proximity of ⊥ easier for
heuristics)
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Test Calculi: A Paradigm for Automating Inference
▶ Definition 0.12. Given a logical system L and a conjecture C , theorem proving

consists of finding a calculus for L and establising that C is valid in the induced
formal system: Given a formal system ⟨L,K, |=, C⟩, the task of theorem proving
consists in determining whether H⊢CC for a conjecture C∈L and hypotheses
H ⊆ L.

▶ Definition 0.13. Automated theorem proving (ATP) is the automation of
theorem proving: Given a logical system L:=⟨L,K, |=⟩, the task of automated
theorem proving consists of developing calculi for L and programs – called
(automated) theorem provers – that given a set H ⊆ L of hypotheses and a
conjecture A∈L determine whether H |=A (usually by searching for
C-derivations H⊢CA in a calculus C).

▶ Idea: ATP with a calculus C for ⟨L,K, |=⟩ induces a search problem
Π:=⟨S ,A, T , I ,G⟩, where the states S are sets of formulae in L, the actions A
are the inference rules from C, the initial state I = {H}, and the goal states are
those with A∈S.

▶ Problem: ATP as a search problem does not admit good heuristics, since these
need to take the conjecture A into account.

▶ Idea: Turn the search around – using the unsatisfiability theorem (0.1).
▶ Definition 0.14. For a given conjecture A and hypotheses H a test calculus T

tries to derive H,A⊢T ⊥ instead of H⊢A, where A is unsatisfiable iff A is valid
and ⊥, an “obviously” unsatisfiable formula.
A derivation H,A⊢T ⊥ is called a refutation of A (from H, if H ̸= ∅).

▶ Observation: A test calculus C induces a search problem where the initial state
is H ∪ {¬A} and S∈S is a goal state iff ⊥∈S . (proximity of ⊥ easier for
heuristics)
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11.1 Normal Forms
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Recap: Atoms and Literals

▶ Definition 1.1. A formula is called atomic (or an atom) if it does not contain
logical constants, else it is called complex.

▶ Definition 1.2. We call a pair Aα of a formula and a truth value α∈{T,F} a
labeled formula. For a set Φ of formulae we use Φα:={Aα|A∈Φ}.

▶ Definition 1.3. A labeled atom Aα is called a (positive if α = T, else negative)
literal.

▶ Intuition: To satisfy a formula, we make it “true”. To satisfy a labeled formula
Aα, it must have the truth value α.

▶ Definition 1.4. For a literal Aα, we call the literal Aβ with α ̸= β the opposite
literal (or partner literal).
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Alternative Definition: Literals

▶ Note: Literals are often defined without recurring to labeled formulae:
▶ Definition 1.5. A literal is an atom A (positive literal) or negated atom ¬A

(negative literal). A and ¬A are opposite literals.
▶ Note: This notion of literal is equivalent to the labeled formulae-notion of

literal, but does not generalize as well to logics with more than two truth values.
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Normal Forms

▶ There are two quintessential normal forms for propositional formulae: (there are
others as well)

▶ Definition 1.6. A formula is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals: i.e. if it is of the form

∧
n
i=1

∨
mi

j=1l ij

▶ Definition 1.7. A formula is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals: i.e. if it is of the form

∨
n
i=1

∧
mi

j=1l ij

▶ Observation 1.8. Every formula has equivalent formulae in CNF and DNF.
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11.2 Analytical Tableaux
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Test Calculi: Tableaux and Model Generation
▶ Idea: A tableau calculus is a test calculus that
▶ analyzes a labeled formulae in a tree to determine satisfiability,
▶ its branches correspond to valuations (; models).

▶ Example 2.1.Tableau calculi try to construct models for labeled formulae:
Tableau refutation (Validity) Model generation (Satisfiability)

|=P ∧ Q ⇒ Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧ Q ⇒ Q ∧ P)F

(P ∧ Q)T

(Q ∧ P)F

PT

QT

PF

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand Model {PT,QF,RF}
φ:={P 7→ T,Q 7→ F,R 7→ F}

▶ Idea: Open branches in saturated tableaux yield models.
▶ Algorithm: Fully expand all possible tableaux, (no rule can be applied)
▶ Satisfiable, iff there are open branches (correspond to models)
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Analytical Tableaux (Formal Treatment of T0)

▶ Idea: A test calculus where
▶ A labeled formula is analyzed in a tree to determine satisfiability,
▶ branches correspond to valuations (models)

▶ Definition 2.2. The propositional tableau calculus T0 has two inference rules
per connective (one for each possible label)

(A ∧ B)T

AT

BT

T0∧
(A ∧ B)F

AF
∣∣∣ BF

T0∨
¬AT

AF T0¬T ¬AF

AT T0¬F

Aα

Aβ α ̸= β

⊥ T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

▶ Definition 2.3. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.
▶ Definition 2.4. Call a tableau saturated, iff no rule adds new material and a

branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its
branches are.
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Analytical Tableaux (T0 continued)

▶ Definition 2.5 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0A), iff there
is a closed tableau with AF at the root.
Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0A), iff there is a closed tableau starting with
AF and ΦT. The tableau with only a branch of AF and ΦT is called initial for
Φ⊢T0A.
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A Valid Real-World Example
▶ Example 2.6. If Mary loves Bill and John loves Mary, then John loves Mary

(loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary))F

¬(¬¬(loves(mary, bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))F

(¬¬(loves(mary, bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))T

¬¬(loves(mary,bill) ∧ loves(john,mary))T

¬(loves(mary, bill) ∧ loves(john,mary))F

(loves(mary, bill) ∧ loves(john,mary))T

¬loves(john,mary)T

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F

⊥
This is a closed tableau, so the
loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary) is a T0-theorem.
As we will see, T0 is sound and complete, so

loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary)

is valid.
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Deriving Entailment in T0

▶ Example 2.7. Mary loves Bill and John loves Mary together entail that John
loves Mary

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F

⊥
This is a closed tableau, so
{loves(mary, bill), loves(john,mary)}⊢T0 loves(john,mary).
Again, as T0 is sound and complete we have

{loves(mary, bill), loves(john,mary)} |= loves(john,mary)
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A Falsifiable Real-World Example

▶ Example 2.8. * If Mary loves Bill or John loves Mary, then John loves Mary
Try proving the implication (this fails)

((loves(mary, bill) ∨ loves(john,mary))⇒ loves(john,mary))F

¬(¬¬(loves(mary, bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))F

(¬¬(loves(mary, bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))T

¬loves(john,mary)T

loves(john,mary)F

¬¬(loves(mary,bill) ∨ loves(john,mary))T

¬(loves(mary, bill) ∨ loves(john,mary))F

(loves(mary, bill) ∨ loves(john,mary))T

loves(mary,bill)T loves(john,mary)T

⊥

Indeed we can make Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F.
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Testing for Entailment in T0

▶ Example 2.9. Does Mary loves Bill or John loves Mary entail that John loves
Mary?

(loves(mary, bill) ∨ loves(john,mary))T

loves(john,mary)F

loves(mary,bill)T loves(john,mary)T

⊥
This saturated tableau has an open branch that shows that the interpretation
with Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F falsifies the
derivability/entailment conjecture.
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11.3 Practical Enhancements for Tableaux
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Derived Rules of Inference

▶ Definition 3.1. An inference rule
A1 . . . An

C
is called derivable (or a derived

rule) in a calculus C, if there is a C derivation A1, . . .,An⊢CC.
▶ Definition 3.2. We have the following derivable inference rules in T0:

(A ⇒ B)T

AF
∣∣∣ BT

(A ⇒ B)F

AT

BF

AT

(A ⇒ B)T

BT

(A ∨ B)T

AT
∣∣∣ BT

(A ∨ B)F

AF

BF

A ⇔ BT

AT

BT

∣∣∣∣ AF

BF

A ⇔ BF

AT

BF

∣∣∣∣ AF

BT

AT

(A ⇒ B)T

(¬A ∨ B)T

¬(¬¬A ∧ ¬B)T

(¬¬A ∧ ¬B)F

¬¬AF

¬AT

AF

⊥

¬BF

BT
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Tableaux with derived Rules (example)

Example 3.3.

(loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary))F

(loves(mary,bill) ∧ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T

loves(john,mary)T

⊥
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11.4 Soundness and Termination of Tableaux
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Soundness (Tableau)
▶ Idea: A test calculus is refutation sound, iff its inference rules preserve

satisfiability and the goal formulae are unsatisfiable.
▶ Definition 4.1. A labeled formula Aα is valid under φ, iff Iφ(A) = α.
▶ Definition 4.2. A tableau T is satisfiable, iff there is a satisfiable branch P in

T , i.e. if the set of formulae on P is satisfiable.
▶ Lemma 4.3. T0 rules transform satisfiable tableaux into satisfiable ones.
▶ Theorem 4.4 (Soundness). T0 is sound, i.e. Φ ⊆ wff0(V0) valid, if there is a

closed tableau T for ΦF.
▶ Proof: by contradiction

1. Suppose Φ isfalsifiable =̂ not valid.
2. Then the initial tableau is satisfiable, (ΦF satisfiable)
3. so T is satisfiable, by 4.3.
4. Thus there is a satisfiable branch (by definition)
5. but all branches are closed (T closed)

▶ Theorem 4.5 (Completeness). T0 is complete, i.e. if Φ ⊆ wff0(V0) is valid,
then there is a closed tableau T for ΦF.
Proof sketch: Proof difficult/interesting; see Corollary A.2.2 (A Completeness
Proof for Propositional Tableaux) in the AI lecture notes

Michael Kohlhase: Artificial Intelligence 1 364 2024-02-08



Termination for Tableaux

▶▶ Lemma 4.6. T0 terminates, i.e. every T0 tableau becomes saturated after
finitely many rule applications.

▶ Proof: By examining the rules wrt. a measure µ
1. Let us call a labeled formulae Aα worked off in a tableau T , if a T0 rule has

already been applied to it.
2. It is easy to see that applying rules to worked off formulae will only add formulae

that are already present in its branch.
3. Let µ(T ) be the number of connectives in labeled formulae in T that are not

worked off.
4. Then each rule application to a labeled formula in T that is not worked off

reduces µ(T ) by at least one. (inspect the rules)
5. At some point the tableau only contains worked off formulae and literals.
6. Since there are only finitely many literals in T , so we can only apply T0⊥ a finite

number of times.
▶ Corollary 4.7. T0 induces a decision procedure for validity in PL0.

Proof: We combine the results so far
▶ 1. By 4.6 it is decidable whether ⊢T0A

2. By soundness (4.4) and completeness (4.5), ⊢T0A iff A is valid.
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Termination for Tableaux

▶ Lemma 4.8. T0 terminates, i.e. every T0 tableau becomes saturated after
finitely many rule applications.

▶ Proof: By examining the rules wrt. a measure µ
1. Let us call a labeled formulae Aα worked off in a tableau T , if a T0 rule has

already been applied to it.
2. It is easy to see that applying rules to worked off formulae will only add formulae

that are already present in its branch.
3. Let µ(T ) be the number of connectives in labeled formulae in T that are not

worked off.
4. Then each rule application to a labeled formula in T that is not worked off

reduces µ(T ) by at least one. (inspect the rules)
5. At some point the tableau only contains worked off formulae and literals.
6. Since there are only finitely many literals in T , so we can only apply T0⊥ a finite

number of times.

▶ Corollary 4.9. T0 induces a decision procedure for validity in PL0.
Proof: We combine the results so far

▶ 1. By 4.6 it is decidable whether ⊢T0A
2. By soundness (4.4) and completeness (4.5), ⊢T0A iff A is valid.
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Termination for Tableaux

▶ Lemma 4.10. T0 terminates, i.e. every T0 tableau becomes saturated after
finitely many rule applications.

▶ Proof: By examining the rules wrt. a measure µ
1. Let us call a labeled formulae Aα worked off in a tableau T , if a T0 rule has

already been applied to it.
2. It is easy to see that applying rules to worked off formulae will only add formulae

that are already present in its branch.
3. Let µ(T ) be the number of connectives in labeled formulae in T that are not

worked off.
4. Then each rule application to a labeled formula in T that is not worked off

reduces µ(T ) by at least one. (inspect the rules)
5. At some point the tableau only contains worked off formulae and literals.
6. Since there are only finitely many literals in T , so we can only apply T0⊥ a finite

number of times.
▶ Corollary 4.11. T0 induces a decision procedure for validity in PL0.

Proof: We combine the results so far
▶ 1. By 4.6 it is decidable whether ⊢T0A

2. By soundness (4.4) and completeness (4.5), ⊢T0A iff A is valid.
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11.5 Resolution for Propositional Logic
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Another Test Calculus: Resolution

▶ Definition 5.1. A clause is a disjunction lα1
1 ∨ . . .∨ lαn

n of literals. We will use 2
for the “empty” disjunction (no disjuncts) and call it the empty clause. A clause
with exactly one literal is called a unit clause.

▶ Definition 5.2 (Resolution Calculus). The resolution calculus R0 operates a
clause sets via a single inference rule:

PT ∨ A PF ∨ B
A ∨ B

R

This rule allows to add the resolvent (the clause below the line) to a clause set
which contains the two clauses above. The literals PT and PF are called cut
literals.

▶ Definition 5.3 (Resolution Refutation). Let S be a clause set, then we call an
R0-derivation of 2 from S R0-refutation and write D : S⊢R02.
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Clause Normal Form Transformation (A calculus)

▶ Definition 5.4. We will often write a clause set {C 1, . . .,C n} as C 1 ; . . . ; C n,
use S ; T for the union of the clause sets S and T , and S ; C for the extension
by a clause C .

▶ Definition 5.5 (Transformation into Clause Normal Form). The CNF
transformation calculus CNF0 consists of the following four inference rules on
sets of labeled formulae.

C ∨ (A ∨ B)T

C ∨ AT ∨ BT
C ∨ (A ∨ B)F

C ∨ AF ; C ∨ BF
C ∨ ¬AT

C ∨ AF
C ∨ ¬AF

C ∨ AT

▶ Definition 5.6. We write CNF0(Aα) for the set of all clauses derivable from Aα

via the rules above.
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Derived Rules of Inference

▶ Definition 5.7. An inference rule
A1 . . . An

C
is called derivable (or a derived

rule) in a calculus C, if there is a C derivation A1, . . .,An⊢CC.
▶ Idea: Derived rules make proofs shorter.

▶ Example 5.8.

C ∨ (A ⇒ B)T

C ∨ (¬A ∨ B)T

C ∨ ¬AT ∨ BT

C ∨ AF ∨ BT

; C ∨ (A ⇒ B)T

C ∨ AF ∨ BT

▶ Other Derived CNF Rules:

C ∨ (A ⇒ B)T

C ∨ AF ∨ BT
C ∨ (A ⇒ B)F

C ∨ AT ; C ∨ BF
C ∨ (A ∧ B)T

C ∨ AT ; C ∨ BT
C ∨ (A ∧ B)F

C ∨ AF ∨ BF
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Example: Proving Axiom S with Resolution

▶ Example 5.9. Clause Normal Form transformation

((P ⇒ Q ⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R)F

(P ⇒ Q ⇒ R)T ; ((P ⇒ Q)⇒ P ⇒ R)F

PF ∨ (Q ⇒ R)T ; (P ⇒ Q)T ; (P ⇒ R)F

PF ∨ QF ∨ RT ; PF ∨ QT ; PT ; RF

Result {PF ∨ QF ∨ RT , PF ∨ QT , PT , RF}
▶ Example 5.10. Resolution Proof

1 PF ∨ QF ∨ RT initial
2 PF ∨ QT initial
3 PT initial
4 RF initial
5 PF ∨ QF resolve 1.3 with 4.1
6 QF resolve 5.1 with 3.1
7 PF resolve 2.2 with 6.1
8 2 resolve 7.1 with 3.1
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Clause Set Simplification

▶ Observation: Let ∆ be a clause set, l a literal, and ∆′ be ∆ where
▶ all clauses l ∨ C have been removed and
▶ and all clauses l ∨ C have been shortened to C .

Then ∆ is satisfiable, iff ∆′ is. We call ∆′ the clause set simplification of ∆ wrt.
l .

▶ Corollary 5.11. Adding clause set simplification wrt. unit clauses to R0 does
not affect soundness and completeness.

▶ This is almost always a good idea! (clause set simplification is cheap)
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11.6 Killing a Wumpus with Propositional
Inference
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Applying Propositional Inference: Where is the Wumpus?

▶ Example 6.1 (Finding the Wumpus). The situation

▶ What should the agent do next and why?
▶ One possibility: Convince yourself that the Wumpus is in [1, 3] and shoot it.
▶ What is the general mechanism here? (for the agent function)
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Applying Propositional Inference: Where is the Wumpus?

▶ Example 6.2 (Finding the Wumpus). The situation and what the agent knows

▶ What should the agent do next and why?
▶ One possibility: Convince yourself that the Wumpus is in [1, 3] and shoot it.
▶ What is the general mechanism here? (for the agent function)
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Applying Propositional Inference: Where is the Wumpus?

▶ Example 6.3 (Finding the Wumpus). The situation and what the agent knows

▶ What should the agent do next and why?

▶ One possibility: Convince yourself that the Wumpus is in [1, 3] and shoot it.
▶ What is the general mechanism here? (for the agent function)
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Applying Propositional Inference: Where is the Wumpus?

▶ Example 6.4 (Finding the Wumpus). The situation and what the agent knows

▶ What should the agent do next and why?
▶ One possibility: Convince yourself that the Wumpus is in [1, 3] and shoot it.

▶ What is the general mechanism here? (for the agent function)
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Applying Propositional Inference: Where is the Wumpus?

▶ Example 6.5 (Finding the Wumpus). The situation and what the agent knows

▶ What should the agent do next and why?
▶ One possibility: Convince yourself that the Wumpus is in [1, 3] and shoot it.
▶ What is the general mechanism here? (for the agent function)
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Where is the Wumpus? Our Knowledge

▶ Idea: We formalize the knowledge about the Wumpus world in PL0 and use a
test calculus to check for entailment.

▶ Simplification: We worry only about the Wumpus and stench:
S i,j =̂ stench in [i , j ], W i,j =̂ Wumpus in [i , j ].

▶ Propositions whose value we know: ¬S1,1, ¬W 1,1, ¬S2,1, ¬W 2,1, S1,2,
¬W 1,2.

▶ Knowledge about the Wumpus and smell:
From Cell adjacent to Wumpus: Stench (else: None), we get
R1:=¬S1,1 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,1
R2:=¬S2,1 ⇒¬W 1,1 ∧ ¬W 2,1 ∧ ¬W 2,2 ∧ ¬W 3,1
R3:=¬S1,2 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,2 ∧ ¬W 1,3
R4:=S1,2 ⇒ (W 1,3 ∨W 2,2 ∨W 1,1)
...

▶ To show:
R1,R2,R3,R4 |=W 1,3 (we will use resolution)
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And Now Using Resolution Conventions

▶ We obtain the clause set ∆ composed of the following clauses:
▶ Propositions whose value we know: S1,1

F, W 1,1
F, S2,1

F, W 2,1
F, S1,2

T, W 1,2
F

▶ Knowledge about the Wumpus and smell:
from clauses
R1 S1,1

T ∨W 1,1
F, S1,1

T ∨W 1,2
F, S1,1

T ∨W 2,1
F

R2 S2,1
T ∨W 1,1

F, S2,1
T ∨W 2,1

F, S2,1
T ∨W 2,2

F, S2,1
T ∨W 3,1

F

R3 S1,2
T ∨W 1,1

F, S1,2
T ∨W 1,2

F, S1,2
T ∨W 2,2

F, S1,2
T ∨W 1,3

F

R4 S1,2
F ∨W 1,3

T ∨W 2,2
T ∨W 1,1

T

▶ Negated goal formula: W 1,3
F
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Resolution Proof Killing the Wumpus!

▶ Example 6.6 (Where is the Wumpus). We show a derivation that proves that
he is in (1, 3).
▶ Assume the Wumpus is not in (1, 3). Then either there’s no stench in (1, 2), or the

Wumpus is in some other neigbor cell of (1, 2).
▶ Parents: W 1,3

F and S1,2
F ∨W 1,3

T ∨W 2,2
T ∨W 1,1

T.
▶ Resolvent: S1,2

F ∨W 2,2
T ∨W 1,1

T.
▶ There’s a stench in (1, 2), so it must be another neighbor.
▶ Parents: S1,2

T and S1,2
F ∨W 2,2

T ∨W 1,1
T.

▶ Resolvent: W 2,2
T ∨W 1,1

T.
▶ We’ve been to (1, 1), and there’s no Wumpus there, so it can’t be (1, 1).
▶ Parents: W 1,1

F and W 2,2
T ∨W 1,1

T.
▶ Resolvent: W 2,2

T.
▶ There is no stench in (2, 1) so it can’t be (2, 2) either, in contradiction.
▶ Parents: S2,1

F and S2,1
T ∨W 2,2

F.
▶ Resolvent: W 2,2

F.
▶ Parents: W 2,2

F and W 2,2
T.

▶ Resolvent: 2.

As resolution is sound, we have shown that indeed R1,R2,R3,R4 |=W 1,3.
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Where does the Conjecture W 1,3
F come from?

▶ Question: Where did the W 1,3
F come from?

▶ Observation 6.7. We need a general mechanism for making conjectures.
▶ Idea: Interpret the Wumpus world as a search problem P:=⟨S ,A, T , I ,G⟩

where
▶ the states S are given by the cells (and agent orientation) and
▶ the actions A by the possible actions of the agent.

Use tree search as the main agent function and a test calculus for testing all
dangers (pits), opportunities (gold) and the Wumpus.

▶ Example 6.8 (Back to the Wumpus). In 6.1, the agent is in [1, 2], it has
perceived stench, and the possible actions include shoot, and goForward.
Evaluating either of these leads to the conjecture W 1,3. And since W 1,3 is
entailed, the action shoot probably comes out best, heuristically.

▶ Remark: Analogous to the backtracking with inference algorithm from CSP.
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Summary

▶ Every propositional formula can be brought into conjunctive normal form (CNF),
which can be identified with a set of clauses.

▶ The tableau and resolution calculi are deduction procedures based on trying to
derive a contradiction from the negated theorem (a closed tableau or the empty
clause). They are refutation complete, and can be used to prove KB |=A by
showing that KB ∪ {¬A} is unsatisfiable.
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Chapter 12
Formal Systems: Syntax, Semantics, Entailment,

and Derivation in General
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Recap: General Aspects of Propositional Logic
▶ There are many ways to define Propositional Logic:
▶ We chose ∧ and ¬ as primitive, and many others as defined.
▶ We could have used ∨ and ¬ just as well.
▶ We could even have used only one connective e.g. negated conjunction ↑ or

disjunction NOR and defined ∧, ∨, and ¬ via ↑ and NOR respectively.
↑ ⊤ ⊥
⊤ F T
⊥ T T

NOR ⊤ ⊥
⊤ F F
⊥ F T

¬a a ↑ a a NOR a

ab a ↑ b ↑ a ↑ b a NOR ab NOR b

ab a ↑ a ↑ b ↑ b a NOR b NOR a NOR b

▶ Observation: The set wff0(V0) of well-formed propositional formulae is a
formal language over the alphabet given by V0, the connectives, and brackets.

▶ Recall: We are mostly interested in
▶ satisfiability i.e. whether M|=φA, and
▶ entailment i.e whether A |=B.

▶ Observation: In particular, the inductive/compositional nature of wff0(V0) and
Iφ : wff0(V0)→D0 are secondary.

▶ Idea: Concentrate on language, models (M, φ), and satisfiability.
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Logical Systems

▶ Definition 0.1. A logical system (or simply a logic) is a triple L:=⟨L,K, |=⟩,
where L is a formal language, K is a set and |= ⊆ K × L. Members of L are
called formulae of L, members of K models for L, and |= the satisfaction
relation.

▶ Example 0.2 (Propositional Logic). ⟨wff(ΣPL0 ,VPL0),K, |=⟩ is a logical
system, if we define K:=V0 ⇀D0 (the set of variable assignments) and φ |= A
iff Iφ(A) = T.

▶ Definition 0.3. Let ⟨L,K, |=⟩ be a logical system, M∈K be a model and A∈L
a formula, then we say that A is
▶ satisfied by M, iff M|=A.
▶ falsified by M, iff M̸|=A.
▶ satisfiable in K, iff M|=A for some M∈K.
▶ valid in K (write |=A), iff M|=A for all M∈K.
▶ falsifiable in K, iff M̸|=A for some M∈K.
▶ unsatisfiable in K, iff M̸|=A for all M∈K.
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Derivation Relations and Inference Rules
▶ Definition 0.4. Let L:=⟨L,K, |=⟩ be a logical system, then we call a relation

⊢ ⊆ P(L)× L a derivation relation for L, if
▶ H⊢A, if A∈H (⊢ is proof reflexive),
▶ H⊢A and H′ ∪ {A}⊢B imply H ∪H′⊢B (⊢ is proof transitive),
▶ H⊢A and H ⊆ H′ imply H′⊢A (⊢ is monotonic or admits weakening).

▶ Definition 0.5. We call ⟨L,K, |=, C⟩ a formal system, iff L:=⟨L,K, |=⟩ is a
logical system, and C a calculus for L.

▶ Definition 0.6. Let L be the formal language of a logical system, then an
inference rule over L is a decidable n + 1 ary relation on L. Inference rules are
traditionally written as

A1 . . . An

C
N

where A1, . . .,An and C are formula schemata for L and N is a name.
The Ai are called assumptions of N , and C is called its conclusion.

▶ Definition 0.7. An inference rule without assumptions is called an axiom.
▶ Definition 0.8. Let L:=⟨L,K, |=⟩ be a logical system, then we call a set C of

inference rules over L a calculus (or inference system) for L.
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Derivation Relations and Inference Rules
▶ Definition 0.9. Let L:=⟨L,K, |=⟩ be a logical system, then we call a relation

⊢ ⊆ P(L)× L a derivation relation for L, if
▶ H⊢A, if A∈H (⊢ is proof reflexive),
▶ H⊢A and H′ ∪ {A}⊢B imply H ∪H′⊢B (⊢ is proof transitive),
▶ H⊢A and H ⊆ H′ imply H′⊢A (⊢ is monotonic or admits weakening).

▶ Definition 0.10. We call ⟨L,K, |=, C⟩ a formal system, iff L:=⟨L,K, |=⟩ is a
logical system, and C a calculus for L.

▶ Definition 0.11. Let L be the formal language of a logical system, then an
inference rule over L is a decidable n + 1 ary relation on L. Inference rules are
traditionally written as

A1 . . . An

C
N

where A1, . . .,An and C are formula schemata for L and N is a name.
The Ai are called assumptions of N , and C is called its conclusion.

▶ Definition 0.12. An inference rule without assumptions is called an axiom.
▶ Definition 0.13. Let L:=⟨L,K, |=⟩ be a logical system, then we call a set C of

inference rules over L a calculus (or inference system) for L.
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Derivations

▶ Definition 0.14.Let L:=⟨L,K, |=⟩ be a logical system and C a calculus for L,
then a C-derivation of a formula C∈L from a set H ⊆ L of hypotheses (write
H⊢CC) is a sequence A1, . . .,Am of L-formulae, such that
▶ Am = C, (derivation culminates in C)
▶ for all 1≤i≤m, either Ai∈H, or (hypothesis)

▶ there is an inference rule
Al1 . . . Alk

Ai
in C with l j<i for all j≤k. (rule application)

We can also see a derivation as a derivation tree, where the Al j are the children
of the node Ak .

▶ Example 0.15.
In the propositional Hilbert calculus H0 we
have the derivation P⊢H0Q ⇒ P: the sequence
is P ⇒ Q ⇒ P,P,Q ⇒ P and the
corresponding tree on the right.

K
P ⇒ Q ⇒ P P

MP
Q ⇒ P
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Formal Systems

▶ Let ⟨L,K, |=⟩ be a logical system and C a calculus, then ⊢C is a derivation
relation and thus ⟨L,K, |=,⊢C⟩ a derivation system.

▶ Therefore we will sometimes also call ⟨L,K, |=, C⟩ a formal system, iff
L:=⟨L,K, |=⟩ is a logical system, and C a calculus for L.

▶ Definition 0.16. Let C be a calculus, then a C-derivation ∅⊢CA is called a proof
of A and if one exists (write ⊢CA) then A is called a C-theorem.
Definition 0.17. The act of finding a proof for a formula A is called proving A.

▶ Definition 0.18. An inference rule I is called admissible in a calculus C, if the
extension of C by I does not yield new theorems.

▶ Definition 0.19. An inference rule
A1 . . . An

C
is called derivable (or a derived

rule) in a calculus C, if there is a C derivation A1, . . .,An⊢CC.
▶ Observation 0.20. Derivable inference rules are admissible, but not the other

way around.
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Chapter 13
Propositional Reasoning: SAT Solvers
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13.1 Introduction
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Reminder: Our Agenda for Propositional Logic

▶ : Basic definitions and concepts; machine-oriented calculi
▶ Sets up the framework. Tableaux and resolution are the quintessential reasoning

procedures underlying most successful SAT solvers.
▶ This chapter: The Davis Putnam procedure and clause learning.
▶ State-of-the-art algorithms for reasoning about propositional logic, and an important

observation about how they behave.
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SAT: The Propositional Satisfiability Problem

▶ Definition 1.1. The SAT problem (SAT): Given a propositional formula A,
decide whether or not A is satisfiable. We denote the class of all SAT problems
with SAT

▶ The SAT problem was the first problem proved to be NP-complete!
▶ A is commonly assumed to be in CNF. This is without loss of generality,

because any A can be transformed into a satisfiability-equivalent CNF formula
(cf. ) in polynomial time.

▶ Active research area, annual SAT conference, lots of tools etc. available:
http://www.satlive.org/

▶ Definition 1.2. Tools addressing SAT are commonly referred to as SAT solvers.
▶ Recall: To decide whether KB |=A, decide satisfiability of θ:=KB ∪ {¬A}: θ is

unsatisfiable iff KB |=A.
▶ Consequence: Deduction can be performed using SAT solvers.
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SAT vs. CSP

▶ Recall: Constraint network ⟨V ,D ,C ⟩ has variables v∈V with finite domains
Dv∈D, and binary constraints C uv∈C which are relations over u, v specifying
the permissible combined assignments to u and v . One extension is to allow
constraints of higher arity.

▶ Observation 1.3 (SAT: A kind of CSP). SAT can be viewed as a CSP
problem in which all variable domains are Boolean, and the constraints have
unbounded arity.

▶ Theorem 1.4 (Encoding CSP as SAT). Given any constraint network C, we
can in low order polynomial time construct a CNF formula A(C) that is
satisfiable iff C is solvable.

▶ Proof: We design a formula, relying on known transformation to CNF
1. encode multi-XOR for each variable
2. encode each constraint by DNF over relation
3. Running time: O(nd2 +md2) where n is the number of variables, d the

domain size, and m the number of constraints.
▶ Upshot: Anything we can do with CSP, we can (in principle) do with SAT.
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Example Application: Hardware Verification

▶ Example 1.5 (Hardware Verification).

▶ Counter, repeatedly from c = 0 to c = 2.
▶ 2 bits x1 and x0; c = 2 ∗ x1 + x0.
▶ (FF=̂ Flip-Flop, D =̂ Data IN, CLK =̂ Clock)
▶ To Verify: If c < 3 in current clock cycle, then

c < 3 in next clock cycle.

▶ Step 1: Encode into propositional logic.
▶ Propositions: x1, x0; and y1, y0 (value in next cycle).
▶ Transition relation: y1 ⇔ y0; y0 ⇔ (¬(x1 ∨ x0)).
▶ Initial state: ¬(x1 ∧ x0).
▶ Error property: x1 ∧ y0.

▶ Step 2: Transform to CNF, encode as a clause set ∆.
▶ Clauses: y1

F ∨ x0
T, y1

T ∨ x0
F, y0

T ∨ x1
T ∨ x0

T, y0
F ∨ x1

F, y0
F ∨ x0

F, x1
F ∨ x0

F,
y1

T, y0
T.

▶ Step 3: Call a SAT solver (up next).

Michael Kohlhase: Artificial Intelligence 1 385 2024-02-08



Our Agenda for This Chapter

▶ The Davis-Putnam (Logemann-Loveland) Procedure: How to
systematically test satisfiability?
▶ The quintessential SAT solving procedure, DPLL.

▶ DPLL is (A Restricted Form of) Resolution: How does this relate to what
we did in the last chapter?
▶ mathematical understanding of DPLL.

▶ Why Did Unit Propagation Yield a Conflict?: How can we analyze which
mistakes were made in “dead” search branches?
▶ Knowledge is power, see next.

▶ Clause Learning: How can we learn from our mistakes?
▶ One of the key concepts, perhaps the key concept, underlying the success of SAT.

▶ Phase Transitions – Where the Really Hard Problems Are: Are all
formulas “hard” to solve?
▶ The answer is “no”. And in some cases we can figure out exactly when they

are/aren’t hard to solve.
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13.2 The Davis-Putnam (Logemann-Loveland)
Procedure
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The DPLL Procedure

▶ Definition 2.1. The Davis Putnam procedure (DPLL) is a SAT solver called on
a clause set ∆ and the empty assignment ϵ. It interleaves unit propagation (UP)
and splitting:

function DPLL(∆,I ) returns a partial assignment I , or ‘‘unsatisfiable’’
/∗ Unit Propagation (UP) Rule: ∗/
∆′ := a copy of ∆; I ′ := I
while ∆′ contains a unit clause C = Pα do

extend I ′ with [α/P], clause−set simplify ∆′

/∗ Termination Test: ∗/
if 2∈∆′ then return ‘‘unsatisfiable’’
if ∆′ = {} then return I ′

/∗ Splitting Rule: ∗/
select some proposition P for which I ′ is not defined
I ′′ := I ′ extended with one truth value for P; ∆′′ := a copy of ∆′; simplify ∆′′

if I ′′′ := DPLL(∆′′,I ′′) ̸= ‘‘unsatisfiable’’ then return I ′′′

I ′′ := I ′ extended with the other truth value for P; ∆′′ := ∆′; simplify ∆′′

return DPLL(∆′′,I ′′)

▶ In practice, of course one uses flags etc. instead of “copy”.

Michael Kohlhase: Artificial Intelligence 1 387 2024-02-08



DPLL: Example (Vanilla1)

▶ Example 2.2 (UP and Splitting). Let
∆:=(PT ∨ QT ∨ RF ; PF ∨ QF ; RT ; PT ∨ QF)

1. UP Rule: R 7→T
PT ∨ QT ; PF ∨ QF ; PT ∨ QF

2. Splitting Rule:

2a. P 7→F
QT ; QF

3a. UP Rule: Q 7→T
2
returning “unsatisfiable”

2b. P 7→T
QF

3b. UP Rule: Q 7→F
clause set empty
returning “R 7→T,P 7→T,Q 7→F
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DPLL: Example (Vanilla2)

▶ Observation: Sometimes UP is all we need.
▶ Example 2.3. Let ∆:=(QF ∨ PF ; PT ∨QF ∨ RF ∨ SF ;QT ∨ SF ; RT ∨ SF ; ST)

1. UP Rule: S 7→T
QF ∨ PF ; PT ∨ QF ∨ RF ; QT ; RT

2. UP Rule: Q 7→T
PF ; PT ∨ RF ; RT

3. UP Rule: R 7→T
PF ; PT

4. UP Rule: P 7→T
2
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DPLL: Example (Redundance1)

▶ Example 2.4. We introduce some nasty redundance to make DPLL slow.
∆:=(PF ∨ QF ∨ RT ; PF ∨ QF ∨ RF ; PF ∨ QT ∨ RT ; PF ∨ QT ∨ RF)
DPLL on ∆ ; Θ with Θ:=(X 1

T ∨ . . . ∨ X n
T ; X 1

F ∨ . . . ∨ X n
F)

RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2

Q Q Q Q

T F T F T F T F

Xn Xn

T F T F

X1
T F

P

T

F
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Properties of DPLL

▶ Unsatisfiable case: What can we say if “unsatisfiable” is returned?
▶ In this case, we know that ∆ is unsatisfiable: Unit propagation is sound, in the sense

that it does not reduce the set of solutions.

▶ Satisfiable case: What can we say when a partial interpretation I is returned?
▶ Any extension of I to a complete interpretation satisfies ∆. (By construction, I

suffices to satisfy all clauses.)
▶ Déjà Vu, Anybody?
▶ DPLL =̂ backtracking with inference, where inference =̂ unit propagation.
▶ Unit propagation is sound: It does not reduce the set of solutions.
▶ Running time is exponential in worst case, good variable/value selection strategies

required.

Michael Kohlhase: Artificial Intelligence 1 391 2024-02-08



Properties of DPLL

▶ Unsatisfiable case: What can we say if “unsatisfiable” is returned?
▶ In this case, we know that ∆ is unsatisfiable: Unit propagation is sound, in the sense

that it does not reduce the set of solutions.
▶ Satisfiable case: What can we say when a partial interpretation I is returned?
▶ Any extension of I to a complete interpretation satisfies ∆. (By construction, I

suffices to satisfy all clauses.)

▶ Déjà Vu, Anybody?
▶ DPLL =̂ backtracking with inference, where inference =̂ unit propagation.
▶ Unit propagation is sound: It does not reduce the set of solutions.
▶ Running time is exponential in worst case, good variable/value selection strategies

required.

Michael Kohlhase: Artificial Intelligence 1 391 2024-02-08



Properties of DPLL

▶ Unsatisfiable case: What can we say if “unsatisfiable” is returned?
▶ In this case, we know that ∆ is unsatisfiable: Unit propagation is sound, in the sense

that it does not reduce the set of solutions.
▶ Satisfiable case: What can we say when a partial interpretation I is returned?
▶ Any extension of I to a complete interpretation satisfies ∆. (By construction, I

suffices to satisfy all clauses.)
▶ Déjà Vu, Anybody?

▶ DPLL =̂ backtracking with inference, where inference =̂ unit propagation.
▶ Unit propagation is sound: It does not reduce the set of solutions.
▶ Running time is exponential in worst case, good variable/value selection strategies

required.

Michael Kohlhase: Artificial Intelligence 1 391 2024-02-08



Properties of DPLL

▶ Unsatisfiable case: What can we say if “unsatisfiable” is returned?
▶ In this case, we know that ∆ is unsatisfiable: Unit propagation is sound, in the sense

that it does not reduce the set of solutions.
▶ Satisfiable case: What can we say when a partial interpretation I is returned?
▶ Any extension of I to a complete interpretation satisfies ∆. (By construction, I

suffices to satisfy all clauses.)
▶ Déjà Vu, Anybody?
▶ DPLL =̂ backtracking with inference, where inference =̂ unit propagation.
▶ Unit propagation is sound: It does not reduce the set of solutions.
▶ Running time is exponential in worst case, good variable/value selection strategies

required.

Michael Kohlhase: Artificial Intelligence 1 391 2024-02-08



13.3 DPLL =̂ (A Restricted Form of) Resolution
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UP =̂ Unit Resolution

▶ Observation: The unit propagation (UP) rule corresponds to a calculus:

while ∆′ contains a unit clause {l} do
extend I ′ with the respective truth value for the proposition underlying l
simplify ∆′ /∗ remove false literals ∗/

▶ Definition 3.1 (Unit Resolution). Unit resolution (UR) is the test calculus
consisting of the following inference rule:

C ∨ Pα Pβ α ̸= β

C
UR

▶ Unit propagation =̂ resolution restricted to cases where one parent is unit clause.
▶ Observation 3.2 (Soundness). UR is refutation sound. (since resolution is)
▶ Observation 3.3 (Completeness). UR is not refutation complete (alone).
▶ Example 3.4. PT ∨ QT ; PT ∨ QF ; PF ∨ QT ; PF ∨ QF is unsatisfiable but UR

cannot derive the empty clause 2.
▶ UR makes only limited inferences, as long as there are unit clauses. It does not

guarantee to infer everything that can be inferred.
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DPLL vs. Resolution

▶ Definition 3.5. We define the number of decisions of a DPLL run as the total
number of times a truth value was set by either unit propagation or splitting.

▶ Theorem 3.6. If DPLL returns “unsatisfiable” on ∆, then ∆⊢R02 with a
resolution proof whose length is at most the number of decisions.

▶ Proof: Consider first DPLL without UP
1. Consider any leaf node N, for proposition X , both of whose truth values

directly result in a clause C that has become empty.
2. Then for X = F the respective clause C must contain XT; and for X = T

the respective clause C must contain X F. Thus we can resolve these two
clauses to a clause C (N) that does not contain X .

3. C (N) can contain only the negations of the decision literals l1, . . ., lk above
N. Remove N from the tree, then iterate the argument. Once the tree is
empty, we have derived the empty clause.

4. Unit propagation can be simulated via applications of the splitting rule,
choosing a proposition that is constrained by a unit clause: One of the two
truth values then immediately yields an empty clause.
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DPLL vs. Resolution: Example (Vanilla2)
▶ Observation: The proof of 3.6 is constructive, so we can use it as a method to

read of a resolution proof from a DPLL trace.
▶ Example 3.7. We follow the steps in the proof of 3.6 for

∆:=(QF ∨ PF ; PT ∨ QF ∨ RF ∨ SF ; QT ∨ SF ; RT ∨ SF ; ST)
DPLL: (Without UP; leaves an-
notated with clauses that became
empty)

Resolution proof from that DPLL tree:

QF ∨ PF PT ∨ QF ∨ RF ∨ SF

RT ∨ SF

QT ∨ SF

ST

S

Q

R

P

T
F

T
F

T
F

T
F

QF ∨ PF PT ∨ QF ∨ RF ∨ SF

RT ∨ SF

QT ∨ SF

ST

2

SF

QF ∨ SF

QF ∨ RF ∨ SF

▶ Intuition: From a (top-down) DPLL tree, we generate a (bottom-up)
resolution proof.

Michael Kohlhase: Artificial Intelligence 1 394 2024-02-08



DPLL vs. Resolution: Discussion

▶ So What?: The theorem we just proved helps to understand DPLL:
DPLL is an efficient practical method for conducting resolution proofs.

▶ In fact: DPLL =̂ tree resolution.
▶ Definition 3.8. In a tree resolution, each derived clause C is used only once (at

its parent).
▶ Problem: The same C must be derived anew every time it is used!
▶ This is a fundamental weakness: There are inputs ∆ whose shortest tree

resolution proof is exponentially longer than their shortest (general) resolution
proof.

▶ Intuitively: DPLL makes the same mistakes over and over again.
▶ Idea: DPLL should learn from its mistakes on one search branch, and apply the

learned knowledge to other branches.
▶ To the rescue: clause learning (up next)
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13.4 Conclusion
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Summary

▶ SAT solvers decide satisfiability of CNF formulas. This can be used for
deduction, and is highly successful as a general problem solving technique (e.g.,
in verification).

▶ DPLL =̂ backtracking with inference performed by unit propagation (UP), which
iteratively instantiates unit clauses and simplifies the formula.

▶ DPLL proofs of unsatisfiability correspond to a restricted form of resolution. The
restriction forces DPLL to “makes the same mistakes over again”.

▶ Implication graphs capture how UP derives conflicts. Their analysis enables us
to do clause learning. DPLL with clause learning is called CDCL. It corresponds
to full resolution, not “making the same mistakes over again”.

▶ CDCL is state of the art in applications, routinely solving formulas with millions
of propositions.

▶ In particular random formula distributions, typical problem hardness is
characterized by phase transitions.
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State of the Art in SAT

▶ SAT competitions:
▶ Since beginning of the 90s http://www.satcompetition.org/
▶ random vs. industrial vs. handcrafted benchmarks.
▶ Largest industrial instances: > 1.000.000 propositions.

▶ State of the art is CDCL:
▶ Vastly superior on handcrafted and industrial benchmarks.
▶ Key techniques: clause learning! Also: Efficient implementation (UP!), good

branching heuristics, random restarts, portfolios.
▶ What about local search?:
▶ Better on random instances.
▶ No “dramatic” progress in last decade.
▶ Parameters are difficult to adjust.
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But – What About Local Search for SAT?

▶ There’s a wealth of research on local search for SAT, e.g.:
▶ Definition 4.1. The GSAT algorithm OUTPUT: a satisfying truth assignment

of ∆, if found
function GSAT (∆, MaxFlips MaxTries

for i :=1 to MaxTries
I := a randomly−generated truth assignment
for j :=1 to MaxFlips
if I satisfies ∆ then return I

X := a proposition reversing whose truth assignment gives
the largest increase in the number of satisfied clauses
I := I with the truth assignment of X reversed

end for
end for
return ‘‘no satisfying assignment found’’

▶ local search is not as successful in SAT applications, and the underlying ideas
are very similar to those presented in (Not covered here)
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Topics We Didn’t Cover Here
▶ Variable/value selection heuristics: A whole zoo is out there.
▶ Implementation techniques: One of the most intensely researched subjects.

Famous “watched literals” technique for UP had huge practical impact.
▶ Local search: In space of all truth value assignments. GSAT (slide 398) had

huge impact at the time (1992), caused huge amount of follow-up work. Less
intensely researched since clause learning hit the scene in the late 90s.

▶ Portfolios: How to combine several SAT solvers efficiently?
▶ Random restarts: Tackling heavy-tailed runtime distributions.
▶ Tractable SAT: Polynomial-time sub-classes (most prominent: 2-SAT, Horn

formulas).
▶ MaxSAT: Assign weight to each clause, maximize weight of satisfied clauses (=

optimization version of SAT).
▶ Resolution special cases: There’s a universe in between unit resolution and full

resolution: trade off inference vs. search.
▶ Proof complexity: Can one resolution special case X simulate another one Y

polynomially? Or is there an exponential separation (example families where X
is exponentially less efficient than Y )?
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Chapter 14
First-Order Predicate Logic
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14.1 Motivation: A more Expressive Language
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Let’s Talk About Blocks, Baby . . .

▶ Question: What do you see here?

Let’s Talk About Blocks, Baby . . .

I Question: What do you see here?

A D B E C

I You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.

I And now: Say it in propositional logic!

I Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

I Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

I Problem: Could we conclude that A is red? (No)
These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

I Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

I How?: Variables ranging over objects, predicates describing object properties, . . .
I Example 1.1. “8x block(x)) red(x)”; “block(A)”
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▶ You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.
▶ And now: Say it in propositional logic!
▶ Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .
▶ Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?
▶ Problem: Could we conclude that A is red? (No)

These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

▶ Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

▶ How?: Variables ranging over objects, predicates describing object properties,
. . .

▶ Example 1.1. “∀x block(x)⇒ red(x)”; “block(A)”
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I Idea: Predicate Logic (PL1) extends propositional logic with the ability to
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▶ You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.
▶ And now: Say it in propositional logic!

▶ Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .
▶ Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?
▶ Problem: Could we conclude that A is red? (No)

These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

▶ Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

▶ How?: Variables ranging over objects, predicates describing object properties,
. . .

▶ Example 1.2. “∀x block(x)⇒ red(x)”; “block(A)”
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I Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

I Problem: Could we conclude that A is red? (No)
These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.
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▶ You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.
▶ And now: Say it in propositional logic!
▶ Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .
▶ Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?
▶ Problem: Could we conclude that A is red? (No)

These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

▶ Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

▶ How?: Variables ranging over objects, predicates describing object properties,
. . .

▶ Example 1.3. “∀x block(x)⇒ red(x)”; “block(A)”
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I Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

I Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

I Problem: Could we conclude that A is red? (No)
These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

I Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

I How?: Variables ranging over objects, predicates describing object properties, . . .
I Example 1.1. “8x block(x)) red(x)”; “block(A)”
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▶ You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.
▶ And now: Say it in propositional logic!
▶ Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .
▶ Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?
▶ Problem: Could we conclude that A is red? (No)

These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

▶ Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

▶ How?: Variables ranging over objects, predicates describing object properties,
. . .

▶ Example 1.4. “∀x block(x)⇒ red(x)”; “block(A)”
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Let’s Talk About the Wumpus Instead?

Percepts: [Stench,Breeze,Glitter ,Bump, Scream]

▶ ▶ Cell adjacent to Wumpus: Stench (else: None).
▶ Cell adjacent to Pit: Breeze (else: None).
▶ Cell that contains gold: Glitter (else: None).
▶ You walk into a wall: Bump (else: None).
▶ Wumpus shot by arrow: Scream (else: None).

▶ Say, in propositional logic: “Cell adjacent to Wumpus: Stench.”
▶ W 1,1 ⇒ S1,2 ∧ S2,1
▶ W 1,2 ⇒ S2,2 ∧ S1,1 ∧ S1,3
▶ W 1,3 ⇒ S2,3 ∧ S1,2 ∧ S1,4
▶ . . .

▶ Note: Even when we can describe the problem suitably, for the desired
reasoning, the propositional formulation typically is way too large to write (by
hand).

▶ PL1 solution: “∀x Wumpus(x)⇒ (∀y adj(x , y)⇒ stench(y))”
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Blocks/Wumpus, Who Cares? Let’s Talk About Numbers!

▶ Even worse!
▶ Example 1.5 (Integers). A limited vocabulary to talk about these
▶ The objects: {1, 2, 3, . . . }.
▶ Predicate 1: “even(x)” should be true iff x is even.
▶ Predicate 2: “eq(x , y)” should be true iff x = y .
▶ Function: succ(x) maps x to x + 1.

▶ Old problem: Say, in propositional logic, that “1 + 1 = 2”.
▶ Inner structure of vocabulary is ignored (cf. “AllBlocksAreRed”).
▶ PL1 solution: “eq(succ(1), 2)”.

▶ New Problem: Say, in propositional logic, “if x is even, so is x + 2”.
▶ It is impossible to speak about infinite sets of objects!
▶ PL1 solution: “∀x even(x)⇒ even(succ(succ(x)))”.
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Now We’re Talking

▶ Example 1.6.

∀n gt(n, 2)⇒¬(∃a, b, c eq(plus(pow(a, n), pow(b, n)),pow(c , n)))

Read: Forall n > 2, there are a, b, c , such that an + bn = cn (Fermat’s last
theorem)

▶ Theorem proving in PL1: Arbitrary theorems, in principle.
▶ Fermat’s last theorem is of course infeasible, but interesting theorems can and have

been proved automatically.
▶ See http://en.wikipedia.org/wiki/Automated_theorem_proving.
▶ Note: Need to axiomatize “Plus”, “PowerOf”, “Equals”. See

http://en.wikipedia.org/wiki/Peano_axioms
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What Are the Practical Relevance/Applications?

▶ . . . even asking this question is a sacrilege:

▶ (Quotes from Wikipedia)

▶ “In Europe, logic was first developed by Aristotle. Aristotelian logic became widely
accepted in science and mathematics.”

▶ “The development of logic since Frege, Russell, and Wittgenstein had a profound
influence on the practice of philosophy and the perceived nature of philosophical
problems, and Philosophy of mathematics.”

▶ “During the later medieval period, major efforts were made to show that Aristotle’s
ideas were compatible with Christian faith.”

▶ (In other words: the church issued for a long time that Aristotle’s ideas were
incompatible with Christian faith.)
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What Are the Practical Relevance/Applications?

▶ You’re asking it anyhow:
▶ Logic programming. Prolog et al.
▶ Databases. Deductive databases where elements of logic allow to conclude

additional facts. Logic is tied deeply with database theory.
▶ Semantic technology. Mega-trend since > a decade. Use PL1 fragments to annotate

data sets, facilitating their use and analysis.

▶ Prominent PL1 fragment: Web Ontology Language OWL.
▶ Prominent data set: The WWW. (semantic web)
▶ Assorted quotes on Semantic Web and OWL:
▶ The brain of humanity.
▶ The Semantic Web will never work.
▶ A TRULY meaningful way of interacting with the Web may finally be here: the

Semantic Web. The idea was proposed 10 years ago. A triumvirate of internet
heavyweights – Google, Twitter, and Facebook – are making it real.
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(A Few) Semantic Technology Applications

Web Queries Jeopardy (IBM Watson)

Context-Aware Apps Healthcare
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Our Agenda for This Topic

▶ This Chapter: Basic definitions and concepts; normal forms.
▶ Sets up the framework and basic operations.
▶ Syntax: How to write PL1 formulas? (Obviously required)
▶ Semantics: What is the meaning of PL1 formulas? (Obviously required.)
▶ Normal Forms: What are the basic normal forms, and how to obtain them? (Needed

for algorithms, which are defined on these normal forms.)
▶ Next Chapter: Compilation to propositional reasoning; unification; lifted

resolution/tableau.
▶ Algorithmic principles for reasoning about predicate logic.
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14.2 First-Order Logic
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First-Order Predicate Logic (PL1)

▶ Coverage: We can talk about (All humans are mortal)
▶ individual things and denote them by variables or constants
▶ properties of individuals, (e.g. being human or mortal)
▶ relations of individuals, (e.g. sibling_of relationship)
▶ functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

▶ But we cannot state assertions like
▶ There is a surjective function from the natural numbers into the reals.

▶ First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . . )

▶ But too weak for formalizing: (at least directly)
▶ natural numbers, torsion groups, calculus, . . .
▶ generalized quantifiers (most, few,. . . )
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14.2.1 First-Order Logic: Syntax and Semantics
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PL1 Syntax (Signature and Variables)

▶ Definition 2.1. First-order logic (PL1), is a formal system extensively used in
mathematics, philosophy, linguistics, and computer science. It combines
propositional logic with the ability to quantify over individuals.

▶ PL1 talks about two kinds of objects: (so we have two kinds of symbols)
▶ truth values by reusing PL0

▶ individuals, e.g. numbers, foxes, Pokémon,. . .
▶ Definition 2.2. A first-order signature consists of (all disjoint; k∈N)
▶ connectives: Σ0 = {T ,F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)
▶ function constants: Σf

k = {f , g , h, . . .} (k-ary functions on individuals)
▶ predicate constants: Σp

k = {p, q, r , . . .} (k-ary relations among individuals.)
▶ (Skolem constants: Σsk

k = {f 1
k , f

2
k , . . .}) (witness constructors; countably ∞)

▶ We take Σ1 to be all of these together: Σ1:=Σf ∪Σp ∪Σsk and define Σ:=Σ1 ∪Σ0.
▶ Definition 2.3. We assume a set of individual variables: Vι:={X ,Y ,Z , . . .}.

(countably ∞)
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PL1 Syntax (Formulae)

▶ Definition 2.4. Terms: A∈wff ι(Σ1,Vι) (denote individuals)
▶ Vι ⊆ wff ι(Σ1,Vι),
▶ if f ∈Σf

k and Ai∈wff ι(Σ1,Vι) for i≤k, then f (A1, . . .,Ak)∈wff ι(Σ1,Vι).
▶ Definition 2.5. Propositions: A∈wff o(Σ1,Vι): (denote truth values)
▶ if p∈Σp

k and Ai∈wff ι(Σ1,Vι) for i≤k, then p(A1, . . .,Ak)∈wff o(Σ1,Vι),
▶ if A,B∈wff o(Σ1,Vι) and X∈Vι, then T ,A ∧ B,¬A, ∀X A∈wff o(Σ1,Vι).

∀ is a binding operator called the universal quantifier.
▶ Definition 2.6. We define the connectives F ,∨,⇒,⇔ via the abbreviations

A ∨ B:=¬(¬A ∧ ¬B), A ⇒ B:=¬A ∨ B, A ⇔ B:=(A ⇒ B) ∧ (B ⇒ A), and
F :=¬T . We will use them like the primary connectives ∧ and ¬

▶ Definition 2.7. We use ∃X A as an abbreviation for ¬(∀X ¬A). ∃ is a binding
operator called the existential quantifier.

▶ Definition 2.8. Call formulae without connectives or quantifiers atomic else
complex.
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Alternative Notations for Quantifiers

Here Elsewhere
∀x A

∧
x A (x)A

∃x A
∨
x A
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Free and Bound Variables

▶ Definition 2.9. We call an occurrence of a variable X bound in a formula A
(otherwise free), iff it occurs in a sub-formula ∀X B of A.
For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

▶ Definition 2.10. We define the set free(A) of free variables of a formula A:
free(X ):={X}
free(f (A1, . . .,An)):=

⋃
1≤i≤nfree(Ai )

free(p(A1, . . .,An)):=
⋃

1≤i≤nfree(Ai )
free(¬A):=free(A)
free(A ∧ B):=free(A) ∪ free(B)
free(∀X A):=free(A)\{X}

▶ Definition 2.11. We call a formula A closed or ground, iff free(A) = ∅. We call
a closed proposition a sentence, and denote the set of all ground term with
cwff ι(Σι) and the set of sentences with cwff o(Σι).

▶ Axiom 2.12. Bound variables can be renamed, i.e. any subterm ∀X B of a
formula A can be replaced by A′:=(∀Y B′), where B′ arises from B by replacing
all X∈free(B) with a new variable Y that does not occur in A. We call A′ an
alphabetical variant of A – and the other way around too.
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Semantics of PL1 (Models)

▶ Definition 2.13. We inherit the domain D0 = {T,F} of truth values from PL0

and assume an arbitrary domain Dι ̸= ∅ of individuals.(this choice is a parameter
to the semantics)

▶ Definition 2.14. An interpretation I assigns values to constants, e.g.
▶ I(¬) : D0→D0 with T 7→F, F7→T, and I(∧) = . . . (as in PL0)
▶ I : Σf

k→Dιk →Dι (interpret function symbols as arbitrary functions)
▶ I : Σp

k→P(Dιk) (interpret predicates as arbitrary relations)
▶ Definition 2.15. A variable assignment φ : Vι→Dι maps variables into the

domain.
▶ Definition 2.16. A model M = ⟨Dι, I⟩ of PL1 consists of a domain Dι and an

interpretation I.
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Semantics of PL1 (Evaluation)

▶ Definition 2.17. Given a model ⟨D, I⟩, the value function Iφ is recursively
defined: (two parts: terms & propositions)
▶ Iφ : wff ι(Σ1,Vι)→Dι assigns values to terms.
▶ Iφ(X ):=φ(X ) and
▶ Iφ(f (A1, . . .,Ak )):=I(f )(Iφ(A1), . . ., Iφ(Ak ))

▶ Iφ : wff o(Σ1,Vι)→D0 assigns values to formulae:
▶ Iφ(T ) = I(T ) = T,
▶ Iφ(¬A) = I(¬)(Iφ(A))
▶ Iφ(A ∧ B) = I(∧)(Iφ(A), Iφ(B)) (just as in PL0)
▶ Iφ(p(A1, . . .,Ak )):=T, iff ⟨Iφ(A1), . . ., Iφ(Ak )⟩∈I(p)
▶ Iφ(∀X A):=T, iff I(φ,[a/X ])(A) = T for all a∈Dι.

▶ Definition 2.18 (Assignment Extension). Let φ be a variable assignment into
D and a∈D, then φ,[a/X ] is called the extension of φ with [a/X ] and is defined
as {(Y ,a)∈φ|Y ̸= X} ∪ {(X ,a)}: φ,[a/X ] coincides with φ off X , and gives the
result a there.

Michael Kohlhase: Artificial Intelligence 1 414 2024-02-08



Semantics Computation: Example

▶ Example 2.19. We define an instance of first-order logic:
▶ Signature: Let Σf

0:={j ,m}, Σf
1:={f }, and Σp

2:={o}
▶ Universe: Dι:={J,M}
▶ Interpretation: I(j):=J, I(m):=M, I(f )(J):=M, I(f )(M):=M, and

I(o):={(M,J)}.
Then ∀X o(f (X ),X ) is a sentence and with ψ:=φ,[a/X ] for a∈Dι we have

Iφ(∀X o(f (X ),X )) = T iff Iψ(o(f (X ),X )) = T for all a∈Dι
iff (Iψ(f (X )),Iψ(X ))∈I(o) for all a∈{J,M}
iff (I(f )(Iψ(X )),ψ(X ))∈{(M,J)} for all a∈{J,M}
iff (I(f )(ψ(X )),a) = (M,J) for all a∈{J,M}
iff I(f )(a) = M and a = J for all a∈{J,M}

But a ̸= J for a = M, so Iφ(∀X o(f (X ),X )) = F in the model ⟨Dι, I⟩.
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14.2.2 First-Order Substitutions
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Substitutions on Terms
▶ Intuition: If B is a term and X is a variable, then we denote the result of

systematically replacing all occurrences of X in a term A by B with [B/X ](A).
▶ Problem: What about [Z/Y ], [Y /X ](X ), is that Y or Z?
▶ Folklore: [Z/Y ], [Y /X ](X ) = Y , but [Z/Y ]([Y /X ](X )) = Z of course.

(Parallel application)
▶ Definition 2.20. Let wfe(Σ,V) be an expression language, then we call
σ : V→wfe(Σ,V) a substitution, iff the support supp(σ):={X |(X ,A)∈σ,X ̸= A}
of σ is finite. We denote the empty substitution with ϵ.

▶ Definition 2.21. We can discharge a variable X from a substitution σ by setting
σ−X :=σ,[X/X ].

▶ Definition 2.22 (Substitution Application). We define substitution
application by
▶ σ(c) = c for c∈Σ
▶ σ(X ) = A, iff X∈V and (X ,A)∈σ.
▶ σ(f (A1, . . .,An)) = f (σ(A1), . . ., σ(An)),
▶ σ(∀X A) = ∀X σ−X (A). (∃ analogous)

▶ Example 2.23. [a/x ], [f (b)/y ], [a/z ] instantiates g(x , y , h(z)) to
g(a, f (b), h(a)).
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Substitution Extension

▶ Definition 2.24 (Substitution Extension). Let σ be a substitution, then we
denote the extension of σ with [A/X ] by σ,[A/X ] and define it as
{(Y ,B)∈σ|Y ̸= X} ∪ {(X ,A)}: σ,[A/X ] coincides with σ off X , and gives the
result A there.

▶ Note: If σ is a substitution, then σ,[A/X ] is also a substitution.
▶ We also need the dual operation: removing a variable from the support:
▶ Definition 2.25. We can discharge a variable X from a substitution σ by setting
σ−X :=σ,[X/X ].
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Substitutions on Propositions

▶ Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is σ(∀X A)?

▶ Idea: σ should not instantiate bound variables. ([A/X ](∀X B) = ∀A B′

ill-formed)
▶ Definition 2.26. σ(∀X A):=(∀X σ−X (A)).
▶ Problem: This can lead to variable capture: [f (X )/Y ](∀X p(X ,Y )) would

evaluate to ∀X p(X , f (X )), where the second occurrence of X is bound after
instantiation, whereas it was free before. Solution: Rename away the bound
variable X in ∀X p(X ,Y ) before applying the substitution.

▶ Definition 2.27 (Capture-Avoiding Substitution Application). Let σ be a
substitution, A a formula, and A′ an alphabetic variant of A, such that
intro(σ) ∩ BVar(A) = ∅. Then we define capture-avoiding substitution
application via σ(A):=σ(A′).
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Substitution Value Lemma for Terms
▶ Lemma 2.28. Let A and B be terms, then Iφ([B/X ]A) = Iψ(A), where
ψ = φ, [Iφ(B)/X ].

▶ Proof: by induction on the depth of A:
1. depth=0 Then A is a variable (say Y ), or constant, so we have three cases

1.1. A = Y = X
1.1.1. then
Iφ([B/X ](A)) = Iφ([B/X ](X )) = Iφ(B) = ψ(X ) = Iψ(X ) = Iψ(A).
1.2. A = Y ̸= X
1.2.1. then Iφ([B/X ](A)) = Iφ([B/X ](Y )) = Iφ(Y ) = φ(Y ) = ψ(Y ) =
Iψ(Y ) = Iψ(A).
1.3. A is a constant
1.3.1. Analogous to the preceding case (Y ̸= X ).
1.4. This completes the base case (depth = 0).

2. depth> 0
2.1. then A = f (A1, . . .,An) and we have

Iφ([B/X ](A)) = I(f )(Iφ([B/X ](A1)), . . ., Iφ([B/X ](An)))

= I(f )(Iψ(A1), . . ., Iψ(An))

= Iψ(A).
by induction hypothesis
2.2. This completes the induction step, and we have proven the assertion.
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Substitution Value Lemma for Propositions

▶ Lemma 2.29. Iφ([B/X ](A)) = Iψ(A), where ψ = φ,[Iφ(B)/X ].
▶ Proof: by induction on the number n of connectives and quantifiers in A:

1. n = 0
1.1. then A is an atomic proposition, and we can argue like in the induction
step of the substitution value lemma for terms.

2. n>0 and A = ¬B or A = C ◦ D
2.1. Here we argue like in the induction step of the term lemma as well.

3. n>0 and A = ∀Y C where (WLOG) X ̸= Y (otherwise rename)
3.1. then Iψ(A) = Iψ(∀Y C) = T, iff I(ψ,[a/Y ])(C) = T for all a∈Dι.
3.2. But I(ψ,[a/Y ])(C) = I(φ,[a/Y ])([B/X ](C)) = T, by induction hypothesis.
3.3. So Iψ(A) = Iφ(∀Y [B/X ](C)) = Iφ([B/X ](∀Y C)) = Iφ([B/X ](A))
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14.3 First-Order Natural Deduction
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First-Order Natural Deduction (ND1; Gentzen [Gen34])

▶ Rules for connectives just as always
▶ Definition 3.1 (New Quantifier Rules). The first-order natural deduction

calculus ND1 extends ND0 by the following four rules:
A

∀X A
ND1∀I ∗ ∀X A

[B/X ](A)
ND1∀E

[B/X ](A)
∃X A

ND1∃I
∃X A

[[c/X ](A)]1

...
C

c∈Σsk
0 new

C
ND1∃E 1

∗ means that A does not depend on any hypothesis in which X is free.
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A Complex ND1 Example

▶ Example 3.2. We prove ¬(∀X P(X ))⊢ND1∃X ¬P(X ).

¬(∀X P(X ))

[¬(∃X ¬P(X ))]1

[¬P(X )]2

ND1∃I
∃X ¬P(X )

ND0FI
F

ND0¬I 2¬¬P(X )
ND0¬E

P(X )
ND1∀I

∀X P(X )
ND0FI

F
ND0¬I 1¬¬(∃X ¬P(X ))
ND0¬E∃X ¬P(X )
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First-Order Natural Deduction in Sequent Formulation

▶ Rules for connectives from ND0
⊢

▶ Definition 3.3 (New Quantifier Rules). The inference rules of the first-order
sequent calculus ND1

⊢ consist of those from ND0
⊢ plus the following quantifier

rules:
Γ⊢A X ̸∈free(Γ)

Γ⊢∀X A
ND1

⊢∀I
Γ⊢∀X A

Γ⊢[B/X ](A)
ND1

⊢∀E

Γ⊢[B/X ](A)
Γ⊢∃X A

ND1
⊢∃I

Γ⊢∃X A Γ, [c/X ](A)⊢C c∈Σsk
0 new

Γ⊢C
ND1

⊢∃E
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Natural Deduction with Equality
▶ Definition 3.4 (First-Order Logic with Equality). We extend PL1 with a new

logical constant for equality = ∈Σp
2 and fix its interpretation to

I(=):={(x ,x)|x∈Dι}. We call the extended logic first-order logic with equality
(PL1

=)
▶ We now extend natural deduction as well.
▶ Definition 3.5. For the calculus of natural deduction with equality (ND1

=) we
add the following two rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is the
result of replacing that subterm with B.

▶ In many ways equivalence behaves like equality, we will use the following rules in
ND1

▶ Definition 3.6. ⇔I is derivable and ⇔E is admissible in ND1:

A ⇔ A
⇔I

A ⇔ B C [A]p
[B/p]C

⇔E
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Positions in Formulae
▶ Idea: Formulae are (naturally) trees, so we can use tree positions to talk about

subformulae
▶ Definition 3.8. A position p is a tuple of natural numbers that in each node of

a expression (tree) specifies into which child to descend. For a expression A we
denote the subexpression at p with A|p.
We will sometimes write a expression C as C [A]p to indicate that C the
subexpression A at position p.
If C [A]p and A is atomic, then we speak of an occurrence of A in C.

▶ Definition 3.9. Let p be a position, then [A/p]C is the expression obtained from
C by replacing the subexpression at p by A.

▶ Example 3.10 (Schematically).

A = C|p

p

C

B

p

[B/p]C
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ND1
= Example:

√
2 is Irrational

▶ We can do real mathematics with ND1
=:

▶ Theorem 3.11.
√

2 is irrational
Proof: We prove the assertion by contradiction

1. Assume that
√

2 is rational.
2. Then there are numbers p and q such that

√
2 = p/q.

3. So we know 2q2 = p2.
4. But 2q2 has an odd number of prime factors while p2 an even number.
5. This is a contradiction (since they are equal), so we have proven the

assertion
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ND1
= Example:

√
2 is Irrational (the Proof)

# hyp formula NDjust
1 ∀n,m ¬(2n + 1) = (2m) lemma
2 ∀n,m #(nm) = m#(n) lemma
3 ∀n, p prime(p)⇒#(pn) = (#(n) + 1) lemma
4 ∀x irr(x)⇔ (¬(∃p, q x = p/q)) definition
5 irr(

√
2)⇔ (¬(∃p, q

√
2 = p/q)) ND1

⊢∀E (4)
6 6 ¬irr(

√
2) ND0

⊢Ax
7 6 ¬¬(∃p, q

√
2 = p/q) ⇔E (6, 5)

8 6 ∃p, q
√

2 = p/q ND0
⊢¬E (7)

9 6,9
√

2 = p/q ND0
⊢Ax

10 6,9 2q2 = p2 arith(9)
11 6,9 #(p2) = 2#(p) ND1

⊢∀E 2(2)
12 6,9 prime(2)⇒#(2q2) = (#(q2) + 1) ND1

⊢∀E 2(1)
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ND1
= Example:

√
2 is Irrational (the Proof continued)

13 prime(2) lemma
14 6,9 #(2q2) = #(q2) + 1 ND0 ⇒E (13, 12)
15 6,9 #(q2) = 2#(q) ND1∀E 2(2)
16 6,9 #(2q2) = 2#(q) + 1 =E (14, 15)
17 #(p2) = #(p2) =I
18 6,9 #(2q2) = #(q2) =E (17, 10)
19 6.9 2#(q) + 1 = #(p2) =E (18, 16)
20 6.9 2#(q) + 1 = 2#(p) =E (19, 11)
21 6.9 ¬(2#(q) + 1) = (2#(p)) ND1∀E 2(1)
22 6,9 F ND0FI (20, 21)
23 6 F ND1∃E 6(22)
24 ¬¬irr(

√
2) ND0¬I 6(23)

25 irr(
√

2) ND0¬E 2(23)

Michael Kohlhase: Artificial Intelligence 1 428 2024-02-08



14.4 Conclusion
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Summary (Predicate Logic)

▶ Predicate logic allows to explicitly speak about objects and their properties. It is
thus a more natural and compact representation language than propositional
logic; it also enables us to speak about infinite sets of objects.

▶ Logic has thousands of years of history. A major current application in AI is
Semantic Technology.

▶ First-order predicate logic (PL1) allows universal and existential quantification
over objects.

▶ A PL1 interpretation consists of a universe U and a function I mapping constant
symbols/predicate symbols/function symbols to elements/relations/functions on
U.
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Chapter 15
Automated Theorem Proving in First-Order Logic
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15.1 First-Order Inference with Tableaux
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15.1.1 First-Order Tableau Calculi
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Test Calculi: Tableaux and Model Generation
▶ Idea: A tableau calculus is a test calculus that
▶ analyzes a labeled formulae in a tree to determine satisfiability,
▶ its branches correspond to valuations (; models).

▶ Example 1.1.Tableau calculi try to construct models for labeled formulae:
Tableau refutation (Validity) Model generation (Satisfiability)

|=P ∧ Q ⇒ Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧ Q ⇒ Q ∧ P)F

(P ∧ Q)T

(Q ∧ P)F

PT

QT

PF

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand Model {PT,QF,RF}
φ:={P 7→ T,Q 7→ F,R 7→ F}

▶ Idea: Open branches in saturated tableaux yield models.
▶ Algorithm: Fully expand all possible tableaux, (no rule can be applied)
▶ Satisfiable, iff there are open branches (correspond to models)

Michael Kohlhase: Artificial Intelligence 1 430 2024-02-08



Analytical Tableaux (Formal Treatment of T0)

▶ Idea: A test calculus where
▶ A labeled formula is analyzed in a tree to determine satisfiability,
▶ branches correspond to valuations (models)

▶ Definition 1.2. The propositional tableau calculus T0 has two inference rules
per connective (one for each possible label)

(A ∧ B)T

AT

BT

T0∧
(A ∧ B)F

AF
∣∣∣ BF

T0∨
¬AT

AF T0¬T ¬AF

AT T0¬F

Aα

Aβ α ̸= β

⊥ T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

▶ Definition 1.3. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.
▶ Definition 1.4. Call a tableau saturated, iff no rule adds new material and a

branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its
branches are.
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Analytical Tableaux (T0 continued)

▶ Definition 1.5 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0A), iff there
is a closed tableau with AF at the root.
Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0A), iff there is a closed tableau starting with
AF and ΦT. The tableau with only a branch of AF and ΦT is called initial for
Φ⊢T0A.
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First-Order Standard Tableaux (T1)

▶ Definition 1.6. The standard tableau calculus (T1) extends T0 (propositional
tableau calculus) with the following quantifier rules:

(∀X A)T C∈cwff ι(Σι)

([C/X ](A))T
T1 ∀

(∀X A)F c∈Σsk
0 new

([c/X ](A))F
T1 ∃

▶ Problem: The rule T1 ∀ displays a case of “don’t know indeterminism”: to find a
refutation we have to guess a formula C from the (usually infinite) set cwff ι(Σι).
For proof search, this means that we have to systematically try all, so T1 ∀ is
infinitely branching in general.
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Free variable Tableaux (T f
1 )

▶ Definition 1.7. The free variable tableau calculus (T f
1 ) extends T0

(propositional tableau calculus) with the quantifier rules:

(∀X A)T Y new
([Y /X ](A))T

T f
1 ∀ (∀X A)F free(∀X A) = {X 1, . . .,X k} f ∈Σsk

k new
([f (X 1, . . . ,X k)/X ](A))F

T f
1 ∃

and generalizes its cut rule T0⊥ to:

Aα

Bβ α ̸= β σ(A) = σ(B)

⊥ : σ
T f
1⊥

T f
1⊥ instantiates the whole tableau by σ.

▶ Advantage: No guessing necessary in T f
1 ∀-rule!

▶ New Problem: find suitable substitution (most general unifier) (later)
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Free variable Tableaux (T f
1 ): Derivable Rules

▶ Definition 1.8. Derivable quantifier rules in T f
1 :

(∃X A)T free(∀X A) = {X 1, . . .,X k} f ∈Σsk
k new

([f (X 1, . . . ,X k)/X ](A))T

(∃X A)F Y new

([Y /X ](A))F
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Tableau Reasons about Blocks

▶ Example 1.9 (Reasoning about Blocks). Returing to slide 400

Let’s Talk About Blocks, Baby . . .

I Question: What do you see here?

A D B E C

I You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.

I And now: Say it in propositional logic!

I Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

I Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

I Problem: Could we conclude that A is red? (No)
These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

I Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

I How?: Variables ranging over objects, predicates describing object properties, . . .
I Example 1.1. “8x block(x)) red(x)”; “block(A)”

Kohlhase: Künstliche Intelligenz 1 416 July 5, 2018

Can we prove red(A) from ∀x block(x)⇒ red(x) and block(A)?

(∀X block(X )⇒ red(X ))T

block(A)T

red(A)F

(block(Y )⇒ red(Y ))T

block(Y )F

⊥ : [A/Y ]
red(A)T

⊥
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15.1.2 First-Order Unification
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Unification (Definitions)

▶ Definition 1.10. For given terms A and B, unification is the problem of finding
a substitution σ, such that σ(A) = σ(B).

▶ Notation: We write term pairs as A=?B e.g. f (X )=?f (g(Y )).
▶ Definition 1.11. Solutions (e.g. [g(a)/X ], [a/Y ], [g(g(a))/X ], [g(a)/Y ], or

[g(Z )/X ], [Z/Y ]) are called unifiers, U(A=?B):={σ|σ(A) = σ(B)}.
▶ Idea: Find representatives in U(A=?B), that generate the set of solutions.
▶ Definition 1.12. Let σ and θ be substitutions and W ⊆ Vι, we say that a

substitution σ is more general than θ (on W ; write σ≤θ[W ]), iff there is a
substitution ρ, such that θ=(ρ ◦ σ)[W ], where σ=ρ[W ], iff σ(X ) = ρ(X ) for all
X∈W .

▶ Definition 1.13. σ is called a most general unifier (mgu) of A and B, iff it is
minimal in U(A=?B) wrt. ≤[(free(A) ∪ free(B))].

Michael Kohlhase: Artificial Intelligence 1 437 2024-02-08



Unification Problems (=̂ Equational Systems)

▶ Idea: Unification is equation solving.
▶ Definition 1.14. We call a formula A1=?B1 ∧ . . . ∧ An=?Bn an unification

problem iff Ai ,Bi∈wff ι(Σι,Vι).
▶ Note: We consider unification problems as sets of equations (∧ is ACI), and

equations as two-element multisets (=? is C).
▶ Definition 1.15. A substitution is called a unifier for a unification problem E

(and thus D unifiable), iff it is a (simultaneous) unifier for all pairs in E .
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Solved forms and Most General Unifiers

▶ Definition 1.16. We call a pair A=?B solved in a unification problem E , iff
A = X , E = X=?A ∧ E , and X ̸∈(free(A) ∪ free(E)). We call an unification
problem E a solved form, iff all its pairs are solved.

▶ Lemma 1.17. Solved forms are of the form X 1=?B1 ∧ . . . ∧ X n=?Bn where the
X i are distinct and X i ̸∈free(Bj).

▶ Definition 1.18. Any substitution σ = [B1/X 1], . . . ,[Bn/X n] induces a solved
unification problem Eσ:=(X 1=?B1 ∧ . . . ∧ X n=?Bn).

▶ Lemma 1.19. If E = X 1=?B1 ∧ . . . ∧ X n=?Bn is a solved form, then E has the
unique most general unifier σE :=[B1/X 1], . . . ,[Bn/X n].

▶ Proof: Let θ∈U(E)
1. then θ(X i ) = θ(Bi ) = θ ◦ σE(X i )
2. and thus θ=(θ ◦ σE)[supp(σ)].

▶ Note: We can rename the introduced variables in most general unifiers!
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Unification Algorithm

▶ Definition 1.20. The inference system U consists of the following rules:

E ∧ f (A1, . . .,An)=?f (B1, . . .,Bn)

E ∧ A1=?B1 ∧ . . . ∧ An=?Bn
Udec

E ∧ A=?A
E Utriv

E ∧ X=?A X ̸∈free(A) X∈free(E)
[A/X ](E) ∧ X=?A

Uelim

▶ Lemma 1.21. U is correct: E⊢UF implies U(F) ⊆ U(E).
▶ Lemma 1.22. U is complete: E⊢UF implies U(E) ⊆ U(F).
▶ Lemma 1.23. U is confluent: the order of derivations does not matter.
▶ Corollary 1.24. First-order unification is unitary: i.e. most general unifiers are

unique up to renaming of introduced variables.
▶ Proof sketch: U is trivially branching.

Michael Kohlhase: Artificial Intelligence 1 440 2024-02-08



Unification Examples

▶ Example 1.25. Two similar unification problems:

f (g(X ,X ), h(a))=?f (g(a,Z), h(Z))
Udec

g(X ,X )=?g(a,Z) ∧ h(a)=?h(Z)
Udec

X=?a ∧ X=?Z ∧ h(a)=?h(Z)
Udec

X=?a ∧ X=?Z ∧ a=?Z
Uelim

X=?a ∧ a=?Z ∧ a=?Z
Uelim

X=?a ∧ Z=?a ∧ a=?a
Utriv

X=?a ∧ Z=?a

f (g(X ,X ), h(a))=?f (g(b,Z), h(Z))
Udec

g(X ,X )=?g(b,Z) ∧ h(a)=?h(Z)
Udec

X=?b ∧ X=?Z ∧ h(a)=?h(Z)
Udec

X=?b ∧ X=?Z ∧ a=?Z
Uelim

X=?b ∧ b=?Z ∧ a=?Z
Uelim

X=?b ∧ Z=?b ∧ a=?b

MGU: [a/X ], [a/Z ] a=?b not unifiable
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Unification (Termination)
▶ Definition 1.26. Let S and T be multisets and ≤ a partial ordering on S ∪ T .

Then we define S ≺m S , iff S = C ⊎ T ′ and T = C ⊎ {t}, where s≤t for all
s∈S ′. We call ≤m the multiset ordering induced by ≤.

▶ Definition 1.27. We call a variable X solved in an unification problem E , iff E
contains a solved pair X=?A.

▶ Lemma 1.28. If ≺ is linear/terminating on S , then ≺m is linear/terminating on
P(S).

▶ Lemma 1.29. U is terminating. (any U-derivation is finite)
▶ Proof: We prove termination by mapping U transformation into a Noetherian

space.
1. Let µ(E):=⟨n,N⟩, where
▶ n is the number of unsolved variables in E
▶ N is the multiset of term depths in E

2. The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.
2.1. Udec and Utriv decrease the multiset of term depths without
increasing the unsolved variables.
2.2. Uelim decreases the number of unsolved variables (by one), but may
increase term depths.
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First-Order Unification is Decidable

▶ Definition 1.30. We call an equational problem E U-reducible, iff there is a
U-step E⊢UF from E .

▶ Lemma 1.31. If E is unifiable but not solved, then it is U-reducible.
▶ Proof: We assume that E is unifiable but unsolved and show the U rule that

applies.
1. There is an unsolved pair A=?B in E = E ∧ A=?B′.
we have two cases
2. A, B̸∈Vι

2.1. then A = f (A1 . . .An) and B = f (B1 . . .Bn), and thus Udec is
applicable

3. A = X∈free(E)
3.1. then Uelim (if B ̸= X ) or Utriv (if B = X ) is applicable.

▶ Corollary 1.32. First-order unification is decidable in PL1.
Proof:

▶ 1. U-irreducible unification problems can be reached in finite time by 1.29.
2. They are either solved or unsolvable by 1.31, so they provide the answer.
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15.1.3 Efficient Unification
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Complexity of Unification

▶ Observation: Naive implementations of unification are exponential in time and
space.

▶ Example 1.33. Consider the terms

sn = f (f (x0, x0), f (f (x1, x1), f (. . . , f (xn−1, xn−1)) . . .))

tn = f (x1, f (x2, f (x3, f (· · · , xn) · · · )))

▶ The most general unifier of sn and tn is

σn:=[f (x0, x0)/x1], [f (f (x0, x0), f (x0, x0))/x2], [f (f (f (x0, x0), f (x0, x0)), f (f (x0, x0), f (x0, x0)))/x3], . . .

▶ It contains
∑n

i=1 2i = 2n+1 − 2 occurrences of the variable x0. (exponential)
▶ Problem: The variable x0 has been copied too often.
▶ Idea: Find a term representation that re-uses subterms.
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Directed Acyclic Graphs (DAGs) for Terms

▶ Recall: Terms in first-order logic are essentially trees.
▶ Concrete Idea: Use directed acyclic graphs for representing terms:
▶ variables my only occur once in the DAG.
▶ subterms can be referenced multiply. (subterm sharing)
▶ we can even represent multiple terms in a common DAG

▶ Observation 1.34. Terms can be transformed into DAGs in linear time.
▶ Example 1.35. Continuing from 1.33 . . . s3, t3, and σ3(s3) as DAGs:

x1 x2 x3

x0 f f

ff

f f

f

s3 t3

x0

f

f

f

f

f

σ3(t3)

In general: sn, tn, and σn(sn) only need space in O(n). (just count)
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DAG Unification Algorithm

▶ Observation: In U , the Uelim rule applies solved pairs ; subterm duplication.
▶ Idea: Replace Uelim the notion of solved forms by something better.
▶ Definition 1.36. We say that X 1=?B1 ∧ . . . ∧ X n=?Bn is a DAG solved form, iff

the X i are distinct and X i ̸∈free(Bj) for i≤j .
▶ Definition 1.37. The inference system DU contains rules Udec and Utriv from

U plus the following:

E ∧ X=?A ∧ X=?B A, B̸∈Vι |A|≤|B|
E ∧ X=?A ∧ A=?B

DUmerge

E ∧ X=?Y X ̸= Y X ,Y∈free(E)
[Y /X ](E) ∧ X=?Y

DUevar

where |A| is the number of symbols in A.
▶ The analysis for U applies mutatis mutandis.
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Unification by DAG-chase

▶ Idea: Extend the Input-DAGs by edges that represent unifiers.
▶ Definition 1.38. Write n.a, if a is the symbol of node n.
▶ (standard) auxiliary procedures: (all constant or linear time in DAGs)
▶ find(n) follows the path from n and returns the end node.
▶ union(n,m) adds an edge between n and m.
▶ occur(n,m) determines whether n.x occurs in the DAG with root m.
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Algorithm dag−unify

▶ Input: symmetric pairs of nodes in DAGs

fun dag−unify(n,n) = true
| dag−unify(n.x ,m) = if occur(n,m) then true else union(n,m)
| dag−unify(n.f ,m.g) =

if g !=f then false
else

forall (i ,j) => dag−unify(find(i),find(j)) (chld m,chld n)
end

▶ Observation 1.39. dag−unify uses linear space, since no new nodes are
created, and at most one link per variable.

▶ Problem: dag−unify still uses exponential time.
▶ Example 1.40. Consider terms f (sn, f (t

′
n, xn)), f (tn, f (s

′
n, yn))), where

s ′n = [y i/x i ](sn) und t ′n = [y i/x i ](tn).
dag−unify needs exponentially many recursive calls to unify the nodes xn and
yn. (they are unified after n calls, but checking needs the time)
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Algorithm uf−unify

▶ Recall: dag−unify still uses exponential time.
▶ Idea: Also bind the function nodes, if the arguments are unified.

uf−unify(n.f ,m.g) =
if g !=f then false
else union(n,m);

forall (i ,j) => uf−unify(find(i),find(j)) (chld m,chld n)
end

▶ This only needs linearly many recursive calls as it directly returns with true or
makes a node inaccessible for find.

▶ Linearly many calls to linear procedures give quadratic running time.
▶ Remark: There are versions of uf−unify that are linear in time and space, but

for most purposes, our algorithm suffices.
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15.1.4 Implementing First-Order Tableaux
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Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 1.41. All T f
1 rules except T f

1 ∀ only need to be applied once.

▶ Example 1.42. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 1.43. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 1.44. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 1.45. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 1.42.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.
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Termination and Multiplicity in Tableaux
▶ Recall: In T0, all rules only needed to be applied once.

; T0 terminates and thus induces a decision procedure for PL0.
▶ Observation 1.46. All T f

1 rules except T f
1 ∀ only need to be applied once.

▶ Example 1.47. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
Start, close left branch use T f

1 ∀ again (right branch)

((p(a) ∨ p(b))⇒ (∃ p()))F

(p(a) ∨ p(b))T

(∃x p(x))F

(∀x ¬p(x))T
¬p(y)T
p(y)F

p(a)T

⊥ : [a/y ]
p(b)T

((p(a) ∨ p(b))⇒ (∃ p()))F

(p(a) ∨ p(b))T

(∃x p(x))F

(∀x ¬p(x))T
¬p(a)T
p(a)F

p(a)T

⊥ : [a/y ]
p(b)T

¬p(z)T
p(z)F

⊥ : [b/z ]

After we have used up p(y)F by applying [a/y ] in T f
1⊥, we have to get a new

instance p(z)F via T f
1 ∀.

▶ Definition 1.48. Let T be a tableau for A, and a positive occurrence of ∀x B in
A, then we call the number of applications of T f

1 ∀ to ∀x B its multiplicity.
▶ Observation 1.49. Given a prescribed multiplicity for each positive ∀,

saturation with T f
1 terminates.

▶ Proof sketch: All T f
1 rules reduce the number of connectives and negative ∀ or

the multiplicity of positive ∀.
▶ Theorem 1.50. T f

1 is only complete with unbounded multiplicities.
▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 1.42.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.
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Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 1.51. All T f
1 rules except T f

1 ∀ only need to be applied once.
▶ Example 1.52. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 1.53. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 1.54. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 1.55. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 1.42.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.
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Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 1.56. All T f
1 rules except T f

1 ∀ only need to be applied once.
▶ Example 1.57. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 1.58. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 1.59. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 1.60. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 1.42.

▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.
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Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 1.61. All T f
1 rules except T f

1 ∀ only need to be applied once.
▶ Example 1.62. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 1.63. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 1.64. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 1.65. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 1.42.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.
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Treating T f
1⊥

▶ Recall: The T f
1⊥ rule instantiates the whole tableau.

▶ Problem: There may be more than one T f
1⊥ opportunity on a branch.

▶ Example 1.66. Choosing which matters – this tableau does not close!

(∃x (p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(x)))F

((p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(y)))F

(p(a)⇒ p(b)⇒ p())F

p(a)T

p(b)T

p(y)F

⊥ : [a/y ]

(q(b)⇒ q(y))F

q(b)T

q(y)F

choosing the other T f
1⊥ in the left branch allows closure.

▶ Idea: Two ways of systematic proof search in T f
1 :

▶ backtracking search over T f
1⊥ opportunities

▶ saturate without T f
1⊥ and find spanning matings (next slide)
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Spanning Matings for T f
1⊥

▶ Observation 1.67. T f
1 without T f

1⊥ is terminating and confluent for given
multiplicities.

▶ Idea: Saturate without T f
1⊥ and treat all cuts at the same time (later).

▶ Definition 1.68.
Let T be a T f

1 tableau, then we call a unification problem
E :=A1=

?B1 ∧ . . . ∧ An=
?Bn a mating for T , iff Ai

T and Bi
F occur in the same

branch in T .
We say that E is a spanning mating, if E is unifiable and every branch B of T
contains Ai

T and Bi
F for some i .

▶ Theorem 1.69. A T f
1 -tableau with a spanning mating induces a closed T1

tableau.
▶ Proof sketch: Just apply the unifier of the spanning mating.
▶ Idea: Existence is sufficient, we do not need to compute the unifier.
▶ Implementation: Saturate without T f

1⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.
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15.2 First-Order Resolution
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First-Order Resolution (and CNF)

▶ Definition 2.1. The first-order CNF calculus CNF1 is given by the inference rules
of CNF0 extended by the following quantifier rules:

(∀X A)T ∨ C Z ̸∈(free(A) ∪ free(C))
([Z/X ](A))T ∨ C

(∀X A)F ∨ C {X 1, . . .,X k} = free(∀X A) f ∈Σsk
k new

([f (X 1, . . .,X k)/X ](A))F ∨ C

the first-order CNF CNF1(Φ) of Φ is the set of all clauses that can be derived
from Φ.

▶ Definition 2.2 (First-Order Resolution Calculus). The First-order resolution
calculus (R1) is a test calculus that manipulates formulae in conjunctive normal
form. R1 has two inference rules:

AT ∨ C BF ∨ D σ = mgu(A,B)
(σ(C)) ∨ (σ(D))

Aα ∨ Bα ∨ C σ = mgu(A,B)
(σ(A)) ∨ (σ(C))
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First-Order CNF – Derived Rules

▶ Definition 2.3. The following inference rules are derivable from the ones above
via (∃X A) = ¬(∀X ¬A):

(∃X A)T ∨ C {X 1, . . .,X k} = free(∀X A) f ∈Σsk
k new

([f (X 1, . . .,X k)/X ](A))T ∨ C

(∃X A)F ∨ C Z ̸∈(free(A) ∪ free(C))
([Z/X ](A))F ∨ C
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15.2.1 Resolution Examples
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Col. West, a Criminal?

▶ Example 2.4. From [RN09]
The law says it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its
missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal.
▶ Remark: Modern resolution theorem provers prove this in less than 50ms.
▶ Problem: That is only true, if we only give the theorem prover exactly the

right laws and background knowledge. If we give it all of them, it drowns in the
combinatorial explosion.

▶ Let us build a resolution proof for the claim above.
▶ But first we must translate the situation into first-order logic clauses.
▶ Convention: In what follows, for better readability we will sometimes write

implications P ∧ Q ∧ R ⇒ S instead of clauses PF ∨ QF ∨ RF ∨ ST.
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Col. West, a Criminal?

▶ It is a crime for an American to sell weapons to hostile nations:
Clause: ami(X1) ∧ weap(Y1) ∧ sell(X1,Y1,Z1) ∧ host(Z1)⇒ crook(X1)

▶ Nono has some missiles: ∃X own(NN,X ) ∧ mle(X )

Clauses: own(NN, c)T and mle(c) (c is Skolem constant)
▶ All of Nono’s missiles were sold to it by Colonel West.

Clause: mle(X2) ∧ own(NN,X2)⇒ sell(West,X2,NN)

▶ Missiles are weapons:
Clause: mle(X3)⇒ weap(X3)

▶ An enemy of America counts as “hostile” :
Clause: enmy(X4,USA)⇒ host(X4)

▶ West is an American:
Clause: ami(West)

▶ The country Nono is an enemy of America:
enmy(NN,USA)
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Col. West, a Criminal! PL1 Resolution Proof

ami(X1)
F ∨ weapon(Y1)

F ∨ sell(X1,Y1,Z1)
F ∨ hostile(Z1)

F ∨ crook(X1)
T crook(West)F

ami(West)T ami(West)F ∨ weapon(Y1)
F ∨ sell(West,Y1,Z1)

F ∨ hostile(Z1)
F

missile(X3)
F ∨ weapon(X3)

T weapon(Y1)
F ∨ sell(West,Y1,Z1)

F ∨ hostile(Z1)
F

missile(c)Tmissile(Y1)
F ∨ sell(West,Y1,Z1)

F ∨ hostile(Z1)
F

missile(X2)
F ∨ own(NoNo,X2)

F ∨ sell(West,X2,NoNo)T

sell(West, c,Z1)
F ∨ hostile(Z1)

F

missile(c)T missile(c)F ∨ own(NoNo, c)F ∨ hostile(NoNo)F

own(NoNo, c)T own(NoNo, c)F ∨ hostile(NoNo)F

enemy(X4,USA)
F ∨ hostile(X4)

T hostile(NoNo)F

enemy(NoNo,USA)T enemy(NoNo,USA)F

2

[West/X1 ]

[Y1/X3 ]

[c/Y1 ]

[c/X2 ]

[NoNo/Z1 ]

[NoNo/X4 ]
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Curiosity Killed the Cat?

▶ Example 2.5. From [RN09]
Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by noone.
Jack loves all animals.
Cats are animals.
Either Jack or curiosity killed the cat (whose name is “Garfield”).

Prove that curiosity killed the cat.
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Curiosity Killed the Cat? Clauses

▶ Everyone who loves all animals is loved by someone:
∀X (∀Y animal(Y )⇒ love(X ,Y ))⇒ (∃ love(Z ,X ))

Clauses: animal(g(X1))
T ∨ love(g(X1),X1)

T and
love(X2, f (X2))

F ∨ love(g(X2),X2)
T

▶ Anyone who kills an animal is loved by noone:
∀X ∃Y animal(Y ) ∧ kill(X ,Y )⇒ (∀ ¬love(Z ,X ))

Clause: animal(Y3)
F ∨ kill(X3,Y3)

F ∨ love(Z3,X3)
F

▶ Jack loves all animals:
Clause: animal(X4)

F ∨ love(jack,X4)
T

▶ Cats are animals:
Clause: cat(X5)

F ∨ animal(X5)
T

▶ Either Jack or curiosity killed the cat (whose name is “Garfield”):
Clauses: kill(jack, garf)T ∨ kill(curiosity, garf)T and cat(garf)T
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Curiosity Killed the Cat! PL1 Resolution Proof

cat(garf)T cat(X5)
F ∨ anl(X5)

T

anl(garf)T anl(Y3)
F ∨ kill(X3,Y3)

F ∨ love(Z3,X3)
F

kill(X3, garf)F ∨ love(Z3,X3)
F kill(jack, garf)T ∨ kill(curty, garf)T kill(curty, garf)F

kill(jack, garf)T

love(Z3, jack)F love(X2, f (X2))
F ∨ love(g(X2),X2)

T anl(X4)
F ∨ love(jack,X4)

T

love(g(jack), jack)T ∨ anl(f (jack))F anl(f (X1))
T ∨ love(g(X1),X1)

T

love(g(jack), jack)T

2

[garf/X5 ]

[garf/Y3 ]

[jack/X3 ]

[jack/X2 ], [f (jack)/X4 ]

[jack/X1 ]
[g(jack)/Z3 ]

Michael Kohlhase: Artificial Intelligence 1 460 2024-02-08



15.3 Logic Programming as Resolution Theorem
Proving
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We know all this already

▶ Goals, goal sets, rules, and facts are just clauses. (called Horn clauses)

▶ Observation 3.1 (Rule). H:−B1,. . .,Bn. corresponds to HT ∨ B1
F ∨ . . . ∨ Bn

F

(head the only positive literal)
▶ Observation 3.2 (Goal set). ?− G 1,. . .,G n. corresponds to G 1

F ∨ . . . ∨ G n
F

▶ Observation 3.3 (Fact). F . corresponds to the unit clause FT.
▶ Definition 3.4. A Horn clause is a clause with at most one positive literal.
▶ Recall: Backchaining as search:
▶ state = tuple of goals; goal state = empty list (of goals).
▶ next(⟨G ,R1, . . .,R l⟩):=⟨σ(B1), . . ., σ(Bm), σ(R1), . . ., σ(R l)⟩ if there is a rule

H:−B1,. . ., Bm. and a substitution σ with σ(H) = σ(G).
▶ Note: Backchaining becomes resolution

PT ∨ A PF ∨ B
A ∨ B

positive, unit-resulting hyperresolution (PURR)
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PROLOG (Horn Logic)

▶ Definition 3.5. A clause is called a Horn clause, iff contains at most one
positive literal, i.e. if it is of the form B1

F ∨ . . .∨Bn
F ∨AT – i.e. A:−B1,. . .,Bn.

in Prolog notation.
▶ Rule clause: general case, e.g. fallible(X) : human(X).
▶ Fact clause: no negative literals, e.g. human(sokrates).
▶ Program: set of rule and fact clauses.
▶ Query: no positive literals: e.g. ?− fallible(X),greek(X).

▶ Definition 3.6. Horn logic is the formal system whose language is the set of
Horn clauses together with the calculus H given by MP, ∧I , and Subst.

▶ Definition 3.7. A logic program P entails a query Q with answer substitution σ,
iff there is a H derivation D of Q from P and σ is the combined substitution of
the Subst instances in D.
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PROLOG: Our Example

▶ Program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

▶ Example 3.8 (Query). ?− fallible(X),greek(X).
▶ Answer substitution: [sokrates/X ]
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Knowledge Base (Example)

▶ Example 3.9. car(c). is in the knowlege base generated by

has_motor(c).
has_wheels(c,4).
car(X):− has_motor(X),has_wheels(X,4).

m(c) w(c , 4)
∧I

m(c) ∧ w(c , 4)

m(x) ∧ w(x , 4)⇒ car()
Subst

m(c) ∧ w(c , 4)⇒ car()
MP

car(c)
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Why Only Horn Clauses?

▶ General clauses of the form A1,. . .,An : B1,. . .,Bn.
▶ e.g. greek(sokrates),greek(perikles)
▶ Question: Are there fallible greeks?
▶ Indefinite answer: Yes, Perikles or Sokrates
▶ Warning: how about Sokrates and Perikles?

▶ e.g. greek(sokrates),roman(sokrates):−.
▶ Query: Are there fallible greeks?
▶ Answer: Yes, Sokrates, if he is not a roman
▶ Is this abduction?????
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Three Principal Modes of Inference

▶ Definition 3.10. Deduction =̂ knowledge extension

▶ Example 3.11.
rains ⇒ wet_street rains

wet_street
D

▶ Definition 3.12. Abduction =̂ explanation

▶ Example 3.13.
rains ⇒ wet_street wet_street

rains
A

▶ Definition 3.14. Induction =̂ learning general rules from examples

▶ Example 3.15.
wet_street rains

rains ⇒ wet_street
I
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Three Principal Modes of Inference

▶ Definition 3.16. Deduction =̂ knowledge extension

▶ Example 3.17.
rains ⇒ wet_street rains

wet_street
D

▶ Definition 3.18. Abduction =̂ explanation

▶ Example 3.19.
rains ⇒ wet_street wet_street

rains
A

▶ Definition 3.20. Induction =̂ learning general rules from examples

▶ Example 3.21.
wet_street rains

rains ⇒ wet_street
I
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Three Principal Modes of Inference

▶ Definition 3.22. Deduction =̂ knowledge extension

▶ Example 3.23.
rains ⇒ wet_street rains

wet_street
D

▶ Definition 3.24. Abduction =̂ explanation

▶ Example 3.25.
rains ⇒ wet_street wet_street

rains
A

▶ Definition 3.26. Induction =̂ learning general rules from examples

▶ Example 3.27.
wet_street rains

rains ⇒ wet_street
I
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Chapter 16
Knowledge Representation and the Semantic Web
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16.1 Introduction to Knowledge Representation
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16.1.1 Knowledge & Representation
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What is knowledge? Why Representation?

▶ Lots/all of (academic) disciplines deal with knowledge!
▶ According to Probst/Raub/Romhardt [PRR97]

▶ For the purposes of this course: Knowledge is the information necessary to
support intelligent reasoning!

representation can be used to determine
set of words whether a word is admissible
list of words the rank of a word
a lexicon translation and/or grammatical function
structure function
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Knowledge Representation vs. Data Structures

▶ Idea: Representation as structure and function.
▶ the representation determines the content theory (what is the data?)
▶ the function determines the process model (what do we do with the data?)

▶ Question: Why do we use the term “knowledge representation” rather than
▶ data structures? (sets, lists, ... above)
▶ information representation? (it is information)

▶ Answer:
No good reason other than AI practice, with the intuition that
▶ data is simple and general (supports many algorithms)
▶ knowledge is complex (has distinguished process model)
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Some Paradigms for Knowledge Representation in AI/NLP

▶ GOFAI (good old-fashioned AI)
▶ symbolic knowledge representation, process model based on heuristic search

▶ Statistical, corpus-based approaches.
▶ symbolic representation, process model based on machine learning
▶ knowledge is divided into symbolic- and statistical (search) knowledge

▶ The connectionist approach
▶ sub-symbolic representation, process model based on primitive processing elements

(nodes) and weighted links
▶ knowledge is only present in activation patters, etc.
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KR Approaches/Evaluation Criteria

▶ Definition 1.1. The evaluation criteria for knowledge representation approaches
are:
▶ Expressive adequacy: What can be represented, what distinctions are supported.
▶ Reasoning efficiency: Can the representation support processing that generates

results in acceptable speed?
▶ Primitives: What are the primitive elements of representation, are they intuitive,

cognitively adequate?
▶ Meta representation: Knowledge about knowledge
▶ Completeness: The problems of reasoning with knowledge that is known to be

incomplete.
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16.1.2 Semantic Networks
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Semantic Networks [CQ69]

▶ Definition 1.2. A semantic network is a directed graph for representing
knowledge:
▶ nodes represent objects and concepts (classes of objects)

(e.g. John (object) and bird (concept))
▶ edges (called links) represent relations between these (isa, father_of, belongs_to)

▶ Example 1.3. A semantic network for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ Problem: How do we derive new information from such a network?
▶ Idea: Encode taxonomic information about objects and concepts in special

links (“isa” and “inst”) and specify property inheritance along them in the
process model.
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Deriving Knowledge Implicit in Semantic Networks

▶ Observation 1.4. There is more knowledge in a semantic network than is
explicitly written down.

▶ Example 1.5. In the network below, we “know” that robins have wings and in
particular, Jack has wings.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ Idea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

▶ Definition 1.6. We call links labeled by
▶ “isa” an inclusion or isa link (inclusion of concepts)
▶ “inst” instance or inst link (concept membership)

Michael Kohlhase: Artificial Intelligence 1 472 2024-02-08



Deriving Knowledge Semantic Networks

▶ Definition 1.7 (Inference in Semantic Networks). We call all link labels
except “inst” and “isa” in a semantic network relations.
Let N be a semantic network and R a relation in N such that A isa−→ B

R−→ C or
A

inst−→ B
R−→ C , then we can derive a relation A

R−→ C in N.
The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in
a semantic network).

▶ Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

▶ Example 1.8. Derived relations in 1.5

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

has_part
has_part

isa/

▶ Slogan: Get out more knowledge from a semantic networks than you put in.
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Terminologies and Assertions

▶ Remark 1.9. We should distinguish concepts from objects.
▶ Definition 1.10. We call the subgraph of a semantic network N spanned by the

isa links and relations between concepts the terminology (or TBox, or the
famous Isa Hierarchy) and the subgraph spanned by the inst links and relations
between objects, the assertions (or ABox) of N.

▶ Example 1.11. In this semantic network we keep objects concept apart
notationally:

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived)
relations (e.g. Clyde is gray).
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Limitations of Semantic Networks

▶ What is the meaning of a link?
▶ link labels are very suggestive (misleading for humans)
▶ meaning of link types defined in the process model (no denotational semantics)

▶ Problem: No distinction of optional and defining traits!
▶ Example 1.12. Consider a robin that has lost its wings in an accident:

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

“Cancel-links” have been proposed, but their status and process model are
debatable.

Michael Kohlhase: Artificial Intelligence 1 475 2024-02-08



Another Notation for Semantic Networks

▶ Definition 1.13. Function/argument notation for semantic networks
▶ interprets nodes as arguments (reification to individuals)
▶ interprets links as functions (predicates actually)

▶ Example 1.14.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

▶ Evaluation:
+ linear notation (equivalent, but better to implement on a computer)
+ easy to give process model by deduction (e.g. in Prolog)
– worse locality properties (networks are associative)
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A Denotational Semantics for Semantic Networks

▶ Observation: If we handle isa and inst links specially in function/argument
notation

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

robin ⊆ bird
haspart(bird,wings)
Jack∈robin
owner_of(John, Jack)
loves(John,Mary)

it looks like first-order logic, if we take
▶ a∈S to mean S(a) for an object a and a concept S .
▶ A ⊆ B to mean ∀X A(X )⇒ B(X ) and concepts A and B
▶ R(A,B) to mean ∀X A(X )⇒ (∃Y B(Y ) ∧ R(X ,Y )) for a relation R.

▶ Idea: Take first-order deduction as process model (gives inheritance for free)
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16.1.3 The Semantic Web
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The Semantic Web

▶ Definition 1.15. The semantic web is the result including of semantic content in
web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

▶ Idea: Move web content up the ladder, use inference to make connections.

▶ Example 1.16. Information not explicitly represented (in one place)
Query: Who was US president when Barak Obama was born?
Google: . . . BIRTH DATE: August 04, 1961. . .
Query: Who was US president in 1961?
Google: President: Dwight D. Eisenhower [. . . ] John F. Kennedy (starting Jan. 20.)

Humans understand the text and combine the information to get the answer.
Machines need more than just text ; semantic web technology.
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What is the Information a User sees?

▶ Example 1.17. Take the following web-site with a conference announcement
WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA
7-11 May 2002
Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, India,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.
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What the machine sees

▶ Example 1.18. Here is what the machine “sees” from the conference
announcement:

WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉
S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕
H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA
7↖∞∞M⊣†∈′′∈
R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕
A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔
S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨
I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙
S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈
T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊⇔
I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔↙
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Solution: XML markup with “meaningful” Tags
▶ Example 1.19. Let’s annotate (parts of) the meaning via XML markup

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</title>
<place>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</place>
<date>7↖∞∞M⊣†∈′′∈</date>
<participants>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕
A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔
S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</participants>
<introduction>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\↖

⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</introduction>
<program>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<speaker>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</speaker>
<speaker>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇↖
\⌉⊔<speaker>
</program>
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What can we do with this?

▶ Example 1.20. Consider the following fragments:
ℜ⊔⟩⊔↕⌉⊤WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉ℜ∝⊔⟩⊔↕⌉⊤
ℜ√↕⊣⌋⌉⊤S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USAℜ∝√↕⊣⌋⌉⊤
ℜ⌈⊣⊔⌉⊤7↖∞∞M⊣†∈′′∈ℜ∝⌈⊣⊔⌉⊤

Given the markup above, a machine agent can
▶ parse 7∞∞M⊣†∈′′∈ as the date May 7 11 2002 and add this to the user’s calendar,
▶ parse S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA as a destination and find

flights.
▶ But: do not be deceived by your ability to understand English!
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What the machine sees of the XML
▶ Example 1.21. Here is what the machine sees of the XML

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</⊔⟩⊔↕⌉>
<√↕⊣⌋⌉>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</√↕⊣⌋⌉>
<⌈⊣⊔⌉>7↖∞∞M⊣†∈′′∈</⌈⊣⊔⌉>
<√⊣∇⊔⟩⌋⟩√⊣\⊔∫>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕
A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔
S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉
</√⊣∇⊔⟩⌋⟩√⊣\⊔∫>
<⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇↖
\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>
<√∇≀}∇⊣⇕>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈
<∫√⌉⊣∥⌉∇>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</∫√⌉⊣∥⌉∇>
<∫√⌉⊣∥⌉∇>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇↖
\⌉⊔<∫√⌉⊣∥⌉∇>
</√∇≀}∇⊣⇕>
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The Current Web

▶ Resources: identified by
URIs, untyped

▶ Links: href, src, . . . limited,
non-descriptive

▶ User: Exciting world -
semantics of the resource,
however, gleaned from content

▶ Machine: Very little
information available -
significance of the links only
evident from the context
around the anchor.
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The Semantic Web

▶ Resources: Globally identified
by URIs or Locally scoped
(Blank), Extensible, Relational.

▶ Links: Identified by URIs,
Extensible, Relational.

▶ User: Even more exciting
world, richer user experience.

▶ Machine: More processable
information is available (Data
Web).

▶ Computers and
people: Work, learn and
exchange knowledge effectively.
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Towards a “Machine-Actionable Web”

▶ Recall: We need external agreement on meaning of annotation tags.
▶ Idea: standardize them in a community process (e.g. DIN or ISO)
▶ Problem: Inflexible, Limited number of things can be expressed

▶ Better: Use ontologies to specify meaning of annotations
▶ Ontologies provide a vocabulary of terms
▶ New terms can be formed by combining existing ones
▶ Meaning (semantics) of such terms is formally specified
▶ Can also specify relationships between terms in multiple ontologies

▶ Inference with annotations and ontologies (get out more than you put in!)
▶ Standardize annotations in RDF [KC04] or RDFa [Her+13] and ontologies on

OWL [OWL09]
▶ Harvest RDF and RDFa in to a triplestore or OWL reasoner.
▶ Query that for implied knowledge (e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)
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16.1.4 Other Knowledge Representation
Approaches
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Frame Notation as Logic with Locality

▶ Predicate Logic: (where is the locality?)
catch_22∈catch_object There is an instance of catching
catcher(catch_22, jack_2) Jack did the catching
caught(catch_22, ball_5) He caught a certain ball

▶ Definition 1.22. Frames (group everything around the object)
(catch_object catch_22

(catcher jack_2)
(caught ball_5))

+ Once you have decided on a frame, all the information is local
+ easy to define schemes for concept (aka. types in feature structures)
– how to determine frame, when to choose frame (log/chair)
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KR involving Time (Scripts [Shank ’77])

▶ Idea: Organize typical event sequences, actors and props into representation.

▶ Definition 1.23. A script is a structured
representation describing a stereotyped
sequence of events in a particular context.
Structurally, scripts are very much like
frames, except the values that fill the slots
must be ordered.

▶ Example 1.24. getting your hair cut (at a
beauty parlor)
▶ props, actors as “script variables”
▶ events in a (generalized) sequence

▶ use script material for
▶ anaphora, bridging references
▶ default common ground
▶ to fill in missing material into situations

big tip small tip

happy unhappy

pay

Beautician cuts hair

tell receptionist you’re here

go into beauty parlor

make appointment
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Other Representation Formats (not covered)

▶ Procedural Representations (production systems)
▶ Analogical representations (interesting but not here)
▶ Iconic representations (interesting but very difficult to formalize)
▶ If you are interested, come see me off-line
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16.2 Logic-Based Knowledge Representation
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Logic-Based Knowledge Representation

▶ Logic (and related formalisms) have a well-defined semantics
▶ explicitly (gives more understanding than statistical/neural methods)
▶ transparently (symbolic methods are monotonic)
▶ systematically (we can prove theorems about our systems)

▶ Problems with logic-based approaches
▶ Where does the world knowledge come from? (Ontology problem)
▶ How to guide search induced by logical calculi (combinatorial explosion)

▶ One possible answer: description logics. (next couple of times)
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16.2.1 Propositional Logic as a Set Description
Language
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Propositional Logic as Set Description Language
▶ Idea: Use propositional logic as a set description language: (variant

syntax/semantics)
▶ Definition 2.1. Let PL0

DL be given by the following grammar for the PL0
DL

concepts. (formulae)

L::=C | ⊤ | ⊥ | L | L ⊓ L | L ⊔ L | L ⊑ L | L ≡ L

i.e. PL0
DL formed from

▶ atomic formulae (=̂ propositional variables)
▶ concept intersection (⊓) (=̂ conjunction ∧)
▶ concept complement (·) (=̂ negation ¬)
▶ concept union (⊔), subsumption (⊑), and equivalence (≡) defined from these. (=̂ ∨,

⇒, and ⇔)
▶ Definition 2.2 (Formal Semantics).

Let D be a given set (called the domain) and φ : V0→P(D), then we define
▶ [[P]] :=φ(P), (remember φ(P) ⊆ D).
▶ [[A ⊓ B]] := [[A]] ∩ [[B]] and

[[
A
]]
:=D\ [[A]] . . .

▶ Note: ⟨PL0
DL,S, [[·]]⟩, where S is the class of possible domains forms a logical

system.
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Concept Axioms
▶ Observation: Set-theoretic semantics of ‘true’ and ‘false’ (⊤:=φ ⊔ φ

⊥:=φ ⊓ φ)
[[⊤]] = [[p]] ∪ [[p]] = [[p]] ∪ D\ [[p]] = D Analogously: [[⊥]] = ∅

▶ Idea: Use logical axioms to describe the world (Axioms restrict the class of
admissible domain structures)

▶ Definition 2.3. A concept axiom is a PL0
DL formula A that is assumed to be

true in the world.
▶ Definition 2.4 (Set-Theoretic Semantics of Axioms). A is true in domain D

iff [[A]] = D.
▶ Example 2.5. A world with three concepts and no concept axioms

concepts Set Semantics

child
daughter
son

daughterssons

children
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Effects of Axioms to Siblings

▶ Example 2.6. We can use concept axioms to describe the world from 2.5.
Axioms Semantics

son ⊑ child
iff [[son]] ∪ [[child]] = D
iff [[son]] ⊆ [[child]]

daughter ⊑ child
iff

[[
daughter

]]
∪ [[child]] = D

iff [[daughter]] ⊆ [[child]]

daughterssons

children

son ⊓ daughter
child ⊑ son ⊔ daughter

daughterssons
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Propositional Identities

Name for ⊓ for ⊔
Idempot. φ ⊓ φ = φ φ ⊔ φ = φ
Identity φ ⊓ ⊤ = φ φ ⊔ ⊥ = φ
Absorpt. φ ⊔ ⊤ = ⊤ φ ⊓ ⊥ = ⊥
Commut. φ ⊓ ψ = ψ ⊓ φ φ ⊔ ψ = ψ ⊔ φ
Assoc. φ ⊓ (ψ ⊓ θ) = (φ ⊓ ψ) ⊓ θ φ ⊔ (ψ ⊔ θ) = (φ ⊔ ψ) ⊔ θ
Distrib. φ ⊓ (ψ ⊔ θ) = (φ ⊓ ψ) ⊔ (φ ⊓ θ) φ ⊔ (ψ ⊓ θ) = (φ ⊔ ψ) ⊓ (φ ⊔ θ)
Absorpt. φ ⊓ (φ ⊔ θ) = φ φ ⊔ φ ⊓ θ = φ ⊓ θ
Morgan φ ⊓ ψ = φ ⊔ ψ φ ⊔ ψ = φ ⊓ ψ
dneg φ = φ
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Set-Theoretic Semantics and Predicate Logic

▶ Definition 2.7. Translation into PL1 (borrow semantics from that)
▶ recursively add argument variable x
▶ change back ⊓,⊔,⊑,≡ to ∧,∨,⇒,⇔
▶ universal closure for x at formula level.

Definition Comment
pfo(x):=p(x)

A
fo(x)

:=¬A
fo(x)

A ⊓ B
fo(x)

:=A
fo(x) ∧ B

fo(x) ∧ vs. ⊓
A ⊔ B

fo(x)
:=A

fo(x) ∨ B
fo(x) ∨ vs. ⊔

A ⊑ B
fo(x)

:=A
fo(x) ⇒ B

fo(x) ⇒ vs. ⊑
A = B

fo(x)
:=A

fo(x) ⇔ B
fo(x) ⇔ vs. =

A
fo
:=(∀x A

fo(x)
) for formulae
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Translation Examples

▶ Example 2.8. We translate the concept axioms from 2.6 to fortify our intuition:

son ⊑ child
fo

= ∀x son(x)⇒ child(x)

daughter ⊑ child
fo

= ∀x daughter(x)⇒ child(x)

son ⊓ daughter
fo

= ∀x son(x) ∧ daughter(x)

child ⊑ son ⊔ daughter
fo

= ∀x child(x)⇒ (son(x) ∨ daughter(x))

▶ What are the advantages of translation to PL1?
▶ theoretically: A better understanding of the semantics
▶ computationally: Description Logic Framework, but NOTHING for PL0

▶ we can follow this pattern for richer description logics.
▶ many tests are decidable for PL0, but not for PL1. (Description Logics?)
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16.2.2 Ontologies and Description Logics
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Ontologies aka. “World Descriptions”

▶ Definition 2.9 (Classical). An ontology is a representation of the types,
properties, and interrelationships of the entities that really or fundamentally exist
for a particular domain of discourse.

▶ Remark: 2.9 is very general, and depends on what we mean by
“representation”, “entities”, “types”, and “interrelationships”.
This may be a feature, and not a bug, since we can use the same intuitions
across a variety of representations.

▶ Definition 2.10. An ontology consists of a formal system ⟨L,K, |=, C⟩ with
concept axiom (expressed in L) about
▶ individuals: concrete entities in a domain of discourse,
▶ concepts: particular collections of individuals that share properties and aspects – the

instances of the concept, and
▶ relations: ways in which individuals can be related to one another.

▶ Example 2.11. Semantic networks are ontologies. (relatively informal)

▶ Example 2.12. PL0
DL is an ontology format. (formal, but relatively weak)

▶ Example 2.13. PL1 is an ontology format as well. (formal, expressive)
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The Description Logic Paradigm
▶ Idea: Build a whole family of logics for describing sets and their relations.(tailor

their expressivity and computational properties)
▶ Definition 2.14. A description logic is a formal system for talking about

collections of objects and their relations that is at least as expressive as PL0 with
set-theoretic semantics and offers individuals and relations.
A description logic has the following four components:

▶ a formal language L with logical constants
⊓, ·, ⊔, ⊑, and ≡,

▶ a set-theoretic semantics ⟨D, [[·]]⟩,
▶ a translation into first-order logic that is

compatible with ⟨D, [[·]]⟩, and
▶ a calculus for L that induces a decision

procedure for L-satisfiability. PL0

DL

PL1

φ

ψ

undecideable

decideable

ψ :=

{
C 7→p∈Σp

1
⊓7→∩
·7→D\·

}
φ :=

{
X∈V0 7→C
∧7→⊓
¬7→·

}
▶ Definition 2.15. Given a description logic D, a D ontology consists of
▶ a terminology (or TBox): concepts and roles and a set of concept axioms that

describe them, and
▶ assertions (or ABox): a set of individuals and statements about concept membership

and role relationships for them.
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TBoxes in Description Logics

▶ Let D be a description logic with concepts C.
▶ Definition 2.16. A concept definition is a pair c=C, where c is a new concept

name and C∈C is a D-formula.
▶ Definition 2.17. A concept definition c=C is called recursive, iff c occurs in C .
▶ Example 2.18. We can define mother=woman ⊓ has_child.
▶ Definition 2.19. An TBox is a finite set of concept definitions and concept

axioms. It is called acyclic, iff it does not contain recursive definitions.
▶ Definition 2.20. A formula A is called normalized wrt. an TBox T , iff it does

not contain concepts defined in T . (convenient)
▶ Definition 2.21 (Algorithm). (for arbitrary DLs)

Input: A formula A and a TBox T .
▶ While [A contains concept c and T a concept definition c=C]
▶ substitute c by C in A.

▶ Lemma 2.22. This algorithm terminates for acyclic TBoxes, but results can be
exponentially large.
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16.2.3 Description Logics and Inference
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Kinds of Inference in Description Logics

▶ Definition 2.23. Ontology systems employ three main reasoning services:
▶ Consistency test: is a concept definition satisfiable?
▶ Subsumption test: does a concept subsume another?
▶ Instance test: is an individual an example of a concept?

▶ Problem: decidability, complexity, algorithm
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Consistency Test

▶ Definition 2.24. We call a concept C consistent, iff there is no concept A, with
both C ⊑ A and C ⊑ A.

▶ Or equivalently:
▶ Definition 2.25. A concept C is called inconsistent, iff [[C ]] = ∅ for all D.
▶ Example 2.26 (T-Box).

man = person ⊓ has_Y person with y-chromosome
woman = person ⊓ has_Y person without y-chromosome

hermaphrodite = man ⊓ woman man and woman
▶ This specification is inconsistent, i.e. [[hermaphrodite]] = ∅ for all D.
▶ Algorithm: Propositional satisfiability test (NP complete)

we know how to do this, e.g. tableau, resolution.
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Subsumption Test

▶ Example 2.27. In this case trivial
axiom entailed subsumption relation
man = person ⊓ has_Y man ⊑ person
woman = person ⊓ has_Y woman ⊑ person

▶ Definition 2.28. A subsumes B (modulo a set A of concept axioms), iff
[[B]] ⊆ [[A]] for all interpretations D that satisfy A.

▶ Reduction to consistency test: (need to implement only one)
A⇒ (A ⇒ B) is valid iff A ∧ A ∧ ¬B is consistentin.

▶ Observation: Or equivalently, iff A⇒ B ⇒ A is valid in PL0.
▶ In our example: person subsumes woman and man
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Classification

▶ The subsumption relation among all concepts (subsumption graph)
▶ Visualization of the subsumption graph for inspection (plausibility)
▶ Definition 2.29. Classification is the computation of the subsumption graph.
▶ Example 2.30. (not always so trivial)

male_student female_student boy girl

man woman student professor child

person

object
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16.3 A simple Description Logic: ALC
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16.3.1 Basic ALC: Concepts, Roles, and
Quantification
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Motivation for ALC (Prototype Description Logic)

▶ Propositional logic (PL0) is not expressive enough!
▶ Example 3.1. “mothers are women that have a child”
▶ Reason: There are no quantifiers in PL0 (existential (∃) and universal (∀))
▶ Idea: Use first-order predicate logic (PL1)

∀x mother(x)⇔ (woman(x) ∧ (∃y has_child(x , y)))

▶ Problem: Complex algorithms, non-termination (PL1 is too expressive)
▶ Idea: Try to travel the middle ground

More expressive than PL0 (quantifiers) but weaker than PL1. (still tractable)
▶ Technique: Allow only “restricted quantification”, where quantified variables

only range over values that can be reached via a binary relation like has_child .
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Syntax of ALC

▶ Definition 3.2 (Concepts).(aka. “predicates” in PL1 or “propositional variables”
in PL0

DL)
Concepts in DLs represent collections of objects.

▶ . . . like classes in OOP.
▶ Definition 3.3 (Special Concepts). The top concept ⊤ (for “true” or “all”) and

the bottom concept ⊥ (for “false” or “none”).
▶ Example 3.4. person, woman, man, mother, professor, student, car, BMW,

computer, computer program, heart attack risk, furniture, table, leg of a chair,
. . .

▶ Definition 3.5. Roles represent binary relations (like in PL1)
▶ Example 3.6. has_child, has_son, has_daughter, loves, hates, gives_course,

executes_computer_program, has_leg_of_table, has_wheel, has_motor, . . .
▶ Definition 3.7 (Grammar). The formulae of ALC are given by the following

grammar: FALC ::=C | ⊤ | ⊥ | FALC | FALC ⊓ FALC | FALC ⊔ FALC | ∃R FALC | ∀R FALC
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Syntax of ALC: Examples

▶ Example 3.8. person ⊓ ∃has_child student
=̂ The set of persons that have a child which is a student
=̂ parents of students

▶ Example 3.9. person ⊓ ∃has_child ∃has_child student
=̂ grandparents of students

▶ Example 3.10. person ⊓ ∃has_child ∃has_child (student ⊔ teacher)
=̂ grandparents of students or teachers

▶ Example 3.11. person ⊓ ∀has_child student
=̂ parents whose children are all students

▶ Example 3.12. person ⊓ ∀haschild ∃has_child student
=̂ grandparents, whose children all have at least one child that is a student
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More ALC Examples

▶ Example 3.13. car ⊓ ∃has_part ∃made_in EU
=̂ cars that have at least one part that has not been made in the EU

▶ Example 3.14. student ⊓ ∀audits_course graduatelevelcourse
=̂ students, that only audit graduate level courses

▶ Example 3.15. house ⊓ ∀has_parking off_street =̂ houses with off-street
parking

▶ Note: p ⊑ q can still be used as an abbreviation for p ⊔ q.
▶ Example 3.16. student ⊓ ∀audits_course (∃hastutorial ⊤⊑ ∀has_TA woman)

=̂ students that only audit courses that either have no tutorial or tutorials that
are TAed by women
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ALC Concept Definitions

▶ Idea: Define new concepts from known ones.
▶ Definition 3.17. A concept definition is a pair consisting of a new concept

name (the definiendum) and an ALC formula (the definiens). Concepts that are
not definienda are called primitive.

▶ We extend the ALC grammar from 3.7 by the production

CDALC ::=C = FALC

▶ Example 3.18.
Definition rec?
man = person ⊓ ∃has_chrom Y_chrom -
woman = person ⊓ ∀has_chrom Y_chrom -
mother = woman ⊓ ∃has_child person -
father = man ⊓ ∃has_child person -
grandparent = person ⊓ ∃has_child (mother ⊔ father) -
german = person ⊓ ∃has_parents german +
number_list = empty_list ⊔ ∃is_first number ⊓ ∃is_rest number_list +
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TBox Normalization in ALC
▶ Definition 3.19. We call an ALC formula φ normalized wrt. a set of concept

definitions, iff all concepts occurring in φ are primitive.
▶ Definition 3.20. Given a set D of concept definitions, normalization is the

process of replacing in an ALC formula φ all occurrences of definienda in D with
their definientia.

▶ Example 3.21 (Normalizing grandparent).
grandparent

7→ person ⊓ ∃has_child (mother ⊔ father)

7→ person ⊓ ∃has_child (woman ⊓ ∃has_child person ⊓ man ⊓ ∃has_child person)

7→ person ⊓ ∃has_child (person ⊓ ∃has_chrom Y_chrom ⊓ ∃has_child person ⊓ person ⊓ ∃has_chrom Y_chrom ⊓ ∃has_child person)

▶ Observation 3.22. Normalization results can be exponential. (contain
redundancies)

▶ Observation 3.23. Normalization need not terminate on cyclic TBoxes.
▶ Example 3.24.

german 7→ person ⊓ ∃has_parents german
7→ person ⊓ ∃has_parents (person ⊓ ∃has_parents german)
7→ . . .
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Semantics of ALC
▶ ALC semantics is an extension of the set-semantics of propositional logic.
▶ Definition 3.25. A model for ALC is a pair ⟨D, [[·]]⟩, where D is a non-empty

set called the domain and [[·]] a mapping called the interpretation, such that
Op. formula semantics

[[c]] ⊆ D = [[⊤]] [[⊥]] = ∅ [[r ]] ⊆ D ×D
· [[φ]] = [[φ]] = D\ [[φ]]
⊓ [[φ ⊓ ψ]] = [[φ]] ∩ [[ψ]]
⊔ [[φ ⊔ ψ]] = [[φ]] ∪ [[ψ]]
∃R [[∃R φ]] = {x∈D | ∃y ⟨x , y⟩∈ [[R]] and y∈ [[φ]]}
∀R [[∀R φ]] = {x∈D | ∀y if ⟨x , y⟩∈ [[R]] then y∈ [[φ]]}

▶ Alternatively we can define the semantics of ALC by translation into PL1.
▶ Definition 3.26. The translation of ALC into PL1 extends the one from 2.7 by

the following quantifier rules:

∀R φ
fo(x)

:=(∀y R(x , y)⇒ φfo(y)) ∃R φ
fo(x)

:=(∃y R(x , y) ∧ φfo(y))

▶ Observation 3.27. The set-theoretic semantics from 3.25 and the
“semantics-by-translation” from 3.26 induce the same notion of satisfiability.
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ALC Identities

▶ 1 ∃R φ = ∀R φ 3 ∀R φ = ∃R φ
2 ∀R (φ ⊓ ψ) = ∀R φ ⊓ ∀R ψ 4 ∃R (φ ⊔ ψ) = ∃R φ ⊔ ∃R ψ

▶ Proof of 1[[
∃R φ

]]
= D\ [[∃R φ]] = D\{x∈D | ∃y (⟨x , y⟩∈ [[R]]) and (y∈ [[φ]])}

= {x∈D | not ∃y (⟨x , y⟩∈ [[R]]) and (y∈ [[φ]])}
= {x∈D | ∀y if (⟨x , y⟩∈ [[R]]) then (y ̸∈ [[φ]])}
= {x∈D | ∀y if (⟨x , y⟩∈ [[R]]) then (y∈(D\ [[φ]]))}
= {x∈D | ∀y if (⟨x , y⟩∈ [[R]]) then (y∈ [[φ]])}
= [[∀R φ]]
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Negation Normal Form

▶ Definition 3.28 (NNF). An ALC formula is in negation normal form (NNF), iff
complement (·) is only applied to primitive concept.

▶ Use the ALC identities as rules to compute it. (in linear time)
▶ Example 3.29.

example by rule

∃R (∀S e ⊓ ∀S d)

7→ ∀R ∀S e ⊓ ∀S d ∃R φ 7→ ∀R φ

7→ ∀R (∀S e ⊔ ∀S d) φ ⊓ ψ 7→ φ ⊔ ψ
7→ ∀R (∃S e ⊔ ∀S d) ∀R φ 7→ ∃R φ
7→ ∀R (∃S e ⊔ ∀S d) φ 7→ φ
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ALC with Assertions about Individuals

▶ Definition 3.30. We define the assertions for ALC
▶ Role assertionsa:φ (a is a φ)
▶ a R b (a stands in relation R to b)

assertions make up the ABox in ALC.
▶ Definition 3.31. Let ⟨D, [[·]]⟩ be a model for ALC, then we define
▶ [[a:φ]] = T, iff [[a]]∈ [[φ]], and
▶ [[a R b]] = T, iff ( [[a]] , [[b]] )∈ [[R]].

▶ Definition 3.32. We extend the PL1 translation of ALC to ALC assertions:
▶ a:φfo :=φfo(a), and
▶ a R b

fo
:=R(a, b).

Michael Kohlhase: Artificial Intelligence 1 513 2024-02-08



16.3.2 Inference for ALC
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TALC: A Tableau-Calculus for ALC

▶ Recap Tableaux: A tableau calculus develops an initial tableau in a
tree-formed scheme using tableau extension rules.
A saturated tableau (no rules applicable) constitutes a refutation, if all branches
are closed (end in ⊥).

▶ Definition 3.33. The ALC tableau calculus TALC acts on assertions
▶ x :φ (x inhabits concept φ)
▶ x R y (x and y are in relation R)

where φ is a normalized ALC concept in negation normal form with the following
rules:

x :c
x :c

⊥ T⊥
x :φ ⊓ ψ
x :φ
x :ψ

T⊓
x :φ ⊔ ψ
x :φ

∣∣∣ x :ψ T⊔

x :∀R φ
x R y

y :φ
T∀

x :∃R φ

x R y
y :φ

T∃

▶ To test consistency of a concept φ, normalize φ to ψ, initialize the tableau with
x :ψ, saturate. Open branches ; consistent. (x arbitrary)
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TALC Examples
▶ Example 3.34 (Tableau Proofs). We have two similar conjectures about

children.
▶ x :∀has_child man ⊓ ∃has_child man (all sons, but a daughter)

x :∀has_child man ⊓ ∃has_child man initial
x :∀has_child man T⊓
x :∃has_child man T⊓
x has_child y T∃

y :man T∃
⊥ T⊥

inconsistent
▶ x :∀has_child man ⊓ ∃has_child man (only sons, and at least one)

x :∀has_child man ⊓ ∃has_child man initial
x :∀has_child man T⊓
x :∃has_child man T⊓
x has_child y T∃

y :man T∃
open

This tableau shows a model: there are two persons, x and y . y is the only child of
x , y is a man.
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Another TALC Example

▶ Example 3.35. ∀has_child (ugrad ⊔ grad) ⊓ ∃has_child ugrad is satisfiable.
▶ Let’s try it on the board

▶ Tableau proof for the notes
1 x :∀has_child (ugrad ⊔ grad) ⊓ ∃has_child ugrad initial
2 x :∀has_child (ugrad ⊔ grad) T⊓
3 x :∃has_child ugrad T⊓
4 x has_child y T∃
5 y :ugrad T∃
6 y :ugrad ⊔ grad T∀

7 y :ugrad y :grad T⊔
8 ⊥ open

The left branch is closed, the right one represents a model: y is a child of x , y is a
graduate student, x hat exactly one child: y .
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Another TALC Example

▶ Example 3.36. ∀has_child (ugrad ⊔ grad) ⊓ ∃has_child ugrad is satisfiable.
▶ Let’s try it on the board
▶ Tableau proof for the notes

1 x :∀has_child (ugrad ⊔ grad) ⊓ ∃has_child ugrad initial
2 x :∀has_child (ugrad ⊔ grad) T⊓
3 x :∃has_child ugrad T⊓
4 x has_child y T∃
5 y :ugrad T∃
6 y :ugrad ⊔ grad T∀

7 y :ugrad y :grad T⊔
8 ⊥ open

The left branch is closed, the right one represents a model: y is a child of x , y is a
graduate student, x hat exactly one child: y .
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Properties of Tableau Calculi

▶ We study the following properties of a tableau calculus C:
▶ Termination: there are no infinite sequences of inference rule applications.
▶ Soundness: If φ is satisfiable, then C terminates with an open branch.
▶ Completeness: If φ is in unsatisfiable, then C terminates and all branches are closed.
▶ complexity of the algorithm (time and space complexity).

▶ Additionally, we are interested in the complexity of satisfiability itself (as a
benchmark)
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Correctness

▶ Lemma 3.37. If φ satisfiable, then TALC terminates on x :φ with open branch.
▶ Proof: Let M:=⟨D, [[·]]⟩ be a model for φ and w∈ [[φ]].

1. We define [[x ]] :=w and
M|=(x :ψ) iff [[x ]]∈ [[ψ]]
M|=x R y iff ⟨x , y⟩∈ [[R]]
M|=S iff I|=c for all c∈S

2. This gives us M|=(x :φ) (base case)
3. If the branch is satisfiable, then either
▶ no rule applicable to leaf, (open branch)
▶ or rule applicable and one new branch satisfiable. (inductive case: next)

4. There must be an open branch. (by termination)
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Case analysis on the rules

T⊓ applies then M|=(x :φ ⊓ ψ), i.e. [[x ]]∈ [[φ ⊓ ψ]]
so [[x ]]∈ [[φ]] and [[x ]]∈ [[ψ]], thus M|=(x :φ) and M|=(x :ψ).

T⊔ applies then M|=(x :φ ⊔ ψ), i.e [[x ]]∈ [[φ ⊔ ψ]]
so [[x ]]∈ [[φ]] or [[x ]]∈ [[ψ]], thus M|=(x :φ) or M|=(x :ψ),
wlog. M|=(x :φ).

T∀ applies then M|=(x :∀R φ) and M|=x R y , i.e. [[x ]]∈ [[∀R φ]] and ⟨x , y⟩∈ [[R]],
so [[y ]]∈ [[φ]]

T∃ applies then M|=(x :∃R φ), i.e [[x ]]∈ [[∃R φ]],
so there is a v∈D with ⟨ [[x ]] , v⟩∈ [[R]] and v∈ [[φ]].
We define [[y ]] :=v , then M|=x R y and M|=(y :φ)
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Completeness of the Tableau Calculus

▶ Lemma 3.38. Open saturated tableau branches for φ induce models for φ.
▶ Proof: construct a model for the branch and verify for φ

1. Let B be an open, saturated branch
▶ we define

D : = {x |x :ψ∈B or z R x∈B}
[[c]] : = {x |x :c∈B}
[[R]] : = {⟨x , y⟩|x R y∈B}

▶ well-defined since never x :c, x :c∈B (otherwise T⊥ applies)
▶ M satisfies all assertions x :c, x :c and x R y , (by construction)

2. M|=(y :ψ), for all y :ψ∈B (on k = size(ψ) next slide)
3. M|=(x :φ).
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Case Analysis for Induction

case y :ψ = y :ψ1 ⊓ ψ2 Then {y :ψ1, y :ψ2} ⊆ B (T⊓-rule, saturation)
so M|=(y :ψ1) and M|=(y :ψ2) and M|=(y :ψ1 ⊓ ψ2) (IH, Definition)

case y :ψ = y :ψ1 ⊔ ψ2 Then y :ψ1∈B or y :ψ2∈B (T⊔, saturation)
so M|=(y :ψ1) or M|=(y :ψ2) and M|=(y :ψ1 ⊔ ψ2) (IH, Definition)

case y :ψ = y :∃R θ then {y R z , z :θ} ⊆ B (z new variable) (T∃-rules, saturation)
so M|=(z :θ) and M|=y R z , thus M|=(y :∃R θ). (IH, Definition)

case y :ψ = y :∀R θ Let ⟨ [[y ]] , v⟩∈ [[R]] for some r∈D
then v = z for some variable z with y R z∈B (construction of [[R]])
So z :θ∈B and M|=(z :θ). (T∀-rule, saturation, Def)
As v was arbitrary we have M|=(y :∀R θ).
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Termination

▶ Theorem 3.39. TALC terminates.
▶ To prove termination of a tableau algorithm, find a well-founded measure

(function) that is decreased by all rules

x :c
x :c

⊥ T⊥
x :φ ⊓ ψ
x :φ
x :ψ

T⊓
x :φ ⊔ ψ
x :φ

∣∣∣ x :ψ T⊔

x :∀R φ
x R y

y :φ
T∀

x :∃R φ

x R y
y :φ

T∃

▶ Proof: Sketch (full proof very technical)
1. Any rule except T∀ can only be applied once to x :ψ.
2. Rule T∀ applicable to x :∀R ψ at most as the number of R-successors of x .

(those y with x R y above)
3. The R-successors are generated by x :∃R θ above, (number bounded by size

of input formula)
4. Every rule application to x :ψ generates constraints z :ψ′, where ψ′ a proper

sub-formula of ψ.
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Complexity of TALC

▶ Idea: Work off tableau branches one after the other. (Branch size =̂ space
complexity)

▶ Observation 3.40. The size of the branches is polynomial in the size of the
input formula:

branchsize = #(input formulae) + #(∃-formulae) ·#(∀-formulae)

▶ Proof sketch: Re-examine the termination proof and count: the first summand
comes from 4., the second one from 3. and 2.

▶ Theorem 3.41. The satisfiability problem for ALC is in PSPACE.
▶ Theorem 3.42. The satisfiability problem for ALC is PSPACE-Complete.
▶ Proof sketch: Reduce a PSPACE-complete problem to ALC-satisfiability
▶ Theorem 3.43 (Time Complexity). The ALC satisfiability problem is in

EXPTIME.
▶ Proof sketch: There can be exponentially many branches (already for PL0)
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The functional Algorithm for ALC
▶ Observation: (leads to a better treatment for ∃)
▶ the T∃-rule generates the constraints x R y and y :ψ from x :∃R ψ
▶ this triggers the T∀-rule for x :∀R θi , which generate y :θ1, . . . , y :θn
▶ for y we have y :ψ and y :θ1, . . . , y :θn. (do all of this in a single step)
▶ we are only interested in non-emptiness, not in particular witnesses (leave them out)

▶ Definition 3.44. The functional algorithm for TALC is
consistent(S) =

if {c , c} ⊆ S then false
elif ‘φ ⊓ ψ′∈S and (‘φ′ ̸∈S or ‘ψ′ ̸∈S)

then consistent(S ∪ {φ,ψ})
elif ‘φ ⊔ ψ′∈S and {φ,ψ}̸∈S

then consistent(S ∪ {φ}) or consistent(S ∪ {ψ})
elif forall ‘∃R ψ′∈S
consistent({ψ} ∪ {θ∈θ | ‘∀R θ′∈S})

else true
▶ Relatively simple to implement. (good implementations optimized)
▶ But: This is restricted to ALC. (extension to other DL difficult)
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Extending the Tableau Algorithm by Concept Axioms

▶ concept axioms, e.g. child ⊑ son ⊔ daughter cannot be handled in TALC yet.
▶ Idea: Whenever a new variable y is introduced (by T∃-rule) add the information

that axioms hold for y .
▶ Initialize tableau with {x :φ} ∪ CA (CA : = set of concept axioms)

▶ New rule for ∃:
x :∃R φ CA = {α1, . . ., αn}

y :φ
x R y
y :α1

...
y :αn

T ∃
CA (instead of T∃)

▶ Problem: CA:={∃R c} and start tableau with x :d (non-termination)
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Non-Termination of TALC with Concept Axioms

▶ Problem: CA:={∃R c} and start tableau with x :d . (non-termination)

x :d start
x :∃R c in CA
x R y1 T∃
y1:c T∃
y1:∃R c T ∃

CA
y1 R y2 T∃
y2:c T∃
y2:∃R c T ∃

CA
. . .

Solution: Loop-Check:
▶ Instead of a new variable y take an old

variable z , if we can guarantee that whatever
holds for y already holds for z .

▶ We can only do this, iff the T∀-rule has been
exhaustively applied.

▶ Theorem 3.45. The consistency problem of ALC with concept axioms is
decidable.
Proof sketch: TALC with a suitable loop check terminates.
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16.3.3 ABoxes, Instance Testing, and ALC

Michael Kohlhase: Artificial Intelligence 1 526 2024-02-08



Instance Test: Concept Membership

▶▶ Definition 3.46. An instance test computes whether given an ALC ontology an
individual is a member of a given concept.

▶ Example 3.47 (An Ontology).
TBox (terminological Box) ABox (assertional Box, data base)

woman = person ⊓ has_Y tony:person Tony is a person
man = person ⊓ has_Y tony:has_Y Tony has a y-chrom

This entails: tony:man (Tony is a man).
▶ Problem: Can we compute this?
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Realization

▶ Definition 3.48. Realization is the computation of all instance relations between
ABox objects and TBox concepts.

▶ Observation: It is sufficient to remember the lowest concepts in the
subsumption graph. (rest by subsumption)

male_student female_student girl boy

man woman student professor child

person

object

Tony TimmyTerry

▶ Example 3.49. If tony:male_student is known, we do not need tony:man.
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ABox Inference in ALC: Phenomena

▶ There are different kinds of interactions between TBox and ABox in ALC and in
description logics in general.

▶ Example 3.50.
property example

internally inconsistent tony:student, tony:student

inconsistent with a TBox TBox: student ⊓ prof
ABox: tony:student, tony:prof

implicit info that is not explicit
ABox: tony:∀has_grad genius

tony has_grad mary
|= mary:genius

information that can be com-
bined with TBox info

TBox: happy_prof = prof ⊓ ∀has_grad genius
ABox: tony:happy_prof,

tony has_grad mary
|= mary:genius
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Tableau-based Instance Test and Realization

▶ Query: Do the ABox and TBox together entail a:φ? (a∈φ?)
▶ Algorithm: Test a:φ for consistency with ABox and TBox. (use our tableau

algorithm)
▶ Necessary changes: (no big deal)
▶ Normalize ABox wrt. TBox. (definition expansion)
▶ Initialize the tableau with ABox in NNF. (so it can be used)

▶ Example 3.51.
Example: add mary:genius to determine ABox ,TBox |= mary:genius

TBox happy_prof = prof ⊓
∀has_grad genius tony:prof ⊓ ∀has_grad genius TBox

tony has_grad mary ABox
mary:genius Query
tony:prof T⊓

tony:∀has_grad genius T⊓
mary:genius T∀

⊥ T⊥
ABox

tony:happy_prof
tony has_grad mary

▶ Note: The instance test is the base for realization. (remember?)
▶ Idea: Extend to more complex ABox queries. (e.g. give me all instances of φ)
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16.4 Description Logics and the Semantic Web
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Resource Description Framework

▶ Definition 4.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

▶ Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

▶ Example 4.2. RDF can be used for describing (all “objects on the WWW”)
▶ properties for shopping items, such as price and availability
▶ time schedules for web events
▶ information about web pages (content, author, created and modified date)
▶ content and rating for web pictures
▶ content for search engines
▶ electronic libraries
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Resources and URIs

▶ RDF describes resources with properties and property values.
▶ RDF uses Web identifiers (URIs) to identify resources.
▶ Definition 4.3. A resource is anything that can have a URI, such as

http://www.fau.de.
▶ Definition 4.4. A property is a resource that has a name, such as author or

homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase. (a property value can be another
resource)

▶ Definition 4.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

▶ Example 4.6. Statements: [This slide]subj has been [author]preded by [Michael
Kohlhase]obj
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XML Syntax for RDF

▶ RDF is a concrete XML vocabulary for writing statements
▶ Example 4.7. The following RDF document could describe the slides as a

resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">

<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

This RDF document makes two statements:
▶ The subject of both is given in the about attribute of the rdf:Description element
▶ The predicates are given by the element names of its children
▶ The objects are given in the elements as URIs or literal content.

▶ Intuitively: RDF is a web-scalable way to write down ABox information.
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RDFa as an Inline RDF Markup Format

▶ Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)
Definition 4.8. RDFa (RDF annotations) is a markup scheme for inline
annotation (as XML attributes) of RDF triples.

▶ Example 4.9.
<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">

<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009</em>
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

RDFa as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator
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RDF as an ABox Language for the Semantic Web

▶ Idea: RDF triples are ABox entries h R s or h:φ.
▶ Example 4.10. h is the resource for Ian Horrocks, s is the resource for Ulrike

Sattler, R is the relation “hasColleague”, and φ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>
▶ Idea: Now, we need an similar language for TBoxes (based on ALC)
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OWL as an Ontology Language for the Semantic Web

▶ Task: Complement RDF (ABox) with a TBox language.
▶ Idea: Make use of resources that are values in rdf:type. (called Classes)
▶ Definition 4.11. OWL (the ontology web language) is a language for encoding

TBox information about RDF classes.
▶ Example 4.12 (A concept definition for “Mother”).

Mother=Woman ⊓ Parent is represented as
XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>

<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(

:Woman
:Parent

)
)
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Extended OWL Example in Functional Syntax

▶ Example 4.13. The semantic network from 1.5 can be expressed in OWL (in
functional syntax)

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

▶ ClassAssertion formalizes the “inst” relation,
▶ ObjectPropertyAssertion formalizes relations,
▶ SubClassOf formalizes the “isa” relation,
▶ for the “has_part” relation, we have to specify that all birds have a part that is a

wing or equivalently the class of birds is a subclass of all objects that have some
wing.
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Extended OWL Example in Functional Syntax

▶ Example 4.14. The semantic network from 1.5 can be expressed in OWL (in
functional syntax)

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

▶ ClassAssertion formalizes the “inst” relation,
▶ ObjectPropertyAssertion formalizes relations,
▶ SubClassOf formalizes the “isa” relation,
▶ for the “has_part” relation, we have to specify that all birds have a part that is a

wing or equivalently the class of birds is a subclass of all objects that have some
wing.
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SPARQL an RDF Query language

▶ Definition 4.15. SPARQL, the “SPARQL Protocol and RDF Query Language”
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

▶ SPARQL is pronounced like the word “sparkle”.
▶ Definition 4.16. A system is called a SPARQL endpoint, iff it answers SPARQL

queries.
▶ Example 4.17. Query for person names and their e-mails from a triplestore with

FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {

?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}
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SPARQL Applications: DBPedia

▶ Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

▶ Example 4.18 (DBPedia Query). People who were
born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

▶ The answers include Emmy Noether and Georg Simon
Ohm.
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A more complex DBPedia Query
▶ Demo: DBPedia http://dbpedia.org/snorql/

Query: Soccer players born in a country with more than 10 M inhabitants, who
play as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query
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Triple Stores: the Semantic Web Databases

▶ Definition 4.19. A triplestore or RDF store is a purpose-built database for the
storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

▶ Common triplestores include
▶ Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)
▶ GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)
▶ blazegraph: https://blazegraph.com/ (open source; used in WikiData)

▶ Definition 4.20. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.

▶ Common description logic reasoners include
▶ FACT++: http://owl.man.ac.uk/factplusplus/
▶ HermiT: http://www.hermit-reasoner.com/

▶ Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of
ontology inference services, but fail on large ABoxes.
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Part 4
Planning & Acting
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Chapter 17
Planning I: Framework
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Reminder: Classical Search Problems

▶ Example 0.1 (Solitaire as a Search Problem).

▶ States: Card positions (e.g. position_Jspades=Qhearts).
▶ Actions: Card moves (e.g. move_Jspades_Qhearts_freecell4).
▶ Initial state: Start configuration.
▶ Goal states: All cards “home”.
▶ Solutions: Card moves solving this game.
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Planning

▶ Ambition: Write one program that can solve all classical search problems.
▶ Idea: For CSP, going from “state/action-level search” to “problem-description

level search” did the trick.
▶ Definition 0.2. Let Π be a search problem (see )
▶ The blackbox description of Π is an API providing functionality allowing to construct

the state space: InitialState(), GoalTest(s), . . .
▶ “Specifying the problem” =̂ programming the API.

▶ The declarative description of Π comes in a problem description language. This
allows to implement the API, and much more.
▶ “Specifying the problem” =̂ writing a problem description.

▶ Here, “problem description language” =̂ planning language. (up next)
▶ But Wait: Didn’t we do this already in the last chapter with logics? (For the

Wumpus?)
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17.1 Logic-Based Planning
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Fluents: Time-Dependent Knowledge in Planning

▶ Recall from : We can represent the Wumpus rules in logical systems.
(propositional/first-order/ALC)
▶ Use inference systems to deduce new world knowledge from percepts and actions.

▶ Problem: Representing (changing) percepts immediately leads to
contradictions!

▶ Example 1.1. If the agent moves and a cell with a draft (a perceived breeze) is
followed by one without.

▶ Obvious Idea: Make representations of percepts time-dependent
▶ Example 1.2. Dt for t∈N for PL0 and draft(t) in PL1 and PLnq.
▶ Definition 1.3. We use the word fluent to refer an aspect of the world that

changes, all others we call atemporal.
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Fluents: Time-Dependent Knowledge in Planning

▶ Recall from : We can represent the Wumpus rules in logical systems.
(propositional/first-order/ALC)
▶ Use inference systems to deduce new world knowledge from percepts and actions.

▶ Problem: Representing (changing) percepts immediately leads to
contradictions!

▶ Example 1.4. If the agent moves and a cell with a draft (a perceived breeze) is
followed by one without.

▶ Obvious Idea: Make representations of percepts time-dependent
▶ Example 1.5. Dt for t∈N for PL0 and draft(t) in PL1 and PLnq.
▶ Definition 1.6. We use the word fluent to refer an aspect of the world that

changes, all others we call atemporal.
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Recap: Logic-Based Agents

▶ Recall: A model-based agent uses inference to model the environment,
percepts, and actions.

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

▶ Still Unspecified: (up next)
▶ MAKE−PERCEPT−SENTENCE: the effects of percepts.
▶ MAKE−ACTION−QUERY: what is the best next action?
▶ MAKE−ACTION−SENTENCE: the effects of that action.

In particular, we will look at the effect of time/change. (neglected so far)
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Recap: Logic-Based Agents

▶ Recall: A model-based agent uses inference to model the environment,
percepts, and actions.

function KB−AGENT (percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time
TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))
action := ASK(KB, MAKE−ACTION−QUERY(t))
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+1

return action

▶ Still Unspecified: (up next)
▶ MAKE−PERCEPT−SENTENCE: the effects of percepts.
▶ MAKE−ACTION−QUERY: what is the best next action?
▶ MAKE−ACTION−SENTENCE: the effects of that action.

In particular, we will look at the effect of time/change. (neglected so far)
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Fluents: Modeling the Agent’s Sensors

▶ Idea: Relate percept fluents to atemporal cell attributes.
▶ Example 1.7. E.g., if the agent perceives a draft at time t, when it is in cell

[x , y ], then there must be a breeze there:

∀t, x , y Ag@(t, x , y)⇒ draft(t)⇔ breeze(x , y)

▶ Axioms like these model the agent’s sensors – here that they are totally reliable:
there is a breeze, iff the agent feels a draft.

▶ Definition 1.8. We call fluents that describe the agent’s sensors sensor axioms.
▶ Problem: Where do fluents like Ag@(t, x , y) come from?
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Digression: Fluents and Finite Temporal Domains

▶ Observation: Fluents like ∀t, x , y Ag@(t, x , y)⇒ draft(t)⇔ breeze(x , y) from
1.7 are best represented in first-order logic. In PL0 and PLnq we would have to
use concrete instances like Ag@(7, 2, 1)⇒ draft(7)⇔ breeze(2, 1) for all suitable
t, x , and y .

▶ Problem: Unless we restrict ourselves to finite domains and an end time tend
we have infinitely many axioms. Even then, formalization in PL0 and PLnq is
very tedious.

▶ Solution: Formalize in first-order logic and then compile down:
1. enumerate ranges of bound variables, instantiate body, (; PLnq)
2. translate PLnq atoms to propositional variables. (; PL0)

▶ In Practice: The choice of domain, end time, and logic is up to agent designer,
weighing expressivity vs. efficiency of inference.

▶ WLOG: We will use PL1 in the following. (easier to read)
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Fluents: Effect Axioms for the Transition Model
▶ Problem: Where do fluents like Ag@(t, x , y) come from?
▶ Thus: We also need fluents to keep track of the agent’s actions. (The

transition model of the underlying search problem).
▶ Idea: We also use fluents for the representation of actions.
▶ Example 1.9. The action of “going forward” at time t is captured by the fluent

forw(t).
▶ Definition 1.10. Effect axioms describe how the environment changes under an

agent’s actions.
▶ Example 1.11. If the agent is in cell [1, 1] facing east at time 0 and goes

forward, she is in cell [2, 1] and no longer in [1, 1]:

Ag@(0, 1, 1) ∧ faceeast(0) ∧ forw(0)⇒ Ag@(1, 2, 1) ∧ ¬Ag@(1, 1, 1)

Generally: (barring exceptions for domain border cells)

∀t, x , y Ag@(t, x , y)∧faceeast(t)∧forw(t)⇒Ag@(t+1, x+1, y)∧¬Ag@(t+1, x , y)

This compiles down to 16 · tend PLnq/PL0 axioms.
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Frames and Frame Axioms

▶ Problem: Effect axioms are not enough.
▶ Example 1.12. Say that the agent has an arrow at time 0, and then moves

forward into [2, 1], perceives a glitter, and knows that the Wumpus is ahead.
To evaluate the action shoot(1) the corresponding effect axiom needs to know
havarrow(1), but cannot prove it from havarrow(0).
Problem: The information of having an arrow has been lost in the move forward.

▶ Definition 1.13. The frame problem describes that for a representation of
actions we need to formalize their effects on the aspects they change, but also
their non-effect on the static frame of reference.

▶ Partial Solution: (there are many many more; some better)

Frame axioms formalize that particular fluents are invariant under a given action.
▶ Problem: For an agent with n actions and an environment with m fluents, we

need O(nm) frame axioms.
Representing and reasoning with them easily drowns out the sensor and
transition models.
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A Hybrid Agent for the Wumpus World

▶ Example 1.14 (A Hybrid Agent). This agent uses
▶ logic inference for sensor and transition modeling,
▶ special code and A∗ for action selection & route planning.

function HYBRID−WUMPUS−AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal

"wumpus physics"
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))

then some special code for action selection, and then (up next)

action := POP(plan)
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t + 1
return action

So far, not much new over our original version.
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A Hybrid Agent: Custom Action Selection
▶ Example 1.15 (A Hybrid Agent (continued)). So that we can plan the best

strategy:

TELL(KB, the temporal "physics" sentences for time t)
safe := {[x , y ]|ASK(KB,OK(t, x , y))=T}
if ASK(KB,glitter(t)) = T then

plan := [grab] + PLAN−ROUTE(current,{[1, 1]},safe) + [exit]
if plan is empty then

unvisited := {[x , y ]|ASK(KB,Ag@(t ′, x , y))=F} for all t ′≤t
plan := PLAN−ROUTE(current,unvisited ∪ safe,safe)

if plan is empty and ASK(KB,havarrow(t)) = T then
possible_wumpus := {x , y |[x , y ]}ASK(KB,¬wumpus(t, x , y)) = F
plan := PLAN−SHOT(current,possible_wumpus,safe)

if plan is empty then // no choice but to take a risk
not_unsafe := {[x , y ]|ASK(KB,¬OK(t, x , y)) = F}
plan := PLAN−ROUTE(current,unvisited ∪ not_unsafe,safe)

if plan is empty then
plan := PLAN−ROUTE(current,{[1, 1]},safe) + [exit]

Note that OK wumpus, and glitter are fluents, since the Wumpus might have
died or the gold might have been grabbed.
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A Hybrid Agent: Custom Action Selection

▶ Example 1.16 (Action Selection). And the code for PLAN−ROUTE
(PLAN−SHOT similar)

function PLAN−ROUTE(curr,goals,allowed) returns an action sequence
inputs: curr, the agent’s current position

goals, a set of squares;
try to plan a route to one of them

allowed, a set of squares that can form part of the route
problem := ROUTE−PROBLEM(curr,goals,allowed)
return A∗(problem)

▶ Evaluation: Even though this works for the Wumpus world, it is not the
“universal, logic-based problem solver” we dreamed of!

▶ Planning tries to solve this with another representation of actions. (up next)
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17.2 Planning: Introduction
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How does a planning language describe a problem?

▶ Definition 2.1. A planning language is a way of describing the components of a
search problem via formulae of a logical system. In particular the
▶ states (vs. blackbox: data structures). (E.g.: predicate Eq(., .).)

▶ initial state I (vs. data structures). (E.g.: Eq(x , 1).)
▶ goal states G (vs. a goal test). (E.g.: Eq(x , 2).)
▶ set A of actions in terms of preconditions and effects (vs. functions returning

applicable actions and successor states). (E.g.: “increment x : pre Eq(x , 1), eff
Eq(x ∧ 2) ∧ ¬Eq(x , 1)”.)

▶ Definition 2.2. Solution (plan) =̂ sequence of actions from A, transforming I
into a state that satisfies G. (E.g.: “increment x”.)
The process of finding a plan given a planning task is called planning.
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How does a planning language describe a problem?

▶ Definition 2.3. A planning language is a way of describing the components of a
search problem via formulae of a logical system. In particular the
▶ states (vs. blackbox: data structures). (E.g.: predicate Eq(., .).)
▶ initial state I (vs. data structures). (E.g.: Eq(x , 1).)

▶ goal states G (vs. a goal test). (E.g.: Eq(x , 2).)
▶ set A of actions in terms of preconditions and effects (vs. functions returning

applicable actions and successor states). (E.g.: “increment x : pre Eq(x , 1), eff
Eq(x ∧ 2) ∧ ¬Eq(x , 1)”.)

▶ Definition 2.4. Solution (plan) =̂ sequence of actions from A, transforming I
into a state that satisfies G. (E.g.: “increment x”.)
The process of finding a plan given a planning task is called planning.
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How does a planning language describe a problem?

▶ Definition 2.5. A planning language is a way of describing the components of a
search problem via formulae of a logical system. In particular the
▶ states (vs. blackbox: data structures). (E.g.: predicate Eq(., .).)
▶ initial state I (vs. data structures). (E.g.: Eq(x , 1).)
▶ goal states G (vs. a goal test). (E.g.: Eq(x , 2).)

▶ set A of actions in terms of preconditions and effects (vs. functions returning
applicable actions and successor states). (E.g.: “increment x : pre Eq(x , 1), eff
Eq(x ∧ 2) ∧ ¬Eq(x , 1)”.)

▶ Definition 2.6. Solution (plan) =̂ sequence of actions from A, transforming I
into a state that satisfies G. (E.g.: “increment x”.)
The process of finding a plan given a planning task is called planning.
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How does a planning language describe a problem?

▶ Definition 2.7. A planning language is a way of describing the components of a
search problem via formulae of a logical system. In particular the
▶ states (vs. blackbox: data structures). (E.g.: predicate Eq(., .).)
▶ initial state I (vs. data structures). (E.g.: Eq(x , 1).)
▶ goal states G (vs. a goal test). (E.g.: Eq(x , 2).)
▶ set A of actions in terms of preconditions and effects (vs. functions returning

applicable actions and successor states). (E.g.: “increment x : pre Eq(x , 1), eff
Eq(x ∧ 2) ∧ ¬Eq(x , 1)”.)

A logical description of all of these is called a planning task.

▶ Definition 2.8. Solution (plan) =̂ sequence of actions from A, transforming I
into a state that satisfies G. (E.g.: “increment x”.)
The process of finding a plan given a planning task is called planning.
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How does a planning language describe a problem?

▶ Definition 2.9. A planning language is a way of describing the components of a
search problem via formulae of a logical system. In particular the
▶ states (vs. blackbox: data structures). (E.g.: predicate Eq(., .).)
▶ initial state I (vs. data structures). (E.g.: Eq(x , 1).)
▶ goal states G (vs. a goal test). (E.g.: Eq(x , 2).)
▶ set A of actions in terms of preconditions and effects (vs. functions returning

applicable actions and successor states). (E.g.: “increment x : pre Eq(x , 1), eff
Eq(x ∧ 2) ∧ ¬Eq(x , 1)”.)

A logical description of all of these is called a planning task.
▶ Definition 2.10. Solution (plan) =̂ sequence of actions from A, transforming I

into a state that satisfies G. (E.g.: “increment x”.)
The process of finding a plan given a planning task is called planning.

Michael Kohlhase: Artificial Intelligence 1 553 2024-02-08



Planning Language Overview

▶ Disclaimer: Planning languages go way beyond classical search problems.
There are variants for inaccessible, stochastic, dynamic, continuous, and
multi-agent settings.

▶ We focus on classical search for simplicity (and practical relevance).
▶ For a comprehensive overview, see [GNT04].
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Application: Natural Language Generation

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 * 

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white

{sleep(e,r1)}

{white(r1)}{rabbit(r1)}

▶ Input: Tree-adjoining grammar, intended meaning.
▶ Output: Sentence expressing that meaning.
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Application: Business Process Templates at SAPApplication: Business Process Templates at SAP

Create CQ

Check CQ
Consistency

Check CQ
Completeness

Check CQ 
Approval 
Status

Decide CQ 
Approval

Submit CQ

Mark CQ as 
Accepted

Create Follow-
Up for CQ

Archive CQ

Approval:
Necessary

Approval: 
not

Necessary

I Input: SAP-scale model of behavior of activities on Business Objects, process
endpoint.

I Output: Process template leading to this point.
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▶ Input: model of behavior of activities on business objects, process endpoint.
▶ Output: Process template leading to this point.
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Application: Automatic Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

▶ Input: Network configuration, location of sensible data.
▶ Output: Sequence of exploits giving access to that data.
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Reminder: General Problem Solving, Pros and Cons

▶ Powerful: In some applications, generality is absolutely necessary. (E.g. SAP)
▶ Quick: Rapid prototyping: 10s lines of problem description vs. 1000s lines of

C++ code. (E.g. language generation)
▶ Flexible: Adapt/maintain the description. (E.g. network security)
▶ Intelligent: Determines automatically how to solve a complex problem

efficiently! (The ultimate goal, no?!)
▶ Efficiency loss: Without any domain-specific knowledge about chess, you don’t

beat Kasparov . . .
▶ Trade-off between “automatic and general” vs. “manual work but efficient”.

▶ Research Question: How to make fully automatic algorithms efficient?

Michael Kohlhase: Artificial Intelligence 1 558 2024-02-08



Search vs. planning
▶ Consider the task get milk, bananas, and a cordless drill.
▶ Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate
▶ Planning systems do the following:

1. open up action and goal representation to allow selection
2. divide-and-conquer by subgoaling

▶ relax requirement for sequential construction of solutions
Search Planning

States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions
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Reminder: Greedy Best-First Search and A∗

▶ Recall: Our heuristic search algorithms(duplicate pruning omitted for simplicity)

function Greedy_Best−First_Search (problem)
returns a solution, or failure
n := node with n.state=problem.InitialState
frontier := priority queue ordered by ascending h, initially [n]
loop do

if Empty?(frontier) then return failure
n := Pop(frontier)
if problem.GoalTest(n.state) then return Solution(n)
for each action a in problem.Actions(n.state) do
n′ := ChildNode(problem,n,a)
Insert(n′, h(n′), frontier)

For A∗

▶ order frontier by g + h instead of h (line 4)
▶ insert g(n′) + h(n′) instead of h(n′) to frontier (last line)

▶ Is greedy best-first search optimal? No ; satisficing planning.
▶ Is A∗ optimal? Yes, but only if h is admissible ; optimal planning, with such h.
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ps. “Making Fully Automatic Algorithms Efficient”

▶ Example 2.11.

▶ n blocks, 1 hand.
▶ A single action either takes a block with the hand or puts a

block we’re holding onto some other block/the table.
blocks states

1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

▶ Observation 2.12. State spaces typically are huge even for simple problems.
▶ In other words: Even solving “simple problems” automatically (without help

from a human) requires a form of intelligence.
▶ With blind search, even the largest super computer in the world won’t scale

beyond 20 blocks!
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Algorithmic Problems in Planning

▶ Definition 2.13. We speak of satisficing planning if
Input: A planning task Π.
Output: A plan for Π, or “unsolvable” if no plan for Π exists.
and of optimal planning if
Input: A planning task Π.
Output: An optimal plan for Π, or “unsolvable” if no plan for Π exists.

▶ The techniques successful for either one of these are almost disjoint. And
satisficing planning is much more efficient in practice.

▶ Definition 2.14. Programs solving these problems are called (optimal) planner,
planning system, or planning tool.
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Our Agenda for This Topic

▶ Now: Background, planning languages, complexity.
▶ Sets up the framework. Computational complexity is essential to distinguish

different algorithmic problems, and for the design of heuristic functions. (see next)
▶ Next: How to automatically generate a heuristic function, given planning

language input?
▶ Focussing on heuristic search as the solution method, this is the main question that

needs to be answered.
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Our Agenda for This Chapter

1. The History of Planning: How did this come about?
▶ Gives you some background, and motivates our choice to focus on heuristic search.

2. The STRIPS Planning Formalism: Which concrete planning formalism will we
be using?
▶ Lays the framework we’ll be looking at.

3. The PDDL Language: What do the input files for off-the-shelf planning
software look like?
▶ So you can actually play around with such software. (Exercises!)

4. Planning Complexity: How complex is planning?
▶ The price of generality is complexity, and here’s what that “price” is, exactly.
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17.3 The History of Planning
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Planning History: In the Beginning . . .

▶ In the beginning: Man invented Robots:
▶ “Planning” as in “the making of plans by an autonomous robot”.
▶ Shakey the Robot (Full video here)

▶ In a little more detail:
▶ [NS63] introduced general problem solving.
▶ . . . not much happened (well not much we still speak of today) . . .
▶ 1966-72, Stanford Research Institute developed a robot named “Shakey”.
▶ They needed a “planning” component taking decisions.
▶ They took inspiration from general problem solving and theorem proving, and called

the resulting algorithm STRIPS.
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History of Planning Algorithms

▶ Compilation into Logics/Theorem Proving:
▶ e.g. ∃s0, a, s1.at(A, s0) ∧ execute(s0, a, s1) ∧ at(B, s1)
▶ Popular when: Stone Age – 1990.
▶ Approach: From planning task description, generate PL1 formula φ that is

satisfiable iff there exists a plan; use a theorem prover on φ.
▶ Keywords/cites: Situation calculus, frame problem, . . .

▶ Partial order planning
▶ e.g. open = {at(B)}; apply move(A,B); ; open = {at(A)} . . .
▶ Popular when: 1990 – 1995.
▶ Approach: Starting at goal, extend partially ordered set of actions by inserting

achievers for open sub-goals, or by adding ordering constraints to avoid conflicts.
▶ Keywords/cites: UCPOP [PW92], causal links, flaw selection strategies, . . .
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History of Planning Algorithms, ctd.

▶ GraphPlan
▶ e.g. F0 = at(A);A0 = {move(A,B)};F1 = {at(B)};

mutex A0 = {move(A,B),move(A,C)}.
▶ Popular when: 1995 – 2000.
▶ Approach: In a forward phase, build a layered “planning graph” whose “time steps”

capture which pairs of action can achieve which pairs of facts; in a backward phase,
search this graph starting at goals and excluding options proved to not be feasible.

▶ Keywords/cites: [BF95; BF97; Koe+97], action/fact mutexes, step-optimal plans,
. . .

▶ Planning as SAT:
▶ SAT variables at(A)0, at(B)0, move(A,B)0, move(A,C)0, at(A)1, at(B)1; clauses

to encode transition behavior e.g. at(B)1
F ∨move(A,B)0

T; unit clauses to encode
initial state at(A)0

T, at(B)0
T; unit clauses to encode goal at(B)1

T.
▶ Popular when: 1996 – today.
▶ Approach: From planning task description, generate propositional CNF formula φk

that is satisfiable iff there exists a plan with k steps; use a SAT solver on φk , for
different values of k.

▶ Keywords/cites: [KS92; KS98; RHN06; Rin10], SAT encoding schemes, BlackBox,
. . .
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History of Planning Algorithms, ctd.

▶ Planning as Heuristic Search:
▶ init at(A); apply move(A,B); generates state at(B); . . .
▶ Popular when: 1999 – today.
▶ Approach: Devise a method R to simplify (“relax”) any planning task Π; given Π,

solve R(Π) to generate a heuristic function h for informed search.
▶ Keywords/cites: [BG99; HG00; BG01; HN01; Ede01; GSS03; Hel06; HHH07; HG08;

KD09; HD09; RW10; NHH11; KHH12a; KHH12b; KHD13; DHK15], critical path
heuristics, ignoring delete lists, relaxed plans, landmark heuristics, abstractions,
partial delete relaxation, . . .
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The International Planning Competition (IPC)

▶ Definition 3.1. The International Planning Competition (IPC) is an event for
benchmarking planners (http://ipc.icapsconference.org/)
▶ How: Run competing planners on a set of benchmarks.
▶ When: Runs every two years since 2000, annually since 2014.
▶ What: Optimal track vs. satisficing track; others: uncertainty, learning, . . .

▶ Prerequisite/Result:
▶ Standard representation language: PDDL [McD+98; FL03; HE05; Ger+09]
▶ Problem Corpus: ≈ 50 domains, ≫ 1000 instances, 74 (!!) planners in 2011

Michael Kohlhase: Artificial Intelligence 1 569 2024-02-08

http://ipc.icaps conference.org/


International Planning Competition

▶ Question: If planners x and y compete in IPC’YY, and x wins, is x “better
than” y?

▶ Answer: Yes, but only on the IPC’YY benchmarks, and only according to the
criteria used for determining a “winner”! On other domains and/or according to
other criteria, you may well be better off with the “looser”.

▶ Generally: Assessing AI System suitability is complicated, over-simplification is
dangerous. (But, of course, nevertheless is being done all the time)
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Planning History, p.s.: Planning is Non-Trivial!

▶ Example 3.2. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C ) fail:

▶ If we pursue on(A,B) by unstacking C , and moving
A onto B, we achieve the first subgoal, but cannot
achieve the second without undoing the first.

▶ If we pursue on(B,C) by moving B onto C , we
achieve the second subgoal, but cannot achieve the
first without undoing the second.
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Planning History, p.s.: Planning is Non-Trivial!

▶ Example 3.3. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C ) fail:

▶ If we pursue on(A,B) by unstacking C , and moving
A onto B, we achieve the first subgoal, but cannot
achieve the second without undoing the first.

▶ If we pursue on(B,C) by moving B onto C , we
achieve the second subgoal, but cannot achieve the
first without undoing the second.
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Planning History, p.s.: Planning is Non-Trivial!

▶ Example 3.4. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C ) fail:

▶ If we pursue on(A,B) by unstacking C , and moving
A onto B, we achieve the first subgoal, but cannot
achieve the second without undoing the first.

▶ If we pursue on(B,C) by moving B onto C , we
achieve the second subgoal, but cannot achieve the
first without undoing the second.
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17.4 The STRIPS Planning Formalism
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STRIPS Planning

▶ Definition 4.1. STRIPS = Stanford Research Institute Problem Solver.
STRIPS is the simplest possible (reasonably expressive) logics based planning
language.

▶ STRIPS has only propositional variables as atomic formulae.
▶ Its preconditions/effects/goals are as canonical as imaginable:
▶ Preconditions, goals: conjunctions of atoms.
▶ Effects: conjunctions of literals

▶ We use the common special-case notation for this simple formalism.
▶ I’ll outline some extensions beyond STRIPS later on, when we discuss PDDL.
▶ Historical note: STRIPS [FN71] was originally a planner (cf. Shakey), whose

language actually wasn’t quite that simple.
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STRIPS Planning: Syntax

▶ Definition 4.2. A STRIPS task is a quadruple ⟨P ,A, I ,G ⟩ where:
▶ P is a finite set of facts: atomic proposition in PL0 or PLnq.
▶ A is a finite set of actions; each a∈A is a triple a = ⟨prea, adda, dela⟩ of subsets of P

referred to as the action’s preconditions, add list, and delete list respectively; we
require that adda ∩ dela = ∅.

▶ I ⊆ P is the initial state.
▶ G ⊆ P is the goal state.

We will often give each action a∈A a name (a string), and identify a with that
name.

▶ Note: We assume, for simplicity, that every action has cost 1. (Unit costs, cf. )
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“TSP” in Australia

▶ Example 4.3 (Salesman Travelling in Australia).

Strictly speaking, this is not actually a TSP problem instance;
simplified/adapted for illustration.
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STRIPS Encoding of “TSP”

▶ Example 4.4 (continuing).

▶ Facts P: {at(x), vis(x)|x∈{Sy,Ad,Br,Pe,Da}}.
▶ Initial state I : {at(Sy), vis(Sy)}.
▶ Goal state G :{at(Sy)} ∪ {vis(x)|x∈{Sy,Ad,Br,Pe,Da}}.
▶ Actions a∈A: drv(x , y) where x and y have a road.

Preconditions prea: {at(x)}.
Add list adda: {at(y), vis(y)}.
Delete list dela: {at(x)}.

▶ Plan: ⟨drv(Sy,Br), drv(Br, Sy), drv(Sy,Ad), drv(Ad,Pe), drv(Pe,Ad), . . .
. . . ,drv(Ad,Da), drv(Da,Ad), drv(Ad, Sy)⟩
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STRIPS Planning: Semantics

▶ Idea: We define a plan for a STRIPS task Π as a solution to an induced search
problem ΘΠ. (save work by reduction)

▶ Definition 4.5. Let Π:=⟨P ,A, I ,G ⟩ be a STRIPS task. The search problem
induced by Π is ΘΠ = ⟨SP ,A,T , I ,SG ⟩ where:
▶ The states (also world state) SP :=P(P) are the subsets of P.
▶ A is just Π’s action. (so we can define plans easily)
▶ The transition model TA is {s a−→ apply(s, a)|prea ⊆ s}.

If prea ⊆ s, then a∈A is applicable in s and apply(s, a):=(s ∪ adda)\dela. If
prea ̸⊆s, then apply(s, a) is undefined.

▶ I is Π’s initial state.
▶ The goal states SG = {s∈SP |G ⊆ s} are those that satisfy Π’s goal state.

An (optimal) plan for Π is an (optimal) solution for ΘΠ, i.e., a path from s to
some s ′∈SG . Π is solvable if a plan for Π exists.

▶ Definition 4.6. For a plan a = ⟨a1, . . ., an⟩, we define

apply(s, a):=apply(. . . apply(apply(s, a1), a2) . . . , an)

if each ai is applicable in the respective state; else, apply(s, a) is undefined.
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STRIPS Encoding of Simplified TSP

▶ Example 4.7 (Simplified traveling salesman problem in Australia).

Let TSP− be the STRIPS task, ⟨P ,A, I ,G ⟩, where
▶ Facts P: {at(x), vis(x)|x∈{Sy,Ad,Br}}.
▶ Initial state state I : {at(Sy), vis(Sy)}.
▶ Goal state G : {vis(x)|x∈{Sy,Ad,Br}} (note: noat(Sy))
▶ Actions A: a∈A: drv(x , y) where x y have a road.
▶ preconditions prea: {at(x)}.
▶ add list adda: {at(y), vis(y)}.
▶ delete list dela: {at(x)}.
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Questionaire: State Space of TSP−
▶ The state space of the search problem ΘTSP− induced by TSP− from 4.7 is

at(Sy)
vis(Sy)

at(Br)
vis(Sy)
vis(Br)

at(Ad)
vis(Sy)
vis(Ad)

at(Sy)
vis(Sy)
vis(Br)

at(Sy)
vis(Sy)
vis(Ad)

at(Ad)
vis(Sy)
vis(Br)
vis(Ad)

at(Br)
vis(Sy)
vis(Ad)
vis(Br)

at(Sy)
vis(Sy)
vis(Ad)
vis(Br)

drv(Sy,Br)

drv(Sy,Ad)

drv(Br, Sy)

drv(Ad, Sy)

drv(Sy,Ad)

drv(Sy,Br)

drv(Br, Sy)

drv(Ad, Sy)

▶ Question: Are there any plans for TSP− in this graph?

▶ Answer: Yes, two – plans for TSP− are solutions for ΘTSP− , dashed node =̂ I ,
thick nodes =̂ G :
▶ drv(Sy,Br), drv(Br, Sy), drv(Sy,Ad) (upper path)
▶ drv(Sy,Ad), drv(Ad, Sy), drv(Sy,Br). (lower path)

▶ Question: Is the graph above actually the state space induced by ?
▶ Answer: No, only the part reachable from I . The state space of ΘTSP− also

includes e.g. the states {vis(Sy)} and {at(Sy), at(Br)}.
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▶ The state space of the search problem ΘTSP− induced by TSP− from 4.7 is
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The Blocksworld

▶ Definition 4.8. The blocks world is a simple planning domain: a set of wooden
blocks of various shapes and colors sit on a table. The goal is to build one or
more vertical stacks of blocks. Only one block may be moved at a time: it may
either be placed on the table or placed atop another block.

▶ Example 4.9.

Initial State Goal State

D

B

A

C

E

D

CBAE

▶ Facts: on(x , y), onTable(x), clear(x), holding(x), armEmpty.

▶ initial state:
{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty}.

▶ Goal state: {on(E ,C), on(C ,A), on(B,D)}.
▶ Actions: stack(x , y), unstack(x , y), putdown(x), pickup(x).
▶ stack(x , y)?

pre : {holding(x), clear(y)}
add : {on(x , y), armEmpty, clearx}
del : {holding(x), clear(y)}.
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The Blocksworld

▶ Definition 4.10. The blocks world is a simple planning domain: a set of wooden
blocks of various shapes and colors sit on a table. The goal is to build one or
more vertical stacks of blocks. Only one block may be moved at a time: it may
either be placed on the table or placed atop another block.

▶ Example 4.11.

Initial State Goal State

D

B

A

C

E

D

CBAE

▶ Facts: on(x , y), onTable(x), clear(x), holding(x), armEmpty.
▶ initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty}.

▶ Goal state: {on(E ,C), on(C ,A), on(B,D)}.
▶ Actions: stack(x , y), unstack(x , y), putdown(x), pickup(x).
▶ stack(x , y)?

pre : {holding(x), clear(y)}
add : {on(x , y), armEmpty, clearx}
del : {holding(x), clear(y)}.
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The Blocksworld

▶ Definition 4.12. The blocks world is a simple planning domain: a set of wooden
blocks of various shapes and colors sit on a table. The goal is to build one or
more vertical stacks of blocks. Only one block may be moved at a time: it may
either be placed on the table or placed atop another block.

▶ Example 4.13.

Initial State Goal State

D

B

A

C

E

D

CBAE

▶ Facts: on(x , y), onTable(x), clear(x), holding(x), armEmpty.
▶ initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty}.
▶ Goal state: {on(E ,C), on(C ,A), on(B,D)}.

▶ Actions: stack(x , y), unstack(x , y), putdown(x), pickup(x).
▶ stack(x , y)?

pre : {holding(x), clear(y)}
add : {on(x , y), armEmpty, clearx}
del : {holding(x), clear(y)}.
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The Blocksworld

▶ Definition 4.14. The blocks world is a simple planning domain: a set of wooden
blocks of various shapes and colors sit on a table. The goal is to build one or
more vertical stacks of blocks. Only one block may be moved at a time: it may
either be placed on the table or placed atop another block.

▶ Example 4.15.

Initial State Goal State

D

B

A

C

E

D

CBAE

▶ Facts: on(x , y), onTable(x), clear(x), holding(x), armEmpty.
▶ initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty}.
▶ Goal state: {on(E ,C), on(C ,A), on(B,D)}.
▶ Actions: stack(x , y), unstack(x , y), putdown(x), pickup(x).

▶ stack(x , y)?
pre : {holding(x), clear(y)}

add : {on(x , y), armEmpty, clearx}
del : {holding(x), clear(y)}.
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The Blocksworld

▶ Definition 4.16. The blocks world is a simple planning domain: a set of wooden
blocks of various shapes and colors sit on a table. The goal is to build one or
more vertical stacks of blocks. Only one block may be moved at a time: it may
either be placed on the table or placed atop another block.

▶ Example 4.17.

Initial State Goal State

D

B

A

C

E

D

CBAE

▶ Facts: on(x , y), onTable(x), clear(x), holding(x), armEmpty.
▶ initial state:

{onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty}.
▶ Goal state: {on(E ,C), on(C ,A), on(B,D)}.
▶ Actions: stack(x , y), unstack(x , y), putdown(x), pickup(x).
▶ stack(x , y)?

pre : {holding(x), clear(y)}
add : {on(x , y), armEmpty, clearx}
del : {holding(x), clear(y)}.
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STRIPS for the Blocksworld

▶ Question: Which are correct encodings (ones that are part of some correct
overall model) of the STRIPS Blocksworld pickup(x) action schema?

(A)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x)}

(B)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{armEmpty}

(C)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty, clear(x)}

(D)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty}

Recall: an actions a represented by a tuple ⟨prea, adda, dela⟩ of lists of facts.
▶ Hint: The only differences between them are the delete lists

▶ Answer:

(A) No, must delete armEmpty
(B) No, must delete onTable(x).

(C) (D) Both yes: We can, but don’t have to, encode the single-arm Blocksworld so that the
block currently in the hand is not clear.
For (C), stack(x , y) and putdown(x) need to add clear(x), so the encoding on the
previous slide does not work.
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STRIPS for the Blocksworld

▶ Question: Which are correct encodings (ones that are part of some correct
overall model) of the STRIPS Blocksworld pickup(x) action schema?

(A)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x)}

(B)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{armEmpty}

(C)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty, clear(x)}

(D)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty}

Recall: an actions a represented by a tuple ⟨prea, adda, dela⟩ of lists of facts.
▶ Hint: The only differences between them are the delete lists
▶ Answer:
(A) No, must delete armEmpty

(B) No, must delete onTable(x).
(C) (D) Both yes: We can, but don’t have to, encode the single-arm Blocksworld so that the

block currently in the hand is not clear.
For (C), stack(x , y) and putdown(x) need to add clear(x), so the encoding on the
previous slide does not work.
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STRIPS for the Blocksworld

▶ Question: Which are correct encodings (ones that are part of some correct
overall model) of the STRIPS Blocksworld pickup(x) action schema?

(A)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x)}

(B)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{armEmpty}

(C)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty, clear(x)}

(D)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty}

Recall: an actions a represented by a tuple ⟨prea, adda, dela⟩ of lists of facts.
▶ Hint: The only differences between them are the delete lists
▶ Answer:
(A) No, must delete armEmpty
(B) No, must delete onTable(x).

(C) (D) Both yes: We can, but don’t have to, encode the single-arm Blocksworld so that the
block currently in the hand is not clear.
For (C), stack(x , y) and putdown(x) need to add clear(x), so the encoding on the
previous slide does not work.
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STRIPS for the Blocksworld

▶ Question: Which are correct encodings (ones that are part of some correct
overall model) of the STRIPS Blocksworld pickup(x) action schema?

(A)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x)}

(B)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{armEmpty}

(C)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty, clear(x)}

(D)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty}

Recall: an actions a represented by a tuple ⟨prea, adda, dela⟩ of lists of facts.
▶ Hint: The only differences between them are the delete lists
▶ Answer:
(A) No, must delete armEmpty
(B) No, must delete onTable(x).

(C) (D) Both yes: We can, but don’t have to, encode the single-arm Blocksworld so that the
block currently in the hand is not clear.
For (C), stack(x , y) and putdown(x) need to add clear(x), so the encoding on the
previous slide does not work.
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Miconic-10: A Real-World Example

▶ Example 4.18. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP:

Served first.

▶ D:

Lift may only go down when inside;
similar for U.

▶ NA:

Never-alone

▶ AT:

Attendant

.
▶ A, B:

Never together in the same elevator

▶ P:

Normal passenger

DVIP

U

NA

AT

B

A

P

???
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Miconic-10: A Real-World Example

▶ Example 4.19. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP: Served first.
▶ D:

Lift may only go down when inside;
similar for U.

▶ NA:

Never-alone

▶ AT:

Attendant

.
▶ A, B:

Never together in the same elevator

▶ P:

Normal passenger

DVIP

U

NA

AT

B

A

P

???
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Miconic-10: A Real-World Example

▶ Example 4.20. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP: Served first.
▶ D: Lift may only go down when inside;

similar for U.
▶ NA:

Never-alone

▶ AT:

Attendant

.
▶ A, B:

Never together in the same elevator

▶ P:

Normal passenger

DVIP

U

NA

AT

B

A

P

???
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Miconic-10: A Real-World Example

▶ Example 4.21. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP: Served first.
▶ D: Lift may only go down when inside;

similar for U.
▶ NA: Never-alone
▶ AT:

Attendant

.
▶ A, B:

Never together in the same elevator

▶ P:

Normal passenger

DVIP

U

NA

AT

B

A

P

???
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Miconic-10: A Real-World Example

▶ Example 4.22. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP: Served first.
▶ D: Lift may only go down when inside;

similar for U.
▶ NA: Never-alone
▶ AT: Attendant.
▶ A, B:

Never together in the same elevator

▶ P:

Normal passenger

DVIP

U

NA

AT

B

A

P

???
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Miconic-10: A Real-World Example

▶ Example 4.23. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP: Served first.
▶ D: Lift may only go down when inside;

similar for U.
▶ NA: Never-alone
▶ AT: Attendant.
▶ A, B: Never together in the same elevator
▶ P:

Normal passenger

DVIP

U

NA

AT

B

A

P

???
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Miconic-10: A Real-World Example

▶ Example 4.24. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

▶ VIP: Served first.
▶ D: Lift may only go down when inside;

similar for U.
▶ NA: Never-alone
▶ AT: Attendant.
▶ A, B: Never together in the same elevator
▶ P: Normal passenger

DVIP

U

NA

AT

B

A

P

???
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17.5 Partial Order Planning
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Planning History, p.s.: Planning is Non-Trivial!

▶ Example 5.1. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C ) fail:

▶ If we pursue on(A,B) by unstacking C , and moving
A onto B, we achieve the first subgoal, but cannot
achieve the second without undoing the first.

▶ If we pursue on(B,C) by moving B onto C , we
achieve the second subgoal, but cannot achieve the
first without undoing the second.
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Planning History, p.s.: Planning is Non-Trivial!

▶ Example 5.2. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C ) fail:

▶ If we pursue on(A,B) by unstacking C , and moving
A onto B, we achieve the first subgoal, but cannot
achieve the second without undoing the first.

▶ If we pursue on(B,C) by moving B onto C , we
achieve the second subgoal, but cannot achieve the
first without undoing the second.
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Planning History, p.s.: Planning is Non-Trivial!

▶ Example 5.3. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C ) fail:

▶ If we pursue on(A,B) by unstacking C , and moving
A onto B, we achieve the first subgoal, but cannot
achieve the second without undoing the first.

▶ If we pursue on(B,C) by moving B onto C , we
achieve the second subgoal, but cannot achieve the
first without undoing the second.
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Partial Order Planning

▶ Definition 5.4. Any algorithm that can place two actions into a plan without
specifying which comes first is called as partial order planning.

▶ Ideas for partial order planning:
▶ Organize the planning steps in a DAG that supports multiple paths from initial to

goal state
▶ nodes (steps) are labeled with actions (actions can occur multiply)
▶ edges with propositions added by source and presupposed by target

acyclicity of the graph induces a partial ordering on steps. q
▶ additional temporal constraints resolve subgoal interactions and induce a linear order.

▶ Advantages of partial order planning:
▶ problems can be decomposed ; can work well with non-cooperative environments.
▶ efficient by least-commitment strategy
▶ causal links (edges) pinpoint unworkable subplans early.
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Partial Order Planning

▶ Definition 5.5. Any algorithm that can place two actions into a plan without
specifying which comes first is called as partial order planning.

▶ Ideas for partial order planning:
▶ Organize the planning steps in a DAG that supports multiple paths from initial to

goal state
▶ nodes (steps) are labeled with actions (actions can occur multiply)
▶ edges with propositions added by source and presupposed by target

acyclicity of the graph induces a partial ordering on steps. q
▶ additional temporal constraints resolve subgoal interactions and induce a linear order.

▶ Advantages of partial order planning:
▶ problems can be decomposed ; can work well with non-cooperative environments.
▶ efficient by least-commitment strategy
▶ causal links (edges) pinpoint unworkable subplans early.
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Partial Order Planning

▶ Definition 5.6. Any algorithm that can place two actions into a plan without
specifying which comes first is called as partial order planning.

▶ Ideas for partial order planning:
▶ Organize the planning steps in a DAG that supports multiple paths from initial to

goal state
▶ nodes (steps) are labeled with actions (actions can occur multiply)
▶ edges with propositions added by source and presupposed by target

acyclicity of the graph induces a partial ordering on steps. q
▶ additional temporal constraints resolve subgoal interactions and induce a linear order.

▶ Advantages of partial order planning:
▶ problems can be decomposed ; can work well with non-cooperative environments.
▶ efficient by least-commitment strategy
▶ causal links (edges) pinpoint unworkable subplans early.
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Partially Ordered Plans
▶ Definition 5.7. Let ⟨P ,A, I ,G ⟩ be a STRIPS task, then a partially ordered plan

P = ⟨V ,E ⟩ is a labeled DAG, where the nodes in V (called steps) are labeled
with actions from A, or are a
▶ start step, which has label “effect” I , or a
▶ finish step, which has label “precondition” G .
Every edge (S ,T )∈E is either labeled by:
▶ A non-empty set p ⊆ P of facts that are effects of the action of S and the

preconditions of that of T . We call such a labeled edge a causal link and write it
S p−→T .

▶ ≺, then call it a temporal constraint and write it as S ≺ T .
An open condition is a precondition of a step not yet causally linked.

▶ Definition 5.8. Let Π be a partially ordered plan, then we call a step U possibly
intervening in a causal link S p−→T , iff Π ∪ {S ≺ U,U ≺ T} is acyclic.

▶ Definition 5.9. A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it.

▶ Definition 5.10. A partially ordered plan Π is called complete iff every
precondition is achieved.

▶ Definition 5.11. Partial order planning is the process of computing complete
and acyclic partially ordered plans for a given planning task.
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A Notation for STRIPS Actions

▶ Definition 5.12 (Notation). In diagrams, we often write STRIPS actions into
boxes with preconditions above and effects below.

▶ Example 5.13.

▶ Actions: Buy(x)

▶ Preconditions: At(p), Sells(p, x)
▶ Effects: Have(x)

At(p) Sells(p, x)

Buy(x)

Have(x)

▶ Notation: A causal link S p−→T can also be denoted by a direct arrow between
the effects p of S and the preconditions p of T in the STRIPS action notation
above.
Show temporal constraints as dashed arrows.
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Planning Process

▶ Definition 5.14. Partial order planning is search in the space of partial plans via
the following operations:
▶ add link from an existing action to an open precondition,
▶ add step (an action with links to other steps) to fulfil an open condition,
▶ order one step wrt. another to remove possible conflicts.

▶ Idea: Gradually move from incomplete/vague plans to complete, correct plans.
backtrack if an open condition is unachievable or if a conflict is unresolvable.
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Example: Shopping for Bananas, Milk, and a Cordless Drill
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Example: Shopping for Bananas, Milk, and a Cordless Drill
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Clobbering and Promotion/Demotion
▶ Definition 5.15. In a partially ordered plan, a step C clobbers a causal link

L:=S p−→T , iff it destroys the condition p achieved by L.
▶ Definition 5.16. If C clobbers S p−→T in a partially ordered plan Π, then we

can solve the induced conflict by
▶ demotion: add a temporal constraint C ≺ S to Π, or
▶ promotion: add T ≺ C to Π.

▶ Example 5.17. Go(Home) clobbers At(Supermarket):

At(SM)

Buy(Milk)

Go(SM)

At(SM)

Go(Home)

At(Home)

demotion =̂ put before
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Clobbering and Promotion/Demotion
▶ Definition 5.18. In a partially ordered plan, a step C clobbers a causal link

L:=S p−→T , iff it destroys the condition p achieved by L.
▶ Definition 5.19. If C clobbers S p−→T in a partially ordered plan Π, then we

can solve the induced conflict by
▶ demotion: add a temporal constraint C ≺ S to Π, or
▶ promotion: add T ≺ C to Π.

▶ Example 5.20. Go(Home) clobbers At(Supermarket):

At(SM)

Buy(Milk)

Go(SM)

At(SM)

Go(Home)

At(Home)
promotion =̂ put after
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POP algorithm sketch

▶ Definition 5.21. The POP algorithm for constructing complete partially ordered
plans:

function POP (initial, goal, operators) : plan
plan:= Make−Minimal−Plan(initial, goal)
loop do

if Solution?(goal,plan) then return plan
Sneed , c := Select−Subgoal(plan)
Choose−Operator(plan, operators, Sneed ,c)
Resolve−Threats(plan)

end

function Select−Subgoal (plan, Sneed , c)
pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved
return Sneed , c
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POP algorithm contd.

▶ Definition 5.22. The missing parts for the POP algorithm.

function Choose−Operator (plan, operators, Sneed , c)
choose a step Sadd from operators or Steps(plan) that has c as an effect
if there is no such step then fail
add the ausal−link Sadd

c−→Sneed to Links(plan)
add the temporal−constraint Sadd ≺ Sneed to Orderings(plan)
if Sadd is a newly added \step from operators then

add Sadd to Steps(plan)
add Start ≺ Sadd ≺ Finish to Orderings(plan)

function Resolve−Threats (plan)
for each Sthreat that threatens a causal−link Si

c−→Sj in Links(plan) do
choose either

demotion: Add Sthreat ≺ Si to Orderings(plan)
promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail
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Properties of POP

▶ Nondeterministic algorithm: backtracks at choice points on failure:
▶ choice of Sadd to achieve Sneed ,
▶ choice of demotion or promotion for clobberer,
▶ selection of Sneed is irrevocable.

▶ Observation 5.23. POP is sound, complete, and systematic i.e. no repetition
▶ There are extensions for disjunction, universals, negation, conditionals.
▶ It can be made efficient with good heuristics derived from problem description.
▶ Particularly good for problems with many loosely related subgoals.
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Example: Solving the Sussman Anomaly
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Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.24. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

On(A,B) On(B,C)

Finish

Initializing the partial order plan with with Start and Finish.
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Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.25. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C),On(B,C)

On(A,B) On(B,C)

Finish

Refining for the subgoal On(B,C).
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Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.26. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C),On(B,C)
Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

On(A,B) On(B,C)

Finish

Refining for the subgoal ON(A,C).

Michael Kohlhase: Artificial Intelligence 1 593 2024-02-08



Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.27. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C),On(B,C)
Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C ,T )

Cl(A) On(C ,T )

On(A,B) On(B,C)

Finish

Refining for the subgoal Cl(A).
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Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.28. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C),On(B,C)
Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C ,T )

Cl(A) On(C ,T )

On(A,B) On(B,C)

Finish

Move(A,B) clobbers Cl(B) ; demote.
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Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.29. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C),On(B,C)
Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C ,T )

Cl(A) On(C ,T )

On(A,B) On(B,C)

Finish

Move(B,C) clobbers Cl(C) ; demote.
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Example: Solving the Sussman Anomaly (contd.)
▶ Example 5.30. Solving the Sussman anomaly

Start

On(C ,A) On(A,T ) Cl(B) On(B,T ) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C),On(B,C)
Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C ,T )

Cl(A) On(C ,T )

On(A,B) On(B,C)

Finish

A totally ordered plan.
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17.6 The PDDL Language
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PDDL: Planning Domain Description Language

▶ Definition 6.1. The Planning Domain Description Language (PDDL) is a
standardized representation language for planning benchmarks in various
extensions of the STRIPS formalism.

▶ Definition 6.2. PDDL is not a propositional language
▶ Representation is lifted, using object variables to be instantiated from a finite set of

objects. (Similar to predicate logic)
▶ Action schemas parameterized by objects.
▶ Predicates to be instantiated with objects.

▶ Definition 6.3. A PDDL planning task comes in two pieces
▶ The problem file gives the objects, the initial state, and the goal state.
▶ The domain file gives the predicates and the actions.
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The Blocksworld in PDDL: Domain File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)

(on−table ?x) (arm−empty))
(:action stack
:parameters (?x ?y)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm−empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x))))
. . .)
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The Blocksworld in PDDL: Problem File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (problem bw−abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on−table a) (clear a)

(on−table b) (clear b)
(on−table e) (clear e)
(on−table c) (on d c) (clear d)
(arm−empty))

(:goal (and (on e c) (on c a) (on b d))))
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Miconic-ADL “Stop” Action Schema in PDDL
(:action stop
:parameters (?f − floor)
:precondition (and (lift−at ?f)
(imply
(exists
(?p − conflict−A)
(or (and (not (served ?p))

(origin ?p ?f))
(and (boarded ?p)

(not (destin ?p ?f)))))
(forall
(?q − conflict−B)
(and (or (destin ?q ?f)

(not (boarded ?q)))
(or (served ?q)

(not (origin ?q ?f))))))
(imply (exists

(?p − conflict−B)
(or (and (not (served ?p))

(origin ?p ?f))
(and (boarded ?p)

(not (destin ?p ?f)))))
(forall
(?q − conflict−A)
(and (or (destin ?q ?f)

(not (boarded ?q)))
(or (served ?q)

(not (origin ?q ?f))))))

(imply
(exists
(?p − never−alone)
(or (and (origin ?p ?f)

(not (served ?p)))
(and (boarded ?p)

(not (destin ?p ?f)))))
(exists
(?q − attendant)
(or (and (boarded ?q)

(not (destin ?q ?f)))
(and (not (served ?q))

(origin ?q ?f)))))
(forall
(?p − going−nonstop)
(imply (boarded ?p) (destin ?p ?f)))

(or (forall
(?p − vip) (served ?p))

(exists
(?p − vip)
(or (origin ?p ?f) (destin ?p ?f))))

(forall
(?p − passenger)
(imply
(no−access ?p ?f) (not (boarded ?p)))))

)
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Planning Domain Description Language

▶ Question: What is PDDL good for?
(A) Nothing.
(B) Free beer.
(C) Those AI planning guys.
(D) Being lazy at work.

▶ Answer:

(A) Nah, it’s definitely good for something (see remaining answers)
(B) Generally, no. Sometimes, yes: PDDL is needed for the IPC, and if you win the IPC

you get price money (= free beer).
(C) Yep. (Initially, every system had its own language, so running experiments felt a lot

like “Lost in Translation”.)
(D) Yep. You can be a busy bee, programming a solver yourself. Or you can be lazy and

just write the PDDL. (I think I said that before . . . )
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17.7 Conclusion
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Summary

▶ General problem solving attempts to develop solvers that perform well across a
large class of problems.

▶ Planning, as considered here, is a form of general problem solving dedicated to
the class of classical search problems. (Actually, we also address inaccessible,
stochastic, dynamic, continuous, and multi-agent settings.)

▶ Heuristic search planning has dominated the International Planning Competition
(IPC). We focus on it here.

▶ STRIPS is the simplest possible, while reasonably expressive, language for our
purposes. It uses Boolean variables (facts), and defines actions in terms of
precondition, add list, and delete list.

▶ PDDL is the de-facto standard language for describing planning problems.
▶ Plan existence (bounded or not) is PSPACE-complete to decide for STRIPS. If

we bound plans polynomially, we get down to NP-completeness.
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Chapter 18
Planning II: Algorithms
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18.1 Introduction
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Reminder: Our Agenda for This Topic

▶ : Background, planning languages, complexity.
▶ Sets up the framework. computational complexity is essential to distinguish different

algorithmic problems, and for the design of heuristic functions.
▶ This Chapter: How to automatically generate a heuristic function, given

planning language input?
▶ Focussing on heuristic search as the solution method, this is the main question that

needs to be answered.
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Reminder: Search

▶ Starting at initial state, produce all successor states step by step:

Reminder: Search

I Starting at initial state, produce all successor states step by step:

03/23

General Search

From the initial state, produce all successive states step 
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

In planning, this is referred to as forward search, or forward state-space search.
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In planning, this is referred to as forward search, or forward state-space search.
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Search in the State Space?Search in the State Space?

I Use heuristic function to guide the search towards the goal!
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▶ Use heuristic function to guide the search towards the goal!
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Reminder: Informed Search

goal
init

cost
esti

mate
h

cost estimate h

cost estimate h

cost estimate h

▶ Heuristic function h estimates the cost of an optimal path from a state s to the
goal state; search prefers to expand states s with small h(s).

▶ Live Demo vs. Breadth-First Search:
http://qiao.github.io/PathFinding.js/visual/
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Reminder: Heuristic Functions

▶ Definition 1.1. Let Π be a STRIPS task with states S . A heuristic function,
short heuristic, for Π is a function h : S→N ∪ {∞} so that h(s) = 0 whenever s
is a goal state.

▶ Exactly like our definition from . Except, because we assume unit costs here, we
use N instead of R+.

▶ Definition 1.2. Let Π be a STRIPS task with states S . The perfect heuristic h∗

assigns every s∈S the length of a shortest path from s to a goal state, or ∞ if
no such path exists. A heuristic function h for Π is admissible if, for all s∈S , we
have h(s)≤h∗(s).

▶ Exactly like our definition from , except for path length instead of path cost (cf.
above).

▶ In all cases, we attempt to approximate h∗(s), the length of an optimal plan for
s. Some algorithms guarantee to lower bound h∗(s).
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Our (Refined) Agenda for This Chapter

▶ How to Relax: How to relax a problem?
▶ Basic principle for generating heuristic functions.

▶ The Delete Relaxation: How to relax a planning problem?
▶ The delete relaxation is the most successful method for the automatic generation of

heuristic functions. It is a key ingredient to almost all IPC winners of the last
decade. It relaxes STRIPS tasks by ignoring the delete lists.

▶ The h+ Heuristic: What is the resulting heuristic function?
▶ h+ is the “ideal” delete relaxation heuristic.

▶ Approximating h+: How to actually compute a heuristic?
▶ Turns out that, in practice, we must approximate h+.
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18.2 How to Relax in Planning
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How to Relax
▶ Recall: We introduced the concept of a relaxed search problem (allow

cheating) to derive heuristics from them.
▶ Observation: This can be generalized to arbitrary problem solving.

▶ Definition 2.1 (The General Case).
P

P ′

N ∪ {∞}

R

h∗P

h∗P′

1. You have a class P of problems, whose perfect heuristic h∗
P you wish to estimate.

2. You define a class P ′ of simpler problems, whose perfect heuristic h∗
P′ can be used

to estimate h∗
P .

3. You define a transformation – the relaxation mapping R – that maps instances Π∈P
into instances Π′∈P ′.

4. Given Π∈P, you let Π′:=R(Π), and estimate h∗
P(Π) by h∗

P′(Π′).
▶ Definition 2.2. For planning tasks, we speak of relaxed planning.
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How to Relax
▶ Recall: We introduced the concept of a relaxed search problem (allow

cheating) to derive heuristics from them.
▶ Observation: This can be generalized to arbitrary problem solving.
▶ Definition 2.3 (The General Case).

P

P ′

N ∪ {∞}

R

h∗P

h∗P′

1. You have a class P of problems, whose perfect heuristic h∗
P you wish to estimate.

2. You define a class P ′ of simpler problems, whose perfect heuristic h∗
P′ can be used

to estimate h∗
P .

3. You define a transformation – the relaxation mapping R – that maps instances Π∈P
into instances Π′∈P ′.

4. Given Π∈P, you let Π′:=R(Π), and estimate h∗
P(Π) by h∗

P′(Π′).
▶ Definition 2.4. For planning tasks, we speak of relaxed planning.
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Reminder: Heuristic Functions from Relaxed Problems

▶ Problem Π: Find a route from Saarbrücken to Edinburgh.
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Reminder: Heuristic Functions from Relaxed Problems

▶ Relaxed Problem Π′: Throw away the map.
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Reminder: Heuristic Functions from Relaxed Problems

▶ Heuristic function h: Straight line distance.
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Relaxation in Route-Finding

▶ Problem class P: Route finding.
▶ Perfect heuristic h∗P for P: Length of a shortest route.
▶ Simpler problem class P ′: Route finding on an empty map.
▶ Perfect heuristic h∗P′ for P ′: Straight-line distance.
▶ Transformation R: Throw away the map.
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How to Relax in Planning? (A Reminder!)

▶ Example 2.5 (Logistics).

▶ facts P: {truck(x)|x∈{A,B,C ,D}} ∪ {pack(x)|x∈{A,B,C ,D,T}}.
▶ initial state I : {truck(A), pack(C)}.
▶ goal state G : {truck(A), pack(D)}.
▶ actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)
▶ drive(x , y), where x and y have a road: “truck(x) ⇒ truck(y),¬truck(x)”.
▶ load(x): “truck(x), pack(x) ⇒ pack(T ),¬pack(x)”.
▶ unload(x): “truck(x), pack(T ) ⇒ pack(x),¬pack(T )”.

▶ Example 2.6 (“Only-Adds” Relaxation). Drop the preconditions and deletes.
▶ “drive(x , y): ⇒ truck(y)”;
▶ “ load(x): ⇒ pack(T )”;
▶ “unload(x): ⇒ pack(x)”.

▶ Heuristics value for I is?
▶ hR(I ) = 1: A plan for the relaxed task is ⟨unload(D)⟩.
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How to Relax in Planning? (A Reminder!)

▶ Example 2.7 (Logistics).

▶ facts P: {truck(x)|x∈{A,B,C ,D}} ∪ {pack(x)|x∈{A,B,C ,D,T}}.
▶ initial state I : {truck(A), pack(C)}.
▶ goal state G : {truck(A), pack(D)}.
▶ actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)
▶ drive(x , y), where x and y have a road: “truck(x) ⇒ truck(y),¬truck(x)”.
▶ load(x): “truck(x), pack(x) ⇒ pack(T ),¬pack(x)”.
▶ unload(x): “truck(x), pack(T ) ⇒ pack(x),¬pack(T )”.

▶ Example 2.8 (“Only-Adds” Relaxation). Drop the preconditions and deletes.
▶ “drive(x , y): ⇒ truck(y)”;
▶ “ load(x): ⇒ pack(T )”;
▶ “unload(x): ⇒ pack(x)”.

▶ Heuristics value for I is?

▶ hR(I ) = 1: A plan for the relaxed task is ⟨unload(D)⟩.
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How to Relax in Planning? (A Reminder!)
▶ Example 2.9 (Logistics).

▶ facts P: {truck(x)|x∈{A,B,C ,D}} ∪ {pack(x)|x∈{A,B,C ,D,T}}.
▶ initial state I : {truck(A), pack(C)}.
▶ goal state G : {truck(A), pack(D)}.
▶ actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)
▶ drive(x , y), where x and y have a road: “truck(x) ⇒ truck(y),¬truck(x)”.
▶ load(x): “truck(x), pack(x) ⇒ pack(T ),¬pack(x)”.
▶ unload(x): “truck(x), pack(T ) ⇒ pack(x),¬pack(T )”.

▶ Example 2.10 (“Only-Adds” Relaxation). Drop the preconditions and deletes.

▶ “drive(x , y): ⇒ truck(y)”;
▶ “ load(x): ⇒ pack(T )”;
▶ “unload(x): ⇒ pack(x)”.

▶ Heuristics value for I is?
▶ hR(I ) = 1: A plan for the relaxed task is ⟨unload(D)⟩.
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How to Relax During Search: Overview

▶ Attention: Search uses the real (un-relaxed) Π. The relaxation is applied (e.g.,
in Only-Adds, the simplified actions are used) only within the call to h(s)!!!

Problem Π Solution to ΠHeuristic search on Π

R h∗P′

state s

R(Πs)

h(s) = h∗P′(R(Πs))

▶ Here, Πs is Π with initial state replaced by s, i.e., Π:=⟨P ,A, I ,G ⟩ changed to
Πs :=⟨P,A, {s},G⟩: The task of finding a plan for search state s.

▶ A common student mistake is to instead apply the relaxation once to the whole
problem, then doing the whole search “within the relaxation”.

▶ The next slide illustrates the correct search process in detail.
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How to Relax During Search: Only-Adds

Real problem:
▶ Initial state I : AC ; goal G : AD.
▶ Actions A: pre, add, del.
▶ drXY , loX , ulX .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC
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How to Relax During Search: Only-Adds

Relaxed problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: add.
▶ hR(s) =

1: ⟨ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

ACAC

1
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ AC
drAB−−−→ BC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

drAB
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How to Relax During Search: Only-Adds

Relaxed problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: add.
▶ hR(s) =

2: ⟨drBA, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

drAB
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: CC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ BC
drBC−−−→ CC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

drBC
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How to Relax During Search: Only-Adds

Relaxed problem:
▶ State s: CC ; goal G : AD.
▶ Actions A: add.
▶ hR(s) =

2: ⟨drBA, ulD⟩.
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Relaxed problem:
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ BC
drBA−−−→ AC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

drBA
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Duplicate state, prune.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: DC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ CC
drCD−−−→ DC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC
dr
CD
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How to Relax During Search: Only-Adds

Relaxed problem:
▶ State s: DC ; goal G : AD.
▶ Actions A: add.
▶ hR(s) =

2: ⟨drBA, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: CT ; goal G : AD.
▶ Actions A: pre, add, del.

▶ CC
loC−−→ CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC

2

dr
CD

CT

loC
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Relaxed problem:
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ CC
drCB−−−→ BC .

Greedy best-first search: (tie-breaking: alphabetic)
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Duplicate state, prune.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC
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AC

D

drBA

DC

2

dr
CD

CT

2loC

BC
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drCB
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: CT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: BT , DT , CC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC

2

dr
CD

CT

2loC

BC

D

drCB

BT

2

dr
CB

DT

2drCD

CC

D

ulC
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: BT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: AT , BB, CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC

2

dr
CD

CT

2loC

BC

D

drCB

BT

2

dr
CB

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: AT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: AA, BT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC

2

dr
CD

CT

2loC

BC

D

drCB

BT

2

dr
CB

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drAB
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: AA; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: BA, AT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC

2

dr
CD

CT

2loC

BC

D

drCB

BT

2

dr
CB

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drAB BA

2drAB

AT

D

loA
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: BA; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: CA, AA.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drBA

DC

2

dr
CD

CT

2loC

BC

D

drCB

BT

2

dr
CB

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drAB BA

2drAB

AT

D

loA CA

2drBC

AA

D

drBA
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How to Relax During Search: Only-Adds

Real problem:
▶ State s: BA; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: CA, AA.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB
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drBA
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2

dr
CD
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2loC

BC

D

drCB

BT

2

dr
CB

DT

2drCD
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D

ulC
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dr
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D
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D

loA CA

2drBC
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D
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Only-Adds is a “Native” Relaxation

▶ Definition 2.11 (Native Relaxations). Confusing special case where P ′ ⊆ P.

P

P ′ ⊆ P

N ∪ {∞}

R

h∗P

h∗P′

▶ Problem class P: STRIPS tasks.
▶ Perfect heuristic h∗

P for P: Length h∗ of a shortest plan.
▶ Transformation R: Drop the preconditions and delete lists.
▶ Simpler problem class P ′ is a special case of P, P ′ ⊆ P: STRIPS tasks with empty

preconditions and delete lists.
▶ Perfect heuristic for P ′: Shortest plan for only-adds STRIPS task.
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18.3 The Delete Relaxation

Michael Kohlhase: Artificial Intelligence 1 614 2024-02-08



How the Delete Relaxation Changes the World (I)

▶ Relaxation mapping R saying that:
“When the world changes, its previous state remains true as well.”

Real world: (before)
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▶ Relaxation mapping R saying that:
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How the Delete Relaxation Changes the World (I)

▶ Relaxation mapping R saying that:
“When the world changes, its previous state remains true as well.”

Relaxed world: (before)
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How the Delete Relaxation Changes the World (I)

▶ Relaxation mapping R saying that:
“When the world changes, its previous state remains true as well.”

Relaxed world: (after)
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How the Delete Relaxation Changes the World (II)

▶ Relaxation mapping R saying that:
Real world: (before)

Michael Kohlhase: Artificial Intelligence 1 616 2024-02-08



How the Delete Relaxation Changes the World (II)

▶ Relaxation mapping R saying that:
Real world: (after)
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How the Delete Relaxation Changes the World (II)

▶ Relaxation mapping R saying that:
Relaxed world: (before)
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How the Delete Relaxation Changes the World (II)

▶ Relaxation mapping R saying that:
Relaxed world: (after)
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How the Delete Relaxation Changes the World (III)

▶ Relaxation mapping R saying that:
Real world:
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How the Delete Relaxation Changes the World (III)

▶ Relaxation mapping R saying that:
Relaxed world:
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The Delete Relaxation

▶ Definition 3.1 (Delete Relaxation). Let Π:=⟨P ,A, I ,G ⟩ be a STRIPS task.
The delete relaxation of Π is the task Π+ = ⟨P,A+, I ,G ⟩ where A+:={a+|a∈A}
with prea+ :=prea, adda+ :=adda, and dela+ :=∅.

▶ In other words, the class of simpler problems P ′ is the set of all STRIPS tasks
with empty delete lists, and the relaxation mapping R drops the delete lists.

▶ Definition 3.2 (Relaxed Plan). Let Π:=⟨P ,A, I ,G ⟩ be a STRIPS task, and let
s be a state. A relaxed plan for s is a plan for ⟨P,A, s,G ⟩+. A relaxed plan for I
is called a relaxed plan for Π.

▶ A relaxed plan for s is an action sequence that solves s when pretending that all
delete lists are empty.

▶ Also called delete-relaxed plan: “relaxation” is often used to mean delete
relaxation by default.
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A Relaxed Plan for “TSP” in Australia

1. Initial state: {at(Sy), vis(Sy)}.

2. drv(Sy,Br)+: {at(Br), vis(Br), at(Sy), vis(Sy)}.
3. drv(Sy,Ad)+: {at(Ad), vis(Ad), at(Br), vis(Br), at(Sy), vis(Sy)}.
4. drv(Ad,Pe)+:

{at(Pe), vis(Pe), at(Ad), vis(Ad), at(Br), vis(Br), at(Sy), vis(Sy)}.
5. drv(Ad,Da)+:

{at(Da), vis(Da), at(Pe), vis(Pe), at(Ad), vis(Ad), at(Br), vis(Br), at(Sy), vis(Sy)}.
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A Relaxed Plan for “Logistics”

▶ Facts P: {truck(x)|x∈{A,B,C ,D}} ∪ {pack(x)|x∈{A,B,C ,D,T}}.
▶ Initial state I : {truck(A), pack(C )}.
▶ Goal G : {truck(A), pack(D)}.
▶ Relaxed actions A+: (Notated as “precondition ⇒ adds”)
▶ drive(x , y)+: “truck(x) ⇒ truck(y)”.
▶ load(x)+: “truck(x), pack(x) ⇒ pack(T )”.
▶ unload(x)+: “truck(x), pack(T ) ⇒ pack(x)”.
Relaxed plan:

⟨drive(A,B)+,drive(B,C )+, load(C )+, drive(C ,D)+, unload(D)+⟩

▶ We don’t need to drive the truck back, because “it is still at A”.
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PlanEx+

▶ Definition 3.3 (Relaxed Plan Existence Problem). By PlanEx+, we denote
the problem of deciding, given a STRIPS task Π:=⟨P ,A, I ,G ⟩, whether or not
there exists a relaxed plan for Π.

▶ This is easier than PlanEx for general STRIPS!
▶ PlanEx+ is in P.
▶ Proof: The following algorithm decides PlanEx+

1.

var F := I
while G ̸⊆ F do

F ′ := F ∪⋃
a∈A:prea⊆F adda

if F ′ = F then return ‘‘unsolvable’’ endif (∗)
F := F ′

endwhile
return ‘‘solvable’’

2. The algorithm terminates after at most |P| iterations, and thus runs in
polynomial time.

3. Correctness: See slide 624
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Deciding PlanEx+ in “TSP” in Australia

Iterations on F :
1. {at(Sy), vis(Sy)}
2. ∪ {at(Ad), vis(Ad), at(Br), vis(Br)}
3. ∪ {at(Da), vis(Da), at(Pe), vis(Pe)}
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Deciding PlanEx+ in “Logistics”

▶ Example 3.4 (The solvable Case).
Iterations on F :
1. {truck(A), pack(C)}
2. ∪{truck(B)}
3. ∪{truck(C)}
4. ∪{truck(D), pack(T )}
5. ∪{pack(A),pack(B), pack(D)}

▶ Example 3.5 (The unsolvable Case).
Iterations on F :
1. {truck(A), pack(C)}
2. ∪{truck(B)}
3. ∪{truck(C)}
4. ∪{pack(T )}
5. ∪{pack(A),pack(B)}
6. ∪∅
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PlanEx+ Algorithm: Proof

Proof: To show: The algorithm returns “solvable” iff there is a relaxed plan for Π.
1. Denote by Fi the content of F after the ith iteration of the while-loop,
2. All a∈A0 are applicable in I , all a∈A1 are applicable in apply(I ,A+

0 ), and so
forth.

3. Thus Fi = apply(I , ⟨A+
0 , . . . ,A

+
i−1⟩). (Within each A+

j , we can sequence the
actions in any order.)

4. Direction “⇒” If “solvable” is returned after iteration n then G ⊆ Fn =

apply(I , ⟨A+
0 , . . . ,A

+
n−1⟩) so ⟨A+

0 , . . . ,A
+
n−1⟩ can be sequenced to a relaxed plan

which shows the claim.
5. Direction “⇐”
5.1. Let ⟨a+0 , . . . , a+n−1⟩ be a relaxed plan, hence G ⊆ apply(I , ⟨a+0 , . . . , a+n−1⟩).
5.2. Assume, for the moment, that we drop line (*) from the algorithm. It is

then easy to see that ai∈Ai and apply(I , ⟨a+0 , . . . , a+i−1⟩) ⊆ Fi , for all i .
5.3. We get G ⊆ apply(I , ⟨a+0 , . . . , a+n−1⟩) ⊆ Fn, and the algorithm returns

“solvable” as desired.
5.4. Assume to the contrary of the claim that, in an iteration i < n, (*) fires.

Then G ̸⊆F and F = F ′. But, with F = F ′, F = Fj for all j > i , and we get
G ̸⊆Fn in contradiction.
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18.4 The h+Heuristic
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Hold on a Sec – Where are we?

P

P ′ ⊆ P

N ∪ {∞}

R

h∗P

h∗P′

▶ P: STRIPS tasks; h∗P : Length h∗ of a shortest plan.
▶ P ′ ⊆ P: STRIPS tasks with empty delete lists.
▶ R: Drop the delete lists.
▶ Heuristic function: Length of a shortest relaxed plan (h∗ ◦ R).
▶ PlanEx+ is not actually what we’re looking for. PlanEx+ =̂ relaxed plan

existence; we want relaxed plan length h∗ ◦ R.

Michael Kohlhase: Artificial Intelligence 1 625 2024-02-08



h+: The Ideal Delete Relaxation Heuristic

▶ Definition 4.1 (Optimal Relaxed Plan). Let ⟨P ,A, I ,G ⟩ be a STRIPS task,
and let s be a state. A optimal relaxed plan for s is an optimal plan for
⟨P,A, {s},G ⟩+.

▶ Same as slide 618, just adding the word “optimal”.
▶ Here’s what we’re looking for:
▶ Definition 4.2. Let Π:=⟨P ,A, I ,G ⟩ be a STRIPS task with states S . The ideal

delete relaxation heuristic h+ for Π is the function h+ : S→N ∪ {∞} where
h+(s) is the length of an optimal relaxed plan for s if a relaxed plan for s exists,
and h+(s) = ∞ otherwise.

▶ In other words, h+ = h∗ ◦ R, cf. previous slide.
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h+ is Admissible

▶ Lemma 4.3. Let Π:=⟨P ,A, I ,G ⟩ be a STRIPS task, and let s be a state. If
⟨a1, . . ., an⟩ is a plan for Πs :=⟨P,A, {s},G ⟩, then ⟨a+1 , . . ., a+n ⟩ is a plan for Π+.

▶ Proof sketch: Show by induction over 0≤i≤n that
apply(s, ⟨a1, . . . , ai ⟩) ⊆ apply(s, ⟨a+1 , . . . , a+i ⟩).

▶ If we ignore deletes, the states along the plan can only get bigger.
▶ Theorem 4.4. h+ is Admissible.
▶ Proof:

1. Let Π:=⟨P ,A, I ,G ⟩ be a STRIPS task with states P, and let s∈P.
2. h+(s) is defined as optimal plan length in Π+

s .
3. With the lemma above, any plan for Π also constitutes a plan for Π+

s .
4. Thus optimal plan length in Π+

s can only be shorter than that in Πs i , and
the claim follows.
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ Initial state I : AC ; goal G :

AD.
▶ Actions A: pre, add, del.
▶ drXY , loX , ulX .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =

5: e.g.
⟨drAB, drBC , drCD, loC , ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =5: e.g.

⟨drAB, drBC , drCD, loC , ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ AC
drAB−−−→ BC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

drAB
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =

5: e.g.
⟨drBA, drBC , drCD, loC , ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

drAB
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =5: e.g.

⟨drBA, drBC , drCD, loC , ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: CC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ BC
drBC−−−→ CC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

drBC
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: CC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =

5: e.g.
⟨drCB, drBA, drCD, loC , ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: CC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =5: e.g.

⟨drCB, drBA, drCD, loC , ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC BC

5drAB

CC

5drBC
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ BC
drBA−−−→ AC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

drBA
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: AC ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Duplicate state, prune.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: DC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ CC
drCD−−−→ DC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC
dr
CD
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: DC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =

5: e.g.
⟨drDC , drCB, drBA, loC , ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC
dr
CD
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: DC ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =5: e.g.

⟨drDC , drCB, drBA, loC , ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: CT ; goal G : AD.
▶ Actions A: pre, add, del.

▶ CC
loC−−→ CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

loC
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: CT ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =

4: e.g.
⟨drCB, drBA, drCD, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here
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How to Relax During Search: Ignoring Deletes

Relaxed problem:
▶ State s: CT ; goal G : AD.
▶ Actions A: pre, add.
▶ h+(s) =4: e.g.

⟨drCB, drBA, drCD, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add, del.

▶ CC
drCB−−−→ BC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
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CT
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drCB
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: BC ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Duplicate state, prune.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB
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How to Relax During Search: Ignoring Deletes

Real problem:
▶ State s: CT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: BT , DT , CC .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: BT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: AT , BB, CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: AT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: AA, BT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drAB
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: DT ; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: DD, CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drAB

DD

3ulD

CT

D

drD
C
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: DD; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: CD, DT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drAB

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: CD; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: BD, DD.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drAB

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD BD

1drCB

DD

D

drCD
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: BD; goal G : AD.
▶ Actions A: pre, add, del.
▶ Successors: AD, CD.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drAB

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD BD

1drCB

DD

D

drCD AD

0drBA

CD

D

drBC
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How to Relax During Search: Ignoring Deletes
Real problem:
▶ State s: AD; goal G : AD.
▶ Actions A: pre, add, del.
▶ Goal state!

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drBA

DC

5

dr
CD

CT

4loC

BC

D

drCB

BT

4

dr
CB

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drAB

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD BD

1drCB

DD

D

drCD AD

0drBA

CD

D

drBC
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h+ in the Blocksworld

▶
CD

B

C

B

A
A

Initial State Goal State

▶ Optimal plan:
⟨putdown(A), unstack(B,D), stack(B,C ),pickup(A), stack(A,B)⟩.

▶ Optimal relaxed plan: ⟨stack(A,B), unstack(B,D), stack(B,C )⟩.
▶ Observation: What can we say about the “search space surface” at the initial

state here?
▶ The initial state lies on a local minimum under h+, together with the successor

state s where we stacked A onto B. All direct other neighbors of these two
states have a strictly higher h+ value.
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18.5 Conclusion
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Summary

▶ Heuristic search on classical search problems relies on a function h mapping
states s to an estimate h(s) of their goal state distance. Such functions h are
derived by solving relaxed problems.

▶ In planning, the relaxed problems are generated and solved automatically. There
are four known families of suitable relaxation methods: abstractions, landmarks,
critical paths, and ignoring deletes (aka delete relaxation).

▶ The delete relaxation consists in dropping the deletes from STRIPS tasks. A
relaxed plan is a plan for such a relaxed task. h+(s) is the length of an optimal
relaxed plan for state s. h+ is NP-hard to compute.

▶ hFF approximates h+ by computing some, not necessarily optimal, relaxed plan.
That is done by a forward pass (building a relaxed planning graph), followed by
a backward pass (extracting a relaxed plan).
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Topics We Didn’t Cover Here
▶ Abstractions, Landmarks, Critical-Path Heuristics, Cost Partitions,

Compilability between Heuristic Functions, Planning Competitions:
▶ Tractable fragments: Planning sub-classes that can be solved in polynomial

time. Often identified by properties of the “causal graph” and “domain transition
graphs”.

▶ Planning as SAT: Compile length-k bounded plan existence into satisfiability of
a CNF formula φ. Extensive literature on how to obtain small φ, how to
schedule different values of k , how to modify the underlying SAT solver.

▶ Compilations: Formal framework for determining whether planning formalism
X is (or is not) at least as expressive as planning formalism Y .

▶ Admissible pruning/decomposition methods: Partial-order reduction,
symmetry reduction, simulation-based dominance pruning, factored planning,
decoupled search.

▶ Hand-tailored planning: Automatic planning is the extreme case where the
computer is given no domain knowledge other than “physics”. We can instead
allow the user to provide search control knowledge, trading off modeling effort
against search performance.

▶ Numeric planning, temporal planning, planning under uncertainty . . .
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Chapter 19
Searching, Planning, and Acting in the Real World
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Outline

▶ So Far: we made idealizing/simplifying assumptions:
The environment is fully observable and deterministic.

▶ Outline: In this chapter we will lift some of them
▶ The real world (things go wrong)
▶ Agents and Belief States
▶ Conditional planning
▶ Monitoring and replanning

▶ Note: The considerations in this chapter apply to both search and planning.
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19.1 Introduction
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The real world

▶ Example 1.1. We have a flat tire – what to do?
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Generally: Things go wrong (in the real world)

▶ Example 1.2 (Incomplete Information).
▶ Unknown preconditions, e.g., Intact(Spare)?
▶ Disjunctive effects, e.g., Inflate(x) causes

Inflated(x) ∨ SlowHiss(x) ∨ Burst(x) ∨ BrokenPump ∨ . . .
▶ Example 1.3 (Incorrect Information).
▶ Current state incorrect, e.g., spare NOT intact
▶ Missing/incorrect effects in actions.

▶ Definition 1.4. The qualification problem in planning is that we can never finish
listing all the required preconditions and possible conditional effects of actions.

▶ Root Cause: The environment is partially observable and/or non-deterministic.
▶ Technical Problem: We cannot know the “current state of the world”, but

search/planning algorithms are based on this assumption.
▶ Idea: Adapt search/planning algorithms to work with “sets of possible states”.
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What can we do if things (can) go wrong?

▶ One Solution: Sensorless planning: plans that work regardless of
state/outcome.

▶ Problem: Such plans may not exist! (but they often do in practice)
▶ Another Solution: Conditional plans:
▶ Plan to obtain information, (observation actions)
▶ Subplan for each contingency.

▶ Example 1.5 (A conditional Plan). (AAA =̂ ADAC)
[Check(T1), if Intact(T1) then Inflate(T1) else CallAAA fi]

▶ Problem: Expensive because it plans for many unlikely cases.
▶ Still another Solution: Execution monitoring/replanning
▶ Assume normal states/outcomes, check progress during execution, replan if

necessary.
▶ Problem: Unanticipated outcomes may lead to failure. (e.g., no AAA card)
▶ Observation 1.6. We really need a combination; plan for likely/serious

eventualities, deal with others when they arise, as they must eventually.
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19.2 The Furniture Coloring Example
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The Furniture-Coloring Example: Specification

▶ Example 2.1 (Coloring Furniture).

Paint a chair and a table in matching colors.
▶ The initial state is:
▶ we have two cans of paint of unknown color,
▶ the color of the furniture is unknown as well,
▶ only the table is in the agent’s field of view.

▶ Actions:
▶ remove lid from can
▶ paint object with paint from open can.
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The Furniture-Coloring Example: PDDL

▶ Example 2.2 (Formalization in PDDL).
▶ The PDDL domain file is as expected (actions below)

(define (domain furniture−coloring)
(:predicates (object ?x) (can ?x) (inview ?x) (color ?x ?y))
...)

▶ The PDDL problem file has a “free” variable ?c for the (undetermined) joint color.
▶ Two action schemata: remove can lid to open and paint with open can has a

universal variable ?c for the paint action ⇝we cannot just give paint a color
argument in a partially observable environment.

▶ Sensorless Plan: Open one can, paint chair and table in its color.
▶ Note: Contingent planning can create better plans, but needs perception
▶ Two percept schemata: color of an object and color in a can
▶ An action schema: look at an object that causes it to come into view.
▶ Contingent Plan:

1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color

Michael Kohlhase: Artificial Intelligence 1 637 2024-02-08



The Furniture-Coloring Example: PDDL
▶ Example 2.3 (Formalization in PDDL).
▶ The PDDL domain file is as expected (actions below)
▶ The PDDL problem file has a “free” variable ?c for the (undetermined) joint color.

(define (problem tc−coloring)
(:domain furniture−objects)
(:objects table chair c1 c2)
(:init (object table) (object chair) (can c1) (can c2) (inview table))
(:goal (color chair ?c) (color table ?c)))

▶ Two action schemata: remove can lid to open and paint with open can has a
universal variable ?c for the paint action ⇝we cannot just give paint a color
argument in a partially observable environment.

▶ Sensorless Plan: Open one can, paint chair and table in its color.
▶ Note: Contingent planning can create better plans, but needs perception
▶ Two percept schemata: color of an object and color in a can
▶ An action schema: look at an object that causes it to come into view.
▶ Contingent Plan:

1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color
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The Furniture-Coloring Example: PDDL
▶ Example 2.4 (Formalization in PDDL).
▶ The PDDL domain file is as expected (actions below)
▶ The PDDL problem file has a “free” variable ?c for the (undetermined) joint color.
▶ Two action schemata: remove can lid to open and paint with open can

(:action remove−lid
:parameters (?x)
:precondition (can ?x)
:effect (open can))

(:action paint
:parameters (?x ?y)
:precondition (and (object ?x) (can ?y) (color ?y ?c) (open ?y))
:effect (color ?x ?c))

has a universal variable ?c for the paint action ⇝we cannot just give paint a color
argument in a partially observable environment.

▶ Sensorless Plan: Open one can, paint chair and table in its color.

▶ Note: Contingent planning can create better plans, but needs perception
▶ Two percept schemata: color of an object and color in a can
▶ An action schema: look at an object that causes it to come into view.
▶ Contingent Plan:

1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color
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The Furniture-Coloring Example: PDDL
▶ Example 2.5 (Formalization in PDDL).
▶ The PDDL domain file is as expected (actions below)
▶ The PDDL problem file has a “free” variable ?c for the (undetermined) joint color.
▶ Two action schemata: remove can lid to open and paint with open can has a

universal variable ?c for the paint action ⇝we cannot just give paint a color
argument in a partially observable environment.

▶ Sensorless Plan: Open one can, paint chair and table in its color.
▶ Note: Contingent planning can create better plans, but needs perception
▶ Two percept schemata: color of an object and color in a can

(:percept color
:parameters (?x ?c)
:precondition (and (object ?x) (inview ?x)))

(:percept can−color
:parameters (?x ?c)
:precondition (and (can ?x) (inview ?x) (open ?x)))

To perceive the color of an object, it must be in view, a can must also be open.
Note: In a fully observable world, the percepts would not have preconditions.

▶ An action schema: look at an object that causes it to come into view.
▶ Contingent Plan:

1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color
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The Furniture-Coloring Example: PDDL

▶ Example 2.6 (Formalization in PDDL).
▶ The PDDL domain file is as expected (actions below)
▶ The PDDL problem file has a “free” variable ?c for the (undetermined) joint color.
▶ Two action schemata: remove can lid to open and paint with open can has a

universal variable ?c for the paint action ⇝we cannot just give paint a color
argument in a partially observable environment.

▶ Sensorless Plan: Open one can, paint chair and table in its color.
▶ Note: Contingent planning can create better plans, but needs perception
▶ Two percept schemata: color of an object and color in a can
▶ An action schema: look at an object that causes it to come into view.

(:action lookat
:parameters (?x)
:precond: (and (inview ?y) and (notequal ?x ?y))
:effect (and (inview ?x) (not (inview ?y))))

▶ Contingent Plan:
1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color
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The Furniture-Coloring Example: PDDL

▶ Example 2.7 (Formalization in PDDL).
▶ The PDDL domain file is as expected (actions below)
▶ The PDDL problem file has a “free” variable ?c for the (undetermined) joint color.
▶ Two action schemata: remove can lid to open and paint with open can has a

universal variable ?c for the paint action ⇝we cannot just give paint a color
argument in a partially observable environment.

▶ Sensorless Plan: Open one can, paint chair and table in its color.
▶ Note: Contingent planning can create better plans, but needs perception
▶ Two percept schemata: color of an object and color in a can
▶ An action schema: look at an object that causes it to come into view.
▶ Contingent Plan:

1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color
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19.3 Searching/Planning with Non-Deterministic
Actions
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Conditional Plans

▶ Definition 3.1. Conditional plans extend the possible actions in plans by
conditional steps that execute sub plans conditionally whether K + P |=C ,
where K + P is the current knowledge base + the percepts.

▶ Definition 3.2. Conditional plans can contain
▶ conditional step: [. . . , if C then PlanA else PlanB fi, . . .],
▶ while step: [. . . ,while C do Plan done, . . .], and
▶ the empty plan ∅ to make modeling easier.

▶ Definition 3.3. If the possible percepts are limited to determining the current
state in a conditional plan, then we speak of a contingency plan.

▶ Note: Need some plan for every possible percept! Compare to
game playing: some response for every opponent move.
backchaining: some rule such that every premise satisfied.

▶ Idea: Use an AND–OR tree search(very similar to backward chaining algorithm)
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Contingency Planning: The Erratic Vacuum Cleaner

▶ Example 3.4 (Erratic vacuum world).

A variant suck action:
if square is
▶ dirty : clean the square,

sometimes remove dirt in
adjacent square.

▶ clean: sometimes deposits dirt
on the carpet. LeftSuck

RightSuck

RightSuck

6 

GOAL
8 

GOAL
7 

1 

2 5 

1 

LOOP
5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL
8 4 

Solution: [suck , if State = 5 then [right, suck] else [] fi]
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Conditional AND-OR Search (Data Structure)

▶ Idea: Use AND-OR trees as data structures for representing problems (or
goals) that can be reduced to to conjunctions and disjunctions of subproblems
(or subgoals).

▶ Definition 3.5. An AND-OR graph is a is a graph whose non-terminal nodes are
partitioned into AND nodes and OR nodes. A valuation of an AND-OR graph T
is an assignment of T or F to the nodes of T . A valuation of the terminal nodes
of T can be extended by all nodes recursively: Assign T to an
▶ OR node, iff at least one of its children is T.
▶ AND node, iff all of its children are T.

A solution for T is a valuation that assigns T to the initial nodes of T .
▶ Idea: A planning task with non deterministic actions generates a AND-OR

graph T . A solution that assigns T to a terminal node, iff it is a goal node.
Corresponds to a conditional plan.

Michael Kohlhase: Artificial Intelligence 1 640 2024-02-08



Conditional AND-OR Search (Example)

▶ Definition 3.6. An AND-OR tree is a AND-OR graph that is also a tree.
Notation: AND nodes are written with arcs connecting the child edges.

▶ Example 3.7 (An AND-OR-tree).
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Conditional AND-OR Search (Algorithm)

▶ Definition 3.8. AND-OR search is an algorithm for searching AND–OR graphs
generated by nondeterministic environments.

function AND/OR−GRAPH−SEARCH(prob) returns a conditional plan, or fail
OR−SEARCH(prob.INITIAL−STATE, prob, [])

function OR−SEARCH(state,prob,path) returns a conditional plan, or fail
if prob.GOAL−TEST(state) then return the empty plan
if state is on path then return fail
for each action in prob.ACTIONS(state) do
plan := AND−SEARCH(RESULTS(state,action),prob,[state | path])
if plan ̸= fail then return [action | plan]

return fail
function AND−SEARCH(states,prob,path) returns a conditional plan, or fail

for each si in states do
pi := OR−SEARCH(si ,prob,path)
if pi = fail then return fail
return [if s1 then p1 else if s2 then p2 else . . . if sn−1 then pn−1 else pn]

▶ Cycle Handling: If a state has been seen before ; fail
▶ fail does not mean there is no solution, but
▶ if there is a non-cyclic solution, then it is reachable by an earlier incarnation!
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The Slippery Vacuum Cleaner (try, try, try, . . . try again)
▶ Example 3.9 (Slippery Vacuum World).

Moving sometimes fails
; AND-OR graph

Suck Right

6 

1 

2 5 

Right

Two possible solutions (depending on what our plan language allows)
▶ [L1 : left, if AtR then L1 else [if CleanL then ∅ else suck fi] fi] or
▶ [while AtR do [left] done, if CleanL then ∅ else suck fi]

▶ We have an infinite loop but plan eventually works unless action always fails.
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AI-1 Survey on ALeA

▶ Online survey evaluating ALeA from 7.02.24 to 29.02.24 24:00 (Feb last)

▶ Works on all common devices (mobile phone, notebook, etc.)
▶ Is in english Takes about 10 - 20 min
▶ Questions about how ALeA is used, what it is like usig ALeA, and questions

about demography
▶ Token is generated at the end of the survey (SAVE THIS CODE!)
▶ Completed survey count as a successfull tuesday quiz in AI1!
▶ Look for Quiz 15 in the usual place (single question)
▶ just submit the token to get full points
▶ The token can also be used to exercise the rights of the GDPR.

▶ Survey has no timelimit and is free, anonymous, can be paused and continued
later on and can be cancelled.
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▶ The token can also be used to exercise the rights of the GDPR.

▶ Survey has no timelimit and is free, anonymous, can be paused and continued
later on and can be cancelled.
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Find the Survey Here

https://ddi-survey.cs.fau.de/limesurvey/ALeA

This URL will also be posted on the forum tonight.
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19.4 Agent Architectures based on Belief States
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World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!

▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 4.1. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in, and
▶ a sensor model that updates the belief state based on sensor information
▶ a transition model that updates the belief state based on actions.

▶ Idea: The agent environment determines what the world model can be.
▶ In a fully observable, deterministic environment,
▶ we can observe the initial state and subsequent states are given by the actions alone.
▶ thus the belief state is a singleton (we call its member the world state) and the

transition model is a function from states and actions to states: a transition function.
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World Models for Uncertainty

▶ Problem: We do not know with certainty what state the world is in!
▶ Idea: Just keep track of all the possible states it could be in.
▶ Definition 4.4. A model-based agent has a world model consisting of
▶ a belief state that has information about the possible states the world may be in, and
▶ a sensor model that updates the belief state based on sensor information
▶ a transition model that updates the belief state based on actions.
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World Models by Agent Type in AI-1

▶ Note: All of these considerations only give requirements to the world model.
What we can do with it depends on representation and inference.

▶ Search-based Agents: In a fully observable, deterministic environment
▶ goal-based agent with world state =̂ “current state”
▶ no inference. (goal =̂ goal state from search problem)

▶ CSP-based Agents: In a fully observable, deterministic environment
▶ goal-based agent withworld state =̂ constraint network,
▶ inference =̂ constraint propagation. (goal =̂ satisfying assignment)

▶ Logic-based Agents: In a fully observable, deterministic environment
▶ model-based agent with world state =̂ logical formula
▶ inference =̂ e.g. DPLL or resolution. (no decision theory covered in AI-1)

▶ Planning Agents: In a fully observable, deterministic, environment
▶ goal-based agent with world state =̂ PL0, transition model =̂ STRIPS,
▶ inference =̂ state/plan space search. (goal: complete plan/execution)
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World Models for Complex Environments

▶ In a fully observable, but stochastic environment,
▶ the belief state must deal with a set of possible states.
▶ ; generalize the transition function to a transition relation.

▶ Note: This even applies to online problem solving, where we can just perceive
the state. (e.g. when we want to optimize utility)

▶ In a deterministic, but partially observable environment,
▶ the belief state must deal with a set of possible states.
▶ we can use transition functions.
▶ We need a sensor model, which predicts the influence of percepts on the belief state

– during update.
▶ In a stochastic, partially observable environment,
▶ mix the ideas from the last two. (sensor model + transition relation)
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Preview: New World Models (Belief) ; new Agent Types

▶ Probabilistic Agents: In a partially observable environment
▶ belief state =̂ Bayesian networks,
▶ inference =̂ probabilistic inference.

▶ Decision-Theoretic Agents:
In a partially observable, stochastic environment
▶ belief state + transition model =̂ decision networks,
▶ inference =̂ maximizing expected utility.

▶ We will study them in detailin the coming semester.
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19.5 Searching/Planning without Observations
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Conformant/Sensorless Planning
▶ Definition 5.1. Conformant or sensorless planning tries to find plans that work

without any sensing. (not even the initial state)

▶ Example 5.2 (Sensorless Vacuum Cleaner World).
States integer dirt and robot locations
Actions left, right, suck , noOp
Goal states notdirty?

▶ Observation 5.3. In a sensorless world we do not know the initial state. (or any
state after)

▶ Observation 5.4. Sensorless planning must search in the space of belief states
(sets of possible actual states).

▶ Example 5.5 (Searching the Belief State Space).
▶ Start in {1, 2, 3, 4, 5, 6, 7, 8}
▶ Solution: [right, suck, left, suck] right → {2, 4, 6, 8}

suck → {4, 8}
left → {3, 7}
suck → {7}
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Search in the Belief State Space: Let’s Do the Math

▶ Recap: We describe an search problem Π:=⟨S ,A, T , I ,G⟩ via its states S,
actions A, and transition model T : A×S→P(A), goal states G, and initial
state I.

▶ Problem: What is the corresponding sensorless problem?
▶ Let’ think: Let Π:=⟨S ,A, T , I ,G⟩ be a (physical) problem
▶ States Sb: The belief states are the 2|S| subsets of S.
▶ The initial state Ib is just S (no information)
▶ Goal states Gb:={S∈Sb | S ⊆ G} (all possible states must be physical goal states)
▶ Actions Ab: we just take A. (that’s the point!)
▶ Transition model T b : Ab×Sb→P(Ab): i.e. what is T b(a, S) for a∈A and S ⊆ S?

This is slightly tricky as a need not be applicable to all s∈S .
1. if actions are harmless to the environment, take T b(a, S):=

⋃
s∈ST (a, s).

2. if not, better take T b(a, S):=
⋂

s∈ST (a, s). (the safe bet)

▶ Observation 5.6. In belief-state space the problem is always fully observable!
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State Space vs. Belief State Space

▶ Example 5.7 (State/Belief State Space in the Vacuum World). In the
vacuum world all actions are always applicable (1./2. equal)

70 Chapter 3. Solving Problems by Searching
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Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:
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State Space vs. Belief State Space

▶ Example 5.8 (State/Belief State Space in the Vacuum World). In the
vacuum world all actions are always applicable (1./2. equal)

Michael Kohlhase: Artificial Intelligence 1 652 2024-02-08



Evaluating Conformant Planning

▶ Upshot: We can build belief-space problem formulations automatically,
▶ but they are exponentially bigger in theory, in practice they are often similar;
▶ e.g. 12 reachable belief states out of 28 = 256 for vacuum example.

▶ Problem: Belief states are HUGE; e.g. initial belief state for the 10 × 10
vacuum world contains 100 · 2100 ≈ 1032 physical states

▶ Idea: Use planning techniques: compact descriptions for
▶ belief states; e.g. all for initial state or not leftmost column after left.
▶ actions as belief state to belief state operations.

▶ This actually works: Therefore we talk about conformant planning!
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19.6 Searching/Planning with Observation
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Conditional planning (Motivation)

▶ Note: So far, we have never used the agent’s sensors.
▶ In , since the environment was observable and deterministic we could just use offline

planning.
▶ In because we chose to.

▶ Note: If the world is nondeterministic or partially observable then percepts
usually provide information, i.e., split up the belief state

▶ Idea: This can systematically be used in search/planning via belief-state search,
but we need to rethink/specialize the Transition model.
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A Transition Model for Belief-State Search

▶ We extend the ideas from slide 651 to include partial observability.
▶ Definition 6.1. Given a (physical) search problem Π:=⟨S ,A, T , I ,G⟩, we

define the belief state search problem induced by Π to be
⟨P(S),A, T b,S, {S∈Sb |S ⊆ G}⟩, where the transition model T b is constructed
in three stages:
▶ The prediction stage: given a belief state b and an action a we define

b̂:=PRED(b, a) for some function PRED : P(S)×A→P(S).
▶ The observation prediction stage determines the set of possible percepts that could

be observed in the predicted belief state: PossPERC(b̂) = {PERC(s)|s∈b̂}.
▶ The update stage determines, for each possible percept, the resulting belief state:

UPDATE(b̂, o):={s|o = PERC(s) and s∈b̂}
The functions PRED and PERC are the main parameters of this model. We
define RESULT(b, a):={UPDATE(PRED(b, a), o)|PossPERC(PRED(b, a))}

▶ Observation 6.2. We always have UPDATE(b̂, o) ⊆ b̂.
▶ Observation 6.3. If sensing is deterministic, belief states for different possible

percepts are disjoint, forming a partition of the original predicted belief state.
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Example: Local Sensing Vacuum Worlds

▶ Example 6.4 (Transitions in the Vacuum World). Deterministic World:
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Figure 4.14 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean ], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physi-
cal states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean ],
leading to three belief states as shown.

7 

5 

1 

3 

4 2 

Suck

B,Dirty] B,Clean]

Right

A,Clean]

Figure 4.15 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

The action Right is deterministic, sensing disambiguates to singletons
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Example: Local Sensing Vacuum Worlds
▶ Example 6.5 (Transitions in the Vacuum World). Slippery World:
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Figure 4.15 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

The action Right is non-deterministic, sensing disambiguates somewhat
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Belief-State Search with Percepts
▶ Observation: The belief-state transition model induces an AND-OR graph.
▶ Idea: Use AND-OR search in non deterministic environments.
▶ Example 6.6. AND-OR graph for initial percept [A,Dirty ].
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Solution: [Suck,Right, if Bstate = {6} then Suck else [] fi]
▶ Note: Belief-state-problem ; conditional step tests on belief-state percept

(plan would not be executable in a partially observable environment otherwise)
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Example: Agent Localization

▶ Example 6.7. An agent inhabits a maze of which it has an accurate map. It
has four sensors that can (reliably) detect walls. The Move action is
non-deterministic, moving the agent randomly into one of the adjacent squares.
1. Initial belief state ; b̂1 all possible locations.

2. Initial percept: NWS (walls north, west, and south) ; b̂2 = UPDATE(b̂1,NWS)

3. Agent executes Move ; b̂3 = PRED(b̂2,Move) = one step away from these.
4. Next percept: NS ; b̂4 = UPDATE(b̂3,NS)

▶ Observation: PRED enlarges the belief state, while UPDATE shrinks it again.
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Example: Agent Localization

▶ Example 6.8. An agent inhabits a maze of which it has an accurate map. It
has four sensors that can (reliably) detect walls. The Move action is
non-deterministic, moving the agent randomly into one of the adjacent squares.
1. Initial belief state ; b̂1 all possible locations.
2. Initial percept: NWS (walls north, west, and south) ; b̂2 = UPDATE(b̂1,NWS)
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Figure 4.16 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

(a) Possible locations of robot after  E1 = 1011

(b) Possible locations of robot after  E1 = 1011, E2 = 1010

Figure 4.17 Possible positions of the robot, !, (a) after one observation, E1 =1011, and
(b) after moving one square and making a second observation, E2 =1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

3. Agent executes Move ; b̂3 = PRED(b̂2,Move) = one step away from these.
4. Next percept: NS ; b̂4 = UPDATE(b̂3,NS)

▶ Observation: PRED enlarges the belief state, while UPDATE shrinks it again.
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Example: Agent Localization

▶ Example 6.9. An agent inhabits a maze of which it has an accurate map. It
has four sensors that can (reliably) detect walls. The Move action is
non-deterministic, moving the agent randomly into one of the adjacent squares.
1. Initial belief state ; b̂1 all possible locations.
2. Initial percept: NWS (walls north, west, and south) ; b̂2 = UPDATE(b̂1,NWS)

3. Agent executes Move ; b̂3 = PRED(b̂2,Move) = one step away from these.

4. Next percept: NS ; b̂4 = UPDATE(b̂3,NS)

▶ Observation: PRED enlarges the belief state, while UPDATE shrinks it again.
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Example: Agent Localization

▶ Example 6.10. An agent inhabits a maze of which it has an accurate map. It
has four sensors that can (reliably) detect walls. The Move action is
non-deterministic, moving the agent randomly into one of the adjacent squares.
1. Initial belief state ; b̂1 all possible locations.
2. Initial percept: NWS (walls north, west, and south) ; b̂2 = UPDATE(b̂1,NWS)

3. Agent executes Move ; b̂3 = PRED(b̂2,Move) = one step away from these.
4. Next percept: NS ; b̂4 = UPDATE(b̂3,NS)
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Figure 4.16 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

(a) Possible locations of robot after  E1 = 1011

(b) Possible locations of robot after  E1 = 1011, E2 = 1010

Figure 4.17 Possible positions of the robot, !, (a) after one observation, E1 =1011, and
(b) after moving one square and making a second observation, E2 =1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

▶ Observation: PRED enlarges the belief state, while UPDATE shrinks it again.
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Example: Agent Localization

▶ Example 6.11. An agent inhabits a maze of which it has an accurate map. It
has four sensors that can (reliably) detect walls. The Move action is
non-deterministic, moving the agent randomly into one of the adjacent squares.
1. Initial belief state ; b̂1 all possible locations.
2. Initial percept: NWS (walls north, west, and south) ; b̂2 = UPDATE(b̂1,NWS)

3. Agent executes Move ; b̂3 = PRED(b̂2,Move) = one step away from these.
4. Next percept: NS ; b̂4 = UPDATE(b̂3,NS)

All in all, b̂4 = UPDATE(PRED(UPDATE(b̂1,NWS),Move),NS) localizes the
agent.

▶ Observation: PRED enlarges the belief state, while UPDATE shrinks it again.
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Contingent Planning
▶ Definition 6.12. The generation of plan with conditional branching based on

percepts is called contingent planning, solutions are called contingent plans.
▶ Appropriate for partially observable or non-deterministic environments.
▶ Example 6.13. Continuing 2.1.

One of the possible contingent plan is
((lookat table) (lookat chair)

(if (and (color table c) (color chair c)) (noop)
((removelid c1) (lookat c1) (removelid c2) (lookat c2)
(if (and (color table c) (color can c)) ((paint chair can))

(if (and (color chair c) (color can c)) ((paint table can))
((paint chair c1) (paint table c1)))))))

▶ Note: Variables in this plan are existential; e.g. in
▶ line 2: If there is come joint color c of the table and chair ; done.
▶ line 4/5: Condition can be satisfied by [c1/can] or [c2/can] ; instantiate

accordingly.
▶ Definition 6.14. During plan execution the agent maintains the belief state b,

chooses the branch depending on whether b |= c for the condition c .
▶ Note: The planner must make sure b |= c can always be decided.
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Contingent Planning: Calculating the Belief State

▶ Problem: How do we compute the belief state?
▶ Recall: Given a belief state b, the new belief state b̂ is computed based on

prediction with the action a and the refinement with the percept p.
▶ Here:

Given an action a and percepts p = p1 ∧ . . . ∧ pn, we have
▶ b̂ = b\dela ∪ adda (as for the sensorless agent)
▶ If n = 1 and (:percept p1 :precondition c) is the only percept axiom, also add p and

c to b̂. (add c as otherwise p impossible)
▶ If n > 1 and (:percept pi :precondition c i ) are the percept axioms, also add p and

c1 ∨ . . . ∨ cn to b̂. (belief state no longer conjunction of literals /)
▶ Idea: Given such a mechanism for generating (exact or approximate) updated

belief states, we can generate contingent plans with an extension of AND-OR
search over belief states.

▶ Extension: This also works for non-deterministic actions: we extend the
representation of effects to disjunctions.
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19.7 Online Search
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Online Search and Replanning

▶ Note: So far we have concentrated on offline problem solving, where the agent
only acts (plan execution) after search/planning terminates.

▶ Recall: In online problem solving an agent interleaves computation and action:
it computes one action at a time based on incoming perceptions.

▶ Online problem solving is helpful in
▶ dynamic or semidynamic environments. (long computation times can be harmful)
▶ stochastic environments. (solve contingencies only when they arise)

▶ Online problem solving is necessary in unknown environments ; exploration
problem.
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Online Search Problems

▶ Observation: Online problem solving even makes sense in deterministic, fully
observable environments.

▶ Definition 7.1. A online search problem consists of a set S of states, and
▶ a function Actions(s) that returns a list of actions allowed in state s.
▶ the step cost function c, where c(s, a, s ′) is the cost of executing action a in state s

with outcome s ′. (cost unknown before executing a)
▶ a goal test Goal Test.

▶ Note: We can only determine RESULT(s, a) by being in s and executing a.
▶ Definition 7.2. The competitive ratio of an online problem solving agent is the

quotient of
▶ offline performance, i.e. cost of optimal solutions with full information and
▶ online performance, i.e. the actual cost induced by online problem solving.
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Online Search Problems (Example)

▶ Example 7.3 (A simple maze problem).
The agent starts at S and must reach G but knows
nothing of the environment. In particular not that
▶ Up(1, 1) results in (1,2) and
▶ Down(1, 1) results in (1,1) (i.e. back)
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Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.
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Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.
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Online Search Obstacles (Dead Ends)

▶ Definition 7.4. We call a state a dead end, iff no state is reachable from it by
an action. An action that leads to a dead end is called irreversible.

▶ Note: With irreversible actions the competitive ratio can be infinite.

▶ Observation 7.5. No online algorithm can avoid dead ends in all state spaces.
▶ Example 7.6. Two state spaces that lead an online agent into dead ends: Any

agent will fail in at least one of the spaces.
▶ Definition 7.7. We call 7.6 an adversary argument.
▶ Example 7.8. Forcing an online agent into an arbitrarily inefficient route:
▶ Observation: Dead ends are a real problem for robots: ramps, stairs, cliffs, . . .
▶ Definition 7.9. A state space is called safely explorable, iff a goal state is

reachable from every reachable state.
▶ We will always assume this in the following.
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Online Search Obstacles (Dead Ends)

▶ Definition 7.10. We call a state a dead end, iff no state is reachable from it by
an action. An action that leads to a dead end is called irreversible.

▶ Note: With irreversible actions the competitive ratio can be infinite.
▶ Observation 7.11. No online algorithm can avoid dead ends in all state spaces.

▶ Example 7.12. Two state spaces that lead an online agent into dead ends:
Any agent will fail in at least one of the spaces.

▶ Definition 7.13. We call 7.6 an adversary argument.
▶ Example 7.14. Forcing an online agent into an arbitrarily inefficient route:
▶ Observation: Dead ends are a real problem for robots: ramps, stairs, cliffs, . . .
▶ Definition 7.15. A state space is called safely explorable, iff a goal state is

reachable from every reachable state.
▶ We will always assume this in the following.
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Online Search Obstacles (Dead Ends)
▶ Definition 7.16. We call a state a dead end, iff no state is reachable from it by

an action. An action that leads to a dead end is called irreversible.
▶ Note: With irreversible actions the competitive ratio can be infinite.
▶ Observation 7.17. No online algorithm can avoid dead ends in all state spaces.
▶ Example 7.18. Two state spaces that lead an online agent into dead ends:
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Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.
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Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.
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Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.
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Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

Any agent will fail in at least one of the spaces.
▶ Definition 7.19. We call 7.6 an adversary argument.

▶ Example 7.20. Forcing an online agent into an arbitrarily inefficient route:
▶ Observation: Dead ends are a real problem for robots: ramps, stairs, cliffs, . . .
▶ Definition 7.21. A state space is called safely explorable, iff a goal state is

reachable from every reachable state.
▶ We will always assume this in the following.
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Online Search Obstacles (Dead Ends)
▶ Definition 7.22. We call a state a dead end, iff no state is reachable from it by

an action. An action that leads to a dead end is called irreversible.
▶ Note: With irreversible actions the competitive ratio can be infinite.
▶ Observation 7.23. No online algorithm can avoid dead ends in all state spaces.
▶ Example 7.24. Two state spaces that lead an online agent into dead ends:

Any agent will fail in at least one of the spaces.
▶ Definition 7.25. We call 7.6 an adversary argument.
▶ Example 7.26. Forcing an online agent into an arbitrarily inefficient route:

Whichever choice the agent
makes the adversary can block
with a long, thin wall
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Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.
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Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

▶ Observation: Dead ends are a real problem for robots: ramps, stairs, cliffs, . . .
▶ Definition 7.27. A state space is called safely explorable, iff a goal state is

reachable from every reachable state.
▶ We will always assume this in the following.
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Online Search Obstacles (Dead Ends)

▶ Definition 7.28. We call a state a dead end, iff no state is reachable from it by
an action. An action that leads to a dead end is called irreversible.

▶ Note: With irreversible actions the competitive ratio can be infinite.
▶ Observation 7.29. No online algorithm can avoid dead ends in all state spaces.
▶ Example 7.30. Two state spaces that lead an online agent into dead ends:

Any agent will fail in at least one of the spaces.
▶ Definition 7.31. We call 7.6 an adversary argument.
▶ Example 7.32. Forcing an online agent into an arbitrarily inefficient route:
▶ Observation: Dead ends are a real problem for robots: ramps, stairs, cliffs, . . .
▶ Definition 7.33. A state space is called safely explorable, iff a goal state is

reachable from every reachable state.
▶ We will always assume this in the following.
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Online Search Agents

▶ Observation: Online and offline search algorithms differ considerably:
▶ For an offline agent, the environment is visible a priori.
▶ An online agent builds a “map” of the environment from percepts in visited states.

Therefore, e.g. A∗ can expand any node in the fringe, but an online agent must
go there to explore it.

▶ Intuition: It seems best to expand nodes in “local order” to avoid spurious
travel.

▶ Idea: Depth first search seems a good fit. (must only travel for backtracking)
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Online DFS Search Agent

▶ Definition 7.34. The :
function ONLINE−DFS−AGENT(s ′) returns an action

inputs: s ′, a percept that identifies the current state
persistent: result, a table mapping (s, a) to s ′, initially empty

untried , a table mapping s to a list of untried actions
unbacktracked , a table mapping s to a list backtracks not tried
s, a, the previous state and action, initially null

if Goal Test(s ′) then return stop
if s ′ ̸∈untried then untried [s ′] := Actions(s ′)
if s is not null then

result[s, a] := s ′

add s to the front of unbacktracked [s ′]
if untried [s ′] is empty then

if unbacktracked [s ′] is empty then return stop
else a := an action b such that result[s ′, b] = pop(unbacktracked [s ′])

else a := pop(untried [s ′])
s := s ′
return a

▶ Note: result is the “environment map” constructed as the agent explores.
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19.8 Replanning and Execution Monitoring
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Replanning (Ideas)

▶ Idea: We can turn a planner P into an online problem solver by adding an
action RePlan(g) without preconditions that re-starts P in the current state
with goal g .

▶ Observation: Replanning induces a tradeoff between pre-planning and
re-planning.

▶ Example 8.1. The plan [RePlan(g)] is a (trivially) complete plan for any goal
g . (not helpful)

▶ Example 8.2. A plan with sub-plans for every contingency (e.g. what to do if a
meteor strikes) may be too costly/large. (wasted effort)

▶ Example 8.3. But when a tire blows while driving into the desert, we want to
have water pre-planned. (due diligence against catastrophies)

▶ Observation: In stochastic or partially observable environments we also need
some form of execution monitoring to determine the need for replanning (plan
repair).
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Replanning for Plan Repair

▶ Generally: Replanning when the agent’s model of the world is incorrect.
▶ Example 8.4 (Plan Repair by Replanning). Given a plan from S to G .

85

function ANGELIC-SEARCH(problem ,hierarchy , initialPlan ) returns solution or fail

frontier← a FIFO queue with initialPlan as the only element
while true do

if EMPTY?( frontier ) then return fail
plan← POP( frontier ) // chooses the shallowest node in frontier
if REACH+(problem .INITIAL,plan) intersects problem .GOAL then

if plan is primitive then return plan // REACH+ is exact for primitive plans
guaranteed←REACH−(problem .INITIAL,plan) ∩ problem .GOAL
if guaranteed #={ } and MAKING-PROGRESS(plan , initialPlan ) then

finalState← any element of guaranteed
return DECOMPOSE(hierarchy ,problem .INITIAL,plan ,finalState)

hla← some HLA in plan
prefix ,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem .INITIAL, prefix )
for each sequence in REFINEMENTS(hla ,outcome ,hierarchy ) do

frontier← Insert(APPEND(prefix , sequence, suffix ), frontier )

function DECOMPOSE(hierarchy , s0 ,plan , sf ) returns a solution

solution← an empty plan
while plan is not empty do

action←REMOVE-LAST(plan)
si← a state in REACH−(s0 , plan) such that sf ∈REACH−(si ,action)
problem← a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem ,hierarchy ,action ), solution)
sf ← si

return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t. The predi-
cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements. At top level, call ANGELIC-SEARCH with [Act ] as the initialPlan .

S

O

Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.
The agent executes steps of the plan until it expects to be in state E, but observes that it is
actually in O. The agent then replans for the minimal repair plus continuation to reach G.

▶ The agent executes wholeplan step by step, monitoring the rest (plan).
▶ After a few steps the agent expects to be in E , but observes state O.
▶ Replanning: by calling the planner recursively
▶ find state P in wholeplan and a plan repair from O to P. (P may be G)
▶ minimize the cost of repair + continuation
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Factors in World Model Failure ; Monitoring

▶ Generally: The agent’s world model can be incorrect, because
▶ an action has a missing precondition (need a screwdriver for remove−lid)
▶ an action misses an effect (painting a table gets paint on the floor)
▶ it is missing a state variable (amount of paint in a can: no paint ; no color)
▶ no provisions for exogenous events (someone knocks over a paint can)

▶ Observation: Without a way for monitoring for these, planning is very brittle.
▶ Definition 8.5. There are three levels of execution monitoring: before executing

an action
▶ action monitoring checks whether all preconditions still hold.
▶ plan monitoring checks that the remaining plan will still succeed.
▶ goal monitoring checks whether there is a better set of goals it could try to achieve.

▶ Note: 8.4 was a case of action monitoring leading to replanning.
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Integrated Execution Monitoring and Planning

▶ Problem: Need to upgrade planing data structures by bookkeeping for
execution monitoring.

▶ Observation: With their causal links, partially ordered plans already have most
of the infrastructure for action monitoring:
Preconditions of remaining plan
=̂ all preconditions of remaining steps not achieved by remaining steps
=̂ all causal link “crossing current time point”

▶ Idea: On failure, resume planning (e.g. by POP) to achieve open conditions
from current state.

▶ Definition 8.6. IPEM (Integrated Planning, Execution, and Monitoring):
▶ keep updating Start to match current state
▶ links from actions replaced by links from Start when done
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Execution Monitoring Example
▶ Example 8.7 (Shopping for a drill, milk, and bananas). Start/end at home,

drill sold by hardware store, milk/bananas by supermarket.
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Execution Monitoring Example
▶ Example 8.8 (Shopping for a drill, milk, and bananas). Start/end at home,

drill sold by hardware store, milk/bananas by supermarket.
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Execution Monitoring Example
▶ Example 8.9 (Shopping for a drill, milk, and bananas). Start/end at home,

drill sold by hardware store, milk/bananas by supermarket.
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Execution Monitoring Example
▶ Example 8.10 (Shopping for a drill, milk, and bananas). Start/end at

home, drill sold by hardware store, milk/bananas by supermarket.
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Execution Monitoring Example
▶ Example 8.11 (Shopping for a drill, milk, and bananas). Start/end at

home, drill sold by hardware store, milk/bananas by supermarket.
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Execution Monitoring Example
▶ Example 8.12 (Shopping for a drill, milk, and bananas). Start/end at

home, drill sold by hardware store, milk/bananas by supermarket.
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Part 5
What did we learn in AI 1?

Michael Kohlhase: Artificial Intelligence 1 671 2024-02-08



Topics of AI-1 (Winter Semester)

▶ Getting Started
▶ What is Artificial Intelligence? (situating ourselves)
▶ Logic programming in Prolog (An influential paradigm)
▶ Intelligent Agents (a unifying framework)

▶ Problem Solving
▶ Problem Solving and search (Black Box World States and Actions)
▶ Adversarial search (Game playing) (A nice application of search)
▶ constraint satisfaction problems (Factored World States)

▶ Knowledge and Reasoning
▶ Formal Logic as the mathematics of Meaning
▶ Propositional logic and satisfiability (Atomic Propositions)
▶ First-order logic and theorem proving (Quantification)
▶ Logic programming (Logic + Search; Programming)
▶ Description logics and semantic web

▶ Planning
▶ Planning Frameworks
▶ Planning Algorithms
▶ Planning and Acting in the real world
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Rational Agents as an Evaluation Framework for AI

▶ Agents interact with the environment
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Rational Agents as an Evaluation Framework for AI

▶ General agent schema
Section 2.1. Agents and Environments 35

Agent Sensors

Actuators
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Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.
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Rational Agents as an Evaluation Framework for AI

▶ Simple Reflex Agents
Section 2.4. The Structure of Agents 49
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Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept ) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,
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Rational Agents as an Evaluation Framework for AI

▶ Reflex Agents with State
Section 2.4. The Structure of Agents 51
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Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
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Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
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Rational Agent

▶ Idea: Try to design agents that are successful (do the right thing)
▶ Definition 8.13. An agent is called rational, if it chooses whichever action

maximizes the expected value of the performance measure given the percept
sequence to date. This is called the MEU principle.

▶ Note: A rational agent need not be perfect
▶ only needs to maximize expected value (rational ̸= omniscient)
▶ need not predict e.g. very unlikely but catastrophic events in the future

▶ percepts may not supply all relevant information (Rational ̸= clairvoyant)
▶ if we cannot perceive things we do not need to react to them.
▶ but we may need to try to find out about hidden dangers (exploration)

▶ action outcomes may not be as expected (rational ̸= successful)
▶ but we may need to take action to ensure that they do (more often) (learning)

▶ Rational ; exploration, learning, autonomy
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Symbolic AI: Adding Knowledge to Algorithms

▶ Problem Solving (Black Box States, Transitions, Heuristics)
▶ Framework: Problem Solving and Search (basic tree/graph walking)
▶ Variant: Game playing (Adversarial search) (minimax + αβ-Pruning)

▶ Constraint Satisfaction Problems (heuristic search over partial assignments)
▶ States as partial variable assignments, transitions as assignment
▶ Heuristics informed by current restrictions, constraint graph
▶ Inference as constraint propagation (transferring possible values across arcs)

▶ Describing world states by formal language (and drawing inferences)
▶ Propositional logic and DPLL (deciding entailment efficiently)
▶ First-order logic and ATP (reasoning about infinite domains)
▶ Digression: Logic programming (logic + search)
▶ Description logics as moderately expressive, but decidable logics

▶ Planning: Problem Solving using white-box world/action descriptions
▶ Framework: describing world states in logic as sets of propositions and actions by

preconditions and add/delete lists
▶ Algorithms: e.g heuristic search by problem relaxations
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Topics of AI-2 (Summer Semester)

▶ Uncertain Knowledge and Reasoning
▶ Uncertainty
▶ Probabilistic reasoning
▶ Making Decisions in Episodic Environments
▶ Problem Solving in Sequential Environments

▶ Foundations of machine learning
▶ Learning from Observations
▶ Knowledge in Learning
▶ Statistical Learning Methods

▶ Communication (If there is time)
▶ Natural Language Processing
▶ Natural Language for Communication
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