Artificial Intelligence 1
Winter Semester 2024 /25

— Lecture Notes —
Part Il: General Problem Solving

Prof. Dr. Michael Kohlhase

Professur fiir Wissensreprasentation und -verarbeitung
Informatik, FAU Erlangen-Niirnberg
Michael.Kohlhase@FAU.de

2025-02-06

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 1 2025-02-06

Michael.Kohlhase@FAU.de

Chapter 6
Problem Solving and Search

F/A\U Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

6.1 Problem Solving

F/A\U Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

Problem Solving: Introduction

> Recap: Agents perceive the environment and compute an action.

» In other words: Agents continually solve “the problem of what to do next”.

» Al Goal: Find algorithms that help solving problems in general.

> Idea: If we can describe/represent problems in a standardized way, we may
have a chance to find general algorithms.

> Concretely: We will use the following two concepts to describe problems

> States: A set of possible situations in our problem domain (= environments)
» Actions: that get us from one state to another. (= agents)

A sequence of actions is a solution, if it brings us from an initial state to a goal
state. Problem solving computes solutions from problem formulations.

» Definition 1.1. In offline problem solving an agent computing an action
sequence based complete knowledge of the environment.

» Remark 1.2. Offline problem solving only works in fully observable,
deterministic, static, and episodic environments.

» Definition 1.3. In online problem solving an agent computes one action at a
time based on incoming perceptions.

> This Semester: We largely restrict ourselves to offline problem solving.(easier)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 120 2025-02-06

Example: Traveling in Romania

» Scenario: An agent is on holiday in Romania; currently in Arad; flight home
leaves tomorrow from Bucharest; how to get there? We have a map:

118

(] Timisoara

L] Hirsova

[] Mehadia

75 86

Bucharest
Drobeta []

Craiova H Giurgiu Eforie

» Formulate the Problem:

P> States: various cities.
» Actions: drive between cities.

> Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 121 2025-02-06

Problem Formulation

» Definition 1.4. A problem formulation models a situation using states and
actions at an appropriate level of abstraction. (do not model things like “put on

my left sock”, etc.)

» it describes the initial state (we are in Arad)

> it also limits the objectives by specifying goal states. (excludes, e.g. to stay another
couple of weeks.)

A solution is a sequence of actions that leads from the initial state to a goal

state.

Problem solving computes solutions from problem formulations.

> Finding the right level of abstraction and the required (not more!) information
is often the key to success.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 122 2025-02-06

The Math of Problem Formulation: Search Problems

» Definition 1.5. A search problem N := (S, A, 7,7,G) consists of a set S of
states, a set A of actions, and a transition model 7: AxS — P(S) that assigns
to any action a € A and state s € S a set of successor states.

Certain states in S are designated as goal states (also called terminal state)
(G € S with G # () and initial states Z C S.

» Definition 1.6. We say that an action a € A is applicable in state s € S, iff
T(a,s) # () and that any s’ € T (a, s) is a result of applying action a to state s.
We call 7,: S — P(S) with T5(s) := T (a,s) the result relation for a and
Ta = JacaTs the result relation of 1.

> Definition 1.7. The graph (S, 74) is called the state space induced by I.

» Definition 1.8. A solution for I consists of a sequence ay, ..., a, of actions
such that forall1 < i <n
» 5 is applicable to state s;_1, where so € 7 and
> sic T,(si-1), and s, € .

> ldea: A solution bring us from 7 to a goal state via applicable actions.

> Definition 1.9. Often we add a cost function c: A — R that associates a
step cost c¢(a) to an action a € A. The cost of a solution is the sum of the step
costs of its actions.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 123 2025-02-06

Structure Overview: Search Problem

» The structure overview for search problems:

S Set states,
A Set actions,
search problem = < T AxS —P(S) transition model, >
r S initial state,
G P(S) goal states

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 124 2025-02-06

Search Problems in deterministic, fully observable
Environments

> This semester, we will restrict ourselves to search problems, where(extend in Al
)
» |7 (a,s)| <1 for the transition models and (+~ deterministic environment)
> 7 ={so} (e~ fully observable environment)
Definition 1.11. We call a search problem with transition model 7
deterministic, iff |7 (a,s)| < 1.

>

» Definition 1.12. In a deterministic search problem, 7, induces partial function
S ¢ & — S whose natural domain is the set of states where a is applicable:
Sa(s):=s"if T, = {s’} and undefined at s otherwise. We call S, the successor
function for a and S,(s) the successor state of s.

» Definition 1.13. The predicate that tests for goal states is called a goal test.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 125 2025-02-06

6.2 Problem Types

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 125 2025-02-06

Problem types

» Definition 2.1. A search problem is called a single state problem, iff it is

» fully observable (at least the initial state)
» deterministic (unique successor states)
» static (states do not change other than by our own actions)
> discrete (a countable number of states)

» Definition 2.2. A search problem is called a multi state problem
> states partially observable (e.g. multiple initial states)
P deterministic, static, discrete

» Definition 2.3. A search problem is called a contingency problem, iff

» the environment is non deterministic (solution can branch, depending on
contingencies)
> the state space is unknown(like a baby, agent has to learn about states and actions)

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 126 2025-02-06

Example: vacuum-cleaner world

> Single-state Problem:

R

=2, NEIAD
| || |
»> Startin 5 -C]a’ﬁlmﬁ lf_‘] |§ ® 'Giﬂ lf_.]w'ﬁ |ADR
> Solution: [right, suck] & e -
o]=4 =4 r

» Multiple-state Problem:
> Start in {1,2,3.4,5,6,7.8}
» Solution: [right, suck, left, suck| right — {2,4,6,8}
suck — {4,8}
left — {3.7}
suck — {7}

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 127 2025-02-06

Example: Vacuum-Cleaner World (continued)

> Contingency Problem:

» Murphy's Law: suck can dirty a clean

carpet ®
i =4
| o

» Local sensing: dirty/notdirty at location ; B -
only . .
. (HF I TED UEL 12D
> Start in: {1,3} _ 3 : _
» Solution: [suck, right, suck] UL LT =
suck — {5.7} E 5
right — {6,8}
suck — {6,8}
> better: [suck, right.if dirt then suck| (decide whether in 6 or 8 using local
sensing)

=4 Jr
=

R

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 128 2025-02-06

Single-state problem formulation

» Defined by the following four items

1. Initial state: (e.g. Arad)

2. Successor function S(s): (e.g. Syozer = {(Arad,Zerind), (goSib,Sibiu), ... })

3. Goal test: (e.g. x = Bucharest (explicit test))
noDirt(x) (implicit test)

4. Path cost (optional): (e.g. sum of distances, number of operators executed, etc.)

> Solution: A sequence of actions leading from the initial state to a goal state.

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 120 2025-02-06

Selecting a state space

» Abstraction: Real world is absurdly complex!
State space must be abstracted for problem solving.

> (Abstract) state: Set of real states.
> (Abstract) operator: Complex combination of real actions.
» Example: Arad — Zerind represents complex set of possible routes.

> (Abstract) solution: Set of real paths that are solutions in the real world.

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 130 2025-02-06

Example: The 8-puzzle

EAU

a

s f]

a

Start State

Goal State

States? Actions?. ..

Michael Kohlhase: Artificial Intelligence 1

2025-02-06

Example: The 8-puzzle

EAU

a

o il e

Start State Goal State
States integer locations of tiles
Actions left, right, up, down
Goal test | = goal state?

Path cost | 1 per move

Michael Kohlhase:

Artificial Intelligence 1 131

2025-02-06

Example: Vacuum-cleaner

00 200
0030 0230

States? Actions?. ..

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 132 2025-02-06

Example: Vacuum-cleaner

P00 200
0930 0930

States integer dirt and robot locations
Actions left, right, suck, noOp

Goal test | notdirty?

Path cost | 1 per operation (0 for noOp)

|EA\U Michael Kohlhase: Artificial Intelligence 1 132 2025-02-06 [SOWE RIGHTS RESERVED]

Example: Robotic assembly

States? Actions?. ..

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 133 2025-02-06

Example: Robotic assembly

EAU

States real-valued coordinates of
robot joint angles and parts of the object to be assembled
Actions continuous motions of robot joints
Goal test | assembly complete?
Path cost | time to execute

Michael Kohlhase: Artificial Intelligence 1 133 2025-02-06

General Problems

» Question: Which are “Problems’?

A) You didn't understand any of the lecture.
Your bus today will probably be late.

(
(
(
(

You want to win a chess game.

EAU Michael Kohlhase: Artificial Intelligence 1 134

B)
C) Your vacuum cleaner wants to clean your apartment.
D)

2025-02-06

General Problems

» Question: Which are “Problems’?

(A) You didn’t understand any of the lecture.

(B) Your bus today will probably be late.

(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.

> Answer:

(A/B) These are problems in the natural language use of the word, but not “problems”
in the sense defined here.

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06

General Problems

» Question: Which are “Problems’?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.

> Answer:
(A/B) These are problems in the natural language use of the word, but not “problems”

in the sense defined here.
(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the

robot has perfect knowledge about your apartment (else, it's not a classical search

problem).

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06

General Problems

» Question: Which are “Problems’?
(A) You didn’t understand any of the lecture.
(B) Your bus today will probably be late.
(C) Your vacuum cleaner wants to clean your apartment.
(D) You want to win a chess game.

> Answer:

(A/B) These are problems in the natural language use of the word, but not “problems”
in the sense defined here.

(C) Yes, presuming that this is a robot, an autonomous vacuum cleaner, and that the
robot has perfect knowledge about your apartment (else, it's not a classical search
problem).

(D) That's a search problem, but not a classical search problem (because it's
multi-agent). We'll tackle this kind of problem in 7?7

[SOWE RIGHTS RESERVED]

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06

6.3 Search

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06

Tree Search Algorithms

> Note: The state space of a search problem (S, A, 7,7,G) is a graph (S, 7Tx).

» As graphs are difficult to compute with, we often compute a corresponding tree
and work on that. (standard trick in graph algorithms)

» Definition 3.1. Given a search problem P := (S, A, 7,7Z,G), the tree search
algorithm consists of the simulated exploration of state space (S, 74) in a search
tree formed by successively expanding already explored states. (offline algorithm)

procedure Tree—Search (problem, strategy) : <a solution or failure>
<initialize the search tree using the initial state of problem>
loop
if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
else <expand the node and add the resulting nodes to the search tree>
end if
end loop
end procedure

We expand a node n by generating all successors of n and inserting them as
children of n in the search tree.

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 135 2025-02-06

Tree Search: Example

_ - N T~
PRl - T T T~ P
o - , .
_ Sibiu . (. Timisoara { Zerind)
,/’/‘/~-\’ ~_ N S T
/’/ 7 \ , N
_ - -7 ,71/ _ 7 pS. _ L \\,_
“Arad 7 Fagaras) Ty (Arad) Lugoj) Oradea) { Arad)
{Arad) 7 Fagaras)« > {Arad) (Lugoi) _Oradea > Arad)
E, .
EAU Michael Kohlhase: Artif 136 2025-02-06

Tree Search: Example

- ~ _—z

L= =~ - _
N Arad/\ ’\ Fagaras /\ {\

EAU

136 2025-02-06

Tree Search: Example

P
\ Arad) (\ Lugoj /\ (_ Oradea b . Arad)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 136 2025-02-06

Tree Search: Example

7

- =~ - ~ - ~
7 oo i
. \Araﬂ PN Lusoi P

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 136 2025-02-06

Implementation: States vs. nodes

> Recap: A stateis a (representation of) a physical configuration.
> Definition 3.2 (Implementing a Search Tree).

A search tree node is a data structure that
includes accessors for parent, children, depth,
path cost, insertion order, etc.

A goal node (initial node) is a search tree node
labeled with a goal state (initial state).

ACTION = Right
PATH-COST = 6

> Observation: A set of search tree nodes that can all (recursively) reach a
single initial node form a search tree. (they implement it)

» Observation: Paths in the search tree correspond to paths in the state space.

» Definition 3.3. We define the path cost of a node nin a search tree T to be
the sum of the step costs on the path from n to the root of T.

» Observation: As a search tree node has access to parents, we can read off the
solution from a goal node.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 137 2025-02-06

Implementation of Search Algorithms

» Definition 3.4 (Implemented Tree Search Algorithm).

procedure Tree Search (problem,strategy)
fringe := insert(make node(initial _state(problem)))
loop

if empty(fringe) fail end if

node := first(fringe,strategy)

if GoalTest(node) return node

else fringe := insert(expand(node,problem))

end if

end loop

end procedure

The fringe is the set of search tree nodes not yet expanded in tree search.

» Idea: We treat the fringe as an abstract data type with three accessors: the

» binary function first retrieves an element from the fringe according to a strategy.
» binary function insert adds a (set of) search tree node into a fringe.
» unary predicate empty to determine whether a fringe is the empty set.

» The strategy determines the behavior of the fringe (data structure) (see below)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 138 2025-02-06

Search strategies

» Definition 3.5. A strategy is a function that picks a node from the fringe of a
search tree. (equivalently, orders the fringe and picks the first.)
> Definition 3.6 (Important Properties of Strategies).

completeness does it always find a solution if one exists?
time complexity | number of nodes generated/expanded
space complexity | maximum number of nodes in memory
optimality does it always find a least cost solution?

» Time and space complexity measured in terms of:

b | maximum branching factor of the search tree
d | minimal graph depth of a solution in the search tree
m | maximum graph depth of the search tree (may be c0)

Complexity means here always worst-case complexity!

EAU Michael Kohlhase: Artificial Intelligence 1

139 2025-02-06

6.4 Uninformed Search Strategies

F/A\U Michael Kohlhase: Artificial Intelligence 1 130 2025-02-06

Uninformed search strategies

» Definition 4.1. We speak of an uninformed search algorithm, if it only uses the
information available in the problem definition.
> Next: Frequently used search algorithms
» Breadth first search
» Uniform cost search
» Depth first search
» Depth limited search
» lterative deepening search

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 140 2025-02-06

6.4.1 Breadth-First Search Strategies

F/A\U Michael Kohlhase: Artificial Intelligence 1 140 2025-02-06

Breadth-First Search

» Idea: Expand the shallowest unexpanded node.

> Definition 4.2. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

> Example 4.3 (Synthetic).

[N ~_ 77N
/ . Y
\ \
‘B [C)
> N AN
, N ’ N
’ N , N
, 7 Tx NN 7Y NN
/ 1 /
\ \ \
!) \E/ \F/ \ /
\ N
/=~ A v-< y-< =X
/ \ \ / \ / \
- = - - = - -~ - = -~
N /N e N\ N e N\ 7 N N N
/ / / /
/ !) \
O o I I Y R O I ;N !
\ / o, 7 N / Nz N N N

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-First Search

» Idea: Expand the shallowest unexpanded node.

> Definition 4.4. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

> Example 4.5 (Synthetic).

, N ,
7/ N 7 A
;7T TN 'S /\"\
/ !
\ \ \
!) \E/ \F/ \ /
\ N
/=~ A v-< y-< =X
/ \ \ / \ / \
- = - - = - -~ - = -~

N /N e N\ N e N\ 7 N N

/ / 7/ /

\ / !) \

cH)Y JI K" LI M) N !
\ / o, 7 N / Nz N N N

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-First Search

» Idea: Expand the shallowest unexpanded node.

> Definition 4.6. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

> Example 4.7 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-First Search

» Idea: Expand the shallowest unexpanded node.

> Definition 4.8. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

> Example 4.9 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-First Search

» Idea: Expand the shallowest unexpanded node.
> Definition 4.10. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

> Example 4.11 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-First Search

» Idea: Expand the shallowest unexpanded node.
> Definition 4.12. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

> Example 4.13 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-First Search: Romania

> Example 4.14.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 142 2025-02-06

Breadth-First Search: Romania

> Example 4.15.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 142 2025-02-06

Breadth-First Search: Romania

> Example 4.16.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 142 2025-02-06

Breadth-First Search: Romania

> Example 4.17.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 142 2025-02-06

Breadth-First Search: Romania

> Example 4.18.

Fagaras

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 142 2025-02-06

Breadth-first search: Properties

Completeness Yes (if b is finite)
Time complexity | 1+ b+ b%+ b3 ...+ b9 so O(b9), i.e. expo-
> nential in d
Space complexity | O(b9) (fringe may be whole level)
Optimality Yes (if cost = 1 per step), not optimal in general
» Disadvantage: Space is the big problem (can easily generate nodes at

500MB/sec = 1.8TB/h)

» Optimal?: No! If cost varies for different steps, there might be better
solutions below the level of the first one.

» An alternative is to generate all solutions and then pick an optimal one. This
works only, if m is finite.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 143 2025-02-06

Romania with Step Costs as Distances

Fagaras

L] Vaslui

(] Timisoara

Pitesti

L] Hirsova

[1 Mehadia

Urziceni

75 86

Drobeta]

Bucharest

Craiova [Giurgiu Eforie

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 144 2025-02-06

Uniform-cost search

» Idea: Expand least cost unexpanded node.

> Definition 4.19. Uniform-cost search (UCS) is the strategy where the fringe is
ordered by increasing path cost.

> Note: Equivalent to breadth first search if all step costs are equal.

» Synthetic Example:

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06

Uniform-cost search

» Idea: Expand least cost unexpanded node.

> Definition 4.20. Uniform-cost search (UCS) is the strategy where the fringe is
ordered by increasing path cost.

> Note: Equivalent to breadth first search if all step costs are equal.

» Synthetic Example:

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06

Uniform-cost search

» Idea: Expand least cost unexpanded node.

> Definition 4.21. Uniform-cost search (UCS) is the strategy where the fringe is
ordered by increasing path cost.

> Note: Equivalent to breadth first search if all step costs are equal.

» Synthetic Example:

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06

Uniform-cost search

» Idea: Expand least cost unexpanded node.

> Definition 4.22. Uniform-cost search (UCS) is the strategy where the fringe is
ordered by increasing path cost.

> Note: Equivalent to breadth first search if all step costs are equal.

> Synthetic Example:

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06

Uniform-cost search

» Idea: Expand least cost unexpanded node.

> Definition 4.23. Uniform-cost search (UCS) is the strategy where the fringe is
ordered by increasing path cost.

> Note: Equivalent to breadth first search if all step costs are equal.

> Synthetic Example:

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06

Uniform-cost search: Properties

Completeness
Time complexity

Space complexity
Optimality

Yes (if step costs > € > 0)

number of nodes with path cost less than that of opti-
mal solution

ditto

Yes

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 146 2025-02-06

6.4.2 Depth-First Search Strategies

F/A\U Michael Kohlhase: Artificial Intelligence 1 146 2025-02-06

Depth-first Search

» Idea: Expand deepest unexpanded node.

> Definition 4.24. Depth-first search (DFS) is the strategy where the fringe is
organized as a (LIFO) stack i.e. successors go in at front of the fringe.

» Definition 4.25. Every node that is pushed to the stack is called a backtrack
point. The action of popping a non-goal node from the stack and continuing the
search with the new top element of the stack (a backtrack point by
construction) is called backtracking, and correspondingly the DFS algorithm
backtracking search.

» Note: Depth first search can perform infinite cyclic excursions
Need a finite, non cyclic state space (or repeated state checking)

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 147 2025-02-06

Depth-First Search

> Example 4.26 (Synthetic).

TN -7 RSN
/ T Y
\ \
(B [C)
XN PSRN
, N , N
7/ N 7 N
;7 Tx NN e NN
/ 1 /
) \ \ \
‘\ , \E/ \F/ tG/
¢ N
/I~ A v-< 7 =< =<
/ \ / \ / \ / \
P - P P P -~ P -
/ N / \. , N , \‘ , \‘ ’ \‘ p \‘ / N
' N I , L) N/ ! !
AP Vv ~ Moo N Noo oL

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.27 (Synthetic).

, N , N
, N , N
//\\(/\/‘\ //‘\(/\/ N
\ \ \
!) \E/ \F/ tG,
N ¢ N
/I~ A v-< 7 =< =<
/ \ / \ / \ / \
P -) P -, -~ P -
N /N e N\ N e \ 7 N N
/ / 7/ /
\ 1 y \ \ \
| Vool J LM ON
AP Vv ~ N N AL

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.28 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.29 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.30 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.31 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.32 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.33 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.34 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.35 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.36 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.37 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.38 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search

> Example 4.39 (Synthetic).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-First Search: Romania

> Example 4.40 (Romania).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 149 2025-02-06

Depth-First Search: Romania

> Example 4.41 (Romania).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 149 2025-02-06

Depth-First Search: Romania

> Example 4.42 (Romania).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 149 2025-02-06

Depth-First Search: Romania

> Example 4.43 (Romania).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 149 2025-02-06

Depth-first search: Properties

Completeness Yes: if search tree finite
No: if search tree contains infinite paths or
loops

Time complexity | O(b™)

(we need to explore until max depth m in any
> case!)

Space complexity | O(bm) (i.e. linear space)
(need at most store m levels and at each level
at most b nodes)

Optimality No (there can be many better solutions in the
unexplored part of the search tree)

» Disadvantage: Time terrible if m much larger than d.

» Advantage: Time may be much less than breadth first search if solutions are
dense.

E . (]
|EA\U Michael Kohlhase: Artificial Intelligence 1 150 2025-02-06

Iterative deepening search

» Definition 4.44. Depth limited search is depth first search with a depth limit.

» Definition 4.45. Iterative deepening search (IDS) is depth limited search with
ever increasing depth limits. We call the difference between successive depth
limits the step size.

> procedure Tree Search (problem)
<initialize the search tree using the initial state of problem>
for depth = 0 to
result := Depth Limited search(problem,depth)
if depth # cutoff return result end if
end for
end procedure

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 151 2025-02-06

llustration: lterative Deepening Search at various Limit
Depths

OX _

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 152 2025-02-06

llustration: lterative Deepening Search at various Limit
Depths

N

7 A
5 7o

\ \
(B [C)
\»/ \>/

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 152 2025-02-06

llustration: lterative Deepening Search at various Limit
Depths

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 152 2025-02-06

llustration: lterative Deepening Search at various Limit
Depths

O

(7 VAR
A _ K
1 \ { \ I3 \ 1 \
> L L o
’ v v v v v v v \

NINININININ NN

b SR A
Yovovo
NINININ I

b SR A
Yovovo
NINININ I

NINININ SN IS

Ty
o€ o<
vov Ty

NN NN

E,
FAU Michael Kohlhase: Artificial Intelligence 1 152 2025-02-06

Iterative deepening search: Properties

Completeness Yes

» | Time complexity (d+1)-b%+-d-br+(d—1)-b?>+...+b7 c O(b9'1)
Space complexity | O(b-d)

Optimality Yes (if step cost = 1)

» Consequence: |DS used in practice for search spaces of large, infinite, or
unknown depth.

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 153 2025-02-06

Comparison BFS (optimal) and IDS (not)

> Example 4.46. |DS may fail to be be optimal at step sizes > 1.
Breadth first search Iterative deepening search

X X

%X
% %X

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 154 2025-02-06

X

6.4.3 Further Topics

F/A\U Michael Kohlhase: Artificial Intelligence 1 154 2025-02-06

Tree Search vs. Graph Search

» We have only covered tree search algorithms.
» States duplicated in nodes are a huge problem for efficiency.
» Definition 4.47. A graph search algorithm is a variant of a tree search

algorithm that prunes nodes whose state has already been considered (duplicate
pruning), essentially using a DAG data structure.

» Observation 4.48. Tree search is memory intensive it has to store the fringe so
keeping a list of “explored states” does not lose much.

» Graph versions of all the tree search algorithms considered here exist, but are
more difficult to understand (and to prove properties about).

> The (time complexity) properties are largely stable under duplicate pruning. (no
gain in the worst case)

» Definition 4.49. We speak of a search algorithm, when we do not want to
distinguish whether it is a tree or graph search algorithm. (difference considered
an implementation detail)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 155 2025-02-06

Uninformed Search Summary

> Tree/Graph Search Algorithms: Systematically explore the state tree/graph
induced by a search problem in search of a goal state. Search strategies only
differ by the treatment of the fringe.

» Search Strategies and their Properties: We have discussed

Breadth Uniform DPePth Iterative
Criterion first cost first deepening
Completeness Yes! Yes? No Yes
Time complexity bd ~ b bm b+t
Space complexity b ~ b? bm bd
Optimality Yes* Yes No Yes*
Conditions T'hfinite 20 < e < cost

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 156 2025-02-06

Search Strategies; the XKCD Take

» More Search Strategies?: (from https://xkcd. com/2407/)

DEPTH-FIRST SEARCH BREADTH-FIRST SEARCH

:B\
Ak LA

BREPTH-FIRST SEARCH

BREAD-FIRST SEARCH

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 157 2025-02-06

https://xkcd.com/2407/

6.5 Informed Search Strategies

F/A\U Michael Kohlhase: Artificial Intelligence 1 157 2025-02-06

Summary: Uninformed Search/Informed Search

» Problem formulation usually requires abstracting away real-world details to
define a state space that can feasibly be explored.

» Variety of uninformed search strategies.

> |terative deepening search uses only linear space and not much more time than
other uninformed algorithms.

> Next Step: Introduce additional knowledge about the problem (heuristic
search)
» Best-first-, A"-strategies (guide the search by heuristics)

> |terative improvement algorithms.

» Definition 5.1. A search algorithm is called informed, iff it uses some form of
external information — that is not part of the search problem — to guide the
search.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 158 2025-02-06

6.5.1 Greedy Search

F/A\U Michael Kohlhase: Artificial Intelligence 1 158 2025-02-06

Best-first search

» Idea: Order the fringe by estimated “desirability” (Expand most desirable
unexpanded node)

» Definition 5.2. An evaluation function assigns a desirability value to each node
of the search tree.

» Note: A evaluation function is not part of the search problem, but must be
added externally.

» Definition 5.3. In best first search, the fringe is a queue sorted in decreasing
order of desirability.

» Special cases: Greedy search, A* search

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 1590 2025-02-06

Greedy search

» Idea: Expand the node that appears to be closest to the goal.

» Definition 5.4. A heuristic is an evaluation function h on states that estimates
the cost from n to the nearest goal state. We speak of heuristic search if the
search algorithm uses a heuristic in some way.

» Note: All nodes for the same state must have the same h-value!

» Definition 5.5. Given a heuristic h, greedy search is the strategy where the
fringe is organized as a queue sorted by increasing h value.

» Example 5.6. Straight-line distance from/to Bucharest.

» Note: Unlike uniform cost search the node evaluation function has nothing to
do with the nodes expanded so far

internal search control ~» external search control
partial solution cost ~ goal cost estimation

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 160 2025-02-06

Romania with Straight-Line Distances

> Example 5.7 (Informed Travel).
hsr.p(n) = straight — line distance to Bucharest

Arad 366 | Mehadia 241 | Bucharest 0 Neamt 234
Craiova 160 | Oradea 380 | Drobeta 242 | Pitesti 100
Eforie 161 | Rimnicu Vilcea 193 | Fragaras 176 | Sibiu 253
Giurgiu 77 Timisoara 329 | Hirsova 151 | Urziceni 80

lasi 226 | Vaslui 199 | Lugoj 244 | Zerind 374

Fagaras

(] Timisoara

[] Mehadia

75

Drobeta []
|§A\U Michael Kohlhase: Artificial Intellidehce 1 16

[SOWE RIGHTS RESERVED]

2025-02-06

Greedy Search: Romania

366

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 162 2025-02-06

Greedy Search: Romania

366

253 329 374

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 162 2025-02-06

Greedy Search: Romania

366 176 380 193

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 162 2025-02-06

Greedy Search: Romania

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 162 2025-02-06

Heuristic Functions in Path Planning

> Example 5.8 (The maze solved). We indicate h* by giving the goal distance:

I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
124 18117116 115 14 12:13:14115116117 118

2|2 o s 7 2 112013014015 16117
32221 20 1o 12 110
4)23:22:21 151413

5

F---m == q---

24123122 16 115

G

> Example 5.9 (Maze Heuristic: The good case). We use the Manhattan
distance to the goal as a heuristic:

F/A\U Michael Kohlhase: Artificial Intelligence 1 163 2025-02-06

Heuristic Functions in Path Planning

> Example 5.11 (The maze solved). We indicate h* by giving the goal
distance:

> Example 5.12 (Maze Heuristic: The good case). We use the Manhattan
distance to the goal as a heuristic:

Il23456789101112131415
1[1s [l s a3 o[l 0 s 765
217 s s sl 0 o sl e s gl
3161514 12
41514113 11010
5 14:131312 10

F/A\U Michael Kohlhase: Artificial Intelligence 1 163 2025-02-06

Heuristic Functions in Path Planning

> Example 5.14 (The maze solved). We indicate h* by giving the goal
distance:

> Example 5.15 (Maze Heuristic: The good case). We use the Manhattan
distance to the goal as a heuristic:

> Example 5.16 (Maze Heuristic: The bad case). We use the Manhattan
distance to the goal as a heuristic again:

123456789101112131415

18 16‘15‘14‘13‘12‘11‘1()‘9‘8‘7‘6‘5;7517

FA\U Michael Kohlhase: Artificial Intelligence 1 163 2025-02-06

Greedy search: Properties

Completeness No: Can get stuck in infinite loops.

Complete in finite state spaces with repeated
state checking

Time complexity | O(b™)

Space complexity | O(b™)

Optimality No

E, .
|nEAU Michael Kohlhase: Artificial Intelligence 1 164 2025-02-06

Greedy search: Properties

Completeness No: Can get stuck in infinite loops.

Complete in finite state spaces with repeated

state checking

Time complexity | O(b™)

Space complexity | O(b™)

Optimality No

» Example 5.18. Greedy search can get stuck going from lasi to Oradea:
lasi — Neamt — lasi — Neamt — - --

[vasiui

O Hirsova

Eforie

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 164 2025-02-06

Greedy search: Properties

Completeness No: Can get stuck in infinite loops.

Complete in finite state spaces with repeated
state checking

Time complexity | O(b™)

Space complexity | O(b™)

Optimality No

> Example 5.19. Greedy search can get stuck going from lasi to Oradea:
lasi — Neamt — lasi = Neamt — - --

> Worst-case Time: Same as depth first search.
> Worst-case Space: Same as breadth first search. (« repeated state checking)

> But: A good heuristic can give dramatic improvements.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 164 2025-02-06

6.5.2 Heuristics and their Properties

F/A\U Michael Kohlhase: Artificial Intelligence 1 164 2025-02-06

Heuristic Functions

» Definition 5.20. Let N be a search problem with states S. A heuristic function
(or short heuristic) for M is a function h: & — Ry U {oc} so that h(s) =0
whenever s is a goal state.

» h(s) is intended as an estimate the distance between state s and the nearest
goal state.

» Definition 5.21. Let N be a search problem with states S, then the function
h*: S — Ry U{cc}, where h*(s) is the cost of a cheapest path from s to a goal
state, or oo if no such path exists, is called the goal distance function for I1.

> Notes:
> h(s) = 0 on goal states: If your estimator returns "l think it's still a long way" on a
goal state, then its intelligence is, um ...
» Return value co: To indicate dead ends, from which the goal state can't be reached
anymore.
> The distance estimate depends only on the state s, not on the node (i.e., the path
we took to reach s).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 165 2025-02-06

Where does the word “Heuristic’ come from?

> Ancient Greek word evpiokew (= find") (aka. evperal)
» Popularized in modern science by George Polya: “How to solve it" [P6l73]

» Same word often used for “rule of thumb” or “imprecise solution method".

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 166 2025-02-06

Heuristic Functions: The Eternal Trade-Off

» “Distance Estimate’? (h is an arbitrary function in principle)

> In practice, we want it to be accurate (aka: informative), i.e., close to the actual
goal distance.

> We also want it to be fast, i.e., a small overhead for computing h.
» These two wishes are in contradiction!

> Example 5.22 (Extreme cases).
» h =0: no overhead at all, completely un-informative.
» h = h": perfectly accurate, overhead = solving the problem in the first place.

> Observation 5.23. We need to trade off the accuracy of h against the
overhead for computing it.

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 167 2025-02-06

Properties of Heuristic Functions

> Definition 5.24. Let N be a search problem with states S and actions A. We
say that a heuristic h for I is admissible if h(s) < h*(s) for all s € S.
We say that h is consistent if h(s) — h(s’) < c(a) foralls€ S, ac A, and
s’ € T(s,a).
» In other words ...:
» his admissible if it is a lower bound on goal distance.

» his consistent if, when applying an action a, the heuristic value cannot decrease by
more than the cost of a.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 168 2025-02-06

Properties of Heuristic Functions, ctd.

» Let 1 be a search problem, and let h be a heuristic for I1. If his consistent,
then h is admissible.

» Proof: we prove h(s) < h*(s) for all s € S by induction over the length of the
cheapest path to a goal node.

1. base case
1.1. h(s) = 0 by definition of heuristic, so h(s) < h"(s) as desired.

2. step case
2.1. We assume that h(s’) < h*(s) for all states s’ with a cheapest goal node
path of length n.
2.2. Let s be a state whose cheapest goal path has length n+ 1 and the first
transition is o = (s.,s’).
2.3. By consistency, we have h(s) — h(s’) < c(o) and thus h(s) < h(s’) + c(o).
2.4. By construction, h”(s) has a cheapest goal path of length n and thus, by
induction hypothesis h(s’) < h*(s’).
2.5. By construction, h*(s) = h*(s") + c(o).
2.6. Together this gives us h(s) < h"(s) as desired.

> Consistency is a sufficient condition for admissibility (easier to check)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 169 2025-02-06

Properties of Heuristic Functions: Examples

> Example 5.25. Straight line distance is admissible and consistent by the
triangle inequality.
If you drive 100km, then the straight line distance to Rome can't decrease by
more than 100km.

» Observation: In practice, admissible heuristics are typically consistent.

> Example 5.26 (An admissible, but inconsistent heuristic). When traveling
to Rome, let h(Munich) = 300 and h(Innsbruck) = 100.

» Inadmissible heuristics typically arise as approximations of admissible
heuristics that are too costly to compute. (see later)

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 170 2025-02-06

6.5.3 A-Star Search

F/A\U Michael Kohlhase: Artificial Intelligence 1 170 2025-02-06

A* Search: Evaluation Function

> Idea: Avoid expanding paths that are already expensive (make use of actual
cost)
The simplest way to combine heuristic and path cost is to simply add them.

» Definition 5.27. The evaluation function for A* search is given by
f(n) = g(n) + h(n), where g(n) is the path cost for n and h(n) is the estimated
cost to the nearest goal from n.

» Thus f(n) is the estimated total cost of the path through n to a goal.

» Definition 5.28. Best first search with evaluation function g + h is called A*
search.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 171 2025-02-06

A" Search: Optimality

» Theorem 5.29. A" search with admissible heuristic is optimal.
» Proof: We show that sub-optimal nodes are never expanded by A*
1. Suppose a suboptimal goal node G has been generated then we are in the
following situation:

2. Let n be an unexpanded node on a path to an optimality goal node O, then

f(G)=g(G) since h(G) =0
g(G)>g(0) since G suboptimal
g(0) =g(n)+ h*(n) n on optimal path
g(n) + h*(n) > g(n) + h(n) since h is admissible
g(n) - h(n) = f(n)
3. Thus, f(G) > f(n) and A" never expands G.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 172 2025-02-06

A* Search Example

366=0+366

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

A* Search Example

393=140+253 447=118+4329 449=75+374

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

A* Search Example

447=1184-329 449=75+-374

646=280+4+366 415=239+176 671=291+380 413=220+4193

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

A* Search Example

447=1184329

449=75+374

646=280+366 415=239+176 671=291+380

Craiova

526=366+160 417=3174100 553=300+253

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

A* Search Example

447=118+329 449=75+374

646=280+366

591=3384-253 450=4504-0 526=366+160 417=3174100 553=300+253

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

A* Search Example

447=118+329 449=75+374

646=280-+4366

591=338+4253

450=450+4-0 526=366-+1160 553=300+4-253

418=4184-0 615=455+4+160 607=414-4193

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

Additional Observations (Not Limited to Path Planning)

> Example 5.30 (Greedy best-first search, “good case”).

I123456789101112131415
i BN D
2|17 | 71757:14:13 1‘10‘9‘8‘7‘6‘5‘4‘3
3 ,19‘,1,5, ‘,1,4,

415114113
5 14;13}12

We will find a solution with little search.

F/A\U Michael Kohlhase: Artificial Intelligence 1 174 2025-02-06

Additional Observations (Not Limited to Path Planning)

> Example 5.31 (A" (g + h), “good case”).

I

12345 67 8 9101112131415
1|18 22 22 22 22 22 24 24 24 24 24 24 24

22 22 22 22 22 22 22 22 22

22 22 | 22

2
3
418‘18‘18 20 | 20 120
5

18 ‘ 18 ! 18 20

,,,,,,,,,,,,,,,, 22‘22 24‘24‘24‘24

18‘18‘18 20‘20

G

> In A" with a consistent heuristic, g + h always increases monotonically ~ (h cannot
decrease more than g increases)

» We need more search, in the “right upper half". This is typical: Greedy best first
search tends to be faster than A™.

F/A\U Michael Kohlhase: Artificial Intelligence 1 175 2025-02-06

Additional Observations (Not Limited to Path Planning)

> Example 5.32 (Greedy best-first search, “bad case”).

I

Search will be mis-guided into the “dead-end street”.

F/A\U Michael Kohlhase: Artificial Intelligence 1 176 2025-02-06

Additional Observations (Not Limited to Path Planning)

> Example 5.33 (A" (g + h), “bad case”).

I

1 2 3 45 67 8 9101112131415
18 24 24 24 24 24 24 24 24 24 24 24 24 24

222122

18 18 18118118 22122122 26126126 2

G

We will search less of the “dead-end street”. Sometimes g + h gives better
search guidance than h. (~ A* is faster there)

F/A\U Michael Kohlhase: Artificial Intelligence 1 177 2025-02-06

Additional Observations (Not Limited to Path Planning)

> Example 5.34 (A" (g + h) using h").

I

1 2 3 4 5 6 7 8 9 10 11

12 13 14 15

24124124124 124124124 124124

34136138 50152154

2612612628 30

42 144 146

58

124124124124

160 1 62 2

G

In A*, node values always increase monotonically (with any heuristic). If the
heuristic is perfect, they remain constant on optimal paths.

EAU

Michael Kohlhase: Artificial Intelligence 1

2025-02-06

A* search: f-contours

> Intuition: A*-search gradually adds “f-contours” (areas of the same f-value)
to the search.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 179 2025-02-06

A" search: Properties

» Properties or A*-search:

Completeness Yes (unless there are infinitely many nodes n
with f(n) < £(0))
Time complexity | Exponential in [relative error in h x length of N

solution]
Space complexity | Same as time (variant of BFS)
Optimality Yes

> A*-search expands all (some/no) nodes with f(n) < h*(n)
» The run-time depends on how well we approximated the real cost h* with h.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 180 2025-02-06

6.5.4 Finding Good Heuristics

F/A\U Michael Kohlhase: Artificial Intelligence 1 180 2025-02-06

Admissible heuristics: Example 8-puzzle

A
o7 0le]

Start State Goal State

> Example 5.35. Let h;(n) be the number of misplaced tiles in node n.
(h(S) =9)
» Example 5.36. Let h(n) be the total Manhattan distance from desired

location of each tile. (h(S)=3+14+2+2+2+34+2+2+3=20)
> Observation 5.37 (Typical search costs). (/DS = iterative deepening search)
| nodes explored | IDS | A(hy) [A (h2) |
d=14 3,473,941 | 539 113
d=24 too many | 39,135 | 1,641

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 181 2025-02-06

Dominance

» Definition 5.38. Let h; and hy be two admissible heuristics we say that h;
dominates hy if ha(n) > hy(n) for all n.
» Theorem 5.39. If hy dominates hy, then hy is better for search than h;.

» Proof sketch: If hy dominates hy, then hy is “closer to h*" than hy, which
means better search performance.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 182 2025-02-06

Relaxed problems

» Observation: Finding good admissible heuristics is an art!

> ldea: Admissible heuristics can be derived from the exact solution cost of a
relaxed version of the problem.

> Example 5.40. If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then we get heuristic h;.

> Example 5.41. If the rules are relaxed so that a tile can move to any adjacent
square, then we get heuristic hs. (Manhattan distance)

» Definition 5.42. Let N := (S, A, 7 ,7Z,G) be a search problem, then we call a
search problem P":= (S, A", 7", 7" G") a relaxed problem (wrt. I1; or simply
relaxation of M), iff AC A", T CT", 7T CI" and G C G".

> Lemma 5.43. If P" relaxes I, then every solution for I is one for P".

» Key point: The optimal solution cost of a relaxed problem is not greater than
the optimal solution cost of the real problem.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 183 2025-02-06

Empirical Performance: A* in Path Planning

> Example 5.44 (Live Demo vs. Breadth-First Search).

#J'

=

See http://qiao.github.io/PathFinding. js/visual/

> Difference to Breadth-first Search?: That would explore all grid cells in a
circle around the initial state!

F/A\U Michael Kohlhase: Artificial Intelligence 1 184 2025-02-06

http://qiao.github.io/PathFinding.js/visual/

6.6 Local Search

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 184 2025-02-06

Systematic Search vs. Local Search

» Definition 6.1. We call a search algorithm systematic, if it considers all states
at some point.

> Example 6.2. All tree search algorithms (except pure depth first search) are
systematic. (given reasonable assumptions e.g. about costs.)
» Observation 6.3. Systematic search algorithms are complete.

» Observation 6.4. In systematic search algorithms there is no limit of the
number of nodes that are kept in memory at any time.
> Alternative: Keep only one (or a few) nodes at a time

» -~ no systematic exploration of all options, ~» incomplete.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 185 2025-02-06

Local Search Problems

» Idea: Sometimes the path to the solution is irrelevant.

> Example 6.5 (8 Queens Problem). Place 8
queens on a chess board, so that no two queens
threaten each other.

> This problem has various solutions (the one of the
right isn't one of them)

» Definition 6.6. A local search algorithm is a
search algorithm that operates on a single state, the
current state (rather than multiple paths).
(advantage: constant space)

» Typically local search algorithms only move to successor of the current state,
and do not retain search paths.

» Applications include: integrated circuit design, factory-floor layout, job-shop
scheduling, portfolio management, fleet deployment,. ..

EAU Michael Kohlhase: Artificial Intellizence 1 186 20250206

Local Search: Iterative improvement algorithms

» Definition 6.7. The traveling salesman problem (TSP is to find shortest trip
through set of cities such that each city is visited exactly once.

» Idea: Start with any complete tour, perform pairwise exchanges

——»
o y b
N
L
7
7
/
/
L

» Definition 6.8. The n-queens problem is to put n queens on n x n board such
that no two queen in the same row, columns, or diagonal.

» Idea: Move a queen to reduce number of conflicts

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 187 2025-02-06

Hill-climbing (gradient ascent/descent)

> ldea: Start anywhere and go in the direction of the steepest ascent.

> Definition 6.9. Hill climbing (also gradient ascent) is a local search algorithm

that iteratively selects the best successor:

procedure Hill—Climbing (problem) /« a state that is a local minimum */

local current, neighbor /* nodes %/

current := Make—Node(Initial—State[problem])

loop
neighbor := <a highest—valued successor of current>
if Value[neighbor] < Value[current] return [current] end if
current := neighbor

end loop

end procedure

» Intuition: Like best first search without memory.

» Works, if solutions are dense and local maxima can be escaped.

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 188 2025-02-06

[SOWE RIGHTS RESERVED]

Example Hill Climbing with 8 Queens

» Idea: Consider h = number of
queens that threaten each other.

> Example 6.10. An 8-queens state
with heuristic cost estimate h = 17
showing h-values for moving a queen
within its column:

» Problem: The state space has local
minima. e.g. the board on the right
has h =1 but every successor has
h> 1.

EAU Michael Kohlhase: Artificial Intellizence 1 180 2025.02-06

Hill-climbing

objective function
_— global maximum

» Problem: Depending on initial shoulder
state, can get stuck on local
maxima/minima and plateaux.

local maximum

“flat” local maximum

» “Hill-climbing search is like climbing
Everest in thick fog with amnesia”.

state space
current
state

> ldea: Escape local maxima by allowing some “bad” or random moves.
» Example 6.11. local search, simulated annealing, ...
» Properties: All are incomplete, nonoptimal.

» Sometimes performs well in practice (if (optimal) solutions are dense)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 190 2025-02-06

Simulated annealing (Idea)

» Definition 6.12. Ridges are ascending
successions of local maxima.

» Problem: They are extremely difficult to
bv navigate for local search algorithms.

» Idea: Escape local maxima by allowing
some “bad” moves, but gradually decrease
their size and frequency.

» Annealing is the process of heating steel and let it cool gradually to give it time
to grow an optimal cristal structure.

» Simulated annealing is like shaking a ping pong ball occasionally on a bumpy
surface to free it. (so it does not get stuck)

> Devised by Metropolis et al for physical process modelling [Met+53]
» Widely used in VLSI layout, airline scheduling, etc.

E . (]
|EA\U Michael Kohlhase: Artificial Intelligence 1 191 2025-02-06

Simulated annealing (Implementation)

» Definition 6.13. The following algorithm is called simulated annealing:

procedure Simulated—Annealing (problem,schedule) /* a solution state */
local node, next /+ nodes x/
local T /x a "'temperature’’ controlling prob.”of downward steps */
current := Make—Node(Initial—State[problem])
for t :=1 to ¢
T := schedule]t]
if T = 0 return current end if
next := <a randomly selected successor of current>
A(E) := Value[next]—Value[current]
if A(E) > 0 current := next
else
current := next <only with probability> e
end if
end for
end procedure

A(E)/T

A schedule is a mapping from time to “temperature”.

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 192 2025-02-06

Properties of simulated annealing

> At fixed “temperature” T, state occupation probability reaches Boltzman
distribution -

p(x) = ae'r

T decreased slowly enough ~» always reach best state x* because

e kT E(x*)—E(x)

= e kT >1

for small T.
» Question: s this necessarily an interesting guarantee?

E . (]
|EA\U Michael Kohlhase: Artificial Intelligence 1 103 2025-02-06

Local beam search

» Definition 6.14. Local beam search is a search algorithm that keep k states
instead of 1 and chooses the top k of all their successors.

» Observation: Local beam search is not the same as k searches run in parallel!
(Searches that find good states recruit other searches to join them)

» Problem: Quite often, all k searches end up on the same local hill!

> Idea: Choose k successors randomly, biased towards good ones. (Observe the
close analogy to natural selection!)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 194 2025-02-06

Genetic algorithms (very briefly)

» Definition 6.15. A genetic algorithm is a variant of local beam search that
generates successors by

» randomly modifying states (mutation)
> mixing pairs of states (sexual reproduction or crossover)

to optimize a fitness function. (survival of the fittest)

» Example 6.16. Generating successors for 8 queens

[32752411 32748552 |—~{ 3274852 |
| 24748552 >_<| 24752411 |—~{ 24752411 |
20 26% | 32752411 32752124 || 32252124 |
11 1% | 24415124 [24415411 =] 24415417

(2) (b) (©) (d) (e)

Initial Population Fitness Function Selection

Crossover Mutation

EAU Michael Kohlhase: Artificial Intellizence 1

195 2025-02-06

Genetic algorithms (continued)

» Problem: Genetic algorithms require states encoded as strings.
» Crossover only helps iff substrings are meaningful components.
> Example 6.17 (Evolving 8 Queens). First crossover

> Note: Genetic algorithms # evolution: e.g., real genes also encode replication
machinery!

EAU Michael Kohlhase: Artificial Intellizence 1 196 2025.02-06

Chapter 7
Adversarial Search for Game Playing

F/A\U Michael Kohlhase: Artificial Intelligence 1 196 2025-02-06

7.1 Introduction

|E/A\\U Michael Kohlhase: Artificial Intelligence 1 196 2025-02-06 [SOWE RIGHTS RESERVED]

The Problem

» The Problem of Game-Play: cf. 77
» Example 1.1.

» Definition 1.2. Adversarial search = Game playing against an opponent.

EAU Michael Kohlhase: Artificial Intellizence 1 107 2025.02-06

Why Game Playing?

» What do you think?
» Playing a game well clearly requires a form of “intelligence”.
» Games capture a pure form of competition between opponents.
» Games are abstract and precisely defined, thus very easy to formalize.
> Game playing is one of the oldest sub-areas of Al (ca. 1950).
» The dream of a machine that plays chess is, indeed, much older than All

“Schachtiirke” (1769) “El Ajedrecista” (1912)

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 198 2025-02-06

“Ga

me" Playing? Which Games?

|

> D
>
>
>
>
>
>
>

EAU

.sorry, we're not gonna do soccer here.
efinition 1.3 (Restrictions). A game in the sense of Al-1 is one where

Game state discrete, number of game state finite.

Finite number of possible moves.

The game state is fully observable.

The outcome of each move is deterministic.

Two players: Max and Min.

Turn-taking: It's each player's turn alternatingly. Max begins.

Terminal game states have a utility u. Max tries to maximize u, Min tries to
minimize u.

In that sense, the utility for Min is the exact opposite of the utility for Max (*“zero
sum”).

There are no infinite runs of the game (no matter what moves are chosen, a
terminal state is reached after a finite number of moves).

Michael Kohlhase: Artificial Intelligence 1 199 2025-02-06

An Example Game

Game states: Positions of figures.
Moves: Given by rules.

Players: white (Max), black (Min).
Terminal states: checkmate.

Utility of terminal states, e.g.:

» +100 if black is checkmated.
» 0 if stalemate.
> 100 if white is checkmated.

EAU Michael Kohlhase: Artificial Intellizence 1 200 20250206

"Game" Playing? Which Games Not?

> Soccer (sorry guys; not even RoboCup)
» Important types of games that we don't tackle here:
» Chance. (E.g., backgammon)

> More than two players. (E.g., Halma)

» Hidden information. (E.g., most card games)

» Simultaneous moves. (E.g., Diplomacy)

> Not zero-sum, i.e., outcomes may be beneficial (or detrimental) for both players.
(cf. Game theory: Auctions, elections, economy, politics, .. .)

» Many of these more general game types can be handled by similar/extended
algorithms.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 201 2025-02-06

(A Brief Note On) Formalization

» Definition 1.4. An adversarial search problem is a search problem
(S, A, T,Z.G), where
1. S _ Sl\Iax W Sl\/lin W g and A — Al\{ax W Al\’[in
2. Forac AM* if s 5 &' then s € SM** and &' € (SM™ U Q).
3. Forac AM” if s & &' then s € S™™ and &' € (SM*™* U Q).
together with a game utility function u: G — R. (the “score” of the game)

» Definition 1.5 (Commonly used terminology).
position = state, move = action, end state = terminal state = goal state.

» Remark: A round of the game — one move Max, one move Min — is often
referred to as a "move”, and individual actions as “half-moves” (we don't in Al-1)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 202 2025-02-06

Why Games are Hard to Solve: |

» What is a “solution” here?

» Definition 1.6. Let © be an adversarial search problem, and let
X € {Max, Min}. A strategy for X is a function oX: SX — AX so that ais
applicable to s whenever 0% (s) = a.

» We don't know how the opponent will react, and need to prepare for all
possibilities.

> Definition 1.7. A strategy is called optimal if it yields the best possible utility
for X assuming perfect opponent play (not formalized here).

» Problem: In (almost) all games, computing an optimal strategy is infeasible.
(state/search tree too huge)

» Solution: Compute the next move “on demand”, given the current state
instead.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 203 2025-02-06

Why Games are hard to solve |l

» Example 1.8. Number of reachable states in chess: 10%°.
» Example 1.9. Number of reachable states in go: 101,

> It’s even worse: Our algorithms here look at search trees (game trees), no
duplicate pruning.
> Example 1.10.

> Chess without duplicate pruning: 35 ~ 1054,
> Go without duplicate pruning: 2003%° ~ 10°%°.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

How To Describe a Game State Space?

» Like for classical search problems, there are three possible ways to describe a
game: blackbox/API description, declarative description, explicit game state
space.

» Question: Which ones do humans use?
> Explicit ~ Hand over a book with all 10*° moves in chess.

» Blackbox &~ Give possible chess moves on demand but don't say how they are
generated.

> Answer: Declarative!

With “game description language” = natural language.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 205 2025-02-06

Specialized vs. General Game Playing

» And which game descriptions do computers use?

» Explicit: Only in illustrations.
» Blackbox/API: Assumed description in (This Chapter)
> Method of choice for all those game players out there in the market (Chess computers,
video game opponents, you name it).
» Programs designed for, and specialized to, a particular game.
» Human knowledge is key: evaluation functions (see later), opening databases (chess!!),
end game databases.
» Declarative: General game playing, active area of research in Al.

> Generic game description language (GDL), based on logic.

» Solvers are given only “the rules of the game”, no other knowledge/input whatsoever (cf.
77).

» Regular academic competitions since 2005.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 206 2025-02-06

Our Agenda for This Chapter

» Minimax Search: How to compute an optimal strategy?

» Minimax is the canonical (and easiest to understand) algorithm for solving games,
i.e., computing an optimal strategy.

» Evaluation functions: But what if we don’t have the time/memory to solve
the entire game?

» Given limited time, the best we can do is look ahead as far as we can. Evaluation
functions tell us how to evaluate the leaf states at the cut off.

» Alphabeta search: How to prune unnecessary parts of the tree?

» Often, we can detect early on that a particular action choice cannot be part of the
optimal strategy. We can then stop considering this part of the game tree.

» State of the art: What is the state of affairs, for prominent games, of
computer game playing vs. human experts?

» Just FYI (not part of the technical content of this course).

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

7.2 Minimax Search

|E/A\U Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06 [SOWE RIGHTS RESERVED]

“Minimax'?

» We want to compute an optimal strategy for player "Max".
P In other words: We are Max, and our opponent is Min.

» Recall: We compute the strategy offline, before the game begins.
During the game, whenever it's our turn, we just look up the corresponding
action.

> ldea: Use tree search using an extension i of the utility function v to inner
nodes. 0 is computed recursively from v during search:
» Max attempts to maximize (i(s) of the terminal states reachable during play.
> Min attempts to minimize (s).

» The computation alternates between minimization and maximization ~» hence
minimax’.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 208 2025-02-06

Example Tic-Tac-Toe

> Example 2.1. A full game tree for tic-tac-toe

MAX (X)
X X X
MIN (o) X X X
"\ X
X|0 X| 0] [X .
MAX (x) 0
X|0[X X0 X|0
MIN (o) X X
X|0[X X[0|X X|0[X e
TERMINAL o[x]| [o[o]x X
[o] X[X|0| [X[O]O
Utility -1 0 +1
» current player and action marked on the left.
> Last row: terminal positions with their utility.
FAU Michael Kohlhase: Artificial Intelligence 1 209 2025-02-06

Minimax: Outline

» We max, we min, we max, we min ...

1. Depth first search in game tree, with Max in the root.

2. Apply game utility function to terminal positions.

3. Bottom-up for each inner node n in the search tree, compute the utility i(n) of n as
follows:

> If it's Max's turn: Set {(n) to the maximum of the utilities of n's successor nodes.
> If it's Min's turn: Set 0(n) to the minimum of the utilities of n's successor nodes.

4. Selecting a move for Max at the root: Choose one move that leads to a successor
node with maximal utility.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 210 2025-02-06

Minimax: Example

]
4

» Blue numbers: Utility function v applied to terminal positions.

» Red numbers: Utilities of inner nodes, as computed by the minimax algorithm.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 211 2025-02-06

The Minimax Algorithm: Pseudo-Code

» Definition 2.2. The minimax algorithm (often just called minimax) is given by
the following functions whose argument is a state s € SMax in which Max is to
move.

function Minimax—Decision(s) returns an action
v := Max—Value(s)
return an action yielding value v in the previous function call

function Max—Value(s) returns a utility value
if Terminal—Test(s) then return u(s)
Vi= —00
for each a € Actions(s) do

v := max(v,Min—Value(ChildState(s,a)))
return v

function Min—Value(s) returns a utility value
if Terminal—Test(s) then return u(s)
V= 400
for each a € Actions(s) do

v := min(v,Max—Value(ChildState(s,a)))
return v

We call nodes, where Max/Min acts Max-nodes/Min-nodes.

F/A\U Michael Kohlhase: Artificial Intelligence 1 212 2025-02-06

Minimax: Example, Now in Detail

Max @ —o0

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma —00

Min 00

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma —00

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma —00

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma —00

3 12

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma —00

3 12 8

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Max @ 3

3 12 8

» So which action for Max is returned?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma 3

3 12 8

» So which action for Max is returned?

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma 3

3 12 8 2

» So which action for Max is returned?

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

Ma 3

3 12 8 2

» So which action for Max is returned?

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

» So which action for Max is returned?

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

» So which action for Max is returned?

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

o
4

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

o
4

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

o
4

» So which action for Max is returned?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

o
4

» So which action for Max is returned?
» Leftmost branch.

F/A\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax: Example, Now in Detail

o
4

» So which action for Max is returned?
» Leftmost branch.

» Note: The maximal possible pay-off is higher for the rightmost branch, but
assuming perfect play of Min, it's better to go left. (Going right would be
“relying on your opponent to do something stupid".)

F/A\U Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

Minimax, Pro and Contra

» Minimax advantages:

> Minimax is the simplest possible (reasonable) search algorithm for games.
(If any of you sat down, prior to this lecture, to implement a Tic-Tac-Toe player,
chances are you either looked this up on Wikipedia, or invented it in the process.)

» Returns an optimal action, assuming perfect opponent play.
» No matter how the opponent plays, the utility of the terminal state reached will be at

least the value computed for the root.

» If the opponent plays perfectly, exactly that value will be reached.

» There's no need to re-run minimax for every game state: Run it once, offline before
the game starts. During the actual game, just follow the branches taken in the tree.
Whenever it's your turn, choose an action maximizing the value of the successor

states.

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 214 2025-02-06

Minimax, Pro and Contra

» Minimax advantages:
> Minimax is the simplest possible (reasonable) search algorithm for games.
(If any of you sat down, prior to this lecture, to implement a Tic-Tac-Toe player,
chances are you either looked this up on Wikipedia, or invented it in the process.)
» Returns an optimal action, assuming perfect opponent play.
» No matter how the opponent plays, the utility of the terminal state reached will be at

least the value computed for the root.
» If the opponent plays perfectly, exactly that value will be reached.

» There's no need to re-run minimax for every game state: Run it once, offline before
the game starts. During the actual game, just follow the branches taken in the tree.
Whenever it's your turn, choose an action maximizing the value of the successor
states.

» Minimax disadvantages: It's completely infeasible in practice.

» When the search tree is too large, we need to limit the search depth and apply an

evaluation function to the cut off states.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 214 2025-02-06

7.3 Evaluation Functions

F/A\U Michael Kohlhase: Artificial Intelligence 1 214 2025-02-06

Evaluation Functions for Minimax

» Problem: Search tree are too big to search through in minimax.
> Solution: We impose a search depth limit (also called horizon) d, and apply
an evaluation function to the cut-off states, i.e. states s with dp(s) = d.
» Definition 3.1. An evaluation function f maps game states to numbers:
> f(s) is an estimate of the actual value of s (as would be computed by
unlimited-depth minimax for s).
> If cut-off state is terminal: Just use 0 instead of f.
> Analogy to heuristic functions (cf. ??): We want f to be both (a) accurate and
(b) fast.
> Another analogy: (a) and (b) are in contradiction ~ need to trade-off accuracy
against overhead.
> In typical game playing algorithms today, f is inaccurate but very fast. (usually no
good methods known for computing accurate f)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 215 2025-02-06

Example Revisited: Minimax With Depth Limit d = 2

]
4

» Blue numbers: evaluation function f, applied to the cut-off states at d = 2.

» Red numbers: utilities of inner node, as computed by minimax using f.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 216 2025-02-06

Example Chess

» Evaluation function in chess:
» Material: Pawn 1, Knight 3, Bishop 3, Rook 5,
Queen 9.
» 3 points advantage ~ safe win.
> Mobility: How many fields do you control?
» King safety, Pawn structure, ...

> Note how simple this is! (probably is not how
Kasparov evaluates his positions)

FAU Michael Kohlhase: Artificial Intelligence 1 217 2025-02-06

Linear Evaluation Functions

» Problem: How to come up with evaluation functions?

» Definition 3.2. A common approach is to use a weighted linear function for f,
i.e. given a sequence of features f;: S — R and a corresponding sequence of
weights w; € R, f is of the form f(s):=wy - f1(s) + wa - fa(s) + -+ w, - f,(s)

» Problem: How to obtain these weighted linear functions?

» Weights w; can be learned automatically. (learning agent)
» The features f;, however, have to be designed by human experts.
> Note: Very fast, very simplistic.

» Observation: Can be computed incrementally: In transition s 2 s’, adapt
f(s) to f(s’) by considering only those features whose values have changed.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 218 2025-02-06

The Horizon Problem

» Problem: Critical aspects of the game can be cut off by the horizon.
We call this the horizon problem.

> Example 3.3.

> Who's gonna win here?

» White wins (pawn cannot be prevented from
becoming a queen.)

> Black has a +4 advantage in material, so if we
cut-off here then our evaluation function will say
“100%, black wins".

» The loss for black is “beyond our horizon” unless
we search extremely deeply: black can hold off the
end by repeatedly giving check to white's king.

Black to move

EAU Michael Kohlhase: Artificial Intellizence 1 210 2025.02-06

So, How Deeply to Search?

» Goal: In given time, search as deeply as possible.

» Problem: Very difficult to predict search running time. (need an anytime
algorithm)

» Solution: Iterative deepening search.
» Search with depth limit d =1,2,3,...
» When time is up: return result of deepest completed search.

> Definition 3.4 (Better Solution). The quiescent search algorithm uses a
dynamically adapted search depth d: It searches more deeply in unquiet
positions, where value of evaluation function changes a lot in neighboring states.

» Example 3.5. In quiescent search for chess:

> piece exchange situations ("you take mine, | take yours”) are very unquiet
» ~. Keep searching until the end of the piece exchange is reached.

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 220 2025-02-06

7.4 Alpha-Beta Search

F/A\U Michael Kohlhase: Artificial Intelligence 1 220 2025-02-06

When We Already Know We Can Do Better Than This

» Say n > m.

» By choosing to go to the left in
search node (A), Max already can
get utility of at least n in this part
of the game.

» So, if "later on” (further down in
the same subtree), in search node
(B) we already know that Min can
force Max to get value m < n.

» Then Max will play differently in

(A) so we will never actually get
to (B).

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 221 2025-02-06

Alpha Pruning: Basic Idea

» Question: Can we save some work here?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 222 2025-02-06

Alpha Pruning: Basic Idea (Continued)

> Answer: Yes! We already know at this point that the middle action won't be
taken by Max.

3 12 8 2

> ldea: We can use this to prune the search tree ~ better algorithm

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 223 2025-02-06

Alpha Pruning

> Definition 4.1. For each node n in a minimax search tree, the alpha value «(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.3. For each node n in a minimax search tree, the alpha value a(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

> Example 4.4 (Computing alpha values).

Max —00; (v = —00

Min

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

> Definition 4.5. For each node n in a minimax search tree, the alpha value a(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

> Example 4.6 (Computing alpha values).

Max @ —00; 0 = —00

3

» How to use a?: In a Min-node n, if 4(n’") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

> Definition 4.7. For each node n in a minimax search tree, the alpha value a(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

> Example 4.8 (Computing alpha values).

Max @ —00; 0 = —00

3

» How to use a?: In a Min-node n, if 4(n’") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

> Definition 4.9. For each node n in a minimax search tree, the alpha value a(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

> Example 4.10 (Computing alpha values).

Max @ —00; 0 = —00

3 12

» How to use a?: Ina Min-node n, if 4(n") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.11. For each node n in a minimax search tree, the alpha value
a(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

> Example 4.12 (Computing alpha values).

Max @ —00; 0 = —00

3 12 8

» How to use a?: Ina Min-node n, if 4(n") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.13. For each node n in a minimax search tree, the alpha value
a(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

> Example 4.14 (Computing alpha values).
Max @ 3; =3

3 12 8

» How to use a?: In a Min-node n, if 4(n") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.15. For each node n in a minimax search tree, the alpha value
a(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

> Example 4.16 (Computing alpha values).

3 12 8

» How to use a?: In a Min-node n, if 4(n") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.17. For each node n in a minimax search tree, the alpha value
a(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

> Example 4.18 (Computing alpha values).

3 12 8 2

» How to use a?: In a Min-node n, if 4(n") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.19. For each node n in a minimax search tree, the alpha value
a(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

> Example 4.20 (Computing alpha values).
3;4=3

2:a0=3

3 12 8 2

» How to use a?: In a Min-node n, if 4(n") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha Pruning

» Definition 4.21. For each node n in a minimax search tree, the alpha value
a(n) is the highest Max-node utility that search has encountered on its path
from the root to n.

> Example 4.22 (Computing alpha values).
Max @.3;« =3

3 12 8 2

» How to use a?: In a Min-node n, if 4(n’") < a(n) for one of the successors,
then stop considering n. (pruning out its remaining successors)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha-Beta Pruning

» Recall:

» What is o:: For each search node n, the highest Max-node utility that search has
encountered on its path from the root to n.
» How to use a: In a Min-node n, if one of the successors already has utility < «(n),
then stop considering n. (Pruning out its remaining successors)
> ldea: We can use a dual method for Min!

» Definition 4.23. For each node n in a minimax search tree, the beta value
B(n) is the highest Min-node utility that search has encountered on its path
from the root to n.

» How to use : In a Max-node n, if one of the successors already has utility
> (3(n), then stop considering n. (pruning out its remaining successors)

» ...and of course we can use o and 3 together! ~» alphabeta-pruning

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 225 2025-02-06

Alpha-Beta Search: Pseudocode

» Definition 4.24. The alphabeta search algorithm is given by the following
pseudocode

function Alpha—Beta—Search (s) returns an action
v := Max—Value(s, —o00, +00)
return an action yielding value v in the previous function call

function Max—Value(s, «, 3) returns a utility value
if Terminal—Test(s) then return u(s)
vi= —00
for each a € Actions(s) do
v := max(v,Min—Value(ChildState(s,a), «, 3))
a = max(a, v)
if v> [then return v /+ Here: v> 8o a > %/
return v

function Min—Value(s, «,) returns a utility value
if Terminal—Test(s) then return u(s)
vV = 400
for each a € Actions(s) do
v := min(v,Max—Value(ChildState(s,a), «,))
B = min(B, v)
if v < athenreturn v /x Here: v<a<s a> 3 */
return v

= Minimax (slide 212) + o/ book-keeping and pruning.

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 226 2025-02-06

Alpha-Beta Search: Example

> Notation: v;[«, /]
Max @ —00; [—00, od]

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v;[o,]

—00; [—00, 0]

Min @ 00; [—o0, o]

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

—00; [—00, 0]

3

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

—00; [—00, 0]

3

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

—00; [—00, 0]

3 12

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

—00; [—00, 0]

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]
3;[3, 9]

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

00; [3, 0]

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

00; [3, 0]

3 12 8 2

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]
3;[3, 9]

2;[3,2]

3 12 8 2

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

00; [3, o]

3 12 8 2

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

00; [3, o]

3 12 8 2 14

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

14;[3, 14]

3 12 8 2 14

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

14;[3, 14]

3 12 8 2 14 5

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

5;[3, 5]

3 12 8 2 14 5

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

3 12 8 2 14 5 2

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Example

> Notation: v; [,]

3 12 8 2 14 5 2

> Note: We could have saved work by choosing the opposite order for the
successors of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual 3 pruning:

00; [3, o]

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual 3 pruning:

00; [3, o]

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual 3 pruning:

5;[3, 5]

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual 3 pruning:

5;[3, 5]

—00; [3, 5]

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual [pruning:

Max 31 [3OC]

5;[3,5]

—00; [3, 5]

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual [pruning:

Max 31 [3OC]

5;[3,5]

14;[14,5]

14

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual [pruning:

3; [3, 9]

14;[14, 5]

14

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

Alpha-Beta Search: Modified Example

» Showing off some actual [pruning:

3; [3, 9]

14;[14, 5]

14

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

How Much Pruning Do We Get?

» Choosing the best moves first yields most pruning in alphabeta search.
» The maximizing moves for Max, the minimizing moves for Min.
> Observation: Assuming game tree with branching factor b and depth limit d:
> Minimax would have to search b? nodes.
» Best case: If we always choose the best moves first, then the search tree is reduced
to b% nodes!
» Practice: It is often possible to get very close to the best case by simple
move-ordering methods.
> Example 4.25 (Chess).
» Move ordering: Try captures first, then threats, then forward moves, then backward
moves.
> From 35¢ to 35%. E.g., if we have the time to search a billion (109) nodes, then
minimax looks ahead d = 6 moves, i.e., 3 rounds (white-black) of the game.
Alpha-beta search looks ahead 6 rounds.

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 229 2025-02-06

7.5 Monte-Carlo Tree Search (MCTS)

F/A\U Michael Kohlhase: Artificial Intelligence 1 220 2025-02-06

And now . ..

» AlphaGo = Monte Carlo tree search (Al-1) 4+ neural networks (Al-2)

CC-BY-SA: Buster Benson@ https://www.flickr.com/photos/erikbenson/25717574115

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 230 2025-02-06

https://www.flickr.com/photos/erikbenson/25717574115

Monte-Carlo Tree Search: Basic ldeas

» Observation: We do not always have good evaluation functions.
» Definition 5.1. For Monte Carlo sampling we evaluate actions through
sampling.
» When deciding which action to take on game state s:
while time not up do
select action a applicable to s
run a random sample from a until terminal state t
return an a for s with maximal average u(t)

» Definition 5.2. For the Monte Carlo tree search algorithm (MCTS) we
maintain a search tree T, the MCTS tree.
while time not up do
apply actions within T to select a leaf state s’
select action a’ applicable to s, run random sample from &’
add s’ to T, update averages etc.
return an a for s with maximal average u(t)
When executing a, keep the part of T below a.

» Compared to alphabeta search: no exhaustive enumeration.
» Pro: running time & memory.
»> Contra: need good guidance how to select and sample.

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 231 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.3 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 0, 0
avg. reward: 0,0, 0
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.4 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 0, 0
avg. reward: 0,0, 0

/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.5 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 0, 0
avg. reward: 0,0, 0

/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

» Example 5.6 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 0, 0
avg. reward: 0,0, 0

/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.7 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 0, 0
avg. reward: 0,0, 0

/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.8 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 0, 0
avg. reward: 0,0, 0

/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.9 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 1, 0
avg. reward: 0, 10, 0
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.10 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 1, 0
avg. reward: 0, 10, 0 §

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.11 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 1, 0
avg. reward: 0, 10, 0 §

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.12 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 1, 0
avg. reward: 0, 10, 0 §

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.13 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 0, 1, 0
avg. reward: 0, 10, 0 §

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.14 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 0
avg. reward: 70, 10, 0
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.15 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 0
avg. reward: 70, 10, 0
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.16 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 0
avg. reward: 70, 10, 0
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.17 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)
Expansions: 1, 1, 0 -
avg. reward: 70, 10, 0
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.18 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 1
avg. reward: 70, 10, 40
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.19 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 1
avg. reward: 70, 10, 40
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.20 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 1
avg. reward: 70, 10, 40
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.21 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 1
avg. reward: 70, 10, 40
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.22 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)
Expansions: 1, 1, 1 -
avg. reward: 70, 10, 40
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.23 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 2
avg. reward: 70, 10, 35
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.24 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.25 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.26 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.27 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 1, 1, 2
avg. reward: 70, 10, 35

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.28 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 1, 2
avg. reward: 60, 10, 35
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.29 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 1, 2
avg. reward: 60, 10, 35
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.30 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 1, 2
avg. reward: 60, 10, 35
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.31 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 1, 2
avg. reward: 60, 10, 35
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.32 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 1, 2
avg. reward: 60, 10, 35
/

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.33 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.34 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 2, 2
avg. reward: 60, 55, 35
/

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.35 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

Expansions: 2, 2, 2
avg. reward: 60, 55, 35 §

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Sampling: lllustration of Sampling

> ldea: Sample the search tree keeping track of the average utilities.

> Example 5.36 (Single-player, for simplicity). (with adversary, distinguish

max/min nodes)
Expansions: 0, 0
R avg. reward: 0, 0

E, .
|EA\\\U Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.37 (Redoing the previous example).

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.38 (Redoing the previous example).

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.39 (Redoing the previous example).

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.40 (Redoing the previous example).

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.41 (Redoing the previous example).

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.42 (Redoing the previous example).

Expansions: 0, 0, 0
avg. reward: 0, 0, 0

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.43 (Redoing the previous example).

Expansions: 1 Expansions: 0, 1, 0
avg. reward: 10 avg. reward: 0, 10, 0

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.44 (Redoing the previous example).

Expansions: 1 Expansions: 0, 1, 0
avg. reward: 10 avg. reward: 0, 10, 0

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.45 (Redoing the previous example).

Expansions: 1 Expansions: 0, 1, 0
avg. reward: 10 avg. reward: 0, 10, 0

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.46 (Redoing the previous example).

Expansions: 1 Expansions: 0, 1, 0
avg. reward: 10 avg. reward: 0, 10, 0

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.47 (Redoing the previous example).

Expansions: 1 Expansions: 0, 1, 0
avg. reward: 10 avg. reward: 0, 10, 0

F/A\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.48 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

EAU Michael Kohlhase: Artificial Intelligence 1

2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.49 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

EAU Michael Kohlhase: Artificial Intelligence 1

2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.50 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

EAU Michael Kohlhase: Artificial Intelligence 1

2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.51 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 0
avg. reward: 70, 10, 0

EAU Michael Kohlhase: Artificial Intelligence 1

2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.52 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 1, 0
avg. reward: 40, 0

J

233 2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.53 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 1, 0
avg. reward: 40, 0

J

233 2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.54 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 1, 0
avg. reward: 40, 0

J

233 2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.55 (Redoing the previous example).

Expansions: 1, 0
avg. reward: 70, 0

Expansions: 1
avg. reward: 10

Expansions: 1, 1, 1
avg. reward: 70, 10, 40

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 1, 0
avg. reward: 40, 0

J

233 2025-02-06

[SOWE RIGHTS RESERVED]

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.56 (Redoing the previous example).

Expansions: 1, 0 Expansions: 1 Expansions: 1,1, 1
avg. reward: 70, 0 avg. reward: 10 avg. reward: 70, 10, 40

- Expansions: 1, 0
avg. reward: 40, 0

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.57 (Redoing the previous example).

Expansions: 1, 0 Expansions: 1 Expansions: 1, 1, 2
avg. reward: 70, 0 avg. reward: 10 avg. reward: 70, 10, 35

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.58 (Redoing the previous example).

Expansions: 1, 0 Expansions: 1 Expansions: 1, 1, 2
avg. reward: 70, 0 avg. reward: 10 avg. reward: 70, 10, 35

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.59 (Redoing the previous example).

Expansions: 1, 0 Expansions: 1 Expansions: 1, 1, 2
avg. reward: 70, 0 avg. reward: 10 avg. reward: 70, 10, 35

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

EAU Michael Kohlhase: Artificial Intelligence 1 233

2025.02.06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.60 (Redoing the previous example).

Expansions: 1, 0 Expansions: 1 Expansions: 1, 1, 2
avg. reward: 70, 0 avg. reward: 10 avg. reward: 70, 10, 35

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

EAU Michael Kohlhase: Artificial Intelligence 1 233

2025.02.06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.61 (Redoing the previous example).

Expansions: 1, 0 Expansions: 1 Expansions: 1, 1, 2
avg. reward: 70, 0 avg. reward: 10 avg. reward: 70, 10, 35

- Expansions: 2, 0
avg. reward: 35, 0
- Expansions: 0, 1
avg. reward: 0, 30

EAU Michael Kohlhase: Artificial Intelligence 1 233

2025.02.06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.62 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 1
avg. reward: 0, 50

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.63 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 1
avg. reward: 0, 50

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.64 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 1
avg. reward: 0, 50

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.65 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 1
avg. reward: 0, 50

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.66 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 1
avg. reward: 0, 50

EAU Michael Kohlhase: Artificial Intelligence 1

Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.67 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10

Expansions: 2, 1, 2
avg. reward: 60, 10, 35

Expansions: 0, 1
avg. reward: 0, 50

EAU Michael Kohlhase: Artificial Intelligence 1

- Expansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 30

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.68 (Redoing the previous example).

Expansions: 2, 0 Expansions: 2 Expansions: 2, 2, 2
avg. reward: 60, 0 avg. reward: 55 avg. reward: 60, 55, 35

Expansions: 1

Expansions: 2, 0
avg. reward: 100

avg. reward: 35, 0

Expansions:

Expansions: 0, 1
avg. reward:

avg. reward: 0, 30

EAU Michael Kohlhase: Artificial Intelligence 1

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.69 (Redoing the previous example).

Expansions: 2, 0 Expansions: 2 Expansions: 2, 2, 2
avg. reward: 60, 0 avg. reward: 55 avg. reward: 60, 55, 35

Expansions: 1

Expansions: 2, 0
avg. reward: 100

avg. reward: 35, 0

Expansions:

Expansions: 0, 1
avg. reward:

avg. reward: 0, 30

EAU Michael Kohlhase: Artificial Intelligence 1

233 2025-02-06

Monte-Carlo Tree Search: Building the Tree

» Idea: We can save work by building the tree as we go along.
> Example 5.70 (Redoing the previous example).

Expansions: 2, 0
avg. reward: 60, 0

Expansions: 0, 1
avg. reward: 0, 50

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

How to Guide the Search in MCTS?

» How to sample?: What exactly is “random™?
> Classical formulation: balance exploitation vs. exploration.

» Exploitation: Prefer moves that have high average already (interesting regions of
state space)

» Exploration: Prefer moves that have not been tried a lot yet (don't overlook other,
possibly better, options)

» UCT: “Upper Confidence bounds applied to Trees" [KS06].

» Inspired by Multi-Armed Bandit (as in: Casino) problems.

> Basically a formula defining the balance. Very popular (buzzword).

> Recent critics (e.g. [FD14]): Exploitation in search is very different from the
Casino, as the "accumulated rewards” are fictitious (we're only thinking about the
game, not actually playing and winning/losing all the time).

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 234 2025-02-06

AlphaGo: Overview

» Definition 5.71 (Neural Networks in AlphaGo).
» Policy networks: Given a state s, output a probability distribution over the actions
applicable in s.
» Value networks: Given a state s, output a number estimating the game value of s.
» Combination with MCTS:
> Policy networks bias the action choices within the MCTS tree (and hence the leaf
state selection), and bias the random samples.
» Value networks are an additional source of state values in the MCTS tree, along
with the random samples.

» And now in a little more detail

E . (]
|EA\U Michael Kohlhase: Artificial Intelligence 1 235 2025-02-06

Neural Networks in AlphaGo

» Neural network training pipeline and architecture:

Rollout policy SL policy network RL policy network Value network Policy network Value network

b4
Pa Py P, vy 3 Py, @ls) v, (8)
g N
E
Q
H
m %ﬁ § *
g L . <

N/

Human expert positions Self-play positions

Bleg

3 :
lllustration taken from [Sil+16] .

» Rollout policy p-: Simple but fast, ~ prior work on Go.

> SL policy network p,: Supervised learning, human-expert data (“learn to choose an
expert action”).

» RL policy network p,: Reinforcement learning, self-play (“learn to win").

» Value network vy: Use self-play games with p, as training data for game-position
evaluation vy (“predict which player will win in this state”).

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 236 2025-02-06

Neural Networks + MCTS in AlphaGo

» Monte Carlo tree search in AlphaGo:

a Selection b Expansion c Evaluation d Backup

R I

Q+u(P) max

/-

N o

G

[llustration taken from [Sil+16]

» Rollout policy p-: Action choice in random samples.

» SL policy network p.: Action choice bias within the UCTS tree (stored as “P", gets
smaller to “u(P)" with number of visits); along with quality Q.

» RL policy network p,: Not used here (used only to learn vy).

» Value network vy: Used to evaluate leaf states s, in linear sum with the value
returned by a random sample on s.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 237 2025-02-06

7.6 State of the Art

F/A\U Michael Kohlhase: Artificial Intelligence 1 237 2025-02-06

State of the Art

» Some well-known board games:

» Chess: Up next.

> Othello (Reversi): In 1997, “Logistello” beat the human world champion. Best
computer players now are clearly better than best human players.

» Checkers (Dame): Since 1994, “Chinook” is the offical world champion. In 2007, it
was shown to be unbeatable: Checkers is solved. (We know the exact value of, and
optimal strategy for, the initial state.)

» Go: In 2016, AlphaGo beat the Grandmaster Lee Sedol, cracking the “holy grail” of
board games. In 2017, “AlphaZero” — a variant of AlphaGo with zero prior
knowledge beat all reigning champion systems in all board games (including
AlphaGo) 100/0 after 24h of self-play.

> Intuition: Board Games are considered a “solved problem” from the Al perspective.

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 238 2025-02-06

Computer Chess: “Deep Blue” beat Garry Kasparov in 1997

EAU

Duell Kasparow gegen Deep Blue (1997): Demiitigende Niederlage

Michael Kohlhase: Artificial Intelligence 1

» 6 games, final score 3.5 : 2.5.

» Specialized chess hardware, 30 nodes
with 16 processors each.

» Alphabeta search plus human
knowledge. (more details in a moment)

» Nowadays, standard PC hardware plays
at world champion level.

239 2025-02-06

Computer Chess: Famous Quotes

» The chess machine is an ideal one to start with, since(Claude Shannon (1949))

1. the problem is sharply defined both in allowed operations (the moves) and in the
ultimate goal (checkmate),

2. it is neither so simple as to be trivial nor too difficult for satisfactory solution,

3. chess is generally considered to require “thinking” for skilful play, [...]

4. the discrete structure of chess fits well into the digital nature of modern computers.

> Chess is the drosophila of Artificial Intelligence. (Alexander Kronrod (1965))

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 240 2025-02-06

Computer Chess: Another Famous Quote

» |n 1965, the Russian mathematician Alexander Kronrod said, "“Chess is the
Drosophila of artificial intelligence.”
However, computer chess has developed much as genetics might have if the
geneticists had concentrated their efforts starting in 1910 on breeding racing

Drosophilae. We would have some science, but mainly we would have very fast
fruit flies. (John McCarthy (1997))

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 241 2025-02-06

7.7 Conclusion

E . o Eom
|r/A\\U Michael Kohlhase: Artificial Intelligence 1 241 2025-02-06

Summary

> Games (2-player turn-taking zero-sum discrete and finite games) can be
understood as a simple extension of classical search problems.

» Each player tries to reach a terminal state with the best possible utility
(maximal vs. minimal).

» Minimax searches the game depth-first, max’ing and min'ing at the respective
turns of each player. It yields perfect play, but takes time O(b?) where b is the
branching factor and d the search depth.

> Except in trivial games (Tic-Tac-Toe), minimax needs a depth limit and apply
an evaluation function to estimate the value of the cut-off states.

» Alpha-beta search remembers the best values achieved for each player elsewhere
in the tree already, and prunes out sub-trees that won't be reached in the game.

» Monte Carlo tree search (MCTS) samples game branches, and averages the
findings. AlphaGo controls this using neural networks: evaluation function
(“value network™), and action filter (“policy network”).

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 242 2025-02-06

Chapter 8
Constraint Satisfaction Problems

F/A\U Michael Kohlhase: Artificial Intelligence 1 242 2025-02-06

8.1 Constraint Satisfaction Problems:
Motivation

F/A\U Michael Kohlhase: Artificial Intelligence 1 242 2025-02-06

A (Constraint Satisfaction) Problem

» Example 1.1 (Tournament Schedule). Who's going to play against who,
when and where?

FuRRballkalender _ 1. Bundesliga
Saison 2012/2013 ® \ owroa, agus, Europa-Laag

Bapturebir 2012 Ohlober 2070 Meweeiber 2012 Dapember 2071 - (e Agel 213 M 2003
' ' L

EAU Michael Kohlhase: Artificial Intellizence 1 243 2025.02-06

Constraint Satisfaction Problems (CSPs)

» Standard search problem: state is a “black box" any old data structure that
supports goal test, eval, successor state, ...

> Definition 1.2. A constraint satisfaction problem (CSP) is a triple (V/, D, C)
where
1. V is a finite set V/ of variables,
2. an V-indexed family (Dy)vev of domains, and

3. for some subsets {vi,...,vk} € V a constraint Cy,, ., CDyy x ... xD,,.

A variable assignment ¢ € (veV) —D, is a solution for C, iff
(p(v), - o(vi)) € Croy vy forall {ve, . vep © VL

> Definition 1.3. A CSP ~ is called satisfiable, iff it has a solution: a total
variable assignment ¢ that satisfies all constraints.

» Definition 1.4. The process of finding solutions to CSPs is called constraint
solving.
» Remark 1.5. We are using factored representation for world states now!

> Allows useful general-purpose algorithms with more power than standard tree
search algorithm.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 244 2025-02-06

Another Constraint Satisfaction Problem

> Example 1.6 (SuDoKu). Fill the cells with row/column/block-unique digits

2|5 31 191 |1 2/5(8]7(3|6]9 4|1
1 4 6/1/918|2|4)3|5|7
4|1 |7 2] 18 413/719(1/512(6/8
5]2 319(512|7]114/8|6
9(8]1 716(214|9]|8]1|3|5

4 3 8/4/116/5/3)712|9
316 712 1/8/413[6]9]15/7]|2

7 3 5/7(6]11|4]|218|9|3
9] 13 6l 4] . 1912/3]5/8]7j6 14

» Variables: The 81 cells.
» Domains: Numbers 1,...,0.
» Constraints: Each number only once in each row, column, block.

F/A\U Michael Kohlhase: Artificial Intelligence 1 245 2025-02-06

CSP Example: Map-Coloring

» Definition 1.7. Given a map M, the map coloring problem is to assign colors
to regions in a map so that no adjoining regions have the same color.
> Example 1.8 (Map coloring in Australia).

Northern
Territory

» Variables: WA, NT, Q, NSW, V, SA, T

» Domains: D; = {red, green, blue}

Queensland

Western
Australia

South
Australia

» Constraints: adjacent regions must have
different colors e.g., WA = N'T (if the
language allows this), or (WA, NT) &

. {(red, green), (red, blue), (green, red), ... }

Victoria

» Intuition: solutions map variables to
domain values satisfying all constraints,

> e.g., {WA =red,NT = green,...}

EAU

Michael Kohlhase: Artificial Intelligence 1

2025-02-06

Bundesliga Constraints

> Variables: vays.g where A and B are teams, with domains {1,...,34}: For each
match, the index of the weekend where it is scheduled.

> (Some) constraints:

1. Bundesliga > I (A B} 1 (C.D} £ 0 vas - vewn

DF8-Pokal, Champlons-Leagus, Eurcpa-Laagus, Lindersplela

mns (each team only one match per day).
> If {A,B} ={C,D}:
VAvs.B S 17 < Vcvs.D OF

Vevs.p < 17 < vavs.8 (each pairing
exactly once in each half-season).

> fA=C: vayss +1 75 VCvs.D (each
team alternates between home matches
and away matches).

» Leading teams of last season meet near
the end of each half-season.

> ..

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 247 2025-02-06

How to Solve the Bundesliga Constraints?

> 306 nested for-loops (for each of the 306 matches), each ranging from 1 to 306.
Within the innermost loop, test whether the current values are (a) a
permutation and, if so, (b) a legal Bundesliga schedule.

» Estimated running time: End of this universe, and the next couple billion ones after
it ...

» Directly enumerate all permutations of the numbers 1,...,306, test for each
whether it's a legal Bundesliga schedule.

» Estimated running time: Maybe only the time span of a few thousand universes.
> View this as variables/constraints and use backtracking (this chapter)
» Executed running time: About 1 minute.
» How do they actually do it?: Modern computers and CSP methods:
fractions of a second. 19th (20th/21st?) century: Combinatorics and manual
work.

> Try it yourself: with an off-the shelf CSP solver, e.g. Minion [Min]

E . (]
|EA\U Michael Kohlhase: Artificial Intelligence 1 248 2025-02-06

More Constraint Satisfaction Problems

Traveling Tournament Problem

Scheduling

Timetabling Radio Frequency Assignment

unreD T |
SES I T
FREQUENCY —

‘L‘r 11 | .1."1

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 249 2025-02-06

Our Agenda for This Topic

» Our treatment of the topic “Constraint Satisfaction Problems” consists of

Chapters 7 and 8. in [RNO3]

» This Chapter: Basic definitions and concepts; naive backtracking search.

» Sets up the framework. Backtracking underlies many successful algorithms for
solving constraint satisfaction problems (and, naturally, we start with the simplest
version thereof).

» Next Chapter: Constraint propagation and decomposition methods.

» Constraint propagation reduces the search space of backtracking. Decomposition
methods break the problem into smaller pieces. Both are crucial for efficiency in
practice.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 250 2025-02-06

Our Agenda for This Chapter

» How are constraint networks, and assignments, consistency, solutions: How are
constraint satisfaction problems defined? What is a solution?

> Get ourselves on firm ground.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 251 2025-02-06

Our Agenda for This Chapter

» How are constraint networks, and assignments, consistency, solutions: How are
constraint satisfaction problems defined? What is a solution?

> Get ourselves on firm ground.

> Naive Backtracking: How does backtracking work? What are its main
weaknesses?
» Serves to understand the basic workings of this wide-spread algorithm, and to
motivate its enhancements.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 251 2025-02-06

Our Agenda for This Chapter

» How are constraint networks, and assignments, consistency, solutions: How are
constraint satisfaction problems defined? What is a solution?

> Get ourselves on firm ground.

> Naive Backtracking: How does backtracking work? What are its main
weaknesses?

» Serves to understand the basic workings of this wide-spread algorithm, and to
motivate its enhancements.

» Variable- and Value Ordering: How should we guide backtracking searchs?

» Simple methods for making backtracking aware of the structure of the problem, and
thereby reduce search.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 251 2025-02-06

8.2 The Waltz Algorithm

F/A\U Michael Kohlhase: Artificial Intelligence 1 251 2025-02-06

The Waltz Algorithm

> Remark: One of the earliest examples of applied CSPs.
> Motivation: Interpret line drawings of polyhedra.

> Problem: Are intersections convex or concave? (interpret = label as such)

> Idea: Adjacent intersections impose constraints on each other. Use CSP to
find a unique set of labelings.

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 252 2025-02-06

Waltz Algorithm on Simple Scenes

» Assumptions: All objects

» have no shadows or cracks,

> have only three-faced vertices,

» are in “general position”, i.e. no junctions change with small movements of the eye.
» Observation 2.1. Then each line on the images is one of the following:

» a boundary line (edge of an object) (<) with right hand of arrow denoting “solid”

and left hand denoting “space”
» an interior convex edge (label with “+")
» an interior concave edge (label with -")

E, . _
|E/A\U Michael Kohlhase: Artificial Intelligence 1 253 2025-02-06

18 Legal Kinds of Junctions

» Observation 2.2. There are only 18 “legal” kinds of junctions:

RA Ao r
N4 NE R

O Y
RS
RO

> Idea: given a representation of a diagram

» label each junction in one of these manners (lots of possible ways)
> junctions must be labeled, so that lines are labeled consistently

> Fun Fact: CSP always works perfectly! (early success story for CSP [Wal75])

EAU

Michael Kohlhase: Artificial Intelligence 1

254 2025-02-06

Waltz's Examples

> In his dissertation 1972 [Wal75] David Waltz used the following examples

@

F/A\U Michael Kohlhase: Artificial Intelligence 1 255 2025-02-06

Waltz Algorithm (More Examples): Ambiguous Figures

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 256 2025-02-06

Waltz Algorithm (More Examples): Impossible Figures

N +

Consistent labelling for impossible figure

.

No consistent labelling possible

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 257 2025-02-06

8.3 CSP: Towards a Formal Definition

F/A\U Michael Kohlhase: Artificial Intelligence 1 257 2025-02-06

Types of CSPs

» Definition 3.1. We call a CSP discrete, iff all of the variables have countable

domains; we have two kinds:
» finite domains (size d ~ O(d") solutions)
> e.g., Boolean CSPs (solvability = Boolean satisfiability ~ NP complete)
» infinite domains (e.g. integers, strings, etc.)
> e.g., job scheduling, variables are start/end days for each job

> need a “constraint language”, e.g., StartJoby + 5 < StartJobs
» linear constraints decidable, nonlinear ones undecidable

» Definition 3.2. We call a CSP continuous, iff one domain is uncountable.

> Example 3.3. Start/end times for Hubble Telescope observations form a
continuous CSP.

» Theorem 3.4. Linear constraints solvable in poly time by linear programming
methods.

» Theorem 3.5. There cannot be optimal algorithms for nonlinear constraint
systems.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 258 2025-02-06

Types of Constraints

» We classify the constraints by the number of variables they involve.
» Definition 3.6. Unary constraints involve a single variable, e.g., SA # green.
» Definition 3.7. Binary constraints involve pairs of variables, e.g., SA # WA.

» Definition 3.8. Higher-order constraints involve n = 3 or more variables, e.g.,
cryptarithmetic column constraints.
The number n of variables is called the order of the constraint.

» Definition 3.9. Preferences (soft constraint) (e.g., red is better than green)
are often representable by a cost for each variable assignment ~» constrained
optimization problems.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 250 2025-02-06

Non-Binary Constraints, e.g. "Send More Money"

> Example 3.10 (Send More Money). A student writes home:

S E N D Puzzle: letters stand for digits, addition should
+ M O R E work out (parents send MONEY<€)
M O N E Y
» Variables: S, E,N,D, M, O, R, Y, each with domain {0,....9}.
» Constraints:
1. all variables should have different values: S# E, S# N, ...
2. first digits are non-zero: S # 0, M # 0.
3. the addition scheme should work out: i.e.
1000-S+100- E+10-N+D+1000-M+100-O+10- R+ E =
10000 - M +1000-0+100- N +10-E+ Y.
BTW: The solution is
S—9E~»5N—-6D—7M—10+—0,R+— 8,Y — 2~ parents send
10652€
» Definition 3.11. Problems like the one in ?? are called crypto-arithmetic

puzzles.

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 260 2025-02-06

Encoding Higher-Order Constraints as Binary ones

» Problem: The last constraint is of order 8. (n = 8 variables involved)

» Observation 3.12. We can write the addition scheme constraint column wise
using auxiliary variables, i.e. variables that do not “occur” in the original
problem.

D+E = Y+10-X; s
E N D
X1+ N+R = E+10-X L. M O R E
Xo+E+O = N+10 X3 M O N E Y
X3+S+M = O+10-M
These constraints are of order < 5.
> General Recipe: For n > 3, encode C(vq,...,Vy_1,V,) as

C(pr(x)s-vy Pn—1(X)s V) Ava = p1(X) A v oo A Vg1 = pp—1(X)

» Problem: The problem structure gets hidden. (search algorithms can get
confused)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 261 2025-02-06

Constraint Graph

> Definition 3.13. A binary CSP is a CSP where each constraint is unary or
binary.

» Observation 3.14. A binary CSP forms a graph called the constraint graph
whose nodes are variables, and whose edges represent the constraints.
> Example 3.15. Australia as a binary CSP

Queensland '

Victoria

Tasmania @

» Intuition: General-purpose CSP algorithms use the graph structure to speed
up search.

Northern
Territory

Western
Australia

South
Australia

(E.g., Tasmania is an independent subproblem!)

EAU

Michael Kohlhase: Artificial Intelligence 1

2025-02-06

Real-world CSPs

> Example 3.16 (Assignment problems). e.g., who teaches what class

> Example 3.17 (Timetabling problems). e.g., which class is offered when and
where?

Example 3.18 (Hardware configuration).
Example 3.19 (Spreadsheets).

Example 3.20 (Transportation scheduling).
Example 3.21 (Factory scheduling).
Example 3.22 (Floorplanning).

vVvyVvyVvyyvyy

Note: many real-world problems involve real-valued variables ~» continuous
CSPs.

F/A\U Michael Kohlhase: Artificial Intelligence 1 263 2025-02-06

8.4 Constraint Networks: Formalizing Binary
CSPs

F/A\U Michael Kohlhase: Artificial Intelligence 1 263 2025-02-06

Constraint Networks (Formalizing binary CSPs)

> Definition 4.1. A constraint network is a triple v := (V. D, C), where
» V is a finite set of variables,
» D:={D,|v e V} the set of their domains, and
> C:={Cu CDyxDy,|u,veVand u#v}isa set of constraints with C,, = C,,;.
We call the undirected graph (V. {(u,v) € V2| C,, # D, x D,}), the
constraint graph of ~.

» We will talk of CSPs and mean constraint networks.

» Remarks: The mathematical formulation gives us a lot of leverage:

» C, C DyxD, = possible assignments to variables u and v

> Relations are the most general formalization, generally we use symbolic
formulations, e.g. “u = v" for the relation C,, = {(a,b)|a= b} or "u # v".

» We can express unary constraints C, by restricting the domain of v: D, := C,.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 264 2025-02-06

Example: SuDoKu as a Constraint Network

> Example 4.2 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 77.

2|5 3 19 |1
1 4
4| |7 2, 18
5]2
9/8]1
4 3
316 7|2
7 3
9, 1|3 6] |4

» Variables:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.

F/A\U Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06

Example: SuDoKu as a Constraint Network

> Example 4.3 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 77.

2|5 3 19 |1
1 4
4| |7 2, 18
5]2
9/8]1
4 3
316 7|2
7 3
9, 1|3 6] |4

» Variables: V = {v;|1<1,j <9}: v; =cell in row i column j.
» Domains

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.

F/A\U Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06

Example: SuDoKu as a Constraint Network

> Example 4.4 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 77.

2|5 3 19 |1
1 4
4| |7 2, 18
5]2
9/8]1
4 3
316 7|2
7 3
9 |3 6] |4

» Variables: V = {v;|1 § J <9} vij =cell in row i column j.
» Domains Forallve V: D, =D ={1,...,9}.
» Unary constraint:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.

F/A\U Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06

Example: SuDoKu as a Constraint Network

> Example 4.5 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 77.

2|5 3 19 |1
1 4
4| |7 2, 18
5]2
9/8]1
4 3
316 7|2
7 3
9 |3 6] |4

» Variables: V = {v;|1<1,j <9}: vj =cell in row i column j.

» Domains

> Unary constraint: Cy; = {d} if cell i, is pre-filled with d.

» (Binary) constraint:

Note that the ideas are still the same as ??, but in constraint networks we have
a language to formulate things precisely.

F/A\U Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06

Example: SuDoKu as a Constraint Network

> Example 4.6 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as 77.

2|5 3 19 |1
1 4
4 |7 2 |8
5]2
9/8]1
4 3
316 72
7 3
9, 13 6] |4

» Variables: V = {v;|1<1,j<9}: v; =cell in row i column j.

» Domains

» Unary constraint:

> (Binary) constraint: Cyy,, ="vj # vy, ie.
Cupvyy =1(d.d") € Dx D[d#d'}, for: i =i" (same row), or j = j’ (same
column), or ((ﬂ%}) = ((%1(%}) (same block).

Note that the ideas are still the same as ??, but in constraint networks we have

a language to formulate things precisely.

F/A\U Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06

Constraint Networks (Solutions)

» Let v:=(V,D, C) be a constraint network.

> Definition 4.7. We call a partial function a: V — | J,ev D, a variable
assignment if a(u) € D, for all u € dom(a).

» Definition 4.8. Let C := (V, D, C) be a constraint network and
a: V—JvevD, avariable assignment. We say that a satisfies (otherwise
violates) a constraint C,y, iff u.v € dom(a) and (a(u),a(v)) € Cyy. ais called
consistent in C, iff it satisfies all constraints in C. A value w € D, is legal for a
variable v in C, iff {(u,w)} is a consistent assignment in C. A variable with
illegal value under a is called conflicted.

> Example 4.9. The empty assignment € is (trivially) consistent in any constraint
network.

> Definition 4.10. Let f and g be variable assignments, then we say that f
extends (or is an extension of) g, iff dom(g)Cdom(f) and f|,,) = &-

> Definition 4.11. We call a consistent (total) assignment a solution for v and =
itself solvable or satisfiable.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 266 2025-02-06

How it all fits together

» Lemma 4.12. Higher-order constraints can be transformed into equi-satisfiable
binary constraints using auxiliary variables.

» Corollary 4.13. Any CSP can be represented by a constraint network.
» In other words The notion of a constraint network is a refinement of a CSP.
» So we will stick to constraint networks in this course.

» Observation 4.14. We can view a constraint network as a search problem, if
we take the states as the variable assignments, the actions as assignment
extensions, and the goal states as consistent assignments.

» Idea: We will explore that idea for algorithms that solve constraint networks.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 267 2025-02-06

8.5 CSP as Search

F/A\U Michael Kohlhase: Artificial Intelligence 1 267 2025-02-06

Standard search formulation (incremental)

» Idea: Every constraint network induces a single state problem.

> Definition 5.1 (Let’s do the math). Given a constraint network
v:={(V.,D,C), then N, := (S, Ay, T.7,.,G,) is called the search problem
induced by =, iff
» State S, are variable assignments
» Action A,: extend ¢ € S by a pair x — v not conflicted with ¢.
» Transition model 7(a,) = @, x— v (extended assignment)
» Initial state Z: the empty assignment e.
P Goal states G,: the total, consistent assignments

» What has just happened?: We interpret a constraint network « as a search
problem T,. A solution to T, induces a solution to 7.

» Idea: We have algorithms for that: e.g. tree search.

» Remark: This is the same for all CSPs! ®
~ fail if no consistent assignments exist (not fixable!)

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 268 2025-02-06

Standard search formulation (incremental)

> Example 5.2. A search tree for MNaystrasia:

‘ WA = red ‘ ‘ WA = green‘ ‘ WA = blue
WA = red WA = red
NT = green NT = blue
WA = red WA = red
NT = green NT = green
Q = red Q = blue

> Observation: Every solution appears at depth n with n variables.
» Idea: Use depth first search!

» Observation: Path is irrelevant ~ can use local search algorithms.
» Branching factor b = (n — £)d at depth ¢, hence n!d" leaves!!ll ®

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 269 2025-02-06

Backtracking Search

P> Assignments for different variables are independent!

» e.g. first WA =red then NT = green vs. first NT = green then WA = red
> ~ we only need to consider assignments to a single variable at each node
» ~» b = d and there are d" leaves.

» Definition 5.3. Depth first search for CSPs with single-variable assignment
extensions actions is called backtracking search.

» Backtracking search is the basic uninformed algorithm for CSPs.
» It can solve the n-queens problem for = n, 25.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 270 2025-02-06

Backtracking Search (Implementation)

> Definition 5.4. The generic backtracking search algorithm:

procedure Backtracking—Search(csp) returns solution/failure
return Recursive—Backtracking (), csp)

procedure Recursive—Backtracking (assignment) returns soln/failure
if assignment is complete then return assignment
var := Select—Unassigned—Variable(Variables[csp], assignment, csp)
foreach value in Order—Domain—Values(var, assignment, csp) do
if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result := Recursive—Backtracking(assignment,csp)
if result # failure then return result
remove {var= value} from assignment
return failure

E, . _
|:E/A\U Michael Kohlhase: Artificial Intelligence 1 271 2025-02-06

Backtracking in Australia

> Example 5.5. We apply backtracking search for a map coloring problem:
Step 1:

S

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 272 2025-02-06

Backtracking in Australia

> Example 5.6. We apply backtracking search for a map coloring problem:
Step 2:

R

— f —

o o

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 272 2025-02-06

Backtracking in Australia

> Example 5.7. We apply backtracking search for a map coloring problem:
Step 3:

R

—] —

o o
S S

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 272 2025-02-06

Backtracking in Australia

> Example 5.8. We apply backtracking search for a map coloring problem:
Step 4:

R

T
o o

—

o &
— T~

°r o

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 272 2025-02-06

Improving Backtracking Efficiency

» General-purpose methods can give huge gains in speed for backtracking search.
» Answering the following questions well helps find powerful heuristics:

1. Which variable should be assigned next? (i.e. a variable ordering heuristic)
2. In what order should its values be tried? (i-e. a value ordering heuristic)
3. Can we detect inevitable failure early? (for pruning strategies)
4. Can we take advantage of problem structure? (~ inference)

> Observation: Questions 1/2 correspond to the missing subroutines
Select—Unassigned—Variable and Order—Domain—Values from ?77.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 273 2025-02-06

Heuristic: Minimum Remaining Values (Which Variable)

» Definition 5.9. The minimum remaining values (MRV) heuristic for
backtracking search always chooses the variable with the fewest legal values, i.e.
a variable v that given an initial assignment a minimizes
#({d € D, |aU{v+ d} is consistent}).

» Intuition: By choosing a most constrained variable v first, we reduce the
branching factor (number of sub trees generated for v) and thus reduce the size
of our search tree.

» Extreme case: If #({d c D,|aU{v— d} is consistent}) = 1, then the value
assignment to v is forced by our previous choices.

> Example 5.10. In step 3 of ??, there is only one remaining value for SA!

Fo—4 o4 4R

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 274 2025-02-06

Degree Heuristic (Variable Order Tie Breaker)

> Problem: Need a tie-breaker among MRV variables! (there was no preference
in step 1,2)
» Definition 5.11. The degree heuristic in backtracking search always chooses a

most constraining variable, i.e. given an initial assignment a always pick a
variable v with #({v € (V\dom(a))| C,, € C}) maximal.

» By choosing a most constraining variable first, we detect inconsistencies earlier
on and thus reduce the size of our search tree.

» Commonly used strategy combination: From the set of most constrained
variable, pick a most constraining variable.

> Example 5.12.

L Lt

Degree heuristic: SA =5, T =0, all others 2 or 3.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 275 2025-02-06

Least Constraining Value Heuristic (Value Ordering)

» Definition 5.13. Given a variable v, the least constraining value heuristic
chooses the least constraining value for v: the one that rules out the fewest
values in the remaining variables, i.e. for a given initial assignment a and a
chosen variable v pick a value d € D, that minimizes
#({ee D,|u¢dom(a), Cy, € C, and (e,d) & Cuy})

» By choosing the least constraining value first, we increase the chances to not
rule out the solutions below the current node.

> Example 5.14.

1.% Allows 1 value for SA
\—H:—-CH:—-C\—H;—< o
‘ Allows 0 values for SA

» Combining these heuristics makes 1000 queens feasible.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 276 2025-02-06

8.6 Conclusion & Preview

F/A\U Michael Kohlhase: Artificial Intelligence 1 276 2025-02-06

Summary & Preview

» Summary of “CSP as Search’™

» Constraint networks 7 consist of variables, associated with finite domains, and
constraints which are binary relations specifying permissible value pairs.

» A variable assignment a maps some variables to values. a is consistent if it complies
with all constraints. A consistent total assignment is a solution.

» The constraint satisfaction problem (CSP) consists in finding a solution for a
constraint network. This has numerous applications including, e.g., scheduling and
timetabling.

» Backtracking search assigns variable one by one, pruning inconsistent variable
assignments.

» Variable orderings in backtracking can dramatically reduce the size of the search
tree. Value orderings have this potential (only) in solvable sub trees.

> Up next: Inference and decomposition, for improved efficiency.

EAU Michael Kohlhase: Artificial Intellizence 1 277

2025-02-06

Chapter 9
Constraint Propagation

F/A\U Michael Kohlhase: Artificial Intelligence 1 277 2025-02-06

9.1 Introduction

|E/A\\U Michael Kohlhase: Artificial Intelligence 1 277 2025-02-06 [SOWE RIGHTS RESERVED]

lllustration: Constraint Propagation

» Example 1.1. A constraint network ~:

» Question: Can we add a constraint without losing any solutions?

> Example 1.2. Cyaq :="=". If WA and Q) are assigned different colors, then
NT must be assigned the 3rd color, leaving no color for SA.

» Intuition: Adding constraints without losing solutions
= obtaining an equivalent network with a “tighter description”
~» a smaller number of consistent (partial) variable assignments
~> more efficient search!

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 278 2025-02-06

[llustration: Decomposition

» Example 1.3. Constraint network ~:

» We can separate this into two independent constraint networks.

» Tasmania is not adjacent to any other state. Thus we can color Australia first,
and assign an arbitrary color to Tasmania afterwards.

» Decomposition methods exploit the structure of the constraint network. They
identify separate parts (sub-networks) whose inter-dependencies are “simple” and
can be handled efficiently.

> Example 1.4 (Extreme case). No inter-dependencies at all, as for Tasmania
above.

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 279 2025-02-06

Our Agenda for This Chapter

» Constraint propagation: How does inference work in principle? What are
relevant practical aspects?

» Fundamental concepts underlying inference, basic facts about its use.
» Forward checking: What is the simplest instance of inference?
» Gets us started on this subject.
» Arc consistency: How to make inferences between variables whose value is not
fixed yet?
» Details a state of the art inference method.
» Decomposition: Constraint graphs, and two simple cases

» How to capture dependencies in a constraint network? What are “simple cases?
» Basic results on this subject.

» Cutset conditioning: What if we're not in a simple case?

» OQutlines the most easily understandable technique for decomposition in the general
case.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 280 2025-02-06

9.2 Constraint Propagation/Inference

F/A\U Michael Kohlhase: Artificial Intelligence 1 280 2025-02-06

Constraint Propagation/Inference: Basic Facts

> Definition 2.1. Constraint propagation (i.e inference in constraint networks)
consists in deducing additional constraints, that follow from the already known
constraints, i.e. that are satisfied in all solutions.

> Example 2.2. It's what you do all the time when playing SuDoKu:

5/8]7] 16]19/4]|1

918| [4]3]5|7
4, 1719 [5]1216/8
319/(512|7(1]4|8]6
71612]4/9(8]1[3|5
814/116/5/3]71219
1/8/41316|9]15|7|2
5/7(6]1/4[2]8]/9|3
912/3]5/8]7]6/14

> Formally: Replace v by an equivalent and strictly tighter constraint network ~'.

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 281 2025-02-06

Equivalent Constraint Networks

> Definition 2.3. We say that two constraint networks v := (V, D, C) and
v = (V,D’, C') sharing the same set of variables are equivalent, (write v'=7),
if they have the same solutions.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 282 2025-02-06

Equivalent Constraint Networks

> Definition 2.5. We say that two constraint networks v := (V, D, C) and
v = (V,D’, C') sharing the same set of variables are equivalent, (write v'=7),
if they have the same solutions.

» Example 2.6.

Are these constraint networks equivalent?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 282 2025-02-06

Equivalent Constraint Networks

> Definition 2.7. We say that two constraint networks v := (V, D, C) and
v = (V,D’, C') sharing the same set of variables are equivalent, (write v'=7),
if they have the same solutions.

» Example 2.8.

Are these constraint networks equivalent? No.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 282 2025-02-06

Equivalent Constraint Networks

> Definition 2.9. We say that two constraint networks v := (V, D, C) and
v = (V,D’, C') sharing the same set of variables are equivalent, (write v'=7),
if they have the same solutions.

» Example 2.10.

Are these constraint networks equivalent?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 282 2025-02-06

Equivalent Constraint Networks

» Definition 2.11. We say that two constraint networks v := (V. D, C) and
v = (V,D’, C') sharing the same set of variables are equivalent, (write v'=7),
if they have the same solutions.

> Example 2.12.

Are these constraint networks equivalent? Yes.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 282 2025-02-06

Tightness

» Definition 2.13 (Tightness). Let v:= (V,D,C) and 7/ = (V, D', C’) be
constraint networks sharing the same set of variables, then +/ is tighter than =,
(write 7'C7), if:

(i) Forallve V: D', C D,.
(i) Forallu#ve Vand C'y € C': either C'yy & Cor C'yy C Cuy.
~' is strictly tighter than v, (written ~/_7), if at least one of these inclusions is

proper.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06

Tightness

» Definition 2.15 (Tightness). Let v:= (V,D,C) and 7/ = (V, D', C’) be
constraint networks sharing the same set of variables, then +/ is tighter than =,
(write 7/C7), if:

(i) Forallve V: D', C D,.

(i) Forallu# v e Vand C'y, € C': either C'yy, & Cor C'yy C Coy.
~' is strictly tighter than v, (written ~/_7), if at least one of these inclusions is
proper.

> Example 2.16.

Here, we do have ~

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06

Tightness

> Definition 2.17 (Tightness). Let v:= (V,D,C) and 7/ = (V, D", C’) be
constraint networks sharing the same set of variables, then +/ is tighter than =,
(write 7/C7), if:
(i) Forallve V: D', C D,.
(i) Forallu# v e Vand C'y, € C': either C'yy, & Cor C'yy C Coy.
~' is strictly tighter than v, (written ~/_7), if at least one of these inclusions is
proper.
> Example 2.18.

Here, we do have 7/C~.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06

Tightness

> Definition 2.19 (Tightness). Let v:= (V,D,C) and o/ = (V, D', C’) be
constraint networks sharing the same set of variables, then +/ is tighter than =,
(write 7/C7), if:
(i) Forallve V: D', C D,.
(i) Forallu# v e Vand C'y, € C': either C'yy, & Cor C'yy C Coy.
~' is strictly tighter than v, (written ~/_7), if at least one of these inclusions is
proper.
> Example 2.20.

Here, we do not have ~/C~!.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06

Tightness

> Definition 2.21 (Tightness). Let v := (V,D,C) and o/ = (V, D', C’) be
constraint networks sharing the same set of variables, then +/ is tighter than =,
(write 7/C7), if:
(i) Forallve V: D', C D,.
(i) Forallu#ve Vand C'y € C': either C'yy & Cor C'yy C Cuy.
~' is strictly tighter than v, (written ~/_7), if at least one of these inclusions is

proper.
> Example 2.22.

Here, we do not have ~/C~!.

» Intuition: Strict tightness = +' has the same constraints as v, plus some.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06

Equivalence 4+ Tightness = Inference

> Theorem 2.23. Let v and v/ be constraint networks such that v'=~ and v'C~.
Then ' has the same solutions as, but fewer consistent assignments than, ~.

> ~ ' is a better encoding of the underlying problem.
> Example 2.24. Two equivalent constraint networks (one obviously unsolvable)
Vi

red
blue

A G

e cannot be extended to a solution (neither in v nor in 4/ because they're
equivalent); this is obvious (red # blue) in 4/, but not in ~.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 284 2025-02-06

How to Use Constraint Propagation in CSP Solvers?

» Simple: Constraint propagation as a pre-process:

» When: Just once before search starts.

» Effect: Little running time overhead, little pruning power. (not considered here)
> More Advanced: Constraint propagation during search:

» When: At every recursive call of backtracking.

» Effect: Strong pruning power, may have large running time overhead.

» Search vs. Inference: The more complex the inference, the smaller the
number of search nodes, but the larger the running time needed at each node.
> Idea: Encode variable assignments as unary constraints (i.e., for a(v) = d, set
the unary constraint D, = {d}), so that inference reasons about the network

restricted to the commitments already made in the search.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 285 2025-02-06

Backtracking With Inference

» Definition 2.25. The general algorithm for backtracking with inference is

function BacktrackingWithInference(+y,a) returns a solution, or “inconsistent

if a is inconsistent then return “‘inconsistent”’

if a is a total assignment then return a

v :=acopy of vy /x 7' = (V, Dy, Cyr) %/

~" := Inference(y’)

if exists v with D, = () then return “inconsistent”

select some variable v for which a is not defined

for each d € copy of D/ in some order do
a':=aU{v=d}; D, :={d} /* makes a explicit as a constraint */
a" := BacktrackingWithInference(+’,a")
if 3’ = “inconsistent” then return a”

return ‘“‘inconsistent’’

Exactly the same as 7?7, only line 5 new!

Inference(): Any procedure delivering a (tighter) equivalent network.

Inference() typically prunes domains; indicate unsolvability by D/ = 0.

When backtracking out of a search branch, retract the inferred constraints: these
were dependent on a, the search commitments so far.

vvyyvyy

E, . _
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 286 2025-02-06

9.3 Forward Checking

F/A\U Michael Kohlhase: Artificial Intelligence 1 286 2025-02-06

Forward Checking

» Definition 3.1. Forward checking propagates information about illegal values:
Whenever a variable v is assigned by a, delete all values inconsistent with a(u)
from every D, for all variables v connected with u by a constraint.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

Forward Checking

» Definition 3.4. Forward checking propagates information about illegal values:
Whenever a variable v is assigned by a, delete all values inconsistent with a(u)
from every D, for all variables v connected with u by a constraint.

» Example 3.5. Forward checking in Australia

RD

WA NT Q NSW v SA T
ErEErEErEErE[ErEEEE[E S]

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

Forward Checking

» Definition 3.7. Forward checking propagates information about illegal values:
Whenever a variable v is assigned by a, delete all values inconsistent with a(u)
from every D, for all variables v connected with u by a constraint.

» Example 3.8. Forward checking in Australia

S S5

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

Forward Checking

» Definition 3.10. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every D, for all variables v connected with u by a constraint.

» Example 3.11. Forward checking in Australia

SSEA SSAM S

WA NT Q NSW v SA T

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

Forward Checking

» Definition 3.13. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every D, for all variables v connected with u by a constraint.

» Example 3.14. Forward checking in Australia

S S Sl S

WA NT Q NSwW \ SA T

(] PeErEEeE[EeE] FE[EEE]
] E[ae E[EEm (I]
[] (1] 1| []

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

Forward Checking

» Definition 3.16. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u)
from every D, for all variables v connected with u by a constraint.

» Example 3.17. Forward checking in Australia

S S Sl S

WA NT Q NSwW \ SA T

(] PeErEEeE[EeE] FE[EEE]
] E[ae E[EEm (I]
[] (1] 1| []

> Definition 3.18 (Inference, Version 1). Forward checking implemented

function ForwardChecking(~,a) returns modified v
for each v where a(v) = d’ is defined do
for each u where a(u) is undefined and C,, € C do
D, = {d € Dy|(d,d") € Cu}
return ~y

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

Forward Checking: Discussion

» Definition 3.19. An inference procedure is called sound, iff for any input v the
output 4/ have the same solutions.

» Lemma 3.20. Forward checking is sound.
Proof sketch: Recall here that the assignment a is represented as unary
constraints inside 7.

» Corollary 3.21. v and +' are equivalent.

» |ncremental computation: Instead of the first for-loop in ??, use only the inner
one every time a new assignment a(v) = d’ is added.

» Practical Properties:
» Cheap but useful inference method.
> Rarely a good idea to not use forward checking (or a stronger inference method

subsuming it).

> Up next: A stronger inference method (subsuming forward checking).

» Definition 3.22. Let p and g be inference procedures, then p subsumes gq, if
P(v)Eq(v) for any input 7.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 288 2025-02-06

9.4 Arc Consistency

F/A\U Michael Kohlhase: Artificial Intelligence 1 288 2025-02-06

When Forward Checking is Not Good Enough

» Problem: Forward checking makes inferences only from assigned to unassigned
variables.

> Example 4.1.

We could do better here: value 3 for v, is not consistent with any remaining
value for vz ~ it can be removed!
But forward checking does not catch this.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 289 2025-02-06

Arc Consistency: Definition

» Definition 4.2 (Arc Consistency). Let v := (V. D, C) be a constraint
network.

1. A variable u € V is arc consistent relative to another variable v € V if either
Cuw & C, or for every value d € D, there exists a value d’ € D, such that
(d,d’) € Cuy.

2. The constraint network - is arc consistent if every variable u € V is arc consistent
relative to every other variable v € V.

The concept of arc consistency concerns both levels.

» Intuition: Arc consistency = for every domain value and constraint, at least
one value on the other side of the constraint “works".

» Note the asymmetry between v and v: arc consistency is directed.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 200 2025-02-06

Arc Consistency: Example

> Definition 4.3 (Arc Consistency). Let v := (V. D, C) be a constraint
network.
1. A variable u € V is arc consistent relative to another variable v € V if either
Cu & C, or for every value d € D, there exists a value d’ € D, such that
(d,d’) € Cuy.
2. The constraint network ~y is arc consistent if every variable u € V is arc consistent
relative to every other variable v € V.
The concept of arc consistency concerns both levels.
> Example 4.4 (Arc Consistency).

Vi Vi Vi

vy < v v < va vy < va

%) Vi w vy Vo
va < v3 va < v va < v3

» Question: On top, middle, is v3 arc consistent relative to v2?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 201 2025-02-06

Arc Consistency: Example

> Definition 4.5 (Arc Consistency). Let v := (V. D, C) be a constraint
network.
1. A variable u € V is arc consistent relative to another variable v € V if either
Cu & C, or for every value d € D, there exists a value d’ € D, such that
(d,d’) € Cuy.
2. The constraint network ~y is arc consistent if every variable u € V is arc consistent
relative to every other variable v € V.
The concept of arc consistency concerns both levels.
> Example 4.6 (Arc Consistency).

Vi Vi Vi

vy < v v < va vy < va

%) Vi w vy Vo
va < v3 va < v3 va < v3

» Question: On top, middle, is v3 arc consistent relative to v2?
» Answer: No. For values 1 and 2, D,, does not have a value that works.
» Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
FALU Niinct Michadh Kohlh Aetificialllptelligence 1 201 2025-02-06

Arc Consistency: Example

> Definition 4.7 (Arc Consistency). Let v := (V. D, C) be a constraint
network.
1. A variable u € V is arc consistent relative to another variable v € V if either
Cu & C, or for every value d € D, there exists a value d’ € D, such that
(d,d’) € Cuy.
2. The constraint network ~y is arc consistent if every variable u € V is arc consistent
relative to every other variable v € V.
The concept of arc consistency concerns both levels.
> Example 4.8 (Arc Consistency).

Vi Vi Vi

vy < v v < va vy < va

%) Vi w vy Vo
va < v3 va < v3 va < v3

» Question: On top, middle, is v3 arc consistent relative to v2?
» Answer: No. For values 1 and 2, D,, does not have a value that works.
» Note: Enforcing arc consistency for one variable may lead to further reductions on

another variable!
FALU Niinct Michadh Kohlh Aetificialllptelligence 1 201 2025-02-06

Arc Consistency: Example

> Definition 4.9 (Arc Consistency). Let v := (V. D, C) be a constraint
network.
1. A variable u € V is arc consistent relative to another variable v € V if either
Cuw & C, or for every value d € D, there exists a value d’ € D, such that
(d,d’) € Cuy.
2. The constraint network - is arc consistent if every variable u € V is arc consistent
relative to every other variable v € V.

The concept of arc consistency concerns both levels.

> Example 4.10.
SSEN SSEA e

WA NT Q NSwW v SA T

(]| sEErE/ESE[EEE] SE[ESN]
] E[nE EESE E[EEE

~7

> Note: SA is not arc consistent relative to N'T' in 3rd row.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 202 2025-02-06

Enforcing Arc Consistency: General Remarks

> Inference, version 2: “Enforcing Arc Consistency’ = removing domain values
until v is arc consistent. (Up next)

» Note: Assuming such an inference method AC().

» Lemma 4.11. AC(v) is sound: guarantees to deliver an equivalent network.

» Proof sketch: If, for d € D,, there does not exist a value d’ € D, such that
(d.d’) € C,y, then u = d cannot be part of any solution.

> Observation 4.12. AC(v) subsumes forward checking:
AC(v)CForwardChecking(y).

> Proof: Recall from slide 283 that v/~ means +/ is tighter than ~.
1. Forward checking removes d from D, only if there is a constraint C,, such
that D, = {d’} (i.e. when v was assigned the value d’), and (d.d") & C,,.
2. Clearly, enforcing arc consistency of u relative to v removes d from D, as
well.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 203 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.13 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.14. If d is maximal domain size in vy and the test “(d,d’") € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.16 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.17. If d is maximal domain size in vy and the test “(d,d’) € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

» Example 4.18. Revise(y, vs, v2)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.19 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.20. /f d is maximal domain size in vy and the test “(d,d’") € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

> Example 4.21. Revise(y, vs, va)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.22 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.23. If d is maximal domain size in vy and the test “(d,d’) € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

> Example 4.24. Revise(y, vs, va)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.25 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.26. If d is maximal domain size in vy and the test “(d,d’") € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

> Example 4.27. Revise(y, vs, va)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.28 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.29. If d is maximal domain size in vy and the test “(d,d’") € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

» Example 4.30. Revise(y, vs, v2)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

> Definition 4.31 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v
function Revise(v,u,v) returns modified v
for each d € D, do

if there is no d’ € D, with (d.d’) € C,, then D, := D,\{d}
return vy

> Lemma 4.32. If d is maximal domain size in vy and the test “(d,d’") € C,, 7"
has time complexity O(1), then the running time of Revise(y, u, v) is O(d?).

» Example 4.33. Revise(y, vs, v2)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

AC-1: Enforcing Arc Consistency (Version 1)

» Idea: Apply Revise pairwise up to a fixed point.
» Definition 4.34. AC-1 enforces arc consistency in constraint networks:
function AC—1(~y) returns modified
repeat
changesMade := False
for each constraint C,, do
Revise(~y,u,v) /x if D, reduces, set changesMade := True */
Revise(vy,v,u) /x if D, reduces, set changesMade := True %/

until changesMade = False
return ~y

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 205 2025-02-06

AC-1: Enforcing Arc Consistency (Version 1)

» Idea: Apply Revise pairwise up to a fixed point.
» Definition 4.36. AC-1 enforces arc consistency in constraint networks:
function AC—1(~y) returns modified
repeat
changesMade := False
for each constraint C,, do
Revise(~y,u,v) /x if D, reduces, set changesMade := True */
Revise(vy,v,u) /x if D, reduces, set changesMade := True %/
until changesMade = False

return ~y
> Observation: Obviously, this does indeed enforce arc consistency for ~.
» Lemma 4.37. If v has n variables, m constraints, and maximal domain size d,
then the time complexity of AC1(y) is O(md?nd).
» Proof sketch: O(md?) for each inner loop, fixed point reached at the latest
once all nd variable values have been removed.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 205 2025-02-06

AC-1: Enforcing Arc Consistency (Version 1)

» Idea: Apply Revise pairwise up to a fixed point.
» Definition 4.38. AC-1 enforces arc consistency in constraint networks:
function AC—1(~y) returns modified
repeat
changesMade := False
for each constraint C,, do
Revise(~y,u,v) /x if D, reduces, set changesMade := True */
Revise(vy,v,u) /x if D, reduces, set changesMade := True %/
until changesMade = False
return ~y
> Observation: Obviously, this does indeed enforce arc consistency for ~.
» Lemma 4.39. /f~v has n variables, m constraints, and maximal domain size d,
then the time complexity of AC1(y) is O(md?nd).
» Proof sketch: O(md?) for each inner loop, fixed point reached at the latest
once all nd variable values have been removed.
» Problem: There are redundant computations.
» Question: Do you see what these redundant computations are?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 205 2025-02-06

AC-1: Enforcing Arc Consistency (Version 1)

» Idea: Apply Revise pairwise up to a fixed point.
» Definition 4.40. AC-1 enforces arc consistency in constraint networks:
function AC—1(~y) returns modified
repeat
changesMade := False
for each constraint C,, do
Revise(~y,u,v) /x if D, reduces, set changesMade := True */
Revise(vy,v,u) /x if D, reduces, set changesMade := True %/
until changesMade = False
return ~y
> Observation: Obviously, this does indeed enforce arc consistency for ~.
» Lemma 4.41. If v has n variables, m constraints, and maximal domain size d,
then the time complexity of AC1(y) is O(md?nd).
» Proof sketch: O(md?) for each inner loop, fixed point reached at the latest
once all nd variable values have been removed.
» Problem: There are redundant computations.
» Question: Do you see what these redundant computations are?
» Redundant computations: v and v are revised even if theirdomains haven't
changed since the last time.
> Better algorithm avoiding this: AC 3 (coming up)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 205 2025-02-06

AC-3: Enforcing Arc Consistency (Version 3)

» Idea: Remember the potentially inconsistent variable pairs.
» Definition 4.42. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC—3() returns modified v
M=)
for each constraint C,, € C do
M := MU {(u,v),(v.u)}
while M =+~ () do
remove any element (u.v) from M
Revise(7, u, v)
if D, has changed in the call to Revise then
for each constraint C,, € C where w # v do
M:= MU {(w.u)}
return vy

» Question: AC — 3(v) enforces arc consistency because?

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 206 2025-02-06

AC-3: Enforcing Arc Consistency (Version 3)

» Idea: Remember the potentially inconsistent variable pairs.
» Definition 4.43. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC—3(~y) returns modified
M=)
for each constraint C,, € C do
M := MU {(u,v),(v.u)}
while M =+~ () do
remove any element (u.v) from M
Revise(7, u, v)
if D, has changed in the call to Revise then
for each constraint C,, € C where w # v do
M:= MU {(w.u)}
return v
» Question: AC — 3(v) enforces arc consistency because?
> Answer: At any time during the while-loop, if (u,v) ¢ M then u is arc
consistent relative to v.
» Question: Why only “where w #£ v'"?

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 206 2025-02-06

AC-3: Enforcing Arc Consistency (Version 3)

» Idea: Remember the potentially inconsistent variable pairs.
» Definition 4.44. AC-3 optimizes AC-1 for enforcing arc consistency.
function AC—3(~y) returns modified
M:=10
for each constraint C,, € C do
M := MU {(u,v),(v.u)}
while M =+~ () do
remove any element (u.v) from M
Revise(7, u, v)
if D, has changed in the call to Revise then
for each constraint C,, € C where w # v do
M:= MU {(w.u)}
return -y
» Question: AC — 3(v) enforces arc consistency because?
> Answer: At any time during the while-loop, if (u,v) ¢ M then u is arc
consistent relative to v.
» Question: Why only “where w #£ v'"?
> Answer: If w = v is the reason why D, changed, then w is still arc consistent
relative to u: the values just removed from D, did not match any values from
D,, anyway.

E, .
|E/A\\U Michael Kohlhase: Artificial Intelligence 1 206 2025-02-06

AC-3: Example

> Example 4.45. y divx =0: y modulo x is 0, i.e., y is divisible by x

Vi

vodivvy =0 vzdivvy =0

V2 V3

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.46. y divx = 0: y modulo x is 0, i.e., y is divisible by x

Vi

vodivvy =0 vzdivvy =0

V2 V3

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.47. y divx =0: y modulo x is 0, i.e., y is divisible by x
V1

vodivvy =0 vzdivvy =0
M
2 V3 (v2,v1)
(vi,va)
(v3,v1)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.48. y divx =0: y modulo x is 0, i.e., y is divisible by x
Vi

vodivvy =0 vzdivvy =0
M
2 V3 (v2,v1)
(vi,va)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.49. y divx =0: y modulo x is 0, i.e., y is divisible by x
Vi

vodivvy =0 vzdivvy =0

V2 V3

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.50. y divx =0: y modulo x is 0, i.e., y is divisible by x
Vi

vodivvy =0 vzdivvy =0
M
2 v3 (v2,v1)
(v3,v1)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.51. y divx =0: y modulo x is 0, i.e., y is divisible by x
Vi

vodivvy =0 vzdivvy =0
M
2 V3 (v2,v1)
(v3,v1)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.52. y divx =0: y modulo x is 0, i.e., y is divisible by x
Vi

vodivvy =0 vzdivvy =0

V2 V3

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Example

> Example 4.53. y divx =0: y modulo x is 0, i.e., y is divisible by x
Vi

vodivvy =0 vzdivvy =0

V2 V3

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

AC-3: Runtime

» Theorem 4.54 (Runtime of AC-3). Let vy := (V.D,C) be a constraint
network with m constraints, and maximal domain size d. Then AC — 3(v) runs
in time O(md®).

» Proof: by counting how often Revise is called.

1. Each call to Revise(y, u, v) takes time O(d?) so it suffices to prove that at
most O(md) of these calls are made.

2. The number of calls to Revise(w, u, v) is the number of iterations of the
while-loop, which is at most the number of insertions into M.

3. Consider any constraint C,,.

4. Two variable pairs corresponding to C,, are inserted in the for-loop. In the
while loop, if a pair corresponding to C,, is inserted into M, then

5. beforehand the domain of either u or v was reduced, which happens at
most 2d times.

6. Thus we have O(d) insertions per constraint, and O(md) insertions
overall, as desired.

E . (]
|EA\U Michael Kohlhase: Artificial Intelligence 1 208 2025-02-06

9.5 Decomposition: Constraint Graphs, and
Three Simple Cases

F/A\U Michael Kohlhase: Artificial Intelligence 1 208 2025-02-06

Reminder: The Big Picture

» Say v is a constraint network with n variables and maximal domain size d.
» d" total assignments must be tested in the worst case to solve .

» Inference: One method to try to avoid/ameliorate this combinatorial explosion
in practice.
» Often, from an assignment to some variables, we can easily make inferences

regarding other variables.

> Decomposition: Another method to avoid/ameliorate this combinatorial
explosion in practice.
> Often, we can exploit the structure of a network to decompose it into smaller parts

that are easier to solve.
» Question: What is “structure”, and how to “decompose”?

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 200 2025-02-06

Problem Structure

» Idea: Tasmania and mainland are “independent

subproblems”

» Definition 5.1. Independent subproblems are @ e
identified as connected components of constraint @ ‘
o (sf)

» Suppose each independent subproblem has ¢

variables out of n total. (d is max domain size) “
> Worst-case solution cost is ndivc - d° (linear in n)
» Eg.,n=80,d=2 ¢c=20 @

> 280 = 4 billion years at 10 million nodes/sec
> 4.2%0 = (0.4 seconds at 10 million nodes/sec

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 300 2025-02-06

“Decomposition” 1.0: Disconnected Constraint Graphs

» Theorem 5.2 (Disconnected Constraint Graphs). Lety:= (V,D,C) be a
constraint network. Let a; be a solution to each connected component ~; of the
constraint graph of vv. Then a:= | J;a; is a solution to ~.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 301 2025-02-06

“Decomposition” 1.0: Disconnected Constraint Graphs

» Theorem 5.6 (Disconnected Constraint Graphs). Let v := (V,D,C) be a
constraint network. Let a; be a solution to each connected component ~; of the
constraint graph of vv. Then a:= | J;a; is a solution to ~.

» Proof:

1. asatisfies all C,, where u and v are inside the same connected component.
2. The latter is the case for all C,, .
3. If two parts of v are not connected, then they are independent.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 301 2025-02-06

“Decomposition” 1.0: Disconnected Constraint Graphs

» Theorem 5.10 (Disconnected Constraint Graphs). Let v := (V,D,C) be a
constraint network. Let a; be a solution to each connected component ~; of the
constraint graph of vv. Then a := | J;a; is a solution to ~.
» Proof:
1. a satisfies all C,, where u and v are inside the same connected component.
2. The latter is the case for all C,, .
3. If two parts of v are not connected, then they are independent.

» Example 5.11. Color Tasmania separately in Australia

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 301 2025-02-06

“Decomposition” 1.0: Disconnected Constraint Graphs

» Theorem 5.14 (Disconnected Constraint Graphs). Let v := (V/, D, C) be a
constraint network. Let a; be a solution to each connected component ~; of the
constraint graph of vv. Then a:= | J;a; is a solution to ~.

» Proof:
1. asatisfies all C,, where u and v are inside the same connected component.
2. The latter is the case for all C,, .
3. If two parts of v are not connected, then they are independent.

» Example 5.15. Color Tasmania separately in Australia
> Example 5.16 (Doing the Numbers).

» ~ with n = 40 variables, each domain size k = 2. Four separate connected

components each of size 10.
» Reduction of worst-case when using decomposition:

> No decomposition: 240, With: 4 - 210, Gain: 228 = 280.000.000.

» Definition 5.17. The process of decomposing a constraint network into
components is called decomposition. There are various decomposition
algorithms.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 301 2025-02-06

Tree-structured CSPs

&) (E)
(8)—(D]
©)

> Definition 5.18. We call a CSP tree-structured, iff its constraint graph is
acyclic

» Theorem 5.19. Tree-structured CSP can be solved in O(nd?) time.

» Compare to general CSPs, where worst case time is O(d").

» This property also applies to logical and probabilistic reasoning: an important
example of the relation between syntactic restrictions and the complexity of
reasoning.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 302 2025-02-06

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every
node’s parent precedes it in the ordering

(E)
06 QG (ABROCKEE®)

2. For j from n down to 2, apply
Removelnconsistent(Parent(X;,X;))

3. For j from 1 to n, assign X; consistently with Parent(X;)

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 303 2025-02-06

Nearly tree-structured CSPs

> Definition 5.20. Conditioning: instantiate a variable, prune its neighbors’
domains.

0 O—a
EENIRC

) = ©
O o

> Definition 5.22. Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree.

» Cutset size ¢ ~ running time O(d(n — c)d?), very fast for small c.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 304 2025-02-06

“Decomposition” 2.0: Acyclic Constraint Graphs

» Theorem 5.23 (Acyclic Constraint Graphs). Lety:= (V. D, C) be a
constraint network with n variables and maximal domain size k, whose
constraint graph is acyclic. Then we can find a solution for -y, or prove ~ to be
unsatisfiable, in time O(nk?).

» Proof sketch: See the algorithm on the next slide

> Constraint networks with acyclic constraint graphs can be solved in (low order)
polynomial time.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 305 2025-02-06

“Decomposition” 2.0: Acyclic Constraint Graphs

» Theorem 5.26 (Acyclic Constraint Graphs). Lety:= (V. D, C) be a
constraint network with n variables and maximal domain size k, whose
constraint graph is acyclic. Then we can find a solution for -y, or prove ~ to be
unsatisfiable, in time O(nk?).

» Proof sketch: See the algorithm on the next slide

> Constraint networks with acyclic constraint graphs can be solved in (low order)
polynomial time.

» Example 5.27. Australia is not acyclic. (But see next section)

O—@
@‘@'ea@
®

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 305 2025-02-06

“Decomposition” 2.0: Acyclic Constraint Graphs

» Theorem 5.29 (Acyclic Constraint Graphs). Lety:= (V. D, C) be a
constraint network with n variables and maximal domain size k, whose
constraint graph is acyclic. Then we can find a solution for -y, or prove ~ to be
unsatisfiable, in time O(nk?).

» Proof sketch: See the algorithm on the next slide

> Constraint networks with acyclic constraint graphs can be solved in (low order)
polynomial time.

> Example 5.30. Australia is not acyclic. (But see next section)

> Example 5.31 (Doing the Numbers).

» ~ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.
» Reduction of worst-case when using decomposition:

> No decomposition: 240,
> With decomposition: 40 - 22. Gain: 232,

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 305 2025-02-06

Acyclic Constraint Graphs: How To

> Definition 5.32. Algorithm AcyclicCG(y):

1. Obtain a (directed) tree from +'s constraint graph, picking an arbitrary variable v as
the root, and directing edges outwards.*

LWe assume here that +'s constraint graph is connected. If it is not, do this and the following
for each component separately.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 306 2025-02-06

Acyclic Constraint Graphs: How To

> Definition 5.34. Algorithm AcyclicCG(y):

1. Obtain a (directed) tree from +'s constraint graph, picking an arbitrary variable v as
the root, and directing edges outwards.*

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, ..., v,.

LWe assume here that +'s constraint graph is connected. If it is not, do this and the following
for each component separately.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 306 2025-02-06

Acyclic Constraint Graphs: How To

> Definition 5.36. Algorithm AcyclicCG(y):

1. Obtain a (directed) tree from +'s constraint graph, picking an arbitrary variable v as
the root, and directing edges outwards.*

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by vq, ..., v,.

3. fori:=nn—-1,...,2do:
3.1 Revise(y, Vparent(i)» vi).
3.2 if D, = () then return “inconsistent”
Now, every variable is arc consistent relative to its children.

4. Run BacktrackingWithInference with forward checking, using the variable order
Viy,...3 Vn.

parent(i)

» Lemma 5.37. This algorithm will find a solution without ever having to
backtrack!

LWe assume here that +'s constraint graph is connected. If it is not, do this and the following
for each component separately.

EAU Michael Kohlhase: Artificial Intelligence 1 306

2025-02-06

AcyclicCG(v): Example

> Example 5.38 (AcyclicCG() execution).

Vi

vy < vp
Vo V3

va < vz

Input network ~.

EAU Michael Kohlhase: Artificial Intelligence 1 307

2025-02-06

AcyclicCG(v): Example

> Example 5.39 (AcyclicCG() execution).

Vi

vy < v

%] V3
v2 <v3

Step 1: Directed tree for root v;.

Step 2: Order vy, vp, v3.

EAU Michael Kohlhase: Artificial Intelligence 1 307

2025-02-06

AcyclicCG(v): Example

> Example 5.40 (AcyclicCG() execution).

Vi

v < v
%] V3

va < vz

Step 3: After Revise(y, va, v3).

EAU Michael Kohlhase: Artificial Intelligence 1 307

2025-02-06

AcyclicCG(v): Example

> Example 5.41 (AcyclicCG() execution).

Vi

v < v
%] V3

va < vz

Step 3: After Revise(y, v1, va).

EAU Michael Kohlhase: Artificial Intelligence 1 307

2025-02-06

AcyclicCG(v): Example

> Example 5.42 (AcyclicCG() execution).

Vi

vy < va

%] V3
va < v

Step 4: After a(v1) := 1 and forward checking.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 307 2025-02-06

AcyclicCG(v): Example

> Example 5.43 (AcyclicCG() execution).

Vi

vy < va

%] V3
va < v

Step 4: After a(vy) := 2 and forward checking.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 307 2025-02-06

AcyclicCG(v): Example

> Example 5.44 (AcyclicCG() execution).

Vi

vy < va

%] V3
va < v

Step 4: After a(v3) := 3 (and forward checking).

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 307 2025-02-06

9.6 Cutset Conditioning

F/A\U Michael Kohlhase: Artificial Intelligence 1 307 2025-02-06

“Almost” Acyclic Constraint Graphs

» Example 6.1 (Coloring Australia).

()
| @ ()
‘@ = (1)
O O

© ©

» Cutset Conditioning: ldea:
1. Recursive call of backtracking search on a s.t. the subgraph of the constraint graph
induced by {v € V| a(v) is undefined} is acyclic.
> Then we can solve the remaining sub-problem with AcyclicCG().

2. Choose the variable ordering so that removing the first d variables renders the
constraint graph acyclic.

> Then with (1) we won't have to search deeper than d ...!

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 308 2025-02-06

"Decomposition” 3.0: Cutset Conditioning

> Definition 6.2 (Cutset). Let v := (V, D, C) be a constraint network, and
Vo € V. Then V4 is a cutset for « if the subgraph of 4's constraint graph
induced by V\ V; is acyclic. Vp is called optimal if its size is minimal among all
cutsets for 7.

» Definition 6.3. The cutset conditioning algorithm, computes an optimal
cutset, from ~ and an existing cutset V.

function CutsetConditioning(y,Vo,a) returns a solution, or “‘inconsistent’’

+ := a copy of ; 7/ := ForwardChecking(+’,a)

if ex. v with D, = () then return “‘inconsistent’’

if ex. v € WV s.t. a(v) is undefined then select such v

else 3’ := AcyclicCG(v');

if a’ # “inconsistent” then return a U a’ else return

for each d < copy of D/ in some order do
a:=aU{v=d}; D, :={d};
a" := CutsetConditioning(+/, Vo,a")

if a” # “inconsistent” then return a” else return “‘inconsistent”’

‘inconsistent’’

» Forward checking is required so that “a U AcyclicCG(y')" is consistent in 7.
» Observation 6.4. Running time is exponential only in #(Vg), not in #(V)!
» Remark 6.5. Finding optimal cutsets is NP hard, but good approximations exist.

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 300 2025-02-06

9.7 Constraint Propagation with Local Search

F/A\U Michael Kohlhase: Artificial Intelligence 1 300 2025-02-06

lterative algorithms for CSPs

» Local search algorithms like hill climbing and simulated annealing typically work
with “complete” states, i.e., all variables are assigned

» To apply to CSPs: allow states with unsatisfied constraints, actions reassign
variable values.

» Variable selection: Randomly select any conflicted variable.

» Value selection by min conflicts heuristic: choose value that violates the fewest
constraints i.e., hill climb with h(n):=total number of violated constraints.

E, .
FAU Michael Kohlhase: Artificial Intelligence 1 310 2025-02-06

Example: 4-Queens

» States: 4 queens in 4 columns (4% = 256 states)
» Actions: Move queen in column

> Goal state: No conflicts

» Heuristic: h(n) = number of conflict

EAU Michael Kohlhase: Artificial Intellizence 1 311 20250206

Performance of min-conflicts

» Given a random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)
> The same appears to be true for any randomly-generated CSP except in a

narrow range of the ratio

number of constraints

number of variables

CPU
time

L
critical
ratio

E, .
|EA\U Michael Kohlhase: Artificial Intelligence 1 312 2025-02-06

9.8 Conclusion & Summary

F/A\U Michael Kohlhase: Artificial Intelligence 1 312 2025-02-06

Conclusion & Summary

> ~ and 4 are equivalent if they have the same solutions. «/ is tighter than ~ if it
is more constrained.

> Inference tightens «y without losing equivalence, during backtracking search.
This reduces the amount of search needed; that benefit must be traded off
against the running time overhead for making the inferences.

» Forward checking removes values conflicting with an assignment already made.

» Arc consistency removes values that do not comply with any value still available
at the other end of a constraint. This subsumes forward checking.

» The constraint graph captures the dependencies between variables. Separate
connected components can be solved independently. Networks with acyclic
constraint graphs can be solved in low order polynomial time.

> A cutset is a subset of variables removing which renders the constraint graph
acyclic. Cutset conditioning backtracks only on such a cutset, and solves a
sub-problem with acyclic constraint graph at each search leaf.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 313 2025-02-06

Topics We Didn't Cover Here

> Path consistency, k-consistency: Generalizes arc consistency to size k
subsets of variables. Path consistency = 3-consistency.

> Tree decomposition: Instead of instantiating variables until the leaf nodes are
trees, distribute the variables and constraints over sub-CSPs whose connections
form a tree.

» Backjumping: Like backtracking search, but with ability to back up across
several levels (to a previous variable assignment identified to be responsible for
failure).

> No-Good Learning: Inferring additional constraints based on information
gathered during backtracking search.

> Local search: In space of total (but not necessarily consistent) assignments.
(E.g., 8 queens in 77)
» Tractable CSP: Classes of CSPs that can be solved in P.

> Global Constraints: Constraints over many/all variables, with associated
specialized inference methods.

> Constraint Optimization Problems (COP): Utility function over solutions,
need an optimal one.

E, .
|EAU Michael Kohlhase: Artificial Intelligence 1 314 2025-02-06

References |

[FD14] Zohar Feldman and Carmel Domshlak. “Simple Regret Optimization in
Online Planning for Markov Decision Processes”. In: Journal of
Artificial Intelligence Research 51 (2014), pp. 165-205.

[KS06] Levente Kocsis and Csaba Szepesvari. “Bandit Based Monte-Carlo
Planning”. In: Proceedings of the 17th European Conference on
Machine Learning (ECML 2006). Ed. by Johannes Fiirnkranz,
Tobias Scheffer, and Myra Spiliopoulou. Vol. 4212. LNCS.
Springer-Verlag, 2006, pp. 282-293.

[Met+53] N. Metropolis et al. "Equations of state calculations by fast computing
machines”. In: Journal of Chemical Physics 21 (1953), pp. 1087-1091.

[Min] Minion - Constraint Modelling. System Web page at
http://constraintmodelling.org/minion/. URL:
http://constraintmodelling.org/minion/.

[Pol73] George Pélya. How to Solve it. A New Aspect of Mathematical
Method. Princeton University Press, 1973.

E, .
|I’EAU Michael Kohlhase: Artificial Intelligence 1 314 2025-02-06

http://constraintmodelling.org/minion/
http://constraintmodelling.org/minion/

References ||

[RNO3] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern
Approach. 2nd ed. Pearso n Education, 2003. 1SBN: 0137903952.

[Sil+16] David Silver et al. “Mastering the Game of Go with Deep Neural
Networks and Tree Search”. In: Nature 529 (2016), pp. 484-503. URL:
http://www.nature.com/nature/journal/v529/n7587/full/
naturel6961.html.

[Wal75] David Waltz. “Understanding Line Drawings of Scenes with Shadows".
In: The Psychology of Computer Vision. Ed. by P. H. Winston.
McGraw-Hill, 1975, pp. 1-109.

E, .
|I’EAU Michael Kohlhase: Artificial Intelligence 1 314 2025-02-06

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

	6 Problem Solving and Search
	6.1 Problem Solving
	6.2 Problem Types
	6.3 Search
	6.4 Uninformed Search Strategies
	6.4.1 Breadth-First Search Strategies
	6.4.2 Depth-First Search Strategies
	6.4.3 Further Topics

	6.5 Informed Search Strategies
	6.5.1 Greedy Search
	6.5.2 Heuristics and their Properties
	6.5.3 A-Star Search
	6.5.4 Finding Good Heuristics

	6.6 Local Search

	7 Adversarial Search for Game Playing
	7.1 Introduction
	7.2 Minimax Search
	7.3 Evaluation Functions
	7.4 Alpha-Beta Search
	7.5 Monte-Carlo Tree Search (MCTS)
	7.6 State of the Art
	7.7 Conclusion

	8 Constraint Satisfaction Problems
	8.1 Constraint Satisfaction Problems: Motivation
	8.2 The Waltz Algorithm
	8.3 CSP: Towards a Formal Definition
	8.4 Constraint Networks: Formalizing Binary CSPs
	8.5 CSP as Search
	8.6 Conclusion & Preview

	9 Constraint Propagation
	9.1 Introduction
	9.2 Constraint Propagation/Inference
	9.3 Forward Checking
	9.4 Arc Consistency
	9.5 Decomposition: Constraint Graphs, and Three Simple Cases
	9.6 Cutset Conditioning
	9.7 Constraint Propagation with Local Search
	9.8 Conclusion & Summary
	References

