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Chapter 6
Problem Solving and Search
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6.1 Problem Solving
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Problem Solving: Introduction
▶ Recap: Agents perceive the environment and compute an action.
▶ In other words: Agents continually solve “the problem of what to do next”.
▶ AI Goal: Find algorithms that help solving problems in general.
▶ Idea: If we can describe/represent problems in a standardized way, we may

have a chance to find general algorithms.
▶ Concretely: We will use the following two concepts to describe problems
▶ States: A set of possible situations in our problem domain (=̂ environments)
▶ Actions: that get us from one state to another. (=̂ agents)
A sequence of actions is a solution, if it brings us from an initial state to a goal
state. Problem solving computes solutions from problem formulations.
▶ Definition 1.1. In offline problem solving an agent computing an action

sequence based complete knowledge of the environment.
▶ Remark 1.2. Offline problem solving only works in fully observable,

deterministic, static, and episodic environments.
▶ Definition 1.3. In online problem solving an agent computes one action at a

time based on incoming perceptions.
▶ This Semester: We largely restrict ourselves to offline problem solving.(easier)
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Example: Traveling in Romania
▶ Scenario: An agent is on holiday in Romania; currently in Arad; flight home

leaves tomorrow from Bucharest; how to get there? We have a map:
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

▶ Formulate the Problem:
▶ States: various cities.
▶ Actions: drive between cities.
▶ Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest
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Problem Formulation

▶ Definition 1.4. A problem formulation models a situation using states and
actions at an appropriate level of abstraction. (do not model things like “put on
my left sock”, etc.)
▶ it describes the initial state (we are in Arad)
▶ it also limits the objectives by specifying goal states. (excludes, e.g. to stay another

couple of weeks.)

A solution is a sequence of actions that leads from the initial state to a goal
state.
Problem solving computes solutions from problem formulations.
▶ Finding the right level of abstraction and the required (not more!) information

is often the key to success.
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The Math of Problem Formulation: Search Problems
▶ Definition 1.5. A search problem Π := ⟨S ,A, T , I ,G⟩ consists of a set S of

states, a set A of actions, and a transition model T : A×S →P(S) that assigns
to any action a ∈ A and state s ∈ S a set of successor states.
Certain states in S are designated as goal states (also called terminal state)
(G ⊆ S with G ≠ ∅) and initial states I ⊆ S.
▶ Definition 1.6. We say that an action a ∈ A is applicable in state s ∈ S, iff
T (a, s) ̸= ∅ and that any s ′ ∈ T (a, s) is a result of applying action a to state s.
We call Ta : S →P(S) with Ta(s) := T (a, s) the result relation for a and
TA :=

⋃
a∈ATa the result relation of Π.

▶ Definition 1.7. The graph ⟨S, TA⟩ is called the state space induced by Π.
▶ Definition 1.8. A solution for Π consists of a sequence a1, . . ., an of actions

such that for all 1 < i ≤ n
▶ ai is applicable to state s i−1, where s0 ∈ I and
▶ s i ∈ Tai (s i−1), and sn ∈ G.
▶ Idea: A solution bring us from I to a goal state via applicable actions.
▶ Definition 1.9. Often we add a cost function c : A→ R+

0 that associates a
step cost c(a) to an action a ∈ A. The cost of a solution is the sum of the step
costs of its actions.
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Structure Overview: Search Problem

▶ The structure overview for search problems:

search problem =

〈 S Set states,
A Set actions,
T A×S →P(S) transition model,
I S initial state,
G P(S) goal states

〉
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Search Problems in deterministic, fully observable
Environments

▶ This semester, we will restrict ourselves to search problems, where(extend in AI
II)
▶ |T (a, s)| ≤ 1 for the transition models and ( ⇝deterministic environment)
▶ I = {s0} ( ⇝fully observable environment)

Definition 1.11. We call a search problem with transition model T
deterministic, iff |T (a, s)| ≤ 1.
▶
▶ Definition 1.12. In a deterministic search problem, Ta induces partial function
Sa : S ⇀ S whose natural domain is the set of states where a is applicable:
Sa(s):=s ′ if Ta = {s ′} and undefined at s otherwise. We call Sa the successor
function for a and Sa(s) the successor state of s.
▶ Definition 1.13. The predicate that tests for goal states is called a goal test.
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6.2 Problem Types
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Problem types

▶ Definition 2.1. A search problem is called a single state problem, iff it is
▶ fully observable (at least the initial state)
▶ deterministic (unique successor states)
▶ static (states do not change other than by our own actions)
▶ discrete (a countable number of states)
▶ Definition 2.2. A search problem is called a multi state problem
▶ states partially observable (e.g. multiple initial states)
▶ deterministic, static, discrete
▶ Definition 2.3. A search problem is called a contingency problem, iff
▶ the environment is non deterministic (solution can branch, depending on

contingencies)
▶ the state space is unknown(like a baby, agent has to learn about states and actions)

Michael Kohlhase: Artificial Intelligence 1 126 2025-02-06



Example: vacuum-cleaner world

▶ Single-state Problem:

▶ Start in 5
▶ Solution: [right, suck]
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Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

▶ Multiple-state Problem:
▶ Start in {1, 2, 3, 4, 5, 6, 7, 8}
▶ Solution: [right, suck, left, suck] right → {2, 4, 6, 8}

suck → {4, 8}
left → {3, 7}
suck → {7}
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Example: Vacuum-Cleaner World (continued)

▶ Contingency Problem:

▶ Murphy’s Law: suck can dirty a clean
carpet

▶ Local sensing: dirty/notdirty at location
only

▶ Start in: {1, 3}
▶ Solution: [suck, right, suck]

suck → {5, 7}
right → {6, 8}
suck → {6, 8}
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3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

▶ better: [suck , right, if dirt then suck] (decide whether in 6 or 8 using local
sensing)
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Single-state problem formulation

▶ Defined by the following four items
1. Initial state: (e.g. Arad)
2. Successor function Sa(s): (e.g. SgoZer = {(Arad ,Zerind), (goSib,Sibiu), . . . })
3. Goal test: (e.g. x = Bucharest (explicit test)

noDirt(x) (implicit test)
)

4. Path cost (optional): (e.g. sum of distances, number of operators executed, etc.)
▶ Solution: A sequence of actions leading from the initial state to a goal state.
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Selecting a state space

▶ Abstraction: Real world is absurdly complex!
State space must be abstracted for problem solving.
▶ (Abstract) state: Set of real states.
▶ (Abstract) operator: Complex combination of real actions.
▶ Example: Arad → Zerind represents complex set of possible routes.
▶ (Abstract) solution: Set of real paths that are solutions in the real world.
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Example: The 8-puzzle

Section 3.2. Example Problems 71
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Figure 3.4 A typical instance of the 8-puzzle.

• States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

• Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

• Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

States? Actions?. . .
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• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move
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Example: Vacuum-cleaner

36 Chapter 2. Intelligent Agents

A B

Figure 2.2 A vacuum-cleaner world with just two locations.

Percept sequence Action

[A,Clean ] Right
[A,Dirty ] Suck
[B,Clean ] Left
[B,Dirty ] Suck
[A,Clean ], [A,Clean ] Right
[A,Clean ], [A,Dirty ] Suck
...

...
[A,Clean ], [A,Clean ], [A,Clean ] Right
[A,Clean ], [A,Clean ], [A,Dirty ] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world
shown in Figure 2.2.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.

2.2 GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

A rational agent is one that does the right thing—conceptually speaking, every entry in theRATIONAL AGENT

table for the agent function is filled out correctly. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing?

States? Actions?. . .
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Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.

2.2 GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

A rational agent is one that does the right thing—conceptually speaking, every entry in theRATIONAL AGENT

table for the agent function is filled out correctly. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing?

States integer dirt and robot locations
Actions left, right, suck , noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)
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Example: Robotic assembly

States? Actions?. . .
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Example: Robotic assembly

States real-valued coordinates of
robot joint angles and parts of the object to be assembled

Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute
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General Problems

▶ Question: Which are “Problems”?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.

▶ Answer:

(A/B) These are problems in the natural language use of the word, but not “problems”
in the sense defined here.

(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the
robot has perfect knowledge about your apartment (else, it’s not a classical search
problem).

(D) That’s a search problem, but not a classical search problem (because it’s
multi-agent). We’ll tackle this kind of problem in ??

Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06



General Problems

▶ Question: Which are “Problems”?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.
▶ Answer:

(A/B) These are problems in the natural language use of the word, but not “problems”
in the sense defined here.

(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the
robot has perfect knowledge about your apartment (else, it’s not a classical search
problem).

(D) That’s a search problem, but not a classical search problem (because it’s
multi-agent). We’ll tackle this kind of problem in ??

Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06



General Problems

▶ Question: Which are “Problems”?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.
▶ Answer:

(A/B) These are problems in the natural language use of the word, but not “problems”
in the sense defined here.

(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the
robot has perfect knowledge about your apartment (else, it’s not a classical search
problem).

(D) That’s a search problem, but not a classical search problem (because it’s
multi-agent). We’ll tackle this kind of problem in ??

Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06



General Problems

▶ Question: Which are “Problems”?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.
▶ Answer:

(A/B) These are problems in the natural language use of the word, but not “problems”
in the sense defined here.

(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the
robot has perfect knowledge about your apartment (else, it’s not a classical search
problem).

(D) That’s a search problem, but not a classical search problem (because it’s
multi-agent). We’ll tackle this kind of problem in ??

Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06



6.3 Search
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Tree Search Algorithms

▶ Note: The state space of a search problem ⟨S ,A, T , I ,G⟩ is a graph ⟨S, TA⟩.
▶ As graphs are difficult to compute with, we often compute a corresponding tree

and work on that. (standard trick in graph algorithms)
▶ Definition 3.1. Given a search problem P := ⟨S ,A, T , I ,G⟩, the tree search

algorithm consists of the simulated exploration of state space ⟨S, TA⟩ in a search
tree formed by successively expanding already explored states. (offline algorithm)

procedure Tree−Search (problem, strategy) : <a solution or failure>
<initialize the search tree using the initial state of problem>
loop

if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
else <expand the node and add the resulting nodes to the search tree>
end if

end loop
end procedure

We expand a node n by generating all successors of n and inserting them as
children of n in the search tree.
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Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Implementation: States vs. nodes

▶ Recap: A state is a (representation of) a physical configuration.
▶ Definition 3.2 (Implementing a Search Tree).

A search tree node is a data structure that
includes accessors for parent, children, depth,
path cost, insertion order, etc.
A goal node (initial node) is a search tree node
labeled with a goal state (initial state).

Section 3.3. Searching for Solutions 79
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Figure 3.10 Nodes are the data structures from which the search tree is constructed. Each
has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

Given the components for a parent node, it is easy to see how to compute the necessary
components for a child node. The function CHILD-NODE takes a parent node and an action
and returns the resulting child node:

function CHILD-NODE(problem ,parent ,action) returns a node
return a node with

STATE = problem .RESULT(parent .STATE,action ),
PARENT = parent , ACTION = action ,
PATH-COST = parent .PATH-COST + problem .STEP-COST(parent .STATE,action )

The node data structure is depicted in Figure 3.10. Notice how the PARENT pointers
string the nodes together into a tree structure. These pointers also allow the solution path to be
extracted when a goal node is found; we use the SOLUTION function to return the sequence
of actions obtained by following parent pointers back to the root.

Up to now, we have not been very careful to distinguish between nodes and states, but in
writing detailed algorithms it’s important to make that distinction. A node is a bookkeeping
data structure used to represent the search tree. A state corresponds to a configuration of the
world. Thus, nodes are on particular paths, as defined by PARENT pointers, whereas states
are not. Furthermore, two different nodes can contain the same world state if that state is
generated via two different search paths.

Now that we have nodes, we need somewhere to put them. The frontier needs to be
stored in such a way that the search algorithm can easily choose the next node to expand
according to its preferred strategy. The appropriate data structure for this is a queue. TheQUEUE

operations on a queue are as follows:

• EMPTY?(queue) returns true only if there are no more elements in the queue.
• POP(queue) removes the first element of the queue and returns it.
• INSERT(element , queue) inserts an element and returns the resulting queue.

▶ Observation: A set of search tree nodes that can all (recursively) reach a
single initial node form a search tree. (they implement it)
▶ Observation: Paths in the search tree correspond to paths in the state space.
▶ Definition 3.3. We define the path cost of a node n in a search tree T to be

the sum of the step costs on the path from n to the root of T .
▶ Observation: As a search tree node has access to parents, we can read off the

solution from a goal node.
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Implementation of Search Algorithms

▶ Definition 3.4 (Implemented Tree Search Algorithm).

procedure Tree_Search (problem,strategy)
fringe := insert(make_node(initial_state(problem)))

loop
if empty(fringe) fail end if
node := first(fringe,strategy)
if GoalTest(node) return node
else fringe := insert(expand(node,problem))
end if

end loop
end procedure

The fringe is the set of search tree nodes not yet expanded in tree search.
▶ Idea: We treat the fringe as an abstract data type with three accessors: the
▶ binary function first retrieves an element from the fringe according to a strategy.
▶ binary function insert adds a (set of) search tree node into a fringe.
▶ unary predicate empty to determine whether a fringe is the empty set.
▶ The strategy determines the behavior of the fringe (data structure) (see below)
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Search strategies

▶ Definition 3.5. A strategy is a function that picks a node from the fringe of a
search tree. (equivalently, orders the fringe and picks the first.)
▶ Definition 3.6 (Important Properties of Strategies).

completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least cost solution?

▶ Time and space complexity measured in terms of:
b maximum branching factor of the search tree
d minimal graph depth of a solution in the search tree
m maximum graph depth of the search tree (may be ∞)

Complexity means here always worst-case complexity!
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6.4 Uninformed Search Strategies
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Uninformed search strategies

▶ Definition 4.1. We speak of an uninformed search algorithm, if it only uses the
information available in the problem definition.
▶ Next: Frequently used search algorithms
▶ Breadth first search
▶ Uniform cost search
▶ Depth first search
▶ Depth limited search
▶ Iterative deepening search

Michael Kohlhase: Artificial Intelligence 1 140 2025-02-06



6.4.1 Breadth-First Search Strategies
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.2. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.3 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.4. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.5 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.6. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.7 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.8. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.9 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.10. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.11 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search

▶ Idea: Expand the shallowest unexpanded node.
▶ Definition 4.12. The breadth first search (BFS) strategy treats the fringe as a

FIFO queue, i.e. successors go in at the end of the fringe.
▶ Example 4.13 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Breadth-First Search: Romania

▶ Example 4.14.

Arad
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Breadth-First Search: Romania

▶ Example 4.15.

Arad

Sibiu Timisoara Zerind
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Breadth-First Search: Romania

▶ Example 4.16.

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea
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Breadth-First Search: Romania

▶ Example 4.17.

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj
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Breadth-First Search: Romania

▶ Example 4.18.

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad
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Breadth-first search: Properties

▶

Completeness Yes (if b is finite)
Time complexity 1+ b+ b2 + b3 + . . .+ bd , so O(bd), i.e. expo-

nential in d
Space complexity O(bd) (fringe may be whole level)
Optimality Yes (if cost = 1 per step), not optimal in general

▶ Disadvantage: Space is the big problem (can easily generate nodes at
500MB/sec =̂ 1.8TB/h)
▶ Optimal?: No! If cost varies for different steps, there might be better

solutions below the level of the first one.
▶ An alternative is to generate all solutions and then pick an optimal one. This

works only, if m is finite.
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Romania with Step Costs as Distances
68 Chapter 3. Solving Problems by Searching

Giurgiu
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.19. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.20. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06



Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.21. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Oradea

71

Arad

75
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Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.22. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75

Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06



Uniform-cost search

▶ Idea: Expand least cost unexpanded node.
▶ Definition 4.23. Uniform-cost search (UCS) is the strategy where the fringe is

ordered by increasing path cost.
▶ Note: Equivalent to breadth first search if all step costs are equal.
▶ Synthetic Example:

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75
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Uniform-cost search: Properties

Completeness Yes (if step costs ≥ ϵ > 0)
Time complexity number of nodes with path cost less than that of opti-

mal solution
Space complexity ditto
Optimality Yes
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6.4.2 Depth-First Search Strategies
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Depth-first Search

▶ Idea: Expand deepest unexpanded node.
▶ Definition 4.24. Depth-first search (DFS) is the strategy where the fringe is

organized as a (LIFO) stack i.e. successors go in at front of the fringe.
▶ Definition 4.25. Every node that is pushed to the stack is called a backtrack

point. The action of popping a non-goal node from the stack and continuing the
search with the new top element of the stack (a backtrack point by
construction) is called backtracking, and correspondingly the DFS algorithm
backtracking search.
▶ Note: Depth first search can perform infinite cyclic excursions

Need a finite, non cyclic state space (or repeated state checking)
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Depth-First Search

▶ Example 4.26 (Synthetic).

A

B C

D E F G

H I J K L M N O

Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06



Depth-First Search

▶ Example 4.27 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.28 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.29 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.30 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.31 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.32 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.33 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.34 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.35 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.36 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.37 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.38 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search

▶ Example 4.39 (Synthetic).

A

B C

D E F G

H I J K L M N O
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Depth-First Search: Romania

▶ Example 4.40 (Romania).

Arad
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Depth-First Search: Romania

▶ Example 4.41 (Romania).

Arad

Sibiu Timisoara Zerind
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Depth-First Search: Romania

▶ Example 4.42 (Romania).

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea
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Depth-First Search: Romania

▶ Example 4.43 (Romania).

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Sibiu Timisoara Zerind
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Depth-first search: Properties

▶

Completeness Yes: if search tree finite
No: if search tree contains infinite paths or
loops

Time complexity O(bm)
(we need to explore until max depth m in any
case!)

Space complexity O(bm) (i.e. linear space)
(need at most store m levels and at each level
at most b nodes)

Optimality No (there can be many better solutions in the
unexplored part of the search tree)

▶ Disadvantage: Time terrible if m much larger than d .
▶ Advantage: Time may be much less than breadth first search if solutions are

dense.
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Iterative deepening search

▶ Definition 4.44. Depth limited search is depth first search with a depth limit.
▶ Definition 4.45. Iterative deepening search (IDS) is depth limited search with

ever increasing depth limits. We call the difference between successive depth
limits the step size.

▶ procedure Tree_Search (problem)
<initialize the search tree using the initial state of problem>
for depth = 0 to ∞

result := Depth_Limited_search(problem,depth)
if depth ̸= cutoff return result end if

end for
end procedure
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Ilustration: Iterative Deepening Search at various Limit
Depths

A A
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Ilustration: Iterative Deepening Search at various Limit
Depths
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Ilustration: Iterative Deepening Search at various Limit
Depths
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D E F G
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Ilustration: Iterative Deepening Search at various Limit
Depths
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Iterative deepening search: Properties

▶
Completeness Yes
Time complexity (d+1)·b0+d ·b1+(d−1)·b2+. . .+bd ∈ O(bd+1)
Space complexity O(b · d)
Optimality Yes (if step cost = 1)

▶ Consequence: IDS used in practice for search spaces of large, infinite, or
unknown depth.
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Comparison BFS (optimal) and IDS (not)
▶ Example 4.46. IDS may fail to be be optimal at step sizes > 1.

Breadth first search Iterative deepening search

Comparison

Breadth-first search Iterative deepening search

Kohlhase: Künstliche Intelligenz 1 150 July 5, 2018

Comparison

Breadth-first search Iterative deepening search

Kohlhase: Künstliche Intelligenz 1 150 July 5, 2018
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6.4.3 Further Topics

Michael Kohlhase: Artificial Intelligence 1 154 2025-02-06



Tree Search vs. Graph Search

▶ We have only covered tree search algorithms.
▶ States duplicated in nodes are a huge problem for efficiency.
▶ Definition 4.47. A graph search algorithm is a variant of a tree search

algorithm that prunes nodes whose state has already been considered (duplicate
pruning), essentially using a DAG data structure.
▶ Observation 4.48. Tree search is memory intensive it has to store the fringe so

keeping a list of “explored states” does not lose much.
▶ Graph versions of all the tree search algorithms considered here exist, but are

more difficult to understand (and to prove properties about).
▶ The (time complexity) properties are largely stable under duplicate pruning. (no

gain in the worst case)
▶ Definition 4.49. We speak of a search algorithm, when we do not want to

distinguish whether it is a tree or graph search algorithm. (difference considered
an implementation detail)
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Uninformed Search Summary

▶ Tree/Graph Search Algorithms: Systematically explore the state tree/graph
induced by a search problem in search of a goal state. Search strategies only
differ by the treatment of the fringe.
▶ Search Strategies and their Properties: We have discussed

Criterion
Breadth

first
Uniform

cost
Depth
first

Iterative
deepening

Completeness Yes1 Yes2 No Yes
Time complexity bd ≈ bd bm bd+1

Space complexity bd ≈ bd bm bd
Optimality Yes∗ Yes No Yes∗

Conditions 1 b finite 2 0 < ϵ ≤ cost
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Search Strategies; the XKCD Take

▶ More Search Strategies?: (from https://xkcd.com/2407/)
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6.5 Informed Search Strategies
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Summary: Uninformed Search/Informed Search

▶ Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored.
▶ Variety of uninformed search strategies.
▶ Iterative deepening search uses only linear space and not much more time than

other uninformed algorithms.
▶ Next Step: Introduce additional knowledge about the problem (heuristic

search)
▶ Best-first-, A∗-strategies (guide the search by heuristics)
▶ Iterative improvement algorithms.
▶ Definition 5.1. A search algorithm is called informed, iff it uses some form of

external information – that is not part of the search problem – to guide the
search.
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6.5.1 Greedy Search
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Best-first search

▶ Idea: Order the fringe by estimated “desirability” (Expand most desirable
unexpanded node)
▶ Definition 5.2. An evaluation function assigns a desirability value to each node

of the search tree.
▶ Note: A evaluation function is not part of the search problem, but must be

added externally.
▶ Definition 5.3. In best first search, the fringe is a queue sorted in decreasing

order of desirability.
▶ Special cases: Greedy search, A∗ search
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Greedy search

▶ Idea: Expand the node that appears to be closest to the goal.
▶ Definition 5.4. A heuristic is an evaluation function h on states that estimates

the cost from n to the nearest goal state. We speak of heuristic search if the
search algorithm uses a heuristic in some way.
▶ Note: All nodes for the same state must have the same h-value!
▶ Definition 5.5. Given a heuristic h, greedy search is the strategy where the

fringe is organized as a queue sorted by increasing h value.
▶ Example 5.6. Straight-line distance from/to Bucharest.
▶ Note: Unlike uniform cost search the node evaluation function has nothing to

do with the nodes expanded so far
internal search control ; external search control

partial solution cost ; goal cost estimation
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Romania with Straight-Line Distances
▶ Example 5.7 (Informed Travel).
hSLD(n) = straight − line distance to Bucharest

Arad 366 Mehadia 241 Bucharest 0 Neamt 234
Craiova 160 Oradea 380 Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193 Fragaras 176 Sibiu 253
Giurgiu 77 Timisoara 329 Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199 Lugoj 244 Zerind 374
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.
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Greedy Search: Romania
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Greedy Search: Romania
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Greedy Search: Romania
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Greedy Search: Romania
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Heuristic Functions in Path Planning

▶ Example 5.8 (The maze solved). We indicate h∗ by giving the goal distance:

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance
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I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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▶ Example 5.9 (Maze Heuristic: The good case). We use the Manhattan
distance to the goal as a heuristic:

▶ Example 5.10 (Maze Heuristic: The bad case). We use the Manhattan
distance to the goal as a heuristic again:
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Heuristic Functions in Path Planning

▶ Example 5.11 (The maze solved). We indicate h∗ by giving the goal
distance:
▶ Example 5.12 (Maze Heuristic: The good case). We use the Manhattan

distance to the goal as a heuristic:

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic
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I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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▶ Example 5.13 (Maze Heuristic: The bad case). We use the Manhattan
distance to the goal as a heuristic again:
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Heuristic Functions in Path Planning

▶ Example 5.14 (The maze solved). We indicate h∗ by giving the goal
distance:
▶ Example 5.15 (Maze Heuristic: The good case). We use the Manhattan

distance to the goal as a heuristic:
▶ Example 5.16 (Maze Heuristic: The bad case). We use the Manhattan

distance to the goal as a heuristic again:

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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Greedy search: Properties

▶

Completeness No: Can get stuck in infinite loops.
Complete in finite state spaces with repeated
state checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

▶ Example 5.17. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·
▶ Worst-case Time: Same as depth first search.
▶ Worst-case Space: Same as breadth first search. ( ⇝repeated state checking)
▶ But: A good heuristic can give dramatic improvements.
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Greedy search: Properties

▶

Completeness No: Can get stuck in infinite loops.
Complete in finite state spaces with repeated
state checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

▶ Example 5.18. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

68 Chapter 3. Solving Problems by Searching
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

▶ Worst-case Time: Same as depth first search.
▶ Worst-case Space: Same as breadth first search. ( ⇝repeated state checking)
▶ But: A good heuristic can give dramatic improvements.
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Greedy search: Properties

▶

Completeness No: Can get stuck in infinite loops.
Complete in finite state spaces with repeated
state checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

▶ Example 5.19. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·
▶ Worst-case Time: Same as depth first search.
▶ Worst-case Space: Same as breadth first search. ( ⇝repeated state checking)
▶ But: A good heuristic can give dramatic improvements.

Michael Kohlhase: Artificial Intelligence 1 164 2025-02-06



6.5.2 Heuristics and their Properties
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Heuristic Functions

▶ Definition 5.20. Let Π be a search problem with states S. A heuristic function
(or short heuristic) for Π is a function h : S → R+

0 ∪ {∞} so that h(s) = 0
whenever s is a goal state.
▶ h(s) is intended as an estimate the distance between state s and the nearest

goal state.
▶ Definition 5.21. Let Π be a search problem with states S, then the function
h∗ : S → R+

0 ∪ {∞}, where h∗(s) is the cost of a cheapest path from s to a goal
state, or ∞ if no such path exists, is called the goal distance function for Π.
▶ Notes:
▶ h(s) = 0 on goal states: If your estimator returns “I think it’s still a long way” on a

goal state, then its intelligence is, um . . .
▶ Return value ∞: To indicate dead ends, from which the goal state can’t be reached

anymore.
▶ The distance estimate depends only on the state s, not on the node (i.e., the path

we took to reach s).
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Where does the word “Heuristic” come from?

▶ Ancient Greek word ϵυρισκϵιν (=̂ “I find”) (aka. ϵυρϵκα!)
▶ Popularized in modern science by George Polya: “How to solve it” [Pól73]
▶ Same word often used for “rule of thumb” or “imprecise solution method”.
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Heuristic Functions: The Eternal Trade-Off

▶ “Distance Estimate”? (h is an arbitrary function in principle)
▶ In practice, we want it to be accurate (aka: informative), i.e., close to the actual

goal distance.
▶ We also want it to be fast, i.e., a small overhead for computing h.
▶ These two wishes are in contradiction!
▶ Example 5.22 (Extreme cases).
▶ h = 0: no overhead at all, completely un-informative.
▶ h = h∗: perfectly accurate, overhead =̂ solving the problem in the first place.
▶ Observation 5.23. We need to trade off the accuracy of h against the

overhead for computing it.
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Properties of Heuristic Functions

▶ Definition 5.24. Let Π be a search problem with states S and actions A. We
say that a heuristic h for Π is admissible if h(s) ≤ h∗(s) for all s ∈ S .
We say that h is consistent if h(s)− h(s ′) ≤ c(a) for all s ∈ S , a ∈ A, and
s ′ ∈ T (s, a).
▶ In other words . . . :
▶ h is admissible if it is a lower bound on goal distance.
▶ h is consistent if, when applying an action a, the heuristic value cannot decrease by

more than the cost of a.
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Properties of Heuristic Functions, ctd.

▶ Let Π be a search problem, and let h be a heuristic for Π. If h is consistent,
then h is admissible.
▶ Proof: we prove h(s) ≤ h∗(s) for all s ∈ S by induction over the length of the

cheapest path to a goal node.
1. base case

1.1. h(s) = 0 by definition of heuristic, so h(s) ≤ h∗(s) as desired.
2. step case

2.1. We assume that h(s ′) ≤ h∗(s) for all states s ′ with a cheapest goal node
path of length n.
2.2. Let s be a state whose cheapest goal path has length n + 1 and the first
transition is o = (s,s ′).
2.3. By consistency, we have h(s)− h(s ′) ≤ c(o) and thus h(s) ≤ h(s ′) + c(o).
2.4. By construction, h∗(s) has a cheapest goal path of length n and thus, by
induction hypothesis h(s ′) ≤ h∗(s ′).
2.5. By construction, h∗(s) = h∗(s ′) + c(o).
2.6. Together this gives us h(s) ≤ h∗(s) as desired.

▶ Consistency is a sufficient condition for admissibility (easier to check)
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Properties of Heuristic Functions: Examples

▶ Example 5.25. Straight line distance is admissible and consistent by the
triangle inequality.
If you drive 100km, then the straight line distance to Rome can’t decrease by
more than 100km.
▶ Observation: In practice, admissible heuristics are typically consistent.
▶ Example 5.26 (An admissible, but inconsistent heuristic). When traveling

to Rome, let h(Munich) = 300 and h(Innsbruck) = 100.
▶ Inadmissible heuristics typically arise as approximations of admissible

heuristics that are too costly to compute. (see later)
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6.5.3 A-Star Search
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A∗ Search: Evaluation Function

▶ Idea: Avoid expanding paths that are already expensive (make use of actual
cost)
The simplest way to combine heuristic and path cost is to simply add them.
▶ Definition 5.27. The evaluation function for A∗ search is given by
f (n) = g(n) + h(n), where g(n) is the path cost for n and h(n) is the estimated
cost to the nearest goal from n.
▶ Thus f (n) is the estimated total cost of the path through n to a goal.
▶ Definition 5.28. Best first search with evaluation function g + h is called A∗

search.
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A∗ Search: Optimality

▶ Theorem 5.29. A∗ search with admissible heuristic is optimal.
▶ Proof: We show that sub-optimal nodes are never expanded by A∗

1. Suppose a suboptimal goal node G has been generated then we are in the
following situation:

start

n

O G

2. Let n be an unexpanded node on a path to an optimality goal node O, then
f (G ) = g(G ) since h(G ) = 0
g(G ) > g(O) since G suboptimal
g(O) = g(n) + h∗(n) n on optimal path
g(n) + h∗(n) ≥ g(n) + h(n) since h is admissible
g(n) + h(n) = f (n)

3. Thus, f (G ) > f (n) and A∗ never expands G .
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A∗ Search Example

Arad

366=0+366
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A∗ Search Example

Arad

Sibiu

393=140+253

Timisoara

447=118+329

Zerind

449=75+374
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

413=220+193
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A∗ Search Example
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374
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646=280+366
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Craiova

526=366+160
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Sibiu
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450=450+0
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A∗ Search Example

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti Sibiu
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607=414+193
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.30 (Greedy best-first search, “good case”).

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic
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I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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We will find a solution with little search.
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.31 (A∗ (g + h), “good case”).

Additional Observations (Not Limited to Path Planning) II

I Example 4.21 (A⇤ (g + h), “good case”).
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I A⇤ with a consistent heuristic g + h always increases monotonically (h cannot
decrease mor than g increases)

I We need more search, in the “right upper half”. This is typical: Greedy best-first
search tends to be faster than A⇤.
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▶ In A∗ with a consistent heuristic, g + h always increases monotonically (h cannot
decrease more than g increases)

▶ We need more search, in the “right upper half”. This is typical: Greedy best first
search tends to be faster than A∗.
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.32 (Greedy best-first search, “bad case”).

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again
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Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018Search will be mis-guided into the “dead-end street”.
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.33 (A∗ (g + h), “bad case”).

Additional Observations (Not Limited to Path Planning) IV

I Example 4.23 (A⇤ (g + h), “bad case”).
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We will search less of the “dead-end street”. Sometimes g + h gives better
search guidance than h. (; A⇤ is faster there)
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We will search less of the “dead-end street”. Sometimes g + h gives better
search guidance than h. (; A∗ is faster there)
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Additional Observations (Not Limited to Path Planning)

▶ Example 5.34 (A∗ (g + h) using h∗).

Additional Observations (Not Limited to Path Planning) V

I Example 4.24 (A⇤ (g + h) using h⇤).
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In A⇤, node values always increase monotonically (with any heuristic). If the
heuristic is perfect, they remain constant on optimal paths.
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In A∗, node values always increase monotonically (with any heuristic). If the
heuristic is perfect, they remain constant on optimal paths.
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A∗ search: f -contours

▶ Intuition: A∗-search gradually adds “f -contours” (areas of the same f -value)
to the search.

Section 3.5. Informed (Heuristic) Search Strategies 97
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Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

Figure 3.9; because f is nondecreasing along any path, n′ would have lower f -cost than n
and would have been selected first.

From the two preceding observations, it follows that the sequence of nodes expanded
by A∗ using GRAPH-SEARCH is in nondecreasing order of f(n). Hence, the first goal node
selected for expansion must be an optimal solution because f is the true cost for goal nodes
(which have h= 0) and all later goal nodes will be at least as expensive.

The fact that f -costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 3.25 showsCONTOUR

an example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400,
and so on. Then, because A∗ expands the frontier node of lowest f -cost, we can see that an
A∗ search fans out from the start node, adding nodes in concentric bands of increasing f -cost.

With uniform-cost search (A∗ search using h(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C∗ is the cost of the
optimal solution path, then we can say the following:

• A∗ expands all nodes with f(n) < C∗.

• A∗ might then expand some of the nodes right on the “goal contour” (where f(n) = C∗)
before selecting a goal node.

Completeness requires that there be only finitely many nodes with cost less than or equal to
C∗, a condition that is true if all step costs exceed some finite ε and if b is finite.

Notice that A∗ expands no nodes with f(n) > C∗—for example, Timisoara is not
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below
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A∗ search: Properties

▶ Properties or A∗-search:
Completeness Yes (unless there are infinitely many nodes n

with f (n) ≤ f (0))
Time complexity Exponential in [relative error in h × length of

solution]
Space complexity Same as time (variant of BFS)
Optimality Yes

n

▶ A∗-search expands all (some/no) nodes with f (n) < h∗(n)

▶ The run-time depends on how well we approximated the real cost h∗ with h.
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6.5.4 Finding Good Heuristics
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Admissible heuristics: Example 8-puzzle
Section 3.2. Example Problems 71

2
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Figure 3.4 A typical instance of the 8-puzzle.

• States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

• Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

• Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

▶ Example 5.35. Let h1(n) be the number of misplaced tiles in node n.
(h1(S) = 9)
▶ Example 5.36. Let h2(n) be the total Manhattan distance from desired

location of each tile. (h2(S) = 3 + 1 + 2 + 2 + 2 + 3 + 2 + 2 + 3 = 20)
▶ Observation 5.37 (Typical search costs). (IDS =̂ iterative deepening search)

nodes explored IDS A∗(h1) A∗(h2)

d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641
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Dominance

▶ Definition 5.38. Let h1 and h2 be two admissible heuristics we say that h2
dominates h1 if h2(n) ≥ h1(n) for all n.
▶ Theorem 5.39. If h2 dominates h1, then h2 is better for search than h1.
▶ Proof sketch: If h2 dominates h1, then h2 is “closer to h∗” than h1, which

means better search performance.
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Relaxed problems

▶ Observation: Finding good admissible heuristics is an art!
▶ Idea: Admissible heuristics can be derived from the exact solution cost of a

relaxed version of the problem.
▶ Example 5.40. If the rules of the 8-puzzle are relaxed so that a tile can move

anywhere, then we get heuristic h1.
▶ Example 5.41. If the rules are relaxed so that a tile can move to any adjacent

square, then we get heuristic h2. (Manhattan distance)
▶ Definition 5.42. Let Π := ⟨S ,A, T , I ,G⟩ be a search problem, then we call a

search problem P r := ⟨S,Ar , T r , Ir ,Gr ⟩ a relaxed problem (wrt. Π; or simply
relaxation of Π), iff A ⊆ Ar , T ⊆ T r , I ⊆ Ir , and G ⊆ Gr .
▶ Lemma 5.43. If P r relaxes Π, then every solution for Π is one for P r .
▶ Key point: The optimal solution cost of a relaxed problem is not greater than

the optimal solution cost of the real problem.
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Empirical Performance: A∗ in Path Planning

▶ Example 5.44 (Live Demo vs. Breadth-First Search).

See http://qiao.github.io/PathFinding.js/visual/
▶ Difference to Breadth-first Search?: That would explore all grid cells in a

circle around the initial state!
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6.6 Local Search
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Systematic Search vs. Local Search

▶ Definition 6.1. We call a search algorithm systematic, if it considers all states
at some point.
▶ Example 6.2. All tree search algorithms (except pure depth first search) are

systematic. (given reasonable assumptions e.g. about costs.)
▶ Observation 6.3. Systematic search algorithms are complete.
▶ Observation 6.4. In systematic search algorithms there is no limit of the

number of nodes that are kept in memory at any time.
▶ Alternative: Keep only one (or a few) nodes at a time
▶ ; no systematic exploration of all options, ; incomplete.
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Local Search Problems

▶ Idea: Sometimes the path to the solution is irrelevant.

▶ Example 6.5 (8 Queens Problem). Place 8
queens on a chess board, so that no two queens
threaten each other.
▶ This problem has various solutions (the one of the

right isn’t one of them)
▶ Definition 6.6. A local search algorithm is a

search algorithm that operates on a single state, the
current state (rather than multiple paths).
(advantage: constant space)

▶ Typically local search algorithms only move to successor of the current state,
and do not retain search paths.
▶ Applications include: integrated circuit design, factory-floor layout, job-shop

scheduling, portfolio management, fleet deployment,. . .
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Local Search: Iterative improvement algorithms

▶ Definition 6.7. The traveling salesman problem (TSP is to find shortest trip
through set of cities such that each city is visited exactly once.
▶ Idea: Start with any complete tour, perform pairwise exchanges

Local Search: Iterative improvement algorithms

I Definition 5.7 (Traveling Salesman Problem). Find shortest trip through set
of cities such that each city is visited exactly once.

I Idea: Start with any complete tour, perform pairwise exchanges

I Definition 5.8 (n-queens problem). Put n queens on n ⇥ n board such that
no two queens in the same row, columns, or diagonal.

I Idea: Move a queen to reduce number of conflicts
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▶ Definition 6.8. The n-queens problem is to put n queens on n × n board such
that no two queen in the same row, columns, or diagonal.
▶ Idea: Move a queen to reduce number of conflicts

Local Search: Iterative improvement algorithms

I Definition 5.7 (Traveling Salesman Problem). Find shortest trip through set
of cities such that each city is visited exactly once.

I Idea: Start with any complete tour, perform pairwise exchanges

I Definition 5.8 (n-queens problem). Put n queens on n ⇥ n board such that
no two queens in the same row, columns, or diagonal.

I Idea: Move a queen to reduce number of conflicts
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Hill-climbing (gradient ascent/descent)

▶ Idea: Start anywhere and go in the direction of the steepest ascent.
▶ Definition 6.9. Hill climbing (also gradient ascent) is a local search algorithm

that iteratively selects the best successor:

procedure Hill−Climbing (problem) /∗ a state that is a local minimum ∗/
local current, neighbor /∗ nodes ∗/
current := Make−Node(Initial−State[problem])
loop

neighbor := <a highest−valued successor of current>
if Value[neighbor] < Value[current] return [current] end if
current := neighbor

end loop
end procedure

▶ Intuition: Like best first search without memory.
▶ Works, if solutions are dense and local maxima can be escaped.

Michael Kohlhase: Artificial Intelligence 1 188 2025-02-06



Example Hill Climbing with 8 Queens

▶ Idea: Consider h =̂ number of
queens that threaten each other.
▶ Example 6.10. An 8-queens state

with heuristic cost estimate h = 17
showing h-values for moving a queen
within its column:

▶ Problem: The state space has local
minima. e.g. the board on the right
has h = 1 but every successor has
h > 1.
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Hill-climbing

▶ Problem: Depending on initial
state, can get stuck on local
maxima/minima and plateaux.
▶ “Hill-climbing search is like climbing

Everest in thick fog with amnesia”.

Section 4.1. Local Search Algorithms and Optimization Problems 121

If the path to the goal does not matter, we might consider a different class of algo-
rithms, ones that do not worry about paths at all. Local search algorithms operate usingLOCAL SEARCH

a single current node (rather than multiple paths) and generally move only to neighborsCURRENT NODE

of that node. Typically, the paths followed by the search are not retained. Although local
search algorithms are not systematic, they have two key advantages: (1) they use very little
memory—usually a constant amount; and (2) they can often find reasonable solutions in large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search algorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objectiveOPTIMIZATION

PROBLEM

function. Many optimization problems do not fit the “standard” search model introduced inOBJECTIVE

FUNCTION

Chapter 3. For example, nature provides an objective function—reproductive fitness—that
Darwinian evolution could be seen as attempting to optimize, but there is no “goal test” and
no “path cost” for this problem.

To understand local search, we find it useful to consider the state-space landscape (asSTATE-SPACE

LANDSCAPE

in Figure 4.1). A landscape has both “location” (defined by the state) and “elevation” (defined
by the value of the heuristic cost function or objective function). If elevation corresponds to
cost, then the aim is to find the lowest valley—a global minimum; if elevation correspondsGLOBAL MINIMUM

to an objective function, then the aim is to find the highest peak—a global maximum. (YouGLOBAL MAXIMUM

can convert from one to the other just by inserting a minus sign.) Local search algorithms
explore this landscape. A complete local search algorithm always finds a goal if one exists;
an optimal algorithm always finds a global minimum/maximum.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum. Hill-climbing search modifies
the current state to try to improve it, as shown by the arrow. The various topographic features
are defined in the text.

▶ Idea: Escape local maxima by allowing some “bad” or random moves.
▶ Example 6.11. local search, simulated annealing, . . .
▶ Properties: All are incomplete, nonoptimal.
▶ Sometimes performs well in practice (if (optimal) solutions are dense)

Michael Kohlhase: Artificial Intelligence 1 190 2025-02-06



Simulated annealing (Idea)

▶ Definition 6.12. Ridges are ascending
successions of local maxima.
▶ Problem: They are extremely difficult to

bv navigate for local search algorithms.
▶ Idea: Escape local maxima by allowing

some “bad” moves, but gradually decrease
their size and frequency.

124 Chapter 4. Beyond Classical Search

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local
maxima that are not directly connected to each other. From each local maximum, all the
available actions point downhill.

Many variants of hill climbing have been invented. Stochastic hill climbing chooses atSTOCHASTIC HILL

CLIMBING

random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes, it finds better solutions. First-choice hill climbing implements stochasticFIRST-CHOICE HILL

CLIMBING

hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.

The hill-climbing algorithms described so far are incomplete—they often fail to find
a goal when one exists because they can get stuck on local maxima. Random-restart hill
climbing adopts the well-known adage, “If at first you don’t succeed, try, try again.” It con-RANDOM-RESTART

HILL CLIMBING

ducts a series of hill-climbing searches from randomly generated initial states,1 until a goal
is found. It is trivially complete with probability approaching 1, because it will eventually
generate a goal state as the initial state. If each hill-climbing search has a probability p of
success, then the expected number of restarts required is 1/p. For 8-queens instances with
no sideways moves allowed, p ≈ 0.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus
(1−p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves,
1/0.94 ≈ 1.06 iterations are needed on average and (1× 21)+ (0.06/0.94)× 64 ≈ 25 steps.
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute.2

1 Generating a random state from an implicitly specified state space can be a hard problem in itself.
2 Luby et al. (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways moves is an example of this idea.

▶ Annealing is the process of heating steel and let it cool gradually to give it time
to grow an optimal cristal structure.
▶ Simulated annealing is like shaking a ping pong ball occasionally on a bumpy

surface to free it. (so it does not get stuck)
▶ Devised by Metropolis et al for physical process modelling [Met+53]
▶ Widely used in VLSI layout, airline scheduling, etc.

Michael Kohlhase: Artificial Intelligence 1 191 2025-02-06



Simulated annealing (Implementation)

▶ Definition 6.13. The following algorithm is called simulated annealing:

procedure Simulated−Annealing (problem,schedule) /∗ a solution state ∗/
local node, next /∗ nodes ∗/
local T /∗ a ‘‘temperature’’ controlling prob.~of downward steps ∗/
current := Make−Node(Initial−State[problem])
for t :=1 to ∞
T := schedule[t]

if T = 0 return current end if
next := <a randomly selected successor of current>
∆(E) := Value[next]−Value[current]
if ∆(E) > 0 current := next
else
current := next <only with probability> e∆(E)/T

end if
end for

end procedure

A schedule is a mapping from time to “temperature”.
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Properties of simulated annealing

▶ At fixed “temperature” T , state occupation probability reaches Boltzman
distribution

p(x) = αe
E(x)
kT

T decreased slowly enough ; always reach best state x∗ because

e
E(x∗)
kT

e
E(x)
kT

= e
E(x∗)−E(x)

kT ≫ 1

for small T .
▶ Question: Is this necessarily an interesting guarantee?
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Local beam search

▶ Definition 6.14. Local beam search is a search algorithm that keep k states
instead of 1 and chooses the top k of all their successors.
▶ Observation: Local beam search is not the same as k searches run in parallel!

(Searches that find good states recruit other searches to join them)
▶ Problem: Quite often, all k searches end up on the same local hill!
▶ Idea: Choose k successors randomly, biased towards good ones. (Observe the

close analogy to natural selection!)
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Genetic algorithms (very briefly)

▶ Definition 6.15. A genetic algorithm is a variant of local beam search that
generates successors by
▶ randomly modifying states (mutation)
▶ mixing pairs of states (sexual reproduction or crossover)

to optimize a fitness function. (survival of the fittest)
▶ Example 6.16. Generating successors for 8 queens
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(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation
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11

29%
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26%
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32752411

24748552
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24415124

32748552
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32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

Figure 4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for
mating in (c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Like beam searches, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.6(b)–(e). In (b),
each state is rated by the objective function, or (in GA terminology) the fitness function. AFITNESS FUNCTION

fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), two pairs are selected at random for reproduction, in accordance with the prob-
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Genetic algorithms (continued)

▶ Problem: Genetic algorithms require states encoded as strings.
▶ Crossover only helps iff substrings are meaningful components.
▶ Example 6.17 (Evolving 8 Queens). First crossover
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Figure 4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for
mating in (c). They produce offspring in (d), which are subject to mutation in (e).
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Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Like beam searches, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.6(b)–(e). In (b),
each state is rated by the objective function, or (in GA terminology) the fitness function. AFITNESS FUNCTION

fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), two pairs are selected at random for reproduction, in accordance with the prob-

▶ Note: Genetic algorithms ̸= evolution: e.g., real genes also encode replication
machinery!
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Chapter 7
Adversarial Search for Game Playing
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7.1 Introduction
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The Problem

▶ The Problem of Game-Play: cf. ??
▶ Example 1.1.

▶ Definition 1.2. Adversarial search =̂ Game playing against an opponent.
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Why Game Playing?
▶ What do you think?
▶ Playing a game well clearly requires a form of “intelligence”.
▶ Games capture a pure form of competition between opponents.
▶ Games are abstract and precisely defined, thus very easy to formalize.
▶ Game playing is one of the oldest sub-areas of AI (ca. 1950).
▶ The dream of a machine that plays chess is, indeed, much older than AI!

“Schachtürke” (1769) “El Ajedrecista” (1912)
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“Game” Playing? Which Games?

▶ . . . sorry, we’re not gonna do soccer here.
▶ Definition 1.3 (Restrictions). A game in the sense of AI-1 is one where
▶ Game state discrete, number of game state finite.
▶ Finite number of possible moves.
▶ The game state is fully observable.
▶ The outcome of each move is deterministic.
▶ Two players: Max and Min.
▶ Turn-taking: It’s each player’s turn alternatingly. Max begins.
▶ Terminal game states have a utility u. Max tries to maximize u, Min tries to

minimize u.
▶ In that sense, the utility for Min is the exact opposite of the utility for Max (“zero

sum”).
▶ There are no infinite runs of the game (no matter what moves are chosen, a

terminal state is reached after a finite number of moves).
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An Example Game

▶ Game states: Positions of figures.
▶ Moves: Given by rules.
▶ Players: white (Max), black (Min).
▶ Terminal states: checkmate.
▶ Utility of terminal states, e.g.:
▶ +100 if black is checkmated.
▶ 0 if stalemate.
▶ −100 if white is checkmated.
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“Game” Playing? Which Games Not?

▶ Soccer (sorry guys; not even RoboCup)
▶ Important types of games that we don’t tackle here:
▶ Chance. (E.g., backgammon)
▶ More than two players. (E.g., Halma)
▶ Hidden information. (E.g., most card games)
▶ Simultaneous moves. (E.g., Diplomacy)
▶ Not zero-sum, i.e., outcomes may be beneficial (or detrimental) for both players.

(cf. Game theory: Auctions, elections, economy, politics, . . . )
▶ Many of these more general game types can be handled by similar/extended

algorithms.
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(A Brief Note On) Formalization

▶ Definition 1.4. An adversarial search problem is a search problem
⟨S ,A, T , I ,G⟩, where
1. S = SMax ⊎ SMin ⊎ G and A = AMax ⊎ AMin

2. For a ∈ AMax, if s a−→ s ′ then s ∈ SMax and s ′ ∈ (SMin ∪ G).
3. For a ∈ AMin, if s a−→ s ′ then s ∈ SMin and s ′ ∈ (SMax ∪ G).
together with a game utility function u : G → R. (the “score” of the game)
▶ Definition 1.5 (Commonly used terminology).

position =̂ state, move =̂ action, end state =̂ terminal state =̂ goal state.
▶ Remark: A round of the game – one move Max, one move Min – is often

referred to as a “move”, and individual actions as “half-moves” (we don’t in AI-1)
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Why Games are Hard to Solve: I

▶ What is a “solution” here?
▶ Definition 1.6. Let Θ be an adversarial search problem, and let
X ∈ {Max,Min}. A strategy for X is a function σX : SX →AX so that a is
applicable to s whenever σX (s) = a.
▶ We don’t know how the opponent will react, and need to prepare for all

possibilities.
▶ Definition 1.7. A strategy is called optimal if it yields the best possible utility

for X assuming perfect opponent play (not formalized here).
▶ Problem: In (almost) all games, computing an optimal strategy is infeasible.

(state/search tree too huge)
▶ Solution: Compute the next move “on demand”, given the current state

instead.
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Why Games are hard to solve II

▶ Example 1.8. Number of reachable states in chess: 1040.
▶ Example 1.9. Number of reachable states in go: 10100.
▶ It’s even worse: Our algorithms here look at search trees (game trees), no

duplicate pruning.
▶ Example 1.10.
▶ Chess without duplicate pruning: 35100 ≃ 10154.
▶ Go without duplicate pruning: 200300 ≃ 10690.
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How To Describe a Game State Space?

▶ Like for classical search problems, there are three possible ways to describe a
game: blackbox/API description, declarative description, explicit game state
space.
▶ Question: Which ones do humans use?
▶ Explicit ≈ Hand over a book with all 1040 moves in chess.
▶ Blackbox ≈ Give possible chess moves on demand but don’t say how they are

generated.
▶ Answer: Declarative!

With “game description language” =̂ natural language.
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Specialized vs. General Game Playing

▶ And which game descriptions do computers use?
▶ Explicit: Only in illustrations.
▶ Blackbox/API: Assumed description in (This Chapter)
▶ Method of choice for all those game players out there in the market (Chess computers,

video game opponents, you name it).
▶ Programs designed for, and specialized to, a particular game.
▶ Human knowledge is key: evaluation functions (see later), opening databases (chess!!),

end game databases.
▶ Declarative: General game playing, active area of research in AI.
▶ Generic game description language (GDL), based on logic.
▶ Solvers are given only “the rules of the game”, no other knowledge/input whatsoever (cf.

??).
▶ Regular academic competitions since 2005.
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Our Agenda for This Chapter

▶ Minimax Search: How to compute an optimal strategy?
▶ Minimax is the canonical (and easiest to understand) algorithm for solving games,

i.e., computing an optimal strategy.
▶ Evaluation functions: But what if we don’t have the time/memory to solve

the entire game?
▶ Given limited time, the best we can do is look ahead as far as we can. Evaluation

functions tell us how to evaluate the leaf states at the cut off.
▶ Alphabeta search: How to prune unnecessary parts of the tree?
▶ Often, we can detect early on that a particular action choice cannot be part of the

optimal strategy. We can then stop considering this part of the game tree.
▶ State of the art: What is the state of affairs, for prominent games, of

computer game playing vs. human experts?
▶ Just FYI (not part of the technical content of this course).
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7.2 Minimax Search
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“Minimax”?

▶ We want to compute an optimal strategy for player “Max”.
▶ In other words: We are Max, and our opponent is Min.
▶ Recall: We compute the strategy offline, before the game begins.

During the game, whenever it’s our turn, we just look up the corresponding
action.
▶ Idea: Use tree search using an extension û of the utility function u to inner

nodes. û is computed recursively from u during search:
▶ Max attempts to maximize û(s) of the terminal states reachable during play.
▶ Min attempts to minimize û(s).
▶ The computation alternates between minimization and maximization ; hence

“minimax”.
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Example Tic-Tac-Toe

▶ Example 2.1. A full game tree for tic-tac-toe

Section 5.2. Optimal Decisions in Games 163

until we reach leaf nodes corresponding to terminal states such that one player has three in
a row or all the squares are filled. The number on each leaf node indicates the utility value
of the terminal state from the point of view of MAX; high values are assumed to be good for
MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal
nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a
theoretical construct that we cannot realize in the physical world. But regardless of the size
of the game tree, it is MAX’s job to search for a good move. We use the term search tree for aSEARCH TREE

tree that is superimposed on the full game tree, and examines enough nodes to allow a player
to determine what move to make.
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Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial
state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to
a goal state—a terminal state that is a win. In adversarial search, MIN has something to say
about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

▶ current player and action marked on the left.
▶ Last row: terminal positions with their utility.
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Minimax: Outline

▶ We max, we min, we max, we min . . .
1. Depth first search in game tree, with Max in the root.
2. Apply game utility function to terminal positions.
3. Bottom-up for each inner node n in the search tree, compute the utility û(n) of n as

follows:
▶ If it’s Max’s turn: Set û(n) to the maximum of the utilities of n’s successor nodes.
▶ If it’s Min’s turn: Set û(n) to the minimum of the utilities of n’s successor nodes.

4. Selecting a move for Max at the root: Choose one move that leads to a successor
node with maximal utility.
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Minimax: Example

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

▶ Blue numbers: Utility function u applied to terminal positions.
▶ Red numbers: Utilities of inner nodes, as computed by the minimax algorithm.
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The Minimax Algorithm: Pseudo-Code
▶ Definition 2.2. The minimax algorithm (often just called minimax) is given by

the following functions whose argument is a state s ∈ SMax, in which Max is to
move.
function Minimax−Decision(s) returns an action
v := Max−Value(s)
return an action yielding value v in the previous function call

function Max−Value(s) returns a utility value
if Terminal−Test(s) then return u(s)
v := −∞
for each a ∈ Actions(s) do
v := max(v ,Min−Value(ChildState(s,a)))

return v

function Min−Value(s) returns a utility value
if Terminal−Test(s) then return u(s)
v := +∞
for each a ∈ Actions(s) do
v := min(v ,Max−Value(ChildState(s,a)))

return v

We call nodes, where Max/Min acts Max-nodes/Min-nodes.
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Minimax: Example, Now in Detail

Max −∞

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail
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Min 3
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Min ∞

2
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4
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▶ Leftmost branch.
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Minimax: Example, Now in Detail
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Min 3

3 12 8

Min 2

2 4 6
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assuming perfect play of Min, it’s better to go left. (Going right would be
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min ∞

14

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 14

14

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 5

14 5

▶ So which action for Max is returned?

▶ Leftmost branch.
▶ Note: The maximal possible pay-off is higher for the rightmost branch, but

assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax: Example, Now in Detail

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

▶ So which action for Max is returned?
▶ Leftmost branch.

▶ Note: The maximal possible pay-off is higher for the rightmost branch, but
assuming perfect play of Min, it’s better to go left. (Going right would be
“relying on your opponent to do something stupid”.)
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Minimax, Pro and Contra

▶ Minimax advantages:
▶ Minimax is the simplest possible (reasonable) search algorithm for games.

(If any of you sat down, prior to this lecture, to implement a Tic-Tac-Toe player,
chances are you either looked this up on Wikipedia, or invented it in the process.)

▶ Returns an optimal action, assuming perfect opponent play.
▶ No matter how the opponent plays, the utility of the terminal state reached will be at

least the value computed for the root.
▶ If the opponent plays perfectly, exactly that value will be reached.

▶ There’s no need to re-run minimax for every game state: Run it once, offline before
the game starts. During the actual game, just follow the branches taken in the tree.
Whenever it’s your turn, choose an action maximizing the value of the successor
states.

▶ Minimax disadvantages: It’s completely infeasible in practice.
▶ When the search tree is too large, we need to limit the search depth and apply an

evaluation function to the cut off states.

Michael Kohlhase: Artificial Intelligence 1 214 2025-02-06



Minimax, Pro and Contra

▶ Minimax advantages:
▶ Minimax is the simplest possible (reasonable) search algorithm for games.

(If any of you sat down, prior to this lecture, to implement a Tic-Tac-Toe player,
chances are you either looked this up on Wikipedia, or invented it in the process.)

▶ Returns an optimal action, assuming perfect opponent play.
▶ No matter how the opponent plays, the utility of the terminal state reached will be at

least the value computed for the root.
▶ If the opponent plays perfectly, exactly that value will be reached.

▶ There’s no need to re-run minimax for every game state: Run it once, offline before
the game starts. During the actual game, just follow the branches taken in the tree.
Whenever it’s your turn, choose an action maximizing the value of the successor
states.

▶ Minimax disadvantages: It’s completely infeasible in practice.
▶ When the search tree is too large, we need to limit the search depth and apply an

evaluation function to the cut off states.

Michael Kohlhase: Artificial Intelligence 1 214 2025-02-06



7.3 Evaluation Functions
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Evaluation Functions for Minimax

▶ Problem: Search tree are too big to search through in minimax.
▶ Solution: We impose a search depth limit (also called horizon) d , and apply

an evaluation function to the cut-off states, i.e. states s with dp(s) = d .
▶ Definition 3.1. An evaluation function f maps game states to numbers:
▶ f (s) is an estimate of the actual value of s (as would be computed by

unlimited-depth minimax for s).
▶ If cut-off state is terminal: Just use û instead of f .
▶ Analogy to heuristic functions (cf. ??): We want f to be both (a) accurate and

(b) fast.
▶ Another analogy: (a) and (b) are in contradiction ; need to trade-off accuracy

against overhead.
▶ In typical game playing algorithms today, f is inaccurate but very fast. (usually no

good methods known for computing accurate f )
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Example Revisited: Minimax With Depth Limit d = 2

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

▶ Blue numbers: evaluation function f , applied to the cut-off states at d = 2.
▶ Red numbers: utilities of inner node, as computed by minimax using f .
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Example Chess

▶ Evaluation function in chess:
▶ Material: Pawn 1, Knight 3, Bishop 3, Rook 5,

Queen 9.
▶ 3 points advantage ; safe win.
▶ Mobility: How many fields do you control?
▶ King safety, Pawn structure, . . .
▶ Note how simple this is! (probably is not how

Kasparov evaluates his positions)
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Linear Evaluation Functions

▶ Problem: How to come up with evaluation functions?
▶ Definition 3.2. A common approach is to use a weighted linear function for f ,

i.e. given a sequence of features f i : S → R and a corresponding sequence of
weights w i ∈ R, f is of the form f (s):=w1 · f 1(s) +w2 · f 2(s) + · · ·+wn · f n(s)
▶ Problem: How to obtain these weighted linear functions?
▶ Weights w i can be learned automatically. (learning agent)
▶ The features f i , however, have to be designed by human experts.
▶ Note: Very fast, very simplistic.
▶ Observation: Can be computed incrementally: In transition s

a−→ s ′, adapt
f (s) to f (s ′) by considering only those features whose values have changed.
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The Horizon Problem

▶ Problem: Critical aspects of the game can be cut off by the horizon.
We call this the horizon problem.
▶ Example 3.3.

Black to move

▶ Who’s gonna win here?
▶ White wins (pawn cannot be prevented from

becoming a queen.)
▶ Black has a +4 advantage in material, so if we

cut-off here then our evaluation function will say
“100%, black wins”.

▶ The loss for black is “beyond our horizon” unless
we search extremely deeply: black can hold off the
end by repeatedly giving check to white’s king.
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So, How Deeply to Search?

▶ Goal: In given time, search as deeply as possible.
▶ Problem: Very difficult to predict search running time. (need an anytime

algorithm)
▶ Solution: Iterative deepening search.
▶ Search with depth limit d = 1, 2, 3, . . .
▶ When time is up: return result of deepest completed search.
▶ Definition 3.4 (Better Solution). The quiescent search algorithm uses a

dynamically adapted search depth d : It searches more deeply in unquiet
positions, where value of evaluation function changes a lot in neighboring states.
▶ Example 3.5. In quiescent search for chess:
▶ piece exchange situations (“you take mine, I take yours”) are very unquiet
▶ ; Keep searching until the end of the piece exchange is reached.
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7.4 Alpha-Beta Search
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When We Already Know We Can Do Better Than This

Max (A)

Max
value: m

Min
value: n

Min (B)

▶ Say n > m.
▶ By choosing to go to the left in

search node (A), Max already can
get utility of at least n in this part
of the game.
▶ So, if “later on” (further down in

the same subtree), in search node
(B) we already know that Min can
force Max to get value m < n.
▶ Then Max will play differently in

(A) so we will never actually get
to (B).
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Alpha Pruning: Basic Idea

▶ Question: Can we save some work here?

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2
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Alpha Pruning: Basic Idea (Continued)

▶ Answer: Yes! We already know at this point that the middle action won’t be
taken by Max.

Max ≥ 3

Min 3

3 12 8

Min ≤ 2

2

Min

▶ Idea: We can use this to prune the search tree ; better algorithm
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Alpha Pruning

▶ Definition 4.1. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

▶ Example 4.2 (Computing alpha values).

Max −∞;α = −∞
▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,

then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.3. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.
▶ Example 4.4 (Computing alpha values).

Max −∞;α = −∞

Min ∞;α = −∞

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.5. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.
▶ Example 4.6 (Computing alpha values).

Max −∞;α = −∞

Min ∞;α = −∞

3

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.7. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.
▶ Example 4.8 (Computing alpha values).

Max −∞;α = −∞

Min 3;α = −∞

3

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.9. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.
▶ Example 4.10 (Computing alpha values).

Max −∞;α = −∞

Min 3;α = −∞

3 12

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.11. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.
▶ Example 4.12 (Computing alpha values).

Max −∞;α = −∞

Min 3;α = −∞

3 12 8

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.13. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.
▶ Example 4.14 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.15. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.
▶ Example 4.16 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min ∞;α = 3

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.17. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.
▶ Example 4.18 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min ∞;α = 3

2

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.19. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.
▶ Example 4.20 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min 2;α = 3

2

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha Pruning

▶ Definition 4.21. For each node n in a minimax search tree, the alpha value
α(n) is the highest Max-node utility that search has encountered on its path
from the root to n.
▶ Example 4.22 (Computing alpha values).

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min 2;α = 3

2

Min

▶ How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)
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Alpha-Beta Pruning

▶ Recall:
▶ What is α: For each search node n, the highest Max-node utility that search has

encountered on its path from the root to n.
▶ How to use α: In a Min-node n, if one of the successors already has utility ≤ α(n),

then stop considering n. (Pruning out its remaining successors)
▶ Idea: We can use a dual method for Min!
▶ Definition 4.23. For each node n in a minimax search tree, the beta value
β(n) is the highest Min-node utility that search has encountered on its path
from the root to n.
▶ How to use β: In a Max-node n, if one of the successors already has utility
≥ β(n), then stop considering n. (pruning out its remaining successors)
▶ . . . and of course we can use α and β together! ; alphabeta-pruning
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Alpha-Beta Search: Pseudocode
▶ Definition 4.24. The alphabeta search algorithm is given by the following

pseudocode
function Alpha−Beta−Search (s) returns an action

v := Max−Value(s, −∞, +∞)
return an action yielding value v in the previous function call

function Max−Value(s, α, β) returns a utility value
if Terminal−Test(s) then return u(s)
v := −∞
for each a ∈ Actions(s) do
v := max(v ,Min−Value(ChildState(s,a), α, β))
α := max(α, v)
if v ≥ β then return v /∗ Here: v ≥ β ⇔ α ≥ β ∗/

return v

function Min−Value(s, α, β) returns a utility value
if Terminal−Test(s) then return u(s)
v := +∞
for each a ∈ Actions(s) do

v := min(v ,Max−Value(ChildState(s,a), α, β))
β := min(β, v)
if v ≤ α then return v /∗ Here: v ≤ α ⇔ α ≥ β ∗/

return v

=̂ Minimax (slide 212) + α/β book-keeping and pruning.
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

Min ∞; [−∞,∞]

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

Min ∞; [−∞,∞]

3

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06



Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3 12

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3 12 8

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min ∞; [3,∞]

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min ∞; [3,∞]

2

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06



Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

14

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 14; [3, 14]

14

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 14; [3, 14]

14 5

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

14 5

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

14 5 2

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Example

▶ Notation: v ; [α, β]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 2; [3, 2]

14 5 2

▶ Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

5
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max −∞; [3, 5]
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max −∞; [3, 5]

14
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max 14; [14, 5]

14
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max 14; [14, 5]

14

2
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Alpha-Beta Search: Modified Example

▶ Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 2; [3, 2]

5
Max 14; [14, 5]

14

2
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How Much Pruning Do We Get?

▶ Choosing the best moves first yields most pruning in alphabeta search.
▶ The maximizing moves for Max, the minimizing moves for Min.
▶ Observation: Assuming game tree with branching factor b and depth limit d :
▶ Minimax would have to search bd nodes.
▶ Best case: If we always choose the best moves first, then the search tree is reduced

to b
d
2 nodes!

▶ Practice: It is often possible to get very close to the best case by simple
move-ordering methods.

▶ Example 4.25 (Chess).
▶ Move ordering: Try captures first, then threats, then forward moves, then backward

moves.
▶ From 35d to 35

d
2 . E.g., if we have the time to search a billion (109) nodes, then

minimax looks ahead d = 6 moves, i.e., 3 rounds (white-black) of the game.
Alpha-beta search looks ahead 6 rounds.
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7.5 Monte-Carlo Tree Search (MCTS)
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And now . . .

▶ AlphaGo = Monte Carlo tree search (AI-1) + neural networks (AI-2)

CC-BY-SA: Buster Benson@ https://www.flickr.com/photos/erikbenson/25717574115
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Monte-Carlo Tree Search: Basic Ideas
▶ Observation: We do not always have good evaluation functions.
▶ Definition 5.1. For Monte Carlo sampling we evaluate actions through

sampling.
▶ When deciding which action to take on game state s:

while time not up do
select action a applicable to s
run a random sample from a until terminal state t

return an a for s with maximal average u(t)

▶ Definition 5.2. For the Monte Carlo tree search algorithm (MCTS) we
maintain a search tree T , the MCTS tree.
while time not up do

apply actions within T to select a leaf state s ′

select action a′ applicable to s ′, run random sample from a′

add s ′ to T , update averages etc.
return an a for s with maximal average u(t)
When executing a, keep the part of T below a.

▶ Compared to alphabeta search: no exhaustive enumeration.
▶ Pro: running time & memory.
▶ Contra: need good guidance how to select and sample.
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.3 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.4 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.5 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.6 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.7 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.8 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100

10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.9 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.10 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.11 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.12 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.13 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70

50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.14 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.15 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.16 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.17 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.18 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.19 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0

Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06



Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.20 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.21 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.22 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50

30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.23 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.24 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.25 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.26 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.27 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70

50

30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.28 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.29 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.30 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.31 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.32 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.33 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100

10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.34 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.35 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Sampling: Illustration of Sampling

▶ Idea: Sample the search tree keeping track of the average utilities.
▶ Example 5.36 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.37 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.38 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.39 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.40 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.41 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.42 (Redoing the previous example).

40

70 50 30

100

10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.43 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.44 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.45 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.46 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06



Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.47 (Redoing the previous example).

40

70

50 30

100 10

Expansions: 0, 1, 0
avg. reward: 0, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.48 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.49 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.50 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.51 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.52 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.53 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.54 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06



Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.55 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.56 (Redoing the previous example).

40

70 50

30

100 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 0
avg. reward: 40, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.57 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.58 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.59 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.60 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.61 (Redoing the previous example).

40

70

50

30

100 10

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.62 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.63 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.64 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.65 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.66 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.67 (Redoing the previous example).

40

70 50 30

100

10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06



Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.68 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.69 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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Monte-Carlo Tree Search: Building the Tree
▶ Idea: We can save work by building the tree as we go along.
▶ Example 5.70 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 2
avg. reward: 55

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30
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How to Guide the Search in MCTS?

▶ How to sample?: What exactly is “random”?
▶ Classical formulation: balance exploitation vs. exploration.
▶ Exploitation: Prefer moves that have high average already (interesting regions of

state space)
▶ Exploration: Prefer moves that have not been tried a lot yet (don’t overlook other,

possibly better, options)
▶ UCT: “Upper Confidence bounds applied to Trees” [KS06].
▶ Inspired by Multi-Armed Bandit (as in: Casino) problems.
▶ Basically a formula defining the balance. Very popular (buzzword).
▶ Recent critics (e.g. [FD14]): Exploitation in search is very different from the

Casino, as the “accumulated rewards” are fictitious (we’re only thinking about the
game, not actually playing and winning/losing all the time).
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AlphaGo: Overview

▶ Definition 5.71 (Neural Networks in AlphaGo).
▶ Policy networks: Given a state s, output a probability distribution over the actions

applicable in s.
▶ Value networks: Given a state s, output a number estimating the game value of s.
▶ Combination with MCTS:
▶ Policy networks bias the action choices within the MCTS tree (and hence the leaf

state selection), and bias the random samples.
▶ Value networks are an additional source of state values in the MCTS tree, along

with the random samples.
▶ And now in a little more detail
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Neural Networks in AlphaGo

▶ Neural network training pipeline and architecture:

2 8  J A N U A R Y  2 0 1 6  |  V O L  5 2 9  |  N A T U R E  |  4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to 
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ ( | )

∂
σp a slog

We trained a 13-layer policy network, which we call the SL policy 
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of 
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from 
other research groups of 44.4% at date of submission24 (full results in 
Extended Data Table 3). Small improvements in accuracy led to large 
improvements in playing strength (Fig. 2a); larger networks achieve 
better accuracy but are slower to evaluate during search. We also 
trained a faster but less accurate rollout policy pπ(a|s), using a linear 
softmax of small pattern features (see Extended Data Table 4) with 
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select 
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy 
network by policy gradient reinforcement learning (RL)25,26. The RL 
policy network pρ is identical in structure to the SL policy network, 

and its weights ρ are initialized to the same values, ρ = σ. We play 
games between the current policy network pρ and a randomly selected 
previous iteration of the policy network. Randomizing from a pool 
of opponents in this way stabilizes training by preventing overfitting 
to the current policy. We use a reward function r(s) that is zero for all 
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current 
player at time step t: +1 for winning and −1 for losing. Weights are 
then updated at each time step t by stochastic gradient ascent in the 
direction that maximizes expected outcome25
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We evaluated the performance of the RL policy network in game  
play, sampling each move ~ (⋅| )ρa p st t  from its output probability  
distribution over actions. When played head-to-head, the RL policy 
network won more than 80% of games against the SL policy network. 
We also tested against the strongest open-source Go program, Pachi14, 
a sophisticated Monte Carlo search program, ranked at 2 amateur dan 
on KGS, that executes 100,000 simulations per move. Using no search 
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised 

Figure 1 | Neural network training pipeline and architecture. a, A fast 
rollout policy pπ and supervised learning (SL) policy network pσ are 
trained to predict human expert moves in a data set of positions.  
A reinforcement learning (RL) policy network pρ is initialized to the SL 
policy network, and is then improved by policy gradient learning to 
maximize the outcome (that is, winning more games) against previous 
versions of the policy network. A new data set is generated by playing 
games of self-play with the RL policy network. Finally, a value network vθ 
is trained by regression to predict the expected outcome (that is, whether 

the current player wins) in positions from the self-play data set.  
b, Schematic representation of the neural network architecture used in 
AlphaGo. The policy network takes a representation of the board position 
s as its input, passes it through many convolutional layers with parameters 
σ (SL policy network) or ρ (RL policy network), and outputs a probability 
distribution ( | )σp a s  or ( | )ρp a s  over legal moves a, represented by a 
probability map over the board. The value network similarly uses many 
convolutional layers with parameters θ, but outputs a scalar value vθ(s′) 
that predicts the expected outcome in position s′.
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Figure 2 | Strength and accuracy of policy and value networks.  
a, Plot showing the playing strength of policy networks as a function 
of their training accuracy. Policy networks with 128, 192, 256 and 384 
convolutional filters per layer were evaluated periodically during training; 
the plot shows the winning rate of AlphaGo using that policy network 
against the match version of AlphaGo. b, Comparison of evaluation 
accuracy between the value network and rollouts with different policies. 

Positions and outcomes were sampled from human expert games. Each 
position was evaluated by a single forward pass of the value network vθ, 
or by the mean outcome of 100 rollouts, played out using either uniform 
random rollouts, the fast rollout policy pπ, the SL policy network pσ or 
the RL policy network pρ. The mean squared error between the predicted 
value and the actual game outcome is plotted against the stage of the game 
(how many moves had been played in the given position).
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Illustration taken from [Sil+16] .
▶ Rollout policy pπ: Simple but fast, ≈ prior work on Go.
▶ SL policy network pσ: Supervised learning, human-expert data (“learn to choose an

expert action”).
▶ RL policy network pρ: Reinforcement learning, self-play (“learn to win”).
▶ Value network vθ: Use self-play games with pρ as training data for game-position

evaluation vθ (“predict which player will win in this state”).
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Neural Networks + MCTS in AlphaGo

▶ Monte Carlo tree search in AlphaGo:

4 8 6  |  N A T U R E  |  V O L  5 2 9  |  2 8  J A N U A R Y  2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23 
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation, 
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E( )= | = ~…v s z s s a p[ , ]p
t t t T

Ideally, we would like to know the optimal value function under 
perfect play v*(s); in practice, we instead estimate the value function 

ρv p  for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ, 

⁎( )≈ ( )≈ ( )θ ρv s v s v sp . This neural network has a similar architecture  
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to 
minimize the mean squared error (MSE) between the predicted value 
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ( )
∂
( − ( ))θ

θ
v s

z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that 
successive positions are strongly correlated, differing by just one stone, 
but the regression target is shared for the entire game. When trained 
on the KGS data set in this way, the value network memorized the 
game outcomes rather than generalizing to new positions, achieving a 
minimum MSE of 0.37 on the test set, compared to 0.19 on the training 
set. To mitigate this problem, we generated a new self-play data set 
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and 
itself until the game terminated. Training on this data set led to MSEs 
of 0.226 and 0.234 on the training and test set respectively, indicating 
minimal overfitting. Figure 2b shows the position evaluation accuracy 
of the value network, compared to Monte Carlo rollouts using the fast 
rollout policy pπ; the value function was consistently more accurate. 
A single evaluation of vθ(s) also approached the accuracy of Monte 
Carlo rollouts using the RL policy network pρ, but using 15,000 times 
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge  

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a), 
and prior probability P(s, a). The tree is traversed by simulation (that 
is, descending the tree in complete games without backup), starting 
from the root state. At each time step t of each simulation, an action at 
is selected from state st

= ( ( )+ ( ))a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus
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u s a
P s a
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,

,
1 ,

that is proportional to the prior probability but decays with  
repeated visits to encourage exploration. When the traversal reaches a 
leaf node sL at step L, the leaf node may be expanded. The leaf position 
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,  
( )= ( | )σP s a p a s,  . The leaf node is evaluated in two very different ways: 

first, by the value network vθ(sL); and second, by the outcome zL of a 
random rollout played out until terminal step T using the fast rollout 
policy pπ; these evaluations are combined, using a mixing parameter 
λ, into a leaf evaluation V(sL)

λ λ( )= ( − ) ( )+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all 
traversed edges are updated. Each edge accumulates the visit count and 
mean evaluation of all simulations passing through that edge
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where sL
i  is the leaf node from the ith simulation, and 1(s, a, i) indicates 

whether an edge (s, a) was traversed during the ith simulation. Once 
the search is complete, the algorithm chooses the most visited move 
from the root position.

It is worth noting that the SL policy network pσ performed better in 
AlphaGo than the stronger RL policy network pρ, presumably because 
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function 
( )≈ ( )θ ρv s v sp  derived from the stronger RL policy network performed 

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation 
traverses the tree by selecting the edge with maximum action value Q, 
plus a bonus u(P) that depends on a stored prior probability P for that 
edge. b, The leaf node may be expanded; the new node is processed once 
by the policy network pσ and the output probabilities are stored as prior 
probabilities P for each action. c, At the end of a simulation, the leaf node 

is evaluated in two ways: using the value network vθ; and by running 
a rollout to the end of the game with the fast rollout policy pπ, then 
computing the winner with function r. d, Action values Q are updated to 
track the mean value of all evaluations r(·) and vθ(·) in the subtree below 
that action.
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Illustration taken from [Sil+16]
▶ Rollout policy pπ: Action choice in random samples.
▶ SL policy network pσ: Action choice bias within the UCTS tree (stored as “P”, gets

smaller to “u(P)” with number of visits); along with quality Q.
▶ RL policy network pρ: Not used here (used only to learn vθ).
▶ Value network vθ: Used to evaluate leaf states s, in linear sum with the value

returned by a random sample on s.
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7.6 State of the Art
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State of the Art

▶ Some well-known board games:
▶ Chess: Up next.
▶ Othello (Reversi): In 1997, “Logistello” beat the human world champion. Best

computer players now are clearly better than best human players.
▶ Checkers (Dame): Since 1994, “Chinook” is the offical world champion. In 2007, it

was shown to be unbeatable: Checkers is solved. (We know the exact value of, and
optimal strategy for, the initial state.)

▶ Go: In 2016, AlphaGo beat the Grandmaster Lee Sedol, cracking the “holy grail” of
board games. In 2017, “AlphaZero” – a variant of AlphaGo with zero prior
knowledge beat all reigning champion systems in all board games (including
AlphaGo) 100/0 after 24h of self-play.

▶ Intuition: Board Games are considered a “solved problem” from the AI perspective.

Michael Kohlhase: Artificial Intelligence 1 238 2025-02-06



Computer Chess: “Deep Blue” beat Garry Kasparov in 1997

▶ 6 games, final score 3.5 : 2.5.
▶ Specialized chess hardware, 30 nodes

with 16 processors each.
▶ Alphabeta search plus human

knowledge. (more details in a moment)
▶ Nowadays, standard PC hardware plays

at world champion level.
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Computer Chess: Famous Quotes

▶ The chess machine is an ideal one to start with, since(Claude Shannon (1949))
1. the problem is sharply defined both in allowed operations (the moves) and in the

ultimate goal (checkmate),
2. it is neither so simple as to be trivial nor too difficult for satisfactory solution,
3. chess is generally considered to require “thinking” for skilful play, [. . . ]
4. the discrete structure of chess fits well into the digital nature of modern computers.
▶ Chess is the drosophila of Artificial Intelligence. (Alexander Kronrod (1965))
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Computer Chess: Another Famous Quote

▶ In 1965, the Russian mathematician Alexander Kronrod said, “Chess is the
Drosophila of artificial intelligence.”
However, computer chess has developed much as genetics might have if the
geneticists had concentrated their efforts starting in 1910 on breeding racing
Drosophilae. We would have some science, but mainly we would have very fast
fruit flies. (John McCarthy (1997))
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7.7 Conclusion
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Summary

▶ Games (2-player turn-taking zero-sum discrete and finite games) can be
understood as a simple extension of classical search problems.
▶ Each player tries to reach a terminal state with the best possible utility

(maximal vs. minimal).
▶ Minimax searches the game depth-first, max’ing and min’ing at the respective

turns of each player. It yields perfect play, but takes time O(bd) where b is the
branching factor and d the search depth.
▶ Except in trivial games (Tic-Tac-Toe), minimax needs a depth limit and apply

an evaluation function to estimate the value of the cut-off states.
▶ Alpha-beta search remembers the best values achieved for each player elsewhere

in the tree already, and prunes out sub-trees that won’t be reached in the game.
▶ Monte Carlo tree search (MCTS) samples game branches, and averages the

findings. AlphaGo controls this using neural networks: evaluation function
(“value network”), and action filter (“policy network”).

Michael Kohlhase: Artificial Intelligence 1 242 2025-02-06



Chapter 8
Constraint Satisfaction Problems
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8.1 Constraint Satisfaction Problems:
Motivation
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A (Constraint Satisfaction) Problem
▶ Example 1.1 (Tournament Schedule). Who’s going to play against who,

when and where?
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Constraint Satisfaction Problems (CSPs)

▶ Standard search problem: state is a “black box” any old data structure that
supports goal test, eval, successor state, . . .
▶ Definition 1.2. A constraint satisfaction problem (CSP) is a triple ⟨V ,D ,C ⟩

where
1. V is a finite set V of variables,
2. an V -indexed family (Dv )v∈V of domains, and
3. for some subsets {v1, . . ., v k} ⊆ V a constraint C{v1,...,vk}⊂Dv1 × . . .× Dvk .

A variable assignment φ ∈ (v∈V ) →Dv is a solution for C , iff
⟨φ(v1), . . ., φ(vk)⟩ ∈ C{v1,...,vk} for all {v1, . . ., vk} ⊆ V .
▶ Definition 1.3. A CSP γ is called satisfiable, iff it has a solution: a total

variable assignment φ that satisfies all constraints.
▶ Definition 1.4. The process of finding solutions to CSPs is called constraint

solving.
▶ Remark 1.5. We are using factored representation for world states now!
▶ Allows useful general-purpose algorithms with more power than standard tree

search algorithm.
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Another Constraint Satisfaction Problem

▶ Example 1.6 (SuDoKu). Fill the cells with row/column/block-unique digits

;
▶ Variables: The 81 cells.
▶ Domains: Numbers 1, . . . , 9.
▶ Constraints: Each number only once in each row, column, block.
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CSP Example: Map-Coloring
▶ Definition 1.7. Given a map M, the map coloring problem is to assign colors

to regions in a map so that no adjoining regions have the same color.
▶ Example 1.8 (Map coloring in Australia).
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Variables: WA, NT, Q, NSW, V, SA, T
▶ Domains: D i = {red, green, blue}
▶ Constraints: adjacent regions must have

different colors e.g., WA ̸= NT (if the
language allows this), or ⟨WA,NT⟩ ∈
{⟨red, green⟩, ⟨red, blue⟩, ⟨green, red⟩, . . . }

▶ Intuition: solutions map variables to
domain values satisfying all constraints,

▶ e.g., {WA = red,NT = green, . . .}
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Bundesliga Constraints

▶ Variables: vAvs.B where A and B are teams, with domains {1, . . . ,34}: For each
match, the index of the weekend where it is scheduled.
▶ (Some) constraints:

▶ If {A,B} ∩ {C ,D} ̸= ∅: vAvs.B ̸= vCvs.D

(each team only one match per day).
▶ If {A,B} = {C ,D}:

vAvs.B ≤ 17 < vCvs.D or
vCvs.D ≤ 17 < vAvs.B (each pairing
exactly once in each half-season).

▶ If A = C : vAvs.B + 1 ̸= vCvs.D (each
team alternates between home matches
and away matches).

▶ Leading teams of last season meet near
the end of each half-season.

▶ . . .
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How to Solve the Bundesliga Constraints?

▶ 306 nested for-loops (for each of the 306 matches), each ranging from 1 to 306.
Within the innermost loop, test whether the current values are (a) a
permutation and, if so, (b) a legal Bundesliga schedule.
▶ Estimated running time: End of this universe, and the next couple billion ones after

it . . .
▶ Directly enumerate all permutations of the numbers 1, . . . , 306, test for each

whether it’s a legal Bundesliga schedule.
▶ Estimated running time: Maybe only the time span of a few thousand universes.
▶ View this as variables/constraints and use backtracking (this chapter)
▶ Executed running time: About 1 minute.
▶ How do they actually do it?: Modern computers and CSP methods:

fractions of a second. 19th (20th/21st?) century: Combinatorics and manual
work.
▶ Try it yourself: with an off-the shelf CSP solver, e.g. Minion [Min]
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More Constraint Satisfaction Problems

Traveling Tournament Problem Scheduling

Timetabling Radio Frequency Assignment
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Our Agenda for This Topic

▶ Our treatment of the topic “Constraint Satisfaction Problems” consists of
Chapters 7 and 8. in [RN03]
▶ This Chapter: Basic definitions and concepts; naïve backtracking search.
▶ Sets up the framework. Backtracking underlies many successful algorithms for

solving constraint satisfaction problems (and, naturally, we start with the simplest
version thereof).

▶ Next Chapter: Constraint propagation and decomposition methods.
▶ Constraint propagation reduces the search space of backtracking. Decomposition

methods break the problem into smaller pieces. Both are crucial for efficiency in
practice.
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Our Agenda for This Chapter

▶ How are constraint networks, and assignments, consistency, solutions: How are
constraint satisfaction problems defined? What is a solution?
▶ Get ourselves on firm ground.

▶ Naïve Backtracking: How does backtracking work? What are its main
weaknesses?
▶ Serves to understand the basic workings of this wide-spread algorithm, and to

motivate its enhancements.
▶ Variable- and Value Ordering: How should we guide backtracking searchs?
▶ Simple methods for making backtracking aware of the structure of the problem, and

thereby reduce search.
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8.2 The Waltz Algorithm
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The Waltz Algorithm

▶ Remark: One of the earliest examples of applied CSPs.
▶ Motivation: Interpret line drawings of polyhedra.

▶ Problem: Are intersections convex or concave? (interpret =̂ label as such)
▶ Idea: Adjacent intersections impose constraints on each other. Use CSP to

find a unique set of labelings.
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Waltz Algorithm on Simple Scenes

▶ Assumptions: All objects
▶ have no shadows or cracks,
▶ have only three-faced vertices,
▶ are in “general position”, i.e. no junctions change with small movements of the eye.
▶ Observation 2.1. Then each line on the images is one of the following:
▶ a boundary line (edge of an object) (<) with right hand of arrow denoting “solid”

and left hand denoting “space”
▶ an interior convex edge (label with “+”)
▶ an interior concave edge (label with “-”)
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18 Legal Kinds of Junctions
▶ Observation 2.2. There are only 18 “legal” kinds of junctions:

▶ Idea: given a representation of a diagram
▶ label each junction in one of these manners (lots of possible ways)
▶ junctions must be labeled, so that lines are labeled consistently
▶ Fun Fact: CSP always works perfectly! (early success story for CSP [Wal75])
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Waltz’s Examples

▶ In his dissertation 1972 [Wal75] David Waltz used the following examples
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Waltz Algorithm (More Examples): Ambiguous Figures
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Waltz Algorithm (More Examples): Impossible Figures
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8.3 CSP: Towards a Formal Definition
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Types of CSPs

▶ Definition 3.1. We call a CSP discrete, iff all of the variables have countable
domains; we have two kinds:
▶ finite domains (size d ; O(dn) solutions)
▶ e.g., Boolean CSPs (solvability =̂ Boolean satisfiability ; NP complete)

▶ infinite domains (e.g. integers, strings, etc.)
▶ e.g., job scheduling, variables are start/end days for each job
▶ need a “constraint language”, e.g., StartJob1 + 5 ≤ StartJob3
▶ linear constraints decidable, nonlinear ones undecidable

▶ Definition 3.2. We call a CSP continuous, iff one domain is uncountable.
▶ Example 3.3. Start/end times for Hubble Telescope observations form a

continuous CSP.
▶ Theorem 3.4. Linear constraints solvable in poly time by linear programming

methods.
▶ Theorem 3.5. There cannot be optimal algorithms for nonlinear constraint

systems.
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Types of Constraints

▶ We classify the constraints by the number of variables they involve.
▶ Definition 3.6. Unary constraints involve a single variable, e.g., SA ̸= green.
▶ Definition 3.7. Binary constraints involve pairs of variables, e.g., SA ̸= WA.
▶ Definition 3.8. Higher-order constraints involve n = 3 or more variables, e.g.,

cryptarithmetic column constraints.
The number n of variables is called the order of the constraint.
▶ Definition 3.9. Preferences (soft constraint) (e.g., red is better than green)

are often representable by a cost for each variable assignment ; constrained
optimization problems.
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Non-Binary Constraints, e.g. “Send More Money”

▶ Example 3.10 (Send More Money). A student writes home:

S E N D
+ M O R E
M O N E Y

Puzzle: letters stand for digits, addition should
work out (parents send MONEY€)

▶ Variables: S ,E ,N,D,M,O,R,Y , each with domain {0, . . . ,9}.
▶ Constraints:

1. all variables should have different values: S ̸= E , S ̸= N, . . .
2. first digits are non-zero: S ̸= 0, M ̸= 0.
3. the addition scheme should work out: i.e.

1000 · S + 100 · E + 10 · N + D + 1000 ·M + 100 · O + 10 · R + E =
10000 ·M + 1000 · 0 + 100 · N + 10 · E + Y .

BTW: The solution is
S 7→ 9,E 7→ 5,N 7→ 6,D 7→ 7,M 7→ 1,O 7→ 0,R 7→ 8,Y 7→ 2 ; parents send
10652€
▶ Definition 3.11. Problems like the one in ?? are called crypto-arithmetic

puzzles.
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Encoding Higher-Order Constraints as Binary ones

▶ Problem: The last constraint is of order 8. (n = 8 variables involved)
▶ Observation 3.12. We can write the addition scheme constraint column wise

using auxiliary variables, i.e. variables that do not “occur” in the original
problem.

D + E = Y + 10 · X1

X1 + N + R = E + 10 · X2

X2 + E + O = N + 10 · X3

X3 + S +M = O + 10 ·M

S E N D
+ M O R E
M O N E Y

These constraints are of order ≤ 5.
▶ General Recipe: For n ≥ 3, encode C (v1, . . . , vn−1, vn) as

C (p1(x), . . . , pn−1(x), vn) ∧ v1 = p1(x) ∧ . . . ∧ vn−1 = pn−1(x)

▶ Problem: The problem structure gets hidden. (search algorithms can get
confused)
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Constraint Graph

▶ Definition 3.13. A binary CSP is a CSP where each constraint is unary or
binary.
▶ Observation 3.14. A binary CSP forms a graph called the constraint graph

whose nodes are variables, and whose edges represent the constraints.
▶ Example 3.15. Australia as a binary CSP
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .
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immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Intuition: General-purpose CSP algorithms use the graph structure to speed
up search. (E.g., Tasmania is an independent subproblem!)
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Real-world CSPs

▶ Example 3.16 (Assignment problems). e.g., who teaches what class
▶ Example 3.17 (Timetabling problems). e.g., which class is offered when and

where?
▶ Example 3.18 (Hardware configuration).
▶ Example 3.19 (Spreadsheets).
▶ Example 3.20 (Transportation scheduling).
▶ Example 3.21 (Factory scheduling).
▶ Example 3.22 (Floorplanning).
▶ Note: many real-world problems involve real-valued variables ; continuous

CSPs.
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8.4 Constraint Networks: Formalizing Binary
CSPs
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Constraint Networks (Formalizing binary CSPs)

▶ Definition 4.1. A constraint network is a triple γ := ⟨V ,D ,C ⟩, where
▶ V is a finite set of variables,
▶ D := {Dv | v ∈ V } the set of their domains, and
▶ C := {C uv ⊆ Du×Dv | u, v ∈ V and u ̸= v} is a set of constraints with C uv = C−1

vu .

We call the undirected graph ⟨V , {(u,v) ∈ V 2 |C uv ̸= Du × Dv}⟩, the
constraint graph of γ.
▶ We will talk of CSPs and mean constraint networks.
▶ Remarks: The mathematical formulation gives us a lot of leverage:
▶ C uv ⊆ Du×Dv =̂ possible assignments to variables u and v
▶ Relations are the most general formalization, generally we use symbolic

formulations, e.g. “u = v ” for the relation C uv = {(a,b) | a = b} or “u ̸= v ”.
▶ We can express unary constraints Cu by restricting the domain of v : Dv := Cv .
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Example: SuDoKu as a Constraint Network

▶ Example 4.2 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as ??.

▶ Variables:

▶ Domains
▶ Unary constraint:
▶ (Binary) constraint:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network

▶ Example 4.3 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as ??.

▶ Variables: V = {vij | 1 ≤ i , j ≤ 9}: vij =cell in row i column j .
▶ Domains

▶ Unary constraint:
▶ (Binary) constraint:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network

▶ Example 4.4 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as ??.

▶ Variables: V = {vij | 1 ≤ i , j ≤ 9}: vij =cell in row i column j .
▶ Domains For all v ∈ V : Dv = D = {1, . . . ,9}.
▶ Unary constraint:

▶ (Binary) constraint:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.
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Example: SuDoKu as a Constraint Network

▶ Example 4.5 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as ??.

▶ Variables: V = {vij | 1 ≤ i , j ≤ 9}: vij =cell in row i column j .
▶ Domains
▶ Unary constraint: Cvij = {d} if cell i , j is pre-filled with d .
▶ (Binary) constraint:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.

Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06



Example: SuDoKu as a Constraint Network
▶ Example 4.6 (Formalize SuDoKu). We use the added formality to encode

SuDoKu as a constraint network, not just as a CSP as ??.

▶ Variables: V = {vij | 1 ≤ i , j ≤ 9}: vij =cell in row i column j .
▶ Domains
▶ Unary constraint:
▶ (Binary) constraint: C vij vi′ j′ =̂ “vij ̸= vi′j′ ”, i.e.

C vij vi′ j′ = {(d ,d ′) ∈ D × D | d ̸= d ′}, for: i = i ′ (same row), or j = j ′ (same

column), or (⌈ i
3⌉,⌈

j
3⌉) = (⌈ i′

3 ⌉,⌈
j′

3 ⌉) (same block).
Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.
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Constraint Networks (Solutions)

▶ Let γ := ⟨V ,D ,C ⟩ be a constraint network.
▶ Definition 4.7. We call a partial function a : V ⇀

⋃
u∈VDu a variable

assignment if a(u) ∈ Du for all u ∈ dom(a).
▶ Definition 4.8. Let C := ⟨V ,D ,C ⟩ be a constraint network and
a : V ⇀

⋃
v∈VDv a variable assignment. We say that a satisfies (otherwise

violates) a constraint C uv , iff u, v ∈ dom(a) and (a(u),a(v)) ∈ C uv . a is called
consistent in C, iff it satisfies all constraints in C. A value w ∈ Du is legal for a
variable u in C, iff {(u,w)} is a consistent assignment in C. A variable with
illegal value under a is called conflicted.
▶ Example 4.9. The empty assignment ϵ is (trivially) consistent in any constraint

network.
▶ Definition 4.10. Let f and g be variable assignments, then we say that f

extends (or is an extension of) g , iff dom(g)⊂dom(f ) and f |dom(g) = g .
▶ Definition 4.11. We call a consistent (total) assignment a solution for γ and γ

itself solvable or satisfiable.
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How it all fits together

▶ Lemma 4.12. Higher-order constraints can be transformed into equi-satisfiable
binary constraints using auxiliary variables.
▶ Corollary 4.13. Any CSP can be represented by a constraint network.
▶ In other words The notion of a constraint network is a refinement of a CSP.
▶ So we will stick to constraint networks in this course.
▶ Observation 4.14. We can view a constraint network as a search problem, if

we take the states as the variable assignments, the actions as assignment
extensions, and the goal states as consistent assignments.
▶ Idea: We will explore that idea for algorithms that solve constraint networks.
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8.5 CSP as Search
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Standard search formulation (incremental)

▶ Idea: Every constraint network induces a single state problem.
▶ Definition 5.1 (Let’s do the math). Given a constraint network
γ := ⟨V ,D ,C ⟩, then Πγ := ⟨Sγ ,Aγ , T γ , Iγ ,Gγ⟩ is called the search problem
induced by γ, iff
▶ State Sγ are variable assignments
▶ Action Aγ : extend φ ∈ Sγ by a pair x 7→ v not conflicted with φ.
▶ Transition model T γ(a, φ) = φ,x 7→ v (extended assignment)
▶ Initial state Iγ : the empty assignment ϵ.
▶ Goal states Gγ : the total, consistent assignments
▶ What has just happened?: We interpret a constraint network γ as a search

problem Πγ . A solution to Πγ induces a solution to γ.
▶ Idea: We have algorithms for that: e.g. tree search.
▶ Remark: This is the same for all CSPs! ,
; fail if no consistent assignments exist (not fixable!)
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Standard search formulation (incremental)

▶ Example 5.2. A search tree for ΠAustralia:

WA = red WA = green WA = blue

WA = red
NT = green

WA = red
NT = blue

WA = red
NT = green
Q = red

WA = red
NT = green
Q = blue

▶ Observation: Every solution appears at depth n with n variables.
▶ Idea: Use depth first search!
▶ Observation: Path is irrelevant ; can use local search algorithms.
▶ Branching factor b = (n − ℓ)d at depth ℓ, hence n!dn leaves!!!! /
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Backtracking Search

▶ Assignments for different variables are independent!
▶ e.g. first WA = red then NT = green vs. first NT = green then WA = red
▶ ; we only need to consider assignments to a single variable at each node
▶ ; b = d and there are dn leaves.
▶ Definition 5.3. Depth first search for CSPs with single-variable assignment

extensions actions is called backtracking search.
▶ Backtracking search is the basic uninformed algorithm for CSPs.
▶ It can solve the n-queens problem for ≊ n, 25.
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Backtracking Search (Implementation)

▶ Definition 5.4. The generic backtracking search algorithm:

procedure Backtracking−Search(csp ) returns solution/failure
return Recursive−Backtracking (∅, csp)

procedure Recursive−Backtracking (assignment) returns soln/failure
if assignment is complete then return assignment
var := Select−Unassigned−Variable(Variables[csp], assignment, csp)
foreach value in Order−Domain−Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result := Recursive−Backtracking(assignment,csp)
if result ̸= failure then return result
remove {var= value} from assignment

return failure
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Backtracking in Australia

▶ Example 5.5. We apply backtracking search for a map coloring problem:
Step 1:
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Backtracking in Australia

▶ Example 5.6. We apply backtracking search for a map coloring problem:
Step 2:
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Backtracking in Australia

▶ Example 5.7. We apply backtracking search for a map coloring problem:
Step 3:
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Backtracking in Australia

▶ Example 5.8. We apply backtracking search for a map coloring problem:
Step 4:
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Improving Backtracking Efficiency

▶ General-purpose methods can give huge gains in speed for backtracking search.
▶ Answering the following questions well helps find powerful heuristics:

1. Which variable should be assigned next? (i.e. a variable ordering heuristic)
2. In what order should its values be tried? (i.e. a value ordering heuristic)
3. Can we detect inevitable failure early? (for pruning strategies)
4. Can we take advantage of problem structure? (; inference)
▶ Observation: Questions 1/2 correspond to the missing subroutines

Select−Unassigned−Variable and Order−Domain−Values from ??.
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Heuristic: Minimum Remaining Values (Which Variable)

▶ Definition 5.9. The minimum remaining values (MRV) heuristic for
backtracking search always chooses the variable with the fewest legal values, i.e.
a variable v that given an initial assignment a minimizes
#({d ∈ Dv | a ∪ {v 7→ d} is consistent}).
▶ Intuition: By choosing a most constrained variable v first, we reduce the

branching factor (number of sub trees generated for v) and thus reduce the size
of our search tree.
▶ Extreme case: If #({d ∈ Dv | a ∪ {v 7→ d} is consistent}) = 1, then the value

assignment to v is forced by our previous choices.
▶ Example 5.10. In step 3 of ??, there is only one remaining value for SA!
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Degree Heuristic (Variable Order Tie Breaker)

▶ Problem: Need a tie-breaker among MRV variables! (there was no preference
in step 1,2)
▶ Definition 5.11. The degree heuristic in backtracking search always chooses a

most constraining variable, i.e. given an initial assignment a always pick a
variable v with #({v ∈ (V \dom(a)) |C uv ∈ C}) maximal.
▶ By choosing a most constraining variable first, we detect inconsistencies earlier

on and thus reduce the size of our search tree.
▶ Commonly used strategy combination: From the set of most constrained

variable, pick a most constraining variable.
▶ Example 5.12.

Degree heuristic: SA = 5, T = 0, all others 2 or 3.
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Least Constraining Value Heuristic (Value Ordering)

▶ Definition 5.13. Given a variable v , the least constraining value heuristic
chooses the least constraining value for v : the one that rules out the fewest
values in the remaining variables, i.e. for a given initial assignment a and a
chosen variable v pick a value d ∈ Dv that minimizes
#({e ∈ Du | u ̸∈ dom(a), C uv ∈ C , and (e,d) ̸∈ C uv})
▶ By choosing the least constraining value first, we increase the chances to not

rule out the solutions below the current node.
▶ Example 5.14.

▶ Combining these heuristics makes 1000 queens feasible.
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8.6 Conclusion & Preview
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Summary & Preview

▶ Summary of “CSP as Search”:
▶ Constraint networks γ consist of variables, associated with finite domains, and

constraints which are binary relations specifying permissible value pairs.
▶ A variable assignment a maps some variables to values. a is consistent if it complies

with all constraints. A consistent total assignment is a solution.
▶ The constraint satisfaction problem (CSP) consists in finding a solution for a

constraint network. This has numerous applications including, e.g., scheduling and
timetabling.

▶ Backtracking search assigns variable one by one, pruning inconsistent variable
assignments.

▶ Variable orderings in backtracking can dramatically reduce the size of the search
tree. Value orderings have this potential (only) in solvable sub trees.

▶ Up next: Inference and decomposition, for improved efficiency.
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Chapter 9
Constraint Propagation
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9.1 Introduction
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Illustration: Constraint Propagation

▶ Example 1.1. A constraint network γ:
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Question: Can we add a constraint without losing any solutions?
▶ Example 1.2. CWAQ := “=”. If WA and Q are assigned different colors, then

NT must be assigned the 3rd color, leaving no color for SA.
▶ Intuition: Adding constraints without losing solutions
=̂ obtaining an equivalent network with a “tighter description”
; a smaller number of consistent (partial) variable assignments
; more efficient search!
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Illustration: Decomposition

▶ Example 1.3. Constraint network γ:
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region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ We can separate this into two independent constraint networks.
▶ Tasmania is not adjacent to any other state. Thus we can color Australia first,

and assign an arbitrary color to Tasmania afterwards.
▶ Decomposition methods exploit the structure of the constraint network. They

identify separate parts (sub-networks) whose inter-dependencies are “simple” and
can be handled efficiently.
▶ Example 1.4 (Extreme case). No inter-dependencies at all, as for Tasmania

above.
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Our Agenda for This Chapter

▶ Constraint propagation: How does inference work in principle? What are
relevant practical aspects?
▶ Fundamental concepts underlying inference, basic facts about its use.
▶ Forward checking: What is the simplest instance of inference?
▶ Gets us started on this subject.
▶ Arc consistency: How to make inferences between variables whose value is not

fixed yet?
▶ Details a state of the art inference method.
▶ Decomposition: Constraint graphs, and two simple cases
▶ How to capture dependencies in a constraint network? What are “simple cases”?
▶ Basic results on this subject.
▶ Cutset conditioning: What if we’re not in a simple case?
▶ Outlines the most easily understandable technique for decomposition in the general

case.
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9.2 Constraint Propagation/Inference
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Constraint Propagation/Inference: Basic Facts

▶ Definition 2.1. Constraint propagation (i.e inference in constraint networks)
consists in deducing additional constraints, that follow from the already known
constraints, i.e. that are satisfied in all solutions.
▶ Example 2.2. It’s what you do all the time when playing SuDoKu:

▶ Formally: Replace γ by an equivalent and strictly tighter constraint network γ′.
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Equivalent Constraint Networks

▶ Definition 2.3. We say that two constraint networks γ := ⟨V ,D ,C ⟩ and
γ′ := ⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ),
if they have the same solutions.

▶ Example 2.4.

No. Yes.
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Equivalent Constraint Networks

▶ Definition 2.5. We say that two constraint networks γ := ⟨V ,D ,C ⟩ and
γ′ := ⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ),
if they have the same solutions.
▶ Example 2.6.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=

Are these constraint networks equivalent?

No. Yes.
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Equivalent Constraint Networks

▶ Definition 2.7. We say that two constraint networks γ := ⟨V ,D ,C ⟩ and
γ′ := ⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ),
if they have the same solutions.
▶ Example 2.8.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=

Are these constraint networks equivalent? No.

Yes.
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Equivalent Constraint Networks

▶ Definition 2.9. We say that two constraint networks γ := ⟨V ,D ,C ⟩ and
γ′ := ⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ),
if they have the same solutions.
▶ Example 2.10.

No.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Are these constraint networks equivalent?

Yes.
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Equivalent Constraint Networks

▶ Definition 2.11. We say that two constraint networks γ := ⟨V ,D ,C ⟩ and
γ′ := ⟨V ,D ′,C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ),
if they have the same solutions.
▶ Example 2.12.

No.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Are these constraint networks equivalent? Yes.
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Tightness
▶ Definition 2.13 (Tightness). Let γ := ⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v ∈ V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv ∈ C ′: either C ′

uv ̸∈ C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

▶ Example 2.14.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.

Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06



Tightness
▶ Definition 2.15 (Tightness). Let γ := ⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v ∈ V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv ∈ C ′: either C ′

uv ̸∈ C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.
▶ Example 2.16.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=
Here, we do have γ′⊑γ.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Tightness
▶ Definition 2.17 (Tightness). Let γ := ⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v ∈ V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv ∈ C ′: either C ′

uv ̸∈ C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.
▶ Example 2.18.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Here, we do have γ′⊑γ.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Tightness
▶ Definition 2.19 (Tightness). Let γ := ⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v ∈ V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv ∈ C ′: either C ′

uv ̸∈ C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.
▶ Example 2.20.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸=

=

Here, we do not have γ′⊑γ!.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.

Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06



Tightness
▶ Definition 2.21 (Tightness). Let γ := ⟨V ,D ,C ⟩ and γ′ = ⟨V ,D ′,C ′⟩ be

constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v ∈ V : D ′
v ⊆ Dv .

(ii) For all u ̸= v ∈ V and C ′
uv ∈ C ′: either C ′

uv ̸∈ C or C ′
uv ⊆ C uv .

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.
▶ Example 2.22.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸=

=

Here, we do not have γ′⊑γ!.

▶ Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.
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Equivalence + Tightness = Inference

▶ Theorem 2.23. Let γ and γ′ be constraint networks such that γ′≡γ and γ′⊑γ.
Then γ′ has the same solutions as, but fewer consistent assignments than, γ.
▶ ; γ′ is a better encoding of the underlying problem.
▶ Example 2.24. Two equivalent constraint networks (one obviously unsolvable)

γ red
blue

v1

redv2 blue v3

̸= ̸=

γ′ red
blue

v1

redv2 blue v3

̸= ̸=

=

ϵ cannot be extended to a solution (neither in γ nor in γ′ because they’re
equivalent); this is obvious (red ̸= blue) in γ′, but not in γ.
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How to Use Constraint Propagation in CSP Solvers?

▶ Simple: Constraint propagation as a pre-process:
▶ When: Just once before search starts.
▶ Effect: Little running time overhead, little pruning power. (not considered here)
▶ More Advanced: Constraint propagation during search:
▶ When: At every recursive call of backtracking.
▶ Effect: Strong pruning power, may have large running time overhead.
▶ Search vs. Inference: The more complex the inference, the smaller the

number of search nodes, but the larger the running time needed at each node.
▶ Idea: Encode variable assignments as unary constraints (i.e., for a(v) = d , set

the unary constraint Dv = {d}), so that inference reasons about the network
restricted to the commitments already made in the search.
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Backtracking With Inference

▶ Definition 2.25. The general algorithm for backtracking with inference is

1 function BacktrackingWithInference(γ,a) returns a solution, or ‘‘inconsistent’’
2 if a is inconsistent then return ‘‘inconsistent’’
3 if a is a total assignment then return a
4 γ′ := a copy of γ /∗ γ′ = (V γ′ ,Dγ′ ,Cγ′) ∗/
5 γ′ := Inference(γ′)
6 if exists v with Dγ′

v = ∅ then return ‘‘inconsistent’’
7 select some variable v for which a is not defined
8 for each d ∈ copy of Dγ′

v in some order do
9 a′ := a ∪ {v = d}; Dγ′

v := {d} /∗ makes a explicit as a constraint ∗/
10 a′′ := BacktrackingWithInference(γ′,a′)
11 if a′′ ̸= “inconsistent” then return a′′

12 return ‘‘inconsistent’’

▶ Exactly the same as ??, only line 5 new!
▶ Inference(): Any procedure delivering a (tighter) equivalent network.
▶ Inference() typically prunes domains; indicate unsolvability by Dγ′

v
= ∅.

▶ When backtracking out of a search branch, retract the inferred constraints: these
were dependent on a, the search commitments so far.
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9.3 Forward Checking
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Forward Checking

▶ Definition 3.1. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.

▶ Example 3.2. Forward checking in Australia
▶ Definition 3.3 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d ,d ′) ∈ C uv}

return γ
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Forward Checking

▶ Definition 3.4. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.
▶ Example 3.5. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

▶ Definition 3.6 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d ,d ′) ∈ C uv}

return γ
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Forward Checking

▶ Definition 3.7. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.
▶ Example 3.8. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.9 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d ,d ′) ∈ C uv}

return γ
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Forward Checking

▶ Definition 3.10. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.
▶ Example 3.11. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.12 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d ,d ′) ∈ C uv}

return γ
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Forward Checking
▶ Definition 3.13. Forward checking propagates information about illegal values:

Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.
▶ Example 3.14. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.15 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d ,d ′) ∈ C uv}

return γ
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Forward Checking
▶ Definition 3.16. Forward checking propagates information about illegal values:

Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every Dv for all variables v connected with u by a constraint.
▶ Example 3.17. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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▶ Definition 3.18 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d ′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d ,d ′) ∈ C uv}

return γ
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Forward Checking: Discussion

▶ Definition 3.19. An inference procedure is called sound, iff for any input γ the
output γ′ have the same solutions.
▶ Lemma 3.20. Forward checking is sound.

Proof sketch: Recall here that the assignment a is represented as unary
constraints inside γ.
▶ Corollary 3.21. γ and γ′ are equivalent.
▶ Incremental computation: Instead of the first for-loop in ??, use only the inner

one every time a new assignment a(v) = d ′ is added.
▶ Practical Properties:
▶ Cheap but useful inference method.
▶ Rarely a good idea to not use forward checking (or a stronger inference method

subsuming it).
▶ Up next: A stronger inference method (subsuming forward checking).
▶ Definition 3.22. Let p and q be inference procedures, then p subsumes q, if
p(γ)⊑q(γ) for any input γ.
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9.4 Arc Consistency
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When Forward Checking is Not Good Enough

▶ Problem: Forward checking makes inferences only from assigned to unassigned
variables.
▶ Example 4.1.

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

We could do better here: value 3 for v2 is not consistent with any remaining
value for v3 ; it can be removed!
But forward checking does not catch this.
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Arc Consistency: Definition

▶ Definition 4.2 (Arc Consistency). Let γ := ⟨V ,D ,C ⟩ be a constraint
network.
1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either

C uv ̸∈ C , or for every value d ∈ Du there exists a value d ′ ∈ Dv such that
(d ,d ′) ∈ C uv .

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.
▶ Intuition: Arc consistency =̂ for every domain value and constraint, at least

one value on the other side of the constraint “works”.
▶ Note the asymmetry between u and v : arc consistency is directed.
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Arc Consistency: Example
▶ Definition 4.3 (Arc Consistency). Let γ := ⟨V ,D ,C ⟩ be a constraint

network.
1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either

C uv ̸∈ C , or for every value d ∈ Du there exists a value d ′ ∈ Dv such that
(d ,d ′) ∈ C uv .

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.
▶ Example 4.4 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

▶ Question: On top, middle, is v3 arc consistent relative to v2?

▶ Answer: No. For values 1 and 2, Dv2 does not have a value that works.
▶ Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
▶ Question: And on the right?

▶ Answer: Yes. (But v2 is not arc consistent relative to v3)
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Arc Consistency: Example
▶ Definition 4.5 (Arc Consistency). Let γ := ⟨V ,D ,C ⟩ be a constraint

network.
1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either

C uv ̸∈ C , or for every value d ∈ Du there exists a value d ′ ∈ Dv such that
(d ,d ′) ∈ C uv .

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.
▶ Example 4.6 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

▶ Question: On top, middle, is v3 arc consistent relative to v2?
▶ Answer: No. For values 1 and 2, Dv2 does not have a value that works.
▶ Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
▶ Question: And on the right?

▶ Answer: Yes. (But v2 is not arc consistent relative to v3)
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Arc Consistency: Example
▶ Definition 4.7 (Arc Consistency). Let γ := ⟨V ,D ,C ⟩ be a constraint

network.
1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either

C uv ̸∈ C , or for every value d ∈ Du there exists a value d ′ ∈ Dv such that
(d ,d ′) ∈ C uv .

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.
▶ Example 4.8 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

▶ Question: On top, middle, is v3 arc consistent relative to v2?
▶ Answer: No. For values 1 and 2, Dv2 does not have a value that works.
▶ Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
▶ Question: And on the right?
▶ Answer: Yes. (But v2 is not arc consistent relative to v3)
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Arc Consistency: Example
▶ Definition 4.9 (Arc Consistency). Let γ := ⟨V ,D ,C ⟩ be a constraint

network.
1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either

C uv ̸∈ C , or for every value d ∈ Du there exists a value d ′ ∈ Dv such that
(d ,d ′) ∈ C uv .

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.
▶ Example 4.10.

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T
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;?

When Forward Checking is Not Good Enough

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

WA NT Q NSW V SA T

;?

Forward checking makes inferences only “from assigned to unassigned” variables.
Kohlhase: Künstliche Intelligenz 1 297 July 5, 2018

▶ Note: SA is not arc consistent relative to NT in 3rd row.
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Enforcing Arc Consistency: General Remarks

▶ Inference, version 2: “Enforcing Arc Consistency” = removing domain values
until γ is arc consistent. (Up next)
▶ Note: Assuming such an inference method AC(γ).
▶ Lemma 4.11. AC(γ) is sound: guarantees to deliver an equivalent network.
▶ Proof sketch: If, for d ∈ Du, there does not exist a value d ′ ∈ Dv such that
(d ,d ′) ∈ C uv , then u = d cannot be part of any solution.
▶ Observation 4.12. AC(γ) subsumes forward checking:

AC(γ)⊑ForwardChecking(γ).
▶ Proof: Recall from slide 283 that γ′⊑γ means γ′ is tighter than γ.

1. Forward checking removes d from Du only if there is a constraint C uv such
that Dv = {d ′} (i.e. when v was assigned the value d ′), and (d ,d ′) ̸∈ C uv .

2. Clearly, enforcing arc consistency of u relative to v removes d from Du as
well.
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.13 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.14. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

▶ Example 4.15. Revise(γ, v3, v2)

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.16 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.17. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).
▶ Example 4.18. Revise(γ, v3, v2)

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.19 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.20. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).
▶ Example 4.21. Revise(γ, v3, v2)

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.22 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.23. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).
▶ Example 4.24. Revise(γ, v3, v2)

1

v1

2 3v2 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.25 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.26. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).
▶ Example 4.27. Revise(γ, v3, v2)

1

v1

2 3v2 2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.28 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.29. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).
▶ Example 4.30. Revise(γ, v3, v2)

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3
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Enforcing Arc Consistency for One Pair of Variables

▶ Definition 4.31 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d ′ ∈ Dv with (d ,d ′) ∈ C uv then Du := Du\{d}
return γ

▶ Lemma 4.32. If d is maximal domain size in γ and the test “(d ,d ′) ∈ C uv?”
has time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).
▶ Example 4.33. Revise(γ, v3, v2)

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

Michael Kohlhase: Artificial Intelligence 1 294 2025-02-06



AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.34. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C uv do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.35. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest

once all nd variable values have been removed.
▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?
▶ Redundant computations: u and v are revised even if theirdomains haven’t

changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.36. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C uv do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.37. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest

once all nd variable values have been removed.

▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?
▶ Redundant computations: u and v are revised even if theirdomains haven’t

changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.38. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C uv do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.39. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest

once all nd variable values have been removed.
▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?

▶ Redundant computations: u and v are revised even if theirdomains haven’t
changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-1: Enforcing Arc Consistency (Version 1)
▶ Idea: Apply Revise pairwise up to a fixed point.
▶ Definition 4.40. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint C uv do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v ,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

▶ Observation: Obviously, this does indeed enforce arc consistency for γ.
▶ Lemma 4.41. If γ has n variables, m constraints, and maximal domain size d ,

then the time complexity of AC1(γ) is O(md2nd).
▶ Proof sketch: O(md2) for each inner loop, fixed point reached at the latest

once all nd variable values have been removed.
▶ Problem: There are redundant computations.
▶ Question: Do you see what these redundant computations are?
▶ Redundant computations: u and v are revised even if theirdomains haven’t

changed since the last time.
▶ Better algorithm avoiding this: AC 3 (coming up)
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AC-3: Enforcing Arc Consistency (Version 3)
▶ Idea: Remember the potentially inconsistent variable pairs.
▶ Definition 4.42. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint C uv ∈ C do
M := M ∪ {(u,v), (v ,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu ∈ C where w ̸= v do
M := M ∪ {(w ,u)}

return γ

▶ Question: AC − 3(γ) enforces arc consistency because?

▶ Answer: At any time during the while-loop, if (u,v) ̸∈ M then u is arc
consistent relative to v .
▶ Question: Why only “where w ̸= v ”?
▶ Answer: If w = v is the reason why Du changed, then w is still arc consistent

relative to u: the values just removed from Du did not match any values from
Dw anyway.
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AC-3: Enforcing Arc Consistency (Version 3)
▶ Idea: Remember the potentially inconsistent variable pairs.
▶ Definition 4.43. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint C uv ∈ C do
M := M ∪ {(u,v), (v ,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu ∈ C where w ̸= v do
M := M ∪ {(w ,u)}

return γ

▶ Question: AC − 3(γ) enforces arc consistency because?
▶ Answer: At any time during the while-loop, if (u,v) ̸∈ M then u is arc

consistent relative to v .
▶ Question: Why only “where w ̸= v ”?

▶ Answer: If w = v is the reason why Du changed, then w is still arc consistent
relative to u: the values just removed from Du did not match any values from
Dw anyway.
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AC-3: Enforcing Arc Consistency (Version 3)
▶ Idea: Remember the potentially inconsistent variable pairs.
▶ Definition 4.44. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint C uv ∈ C do
M := M ∪ {(u,v), (v ,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu ∈ C where w ̸= v do
M := M ∪ {(w ,u)}

return γ

▶ Question: AC − 3(γ) enforces arc consistency because?
▶ Answer: At any time during the while-loop, if (u,v) ̸∈ M then u is arc

consistent relative to v .
▶ Question: Why only “where w ̸= v ”?
▶ Answer: If w = v is the reason why Du changed, then w is still arc consistent

relative to u: the values just removed from Du did not match any values from
Dw anyway.
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AC-3: Example

▶ Example 4.45. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
(v1,v3)
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AC-3: Example

▶ Example 4.46. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
(v1,v3)
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AC-3: Example

▶ Example 4.47. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
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AC-3: Example

▶ Example 4.48. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
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AC-3: Example

▶ Example 4.49. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
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AC-3: Example

▶ Example 4.50. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v3,v1)
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AC-3: Example

▶ Example 4.51. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v3,v1)
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AC-3: Example

▶ Example 4.52. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
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AC-3: Example

▶ Example 4.53. y div x = 0: y modulo x is 0, i.e., y is divisible by x

2

v1

2 4v2 2 v3

v2 div v1 = 0 v3 div v1 = 0

M
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AC-3: Runtime

▶ Theorem 4.54 (Runtime of AC-3). Let γ := ⟨V ,D ,C ⟩ be a constraint
network with m constraints, and maximal domain size d . Then AC − 3(γ) runs
in time O(md3).
▶ Proof: by counting how often Revise is called.

1. Each call to Revise(γ, u, v) takes time O(d2) so it suffices to prove that at
most O(md) of these calls are made.

2. The number of calls to Revise(γ, u, v) is the number of iterations of the
while-loop, which is at most the number of insertions into M.

3. Consider any constraint C uv .
4. Two variable pairs corresponding to C uv are inserted in the for-loop. In the

while loop, if a pair corresponding to C uv is inserted into M, then
5. beforehand the domain of either u or v was reduced, which happens at

most 2d times.
6. Thus we have O(d) insertions per constraint, and O(md) insertions

overall, as desired.
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9.5 Decomposition: Constraint Graphs, and
Three Simple Cases
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Reminder: The Big Picture

▶ Say γ is a constraint network with n variables and maximal domain size d .
▶ dn total assignments must be tested in the worst case to solve γ.
▶ Inference: One method to try to avoid/ameliorate this combinatorial explosion

in practice.
▶ Often, from an assignment to some variables, we can easily make inferences

regarding other variables.
▶ Decomposition: Another method to avoid/ameliorate this combinatorial

explosion in practice.
▶ Often, we can exploit the structure of a network to decompose it into smaller parts

that are easier to solve.
▶ Question: What is “structure”, and how to “decompose”?
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Problem Structure

▶ Idea: Tasmania and mainland are “independent
subproblems”
▶ Definition 5.1. Independent subproblems are

identified as connected components of constraint
graphs.
▶ Suppose each independent subproblem has c

variables out of n total. (d is max domain size)
▶ Worst-case solution cost is n div c · dc (linear in n)
▶ E.g., n = 80, d = 2, c = 20
▶ 280 =̂ 4 billion years at 10 million nodes/sec
▶ 4 · 220 =̂ 0.4 seconds at 10 million nodes/sec
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .
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“Decomposition” 1.0: Disconnected Constraint Graphs

▶ Theorem 5.2 (Disconnected Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a
constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a :=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.3. Color Tasmania separately in Australia
▶ Example 5.4 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.5. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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“Decomposition” 1.0: Disconnected Constraint Graphs

▶ Theorem 5.6 (Disconnected Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a
constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a :=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.7. Color Tasmania separately in Australia
▶ Example 5.8 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.9. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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“Decomposition” 1.0: Disconnected Constraint Graphs
▶ Theorem 5.10 (Disconnected Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a

constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a :=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.11. Color Tasmania separately in Australia
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Example 5.12 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.13. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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“Decomposition” 1.0: Disconnected Constraint Graphs

▶ Theorem 5.14 (Disconnected Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a
constraint network. Let ai be a solution to each connected component γ i of the
constraint graph of γ. Then a :=

⋃
iai is a solution to γ.

▶ Proof:
1. a satisfies all C uv where u and v are inside the same connected component.
2. The latter is the case for all C uv .
3. If two parts of γ are not connected, then they are independent.

▶ Example 5.15. Color Tasmania separately in Australia
▶ Example 5.16 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

▶ Definition 5.17. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.
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Tree-structured CSPs

▶ Definition 5.18. We call a CSP tree-structured, iff its constraint graph is
acyclic
▶ Theorem 5.19. Tree-structured CSP can be solved in O(nd2) time.
▶ Compare to general CSPs, where worst case time is O(dn).
▶ This property also applies to logical and probabilistic reasoning: an important

example of the relation between syntactic restrictions and the complexity of
reasoning.
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Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every
node’s parent precedes it in the ordering

2. For j from n down to 2, apply

RemoveInconsistent(Parent(Xj ,Xj))

3. For j from 1 to n, assign Xj consistently with Parent(Xj)
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Nearly tree-structured CSPs
▶ Definition 5.20. Conditioning: instantiate a variable, prune its neighbors’

domains.
▶ Example 5.21.

▶ Definition 5.22. Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree.
▶ Cutset size c ; running time O(dc(n − c)d2), very fast for small c .
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“Decomposition” 2.0: Acyclic Constraint Graphs

▶ Theorem 5.23 (Acyclic Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a
constraint network with n variables and maximal domain size k , whose
constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be
unsatisfiable, in time O(nk2).
▶ Proof sketch: See the algorithm on the next slide
▶ Constraint networks with acyclic constraint graphs can be solved in (low order)

polynomial time.

▶ Example 5.24. Australia is not acyclic. (But see next section)
▶ Example 5.25 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240.
▶ With decomposition: 40 · 22. Gain: 232.
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“Decomposition” 2.0: Acyclic Constraint Graphs
▶ Theorem 5.26 (Acyclic Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a

constraint network with n variables and maximal domain size k , whose
constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be
unsatisfiable, in time O(nk2).
▶ Proof sketch: See the algorithm on the next slide
▶ Constraint networks with acyclic constraint graphs can be solved in (low order)

polynomial time.
▶ Example 5.27. Australia is not acyclic. (But see next section)
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Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

▶ Example 5.28 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240.
▶ With decomposition: 40 · 22. Gain: 232.
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“Decomposition” 2.0: Acyclic Constraint Graphs

▶ Theorem 5.29 (Acyclic Constraint Graphs). Let γ := ⟨V ,D ,C ⟩ be a
constraint network with n variables and maximal domain size k , whose
constraint graph is acyclic. Then we can find a solution for γ, or prove γ to be
unsatisfiable, in time O(nk2).
▶ Proof sketch: See the algorithm on the next slide
▶ Constraint networks with acyclic constraint graphs can be solved in (low order)

polynomial time.
▶ Example 5.30. Australia is not acyclic. (But see next section)
▶ Example 5.31 (Doing the Numbers).
▶ γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
▶ Reduction of worst-case when using decomposition:
▶ No decomposition: 240.
▶ With decomposition: 40 · 22. Gain: 232.
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Acyclic Constraint Graphs: How To

▶ Definition 5.32. Algorithm AcyclicCG(γ):
1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable v as

the root, and directing edges outwards.1

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n − 1, . . . , 2 do:
3.1 Revise(γ, vparent(i), v i ).
3.2 if Dvparent(i) = ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.
4. Run BacktrackingWithInference with forward checking, using the variable order

v1, . . ., vn.
▶ Lemma 5.33. This algorithm will find a solution without ever having to

backtrack!

1We assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.
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Acyclic Constraint Graphs: How To

▶ Definition 5.34. Algorithm AcyclicCG(γ):
1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable v as

the root, and directing edges outwards.1

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n − 1, . . . , 2 do:
3.1 Revise(γ, vparent(i), v i ).
3.2 if Dvparent(i) = ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.
4. Run BacktrackingWithInference with forward checking, using the variable order

v1, . . ., vn.
▶ Lemma 5.35. This algorithm will find a solution without ever having to

backtrack!

1We assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.
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Acyclic Constraint Graphs: How To

▶ Definition 5.36. Algorithm AcyclicCG(γ):
1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable v as

the root, and directing edges outwards.1

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n − 1, . . . , 2 do:
3.1 Revise(γ, vparent(i), v i ).
3.2 if Dvparent(i) = ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.
4. Run BacktrackingWithInference with forward checking, using the variable order

v1, . . ., vn.
▶ Lemma 5.37. This algorithm will find a solution without ever having to

backtrack!

1We assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.
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AcyclicCG(γ): Example

▶ Example 5.38 (AcyclicCG() execution).

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Input network γ.
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AcyclicCG(γ): Example

▶ Example 5.39 (AcyclicCG() execution).

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Step 1: Directed tree for root v1.
Step 2: Order v1, v2, v3.
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AcyclicCG(γ): Example

▶ Example 5.40 (AcyclicCG() execution).

1 2 3

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v2, v3).
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AcyclicCG(γ): Example

▶ Example 5.41 (AcyclicCG() execution).

1

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v1, v2).
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AcyclicCG(γ): Example

▶ Example 5.42 (AcyclicCG() execution).

1

v1

2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v1) := 1 and forward checking.
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AcyclicCG(γ): Example

▶ Example 5.43 (AcyclicCG() execution).

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v2) := 2 and forward checking.
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AcyclicCG(γ): Example

▶ Example 5.44 (AcyclicCG() execution).

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v3) := 3 (and forward checking).
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9.6 Cutset Conditioning
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“Almost” Acyclic Constraint Graphs

▶ Example 6.1 (Coloring Australia).

▶ Cutset Conditioning: Idea:
1. Recursive call of backtracking search on a s.t. the subgraph of the constraint graph

induced by {v ∈ V | a(v) is undefined} is acyclic.
▶ Then we can solve the remaining sub-problem with AcyclicCG().

2. Choose the variable ordering so that removing the first d variables renders the
constraint graph acyclic.
▶ Then with (1) we won’t have to search deeper than d . . . !
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“Decomposition” 3.0: Cutset Conditioning
▶ Definition 6.2 (Cutset). Let γ := ⟨V ,D ,C ⟩ be a constraint network, and
V0 ⊆ V . Then V0 is a cutset for γ if the subgraph of γ’s constraint graph
induced by V \V0 is acyclic. V0 is called optimal if its size is minimal among all
cutsets for γ.
▶ Definition 6.3. The cutset conditioning algorithm, computes an optimal

cutset, from γ and an existing cutset V0.
function CutsetConditioning(γ,V0,a) returns a solution, or ‘‘inconsistent’’
γ′ := a copy of γ; γ′ := ForwardChecking(γ′,a)
if ex. v with Dγ′

v
= ∅ then return ‘‘inconsistent’’

if ex. v ∈ V0 s.t. a(v) is undefined then select such v
else a′ := AcyclicCG(γ′);
if a′ ̸= “inconsistent” then return a ∪ a′ else return ‘‘inconsistent’’
for each d ∈ copy of Dγ′

v
in some order do

a′ := a ∪ {v = d}; Dγ′
v

:= {d};
a′′ := CutsetConditioning(γ′,V0,a′)

if a′′ ̸= “inconsistent” then return a′′ else return ‘‘inconsistent’’

▶ Forward checking is required so that “a ∪ AcyclicCG(γ′)” is consistent in γ.
▶ Observation 6.4. Running time is exponential only in #(V0), not in #(V )!
▶ Remark 6.5. Finding optimal cutsets is NP hard, but good approximations exist.
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9.7 Constraint Propagation with Local Search
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Iterative algorithms for CSPs

▶ Local search algorithms like hill climbing and simulated annealing typically work
with “complete” states, i.e., all variables are assigned
▶ To apply to CSPs: allow states with unsatisfied constraints, actions reassign

variable values.
▶ Variable selection: Randomly select any conflicted variable.
▶ Value selection by min conflicts heuristic: choose value that violates the fewest

constraints i.e., hill climb with h(n):=total number of violated constraints.
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Example: 4-Queens

▶ States: 4 queens in 4 columns (44 = 256 states)
▶ Actions: Move queen in column
▶ Goal state: No conflicts
▶ Heuristic: h(n) =̂ number of conflict
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Performance of min-conflicts
▶ Given a random initial state, can solve n-queens in almost constant time for

arbitrary n with high probability (e.g., n = 10,000,000)
▶ The same appears to be true for any randomly-generated CSP except in a

narrow range of the ratio

R =
number of constraints
number of variables
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9.8 Conclusion & Summary
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Conclusion & Summary

▶ γ and γ′ are equivalent if they have the same solutions. γ′ is tighter than γ if it
is more constrained.
▶ Inference tightens γ without losing equivalence, during backtracking search.

This reduces the amount of search needed; that benefit must be traded off
against the running time overhead for making the inferences.

▶ Forward checking removes values conflicting with an assignment already made.

▶ Arc consistency removes values that do not comply with any value still available
at the other end of a constraint. This subsumes forward checking.
▶ The constraint graph captures the dependencies between variables. Separate

connected components can be solved independently. Networks with acyclic
constraint graphs can be solved in low order polynomial time.

▶ A cutset is a subset of variables removing which renders the constraint graph
acyclic. Cutset conditioning backtracks only on such a cutset, and solves a
sub-problem with acyclic constraint graph at each search leaf.
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Topics We Didn’t Cover Here
▶ Path consistency, k-consistency: Generalizes arc consistency to size k

subsets of variables. Path consistency =̂ 3-consistency.
▶ Tree decomposition: Instead of instantiating variables until the leaf nodes are

trees, distribute the variables and constraints over sub-CSPs whose connections
form a tree.
▶ Backjumping: Like backtracking search, but with ability to back up across

several levels (to a previous variable assignment identified to be responsible for
failure).
▶ No-Good Learning: Inferring additional constraints based on information

gathered during backtracking search.
▶ Local search: In space of total (but not necessarily consistent) assignments.

(E.g., 8 queens in ??)
▶ Tractable CSP: Classes of CSPs that can be solved in P.
▶ Global Constraints: Constraints over many/all variables, with associated

specialized inference methods.
▶ Constraint Optimization Problems (COP): Utility function over solutions,

need an optimal one.
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