
Artificial Intelligence 1
Winter Semester 2024/25

– Lecture Notes –
Part I: Getting Started with AI

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2025-02-06

Michael Kohlhase: Artificial Intelligence 1 41 2025-02-06

Michael.Kohlhase@FAU.de

Enough philosophy about “Intelligence” (Artificial or
Natural)

▶ So far we had a nice philosophical chat, about “intelligence” et al.
▶ As of today, we look at technical stuff!

▶ Before we go into the algorithms and data structures proper, we will
1. introduce a programming language for AI-1
2. prepare a conceptual framework in which we can think about “intelligence” (natural

and artificial), and
3. recap some methods and results from theoretical computer science.

Michael Kohlhase: Artificial Intelligence 1 42 2025-02-06

Enough philosophy about “Intelligence” (Artificial or
Natural)

▶ So far we had a nice philosophical chat, about “intelligence” et al.
▶ As of today, we look at technical stuff!
▶ Before we go into the algorithms and data structures proper, we will

1. introduce a programming language for AI-1
2. prepare a conceptual framework in which we can think about “intelligence” (natural

and artificial), and
3. recap some methods and results from theoretical computer science.

Michael Kohlhase: Artificial Intelligence 1 42 2025-02-06

Chapter 3
Logic Programming

Michael Kohlhase: Artificial Intelligence 1 42 2025-02-06

3.1 Introduction to Logic Programming and
ProLog

Michael Kohlhase: Artificial Intelligence 1 42 2025-02-06

.

Michael Kohlhase: Artificial Intelligence 1 43 2025-02-06

Logic Programming

▶ Idea: Use logic as a programming language!
▶ We state what we know about a problem (the program) and then ask for results

(what the program would compute).
▶ Example 1.1.

Program Leibniz is human x + 0 = x
Sokrates is human If x + y = z then x + s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))
▶ How to achieve this? Restrict a logic calculus sufficiently that it can be used

as computational procedure.
▶ Remark: This idea leads a totally new programming paradigm: logic

programming.
▶ Slogan: Computation = Logic + Control (Robert Kowalski 1973; [Kow97])
▶ We will use the programming language Prolog as an example.

Michael Kohlhase: Artificial Intelligence 1 43 2025-02-06

Prolog Terms and Literals

▶ Definition 1.2. Prolog expresses knowledge about the world via
▶ constants denoted by lowercase strings,
▶ variables denoted by strings starting with an uppercase letter or _, and
▶ functions and predicates (lowercase strings) applied to terms.

▶ Definition 1.3. A Prolog term is
▶ a Prolog variable, or constant, or
▶ a Prolog function applied to terms.

A Prolog literal is a constant or a predicate applied to terms.
▶ Example 1.4. The following are

▶ Prolog terms: john, X, _, father(john), . . .
▶ Prolog literals: loves(john,mary), loves(john,_), loves(john,wife_of(john)),. . .

Michael Kohlhase: Artificial Intelligence 1 44 2025-02-06

Prolog Programs: Facts and Rules

▶ Definition 1.5. A Prolog program is a sequence of clauses, i.e.
▶ facts of the form l ., where l is a literal, (a literal and a dot)
▶ rules of the form h:−b1,. . .,bn., where n > 0. h is called the head literal (or simply

head) and the bi are together called the body of the rule.

A rule h:−b1,. . .,bn., should be read as h (is true) if b1 and . . . and bn are.
▶ Example 1.6. Write “something is a car if it has a motor and four wheels” as

car(X) :− has_motor(X),has_wheels(X,4). (variables are uppercase)
This is just an ASCII notation for m(x) ∧ w(x , 4)⇒ car(x).

▶ Example 1.7. The following is a Prolog program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

The first three lines are Prolog facts and the last a rule.

Michael Kohlhase: Artificial Intelligence 1 45 2025-02-06

Prolog Programs: Knowledge bases

▶ Intuition: The knowledge base given by a Prolog program is the set of facts
that can be derived from it under the if/and reading above.

▶ Definition 1.8. The knowledge base given by Prolog program is that set of
facts that can be derived from it by Modus Ponens (MP), ∧I and instantiation.

A A⇒ B

B
MP

A B

A ∧ B
∧I A

[B/X](A)
Subst

Michael Kohlhase: Artificial Intelligence 1 46 2025-02-06

Querying the Knowledge Base: Size Matters

▶ Idea: We want to see whether a fact is in the knowledge base.
▶ Definition 1.9. A query is a list of Prolog literals called goal literal (also

subgoals or simply goals). We write a query as ?−A1, . . .,An. where Ai are goals.
▶ Problem: Knowledge bases can be big and even infinite. (cannot pre-compute)
▶ Example 1.10. The knowledge base induced by the Prolog program

nat(zero).
nat(s(X)) :− nat(X).

contains the facts nat(zero), nat(s(zero)), nat(s(s(zero))), . . .

Michael Kohlhase: Artificial Intelligence 1 47 2025-02-06

Querying the Knowledge Base: Backchaining

▶ Definition 1.11. Given a query Q: ?− A1, . . .,An. and rule R: h:− b1,. . .,bn,
backchaining computes a new query by
1. finding terms for all variables in h to make h and A1 equal and
2. replacing A1 in Q with the body literals of R, where all variables are suitably

replaced.
▶ Backchaining motivates the names goal/subgoal:

▶ the literals in the query are “goals” that have to be satisfied,
▶ backchaining does that by replacing them by new “goals”.

▶ Definition 1.12. The Prolog interpreter keeps backchaining from the top to
the bottom of the program until the query
▶ succeeds, i.e. contains no more goals, or (answer: true)
▶ fails, i.e. backchaining becomes impossible. (answer: false)

▶ Example 1.13 (Backchaining). We continue ??

?− nat(s(s(zero))).
?− nat(s(zero)).
?− nat(zero).
true

Michael Kohlhase: Artificial Intelligence 1 48 2025-02-06

Querying the Knowledge Base: Failure

▶ If no instance of a query can be derived from the knowledge base, then the
Prolog interpreter reports failure.

▶ Example 1.14. We vary ?? using 0 instead of zero.

?− nat(s(s(0))).
?− nat(s(0)).
?− nat(0).
FAIL
false

Michael Kohlhase: Artificial Intelligence 1 49 2025-02-06

Querying the Knowledge base: Answer Substitutions

▶ Definition 1.15. If a query contains variables, then Prolog will return an
answer substitution as the result to the query, i.e the values for all the query
variables accumulated during repeated backchaining.

▶ Example 1.16. We talk about (Bavarian) cars for a change, and use a query
with a variables
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):−has_wheels(X,4),has_motor(X).
?− car(Y) % query
?− has_wheels(Y,4),has_motor(Y). % substitution X = Y
?− has_motor(mybmw). % substitution Y = mybmw
Y = mybmw % answer substitution
true

Michael Kohlhase: Artificial Intelligence 1 50 2025-02-06

PROLOG: Are there Fallible Greeks?

▶ Program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

▶ Example 1.17 (Query). ?−fallible(X),greek(X).
▶ Answer substitution: [sokrates/X]

Michael Kohlhase: Artificial Intelligence 1 51 2025-02-06

3.2 Programming as Search

Michael Kohlhase: Artificial Intelligence 1 51 2025-02-06

3.2.1 Knowledge Bases and Backtracking

Michael Kohlhase: Artificial Intelligence 1 51 2025-02-06

Depth-First Search with Backtracking

▶ So far, all the examples led to direct success or to failure. (simple KB)
▶ Definition 2.1 (Prolog Search Procedure). The Prolog interpreter employs

top-down, left-right depth first search, concretely, Prolog search:
▶ works on the subgoals in left right order.
▶ matches first query with the head literals of the clauses in the program in top-down

order.
▶ if there are no matches, fail and backtracks to the (chronologically) last backtrack

point.
▶ otherwise backchain on the first match, keep the other matches in mind for

backtracking via backtrack points.

We say that a goal G matches a head H, iff we can make them equal by
replacing variables in H with terms.

▶ We can force backtracking to compute more answers by typing ;.

Michael Kohlhase: Artificial Intelligence 1 52 2025-02-06

Backtracking by Example

▶ Example 2.2. We extend ??:
has_wheels(mytricycle,3).
has_wheels(myrollerblade,3).
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,3),has_motor(X). % cars sometimes have three wheels
car(X):-has_wheels(X,4),has_motor(X). % and sometimes four.
?- car(Y).
?- has_wheels(Y,3),has_motor(Y). % backtrack point 1
Y = mytricycle % backtrack point 2
?- has_motor(mytricycle).
FAIL % fails, backtrack to 2
Y = myrollerblade % backtrack point 2
?- has_motor(myrollerblade).
FAIL % fails, backtrack to 1
?- has_wheels(Y,4),has_motor(Y).
Y = mybmw
?- has_motor(mybmw).
Y=mybmw
true

Michael Kohlhase: Artificial Intelligence 1 53 2025-02-06

3.2.2 Programming Features

Michael Kohlhase: Artificial Intelligence 1 53 2025-02-06

Can We Use This For Programming?

▶ Question: What about functions? E.g. the addition function?
▶ Question: We cannot define functions, in Prolog!
▶ Idea (back to math): use a three-place predicate.
▶ Example 2.3. add(X,Y,Z) stands for X+Y=Z
▶ Now we can directly write the recursive equations X + 0 = X (base case) and
X + s(Y) = s(X + Y) into the knowledge base.

add(X,zero,X).
add(X,s(Y),s(Z)) :− add(X,Y,Z).

▶ Similarly with multiplication and exponentiation.

mult(X,zero,zero).
mult(X,s(Y),Z) :− mult(X,Y,W), add(X,W,Z).

expt(X,zero,s(zero)).
expt(X,s(Y),Z) :− expt(X,Y,W), mult(X,W,Z).

Michael Kohlhase: Artificial Intelligence 1 54 2025-02-06

More Examples from elementary Arithmetic
▶ Example 2.4. We can also use the add relation for subtraction without

changing the implementation. We just use variables in the “input positions” and
ground terms in the other two. (possibly very inefficient “generate and test
approach”)
?−add(s(zero),X,s(s(s(zero)))).
X = s(s(zero))
true

▶ Example 2.5. Computing the nth Fibonacci number (0, 1, 1, 2, 3, 5, 8, 13,. . . ;
add the last two to get the next), using the addition predicate above.
fib(zero,zero).
fib(s(zero),s(zero)).
fib(s(s(X)),Y):−fib(s(X),Z),fib(X,W),add(Z,W,Y).

▶ Example 2.6. Using Prolog’s internal floating-point arithmetic: a goal of the
form ?− D ise. — where e is a ground arithmetic expression binds D to the
result of evaluating e.
fib(0,0).
fib(1,1).
fib(X,Y):− D is X − 1, E is X − 2,fib(D,Z),fib(E,W), Y is Z + W.

Michael Kohlhase: Artificial Intelligence 1 55 2025-02-06

Adding Lists to Prolog

▶ Definition 2.7. In Prolog, lists are represented by list terms of the form
1. [a,b,c,. . .] for list literals, and
2. a first/rest constructor that represents a list with head F and rest list R as [F|R].

▶ Observation: Just as in functional programming, we can define list operations
by recursion, only that we program with relations instead of with functions.

▶ Example 2.8. Predicates for member, append and reverse of lists in default
Prolog representation.

member(X,[X|_]).
member(X,[_|R]):−member(X,R).

append([],L,L).
append([X|R],L,[X|S]):−append(R,L,S).

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

Michael Kohlhase: Artificial Intelligence 1 56 2025-02-06

Relational Programming Techniques

▶ Example 2.9. Parameters have no unique direction “in” or “out”

?− rev(L,[1,2,3]).
?− rev([1,2,3],L1).
?− rev([1|X],[2|Y]).

▶ Example 2.10. Symbolic programming by structural induction:

rev([],[]).
rev([X|Xs],Ys) :− ...

▶ Example 2.11. Generate and test:

sort(Xs,Ys) :− perm(Xs,Ys), ordered(Ys).

Michael Kohlhase: Artificial Intelligence 1 57 2025-02-06

3.2.3 Advanced Relational Programming

Michael Kohlhase: Artificial Intelligence 1 57 2025-02-06

Specifying Control in Prolog

▶ Remark 2.12. The running time of the program from ?? is not O(nlog2(n))
which is optimal for sorting algorithms.

sort(Xs,Ys) :− perm(Xs,Ys), ordered(Ys).

▶ Idea: Gain computational efficiency by shaping the search!

Michael Kohlhase: Artificial Intelligence 1 58 2025-02-06

Functions and Predicates in Prolog
▶ Remark 2.13. Functions and predicates have radically different roles in Prolog.

▶ Functions are used to represent data. (e.g. father(john) or s(s(zero)))
▶ Predicates are used for stating properties about and computing with data.

▶ Remark 2.14. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

▶ Example 2.15. Consider again the reverse predicate for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list
constructors [. . .] are just used to construct lists from arguments.

▶ Example 2.16 (Trees and Leaf Counting). We represent (unlabelled) trees
via the function t from tree lists to trees. For instance, a balanced binary tree of
depth 2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([V]),W) :− leafcount(V,W).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R),W), Y is Z + W.

Michael Kohlhase: Artificial Intelligence 1 59 2025-02-06

Functions and Predicates in Prolog
▶ Remark 2.17. Functions and predicates have radically different roles in Prolog.

▶ Functions are used to represent data. (e.g. father(john) or s(s(zero)))
▶ Predicates are used for stating properties about and computing with data.

▶ Remark 2.18. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

▶ Example 2.19. Consider again the reverse predicate for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list
constructors [. . .] are just used to construct lists from arguments.

▶ Example 2.20 (Trees and Leaf Counting). We represent (unlabelled) trees
via the function t from tree lists to trees. For instance, a balanced binary tree of
depth 2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([V]),W) :− leafcount(V,W).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R),W), Y is Z + W.

Michael Kohlhase: Artificial Intelligence 1 59 2025-02-06

Functions and Predicates in Prolog
▶ Remark 2.21. Functions and predicates have radically different roles in Prolog.

▶ Functions are used to represent data. (e.g. father(john) or s(s(zero)))
▶ Predicates are used for stating properties about and computing with data.

▶ Remark 2.22. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

▶ Example 2.23. Consider again the reverse predicate for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list
constructors [. . .] are just used to construct lists from arguments.

▶ Example 2.24 (Trees and Leaf Counting). We represent (unlabelled) trees
via the function t from tree lists to trees. For instance, a balanced binary tree of
depth 2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([V]),W) :− leafcount(V,W).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R),W), Y is Z + W.

Michael Kohlhase: Artificial Intelligence 1 59 2025-02-06

For more information on Prolog

RTFM (=̂ “read the fine manuals”)

▶ RTFM Resources: There are also lots of good tutorials on the web,
▶ I personally like [Fis; LPN],
▶ [Fla94] has a very thorough logic-based introduction,
▶ consult also the SWI Prolog Manual [SWI],

Michael Kohlhase: Artificial Intelligence 1 60 2025-02-06

Chapter 4
Recap of Prerequisites from Math & Theoretical

Computer Science

Michael Kohlhase: Artificial Intelligence 1 60 2025-02-06

4.1 Recap: Complexity Analysis in AI?

Michael Kohlhase: Artificial Intelligence 1 60 2025-02-06

Performance and Scaling

▶ Suppose we have three algorithms to choose from. (which one to select)
▶ Systematic analysis reveals performance characteristics.
▶ Example 1.1. For a computational problem of size n we have

performance
size linear quadratic exponential
n 100nµs 7n2µs 2nµs
1 100µs 7µs 2µs
5 .5ms 175µs 32µs

10 1ms .7ms 1ms
45 4.5ms 14ms 1.1Y

100
1 000

10 000
1 000 000

Michael Kohlhase: Artificial Intelligence 1 61 2025-02-06

What?! One year?

▶ 210 = 1 024 (1024µs ≃ 1ms)
▶ 245 = 35 184 372 088 832 (3.5×1013µs ≃ 3.5×107s ≃ 1.1Y)
▶ Example 1.2. We denote all times that are longer than the age of the universe

with −
performance

size linear quadratic exponential
n 100nµs 7n2µs 2nµs
1 100µs 7µs 2µs
5 .5ms 175µs 32µs

10 1ms .7ms 1ms
45 4.5ms 14ms 1.1Y

< 100 100ms 7s 1016Y

1 000 1s 12min −
10 000 10s 20h −

1 000 000 1.6min 2.5mon −

Michael Kohlhase: Artificial Intelligence 1 62 2025-02-06

Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.

▶ Definition 1.3. We say that an algorithm α that terminates in time t(n) for all
inputs of size n has running time T (α) := t.
Let S ⊆ N→ N be a set of natural number functions, then we say that α has
time complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S . We
say α has space complexity in S , iff α uses only memory of size s(n) on inputs of
size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)
▶ Definition 1.4. The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0 ∈ N, such that f (n) ≤ g(n) for all n > n0.

▶ Lemma 1.5 (Growth Ranking). For k ′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.
▶ Definition 1.6. We say that an algorithm α that terminates in time t(n) for all

inputs of size n has running time T (α) := t.
Let S ⊆ N→ N be a set of natural number functions, then we say that α has
time complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S . We
say α has space complexity in S , iff α uses only memory of size s(n) on inputs of
size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)
▶ Definition 1.7. The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0 ∈ N, such that f (n) ≤ g(n) for all n > n0.

▶ Lemma 1.8 (Growth Ranking). For k ′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.
▶ Definition 1.9. We say that an algorithm α that terminates in time t(n) for all

inputs of size n has running time T (α) := t.
Let S ⊆ N→ N be a set of natural number functions, then we say that α has
time complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S . We
say α has space complexity in S , iff α uses only memory of size s(n) on inputs of
size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)

▶ Definition 1.10. The following sets are often used for S in T (α):
Landau set class name rank Landau set class name rank

O(1) constant 1 O(n2) quadratic 4
O(log2(n)) logarithmic 2 O(nk) polynomial 5

O(n) linear 3 O(kn) exponential 6
where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0 ∈ N, such that f (n) ≤ g(n) for all n > n0.

▶ Lemma 1.11 (Growth Ranking). For k ′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.
▶ Definition 1.12. We say that an algorithm α that terminates in time t(n) for

all inputs of size n has running time T (α) := t.
Let S ⊆ N→ N be a set of natural number functions, then we say that α has
time complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S . We
say α has space complexity in S , iff α uses only memory of size s(n) on inputs of
size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)
▶ Definition 1.13. The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0 ∈ N, such that f (n) ≤ g(n) for all n > n0.

▶ Lemma 1.14 (Growth Ranking). For k ′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.
▶ Definition 1.15. We say that an algorithm α that terminates in time t(n) for

all inputs of size n has running time T (α) := t.
Let S ⊆ N→ N be a set of natural number functions, then we say that α has
time complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S . We
say α has space complexity in S , iff α uses only memory of size s(n) on inputs of
size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)
▶ Definition 1.16. The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0 ∈ N, such that f (n) ≤ g(n) for all n > n0.

▶ Lemma 1.17 (Growth Ranking). For k ′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

Recap: Time/Space Complexity of Algorithms
▶ We are mostly interested in worst-case complexity in AI-1.
▶ Definition 1.18. We say that an algorithm α that terminates in time t(n) for

all inputs of size n has running time T (α) := t.
Let S ⊆ N→ N be a set of natural number functions, then we say that α has
time complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S . We
say α has space complexity in S , iff α uses only memory of size s(n) on inputs of
size n and s∈S .

▶ Time/space complexity depends on size measures. (no canonical one)
▶ Definition 1.19. The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by
g), iff there is an n0 ∈ N, such that f (n) ≤ g(n) for all n > n0.

▶ Lemma 1.20 (Growth Ranking). For k ′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

▶ For AI-1: I expect that given an algorithm, you can determine its complexity
class. (next)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

Advantage: Big-Oh Arithmetics

▶ Practical Advantage: Computing with Landau sets is quite simple. (good
simplification)

▶ Theorem 1.21 (Computing with Landau Sets).
1. If O(c · f) = O(f) for any constant c ∈ N. (drop constant factors)
2. If O(f) ⊆ O(g), then O(f + g) = O(g). (drop low-complexity summands)
3. If O(f · g) = O(f) · O(g). (distribute over products)

▶ These are not all of “big-Oh calculation rules”, but they’re enough for most
purposes

▶ Applications: Convince yourselves using the result above that
▶ O(4n3 + 3n + 71000n) = O(2n)
▶ O(n)⊂O(n · log2(n))⊂O(n2)

Michael Kohlhase: Artificial Intelligence 1 64 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.22. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: can be accessed in constant time

▶ variable:
▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.23. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).

▶ variable:
▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.24. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: need the complexity of the value

▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.25. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).

▶ application:
▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.26. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: compose the complexities of the function and the argument

▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.27. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).

▶ assignment:
▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.28. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: has to compute the value ; has its complexity

▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.29. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).

▶ composition:
▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.30. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: has the maximal complexity of the components

▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.31. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).

▶ branching:
▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.32. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: has the maximal complexity of the condition and branches

▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.33. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping:
▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms

▶ Definition 1.34. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: multiplies complexities

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.
▶ Recursion is much more difficult to analyze ; recurrences and Master’s

theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms
▶ Definition 1.35. Given a function Γ that assigns variables v to functions Γ(v)

and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: If α is whileγdoφend, with TΓ(γ)∈O(f), TΓ∪CΓ(γ)(φ)∈O(g), then
TΓ(α)∈O(f (n) · g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.
▶ Recursion is much more difficult to analyze ; recurrences and Master’s

theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms
▶ Definition 1.36. Given a function Γ that assigns variables v to functions Γ(v)

and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: If α is whileγdoφend, with TΓ(γ)∈O(f), TΓ∪CΓ(γ)(φ)∈O(g), then
TΓ(α)∈O(f (n) · g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.

▶ Recursion is much more difficult to analyze ; recurrences and Master’s
theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Determining the Time/Space Complexity of Algorithms
▶ Definition 1.37. Given a function Γ that assigns variables v to functions Γ(v)

and α an imperative algorithm, we compute the
▶ time complexity TΓ(α) of program α and
▶ the context CΓ(α) introduced by α
by joint induction on the structure of α:
▶ constant: If α = δ for a data constant δ, then TΓ(α)∈O(1).
▶ variable: If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).
▶ application: If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then

TΓ(α)∈O(f ◦ g) and CΓ(α) = CΓ∪CΓ(φ)(ψ).
▶ assignment: If α is v :=φ with TΓ(φ)∈S , then TΓ(α)∈S and CΓ(α) = Γ ∪ (v ,S).
▶ composition: If α is φ ; ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then

TΓ(α)∈max {P,Q} and CΓ(α) = CΓ∪CΓ(ψ)(ψ).
▶ branching: If α is ifγthenφelseψend, with TΓ(γ)∈C , TΓ∪CΓ(γ)(φ)∈P,

TΓ∪CΓ(γ)(φ)∈Q, and then TΓ(α)∈max {C ,P,Q} and
CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪ CΓ∪CΓ(γ)(ψ).

▶ looping: If α is whileγdoφend, with TΓ(γ)∈O(f), TΓ∪CΓ(γ)(φ)∈O(g), then
TΓ(α)∈O(f (n) · g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

▶ The time complexity T (α) is just T∅(α), where ∅ is the empty function.
▶ Recursion is much more difficult to analyze ; recurrences and Master’s

theorem.

Michael Kohlhase: Artificial Intelligence 1 65 2025-02-06

Why Complexity Analysis? (General)
▶ Example 1.38. Once upon a time I was trying to invent an efficient algorithm.

▶ My first algorithm attempt didn’t work, so I had to try harder.

▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.

Michael Kohlhase: Artificial Intelligence 1 66 2025-02-06

Why Complexity Analysis? (General)
▶ Example 1.39. Once upon a time I was trying to invent an efficient algorithm.

▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.

▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.

Michael Kohlhase: Artificial Intelligence 1 66 2025-02-06

Why Complexity Analysis? (General)
▶ Example 1.40. Once upon a time I was trying to invent an efficient algorithm.

▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .

▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.

Michael Kohlhase: Artificial Intelligence 1 66 2025-02-06

Why Complexity Analysis? (General)
▶ Example 1.41. Once upon a time I was trying to invent an efficient algorithm.

▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:

▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN
one actually solve this efficiently? – NP hardness was there to rescue me.

Michael Kohlhase: Artificial Intelligence 1 66 2025-02-06

Why Complexity Analysis? (General)
▶ Example 1.42. Once upon a time I was trying to invent an efficient algorithm.

▶ My first algorithm attempt didn’t work, so I had to try harder.
▶ But my 2nd attempt didn’t work either, which got me a bit agitated.
▶ The 3rd attempt didn’t work either. . .
▶ And neither the 4th. But then:
▶ Ta-da . . . when, for once, I turned around and looked in the other direction– CAN

one actually solve this efficiently? – NP hardness was there to rescue me.

Michael Kohlhase: Artificial Intelligence 1 66 2025-02-06

Why Complexity Analysis? (General)

▶ Example 1.43. Trying to find a sea route east to India (from Spain) (does not
exist)

▶ Observation: Complexity theory saves you from spending lots of time trying
to invent algorithms that do not exist.

Michael Kohlhase: Artificial Intelligence 1 67 2025-02-06

Reminder (?): NP and PSPACE (details ; e.g. [GJ79])

▶ Turing Machine: Works on a tape consisting of cells, across which its
Read/Write head moves. The machine has internal states. There is a transition
function that specifies – given the current cell content and internal state – what
the subsequent internal state will be, how what the R/W head does (write a
symbol and/or move). Some internal states are accepting.

▶ Decision problems are in NP if there is a non deterministic Turing machine that
halts with an answer after time polynomial in the size of its input. Accepts if at
least one of the possible runs accepts.

▶ Decision problems are in NPSPACE, if there is a non deterministic Turing
machine that runs in space polynomial in the size of its input.

▶ NP vs. PSPACE: Non-deterministic polynomial space can be simulated in
deterministic polynomial space. Thus PSPACE = NPSPACE, and hence
(trivially) NP ⊆ PSPACE.
It is commonly believed that NP ̸⊇PSPACE. (similar to P ⊆ NP)

Michael Kohlhase: Artificial Intelligence 1 68 2025-02-06

The Utility of Complexity Knowledge (NP-Hardness)

▶ Assume: In 3 years from now, you have finished your studies and are working
in your first industry job. Your boss Mr. X gives you a problem and says Solve
It!. By which he means, write a program that solves it efficiently.

▶ Question: Assume further that, after trying in vain for 4 weeks, you got the
next meeting with Mr. X. How could knowing about NP hardness help?

▶ Answer: It helps you save your skin with (theoretical computer) science!
▶ Do you want to say Um, sorry, but I couldn’t find an efficient solution, please don’t

fire me?
▶ Or would you rather say Look, I didn’t find an efficient solution. But neither could

all the Turing-award winners out there put together, because the problem is NP
hard?

Michael Kohlhase: Artificial Intelligence 1 69 2025-02-06

The Utility of Complexity Knowledge (NP-Hardness)

▶ Assume: In 3 years from now, you have finished your studies and are working
in your first industry job. Your boss Mr. X gives you a problem and says Solve
It!. By which he means, write a program that solves it efficiently.

▶ Question: Assume further that, after trying in vain for 4 weeks, you got the
next meeting with Mr. X. How could knowing about NP hardness help?

▶ Answer: It helps you save your skin with (theoretical computer) science!
▶ Do you want to say Um, sorry, but I couldn’t find an efficient solution, please don’t

fire me?
▶ Or would you rather say Look, I didn’t find an efficient solution. But neither could

all the Turing-award winners out there put together, because the problem is NP
hard?

Michael Kohlhase: Artificial Intelligence 1 69 2025-02-06

4.2 Recap: Formal Languages and Grammars

Michael Kohlhase: Artificial Intelligence 1 69 2025-02-06

The Mathematics of Strings

▶ Definition 2.1. An alphabet A is a finite set; we call each element a ∈ A a
character, and an n tuple s ∈ An a string (of length n over A).

▶ Definition 2.2. Note that A0 = {⟨⟩}, where ⟨⟩ is the (unique) 0-tuple. With
the definition above we consider ⟨⟩ as the string of length 0 and call it the empty
string and denote it with ϵ.

▶ Note: Sets ̸= strings, e.g. {1, 2, 3} = {3, 2, 1}, but ⟨1, 2, 3⟩ ≠ ⟨3, 2, 1⟩.
▶ Notation: We will often write a string ⟨c1, . . ., cn⟩ as ”c1. . .cn”, for instance
”abc” for ⟨a, b, c⟩

▶ Example 2.3. Take A = {h, 1, /} as an alphabet. Each of the members h, 1,
and / is a character. The vector ⟨/, /, 1, h, 1⟩ is a string of length 5 over A.

▶ Definition 2.4 (String Length). Given a string s we denote its length with |s|.
▶ Definition 2.5. The concatenation conc(s, t) of two strings
s = ⟨s1, ..., sn⟩ ∈ An and t = ⟨t1, ..., tm⟩ ∈ Am is defined as
⟨s1, ..., sn, t1, ..., tm⟩ ∈ An+m.
We will often write conc(s, t) as s + t or simply st

▶ Example 2.6. conc(”text”, ”book”) = ”text” + ”book” = ”textbook”

Michael Kohlhase: Artificial Intelligence 1 70 2025-02-06

Formal Languages
▶ Definition 2.7. Let A be an alphabet, then we define the sets A+:=

⋃
i∈N+Ai of

nonempty string and A∗:=A+ ∪ {ϵ} of strings.
▶ Example 2.8. If A = {a, b, c}, then
A∗ = {ϵ, a, b, c, aa, ab, ac, ba, . . . , aaa, . . . }.

▶ Definition 2.9. A set L ⊆ A∗ is called a formal language over A.
▶ Definition 2.10. We use c[n] for the string that consists of the character c

repeated n times.
▶ Example 2.11. #[5] = ⟨#,#,#,#,#⟩
▶ Example 2.12. The set M := {ba[n] | n ∈ N} of strings that start with character
b followed by an arbitrary numbers of a’s is a formal language over A = {a, b}.

▶ Definition 2.13. Let L1, L2, L ⊆ Σ∗ be formal languages over Σ.
▶ Intersection and union: L1 ∩ L2, L1 ∪ L2.
▶ Language complement L: L := Σ∗\L.
▶ The language concatenation of L1 and L2: L1L2 := {uw | u ∈ L1, w ∈ L2}. We

often use L1L2 instead of L1L2.
▶ Language power L: L0 := {ϵ}, Ln+1 := LLn, where

Ln := {w1. . .wn |wi ∈ L, for i = 1. . .n}, (for n ∈ N).
▶ language Kleene closure L: L∗ :=

⋃
n∈NL

n and also L+ :=
⋃

n∈N+Ln.
▶ The reflection of a language L: LR := {wR |w ∈ L}.

Michael Kohlhase: Artificial Intelligence 1 71 2025-02-06

Phrase Structure Grammars (Theory)

▶ Recap: A formal language is an arbitrary set of symbol sequences.
▶ Problem: This may be infinite and even undecidable even if A is finite.
▶ Idea: Find a way of representing formal languages with structure finitely.
▶ Definition 2.14. A phrase structure grammar (also called type 0 grammar,

unrestricted grammar, or just grammar) is a tuple ⟨N ,Σ,P ,S ⟩ where
▶ N is a finite set of nonterminal symbols,
▶ Σ is a finite set of terminal symbols, members of Σ ∪ N are called symbols.
▶ P is a finite set of production rules: pairs p := h→ b (also written as h⇒b), where

h ∈ (Σ ∪ N)∗N(Σ ∪ N)∗ and b ∈ (Σ ∪ N)∗. The string h is called the head of p and
b the body.

▶ S ∈ N is a distinguished symbol called the start symbol (also sentence symbol).

The sets N and Σ are assumed to be disjoint. Any word w ∈ Σ∗ is called a
terminal word.

▶ Intuition: Production rules map strings with at least one nonterminal to
arbitrary other strings.

▶ Notation: If we have n rules h→ bi sharing a head, we often write
h→ b1 | . . . | bn instead.

Michael Kohlhase: Artificial Intelligence 1 72 2025-02-06

Phrase Structure Grammars (cont.)

▶ Example 2.15. A simple phrase structure grammar G :

S → NP Vi
NP → Article N

Article → the | a | an
N → dog | teacher | . . .
Vi → sleeps | smells | . . .

Here S , is the start symbol, NP, Article, N, and Vi are nonterminals.
▶ Definition 2.16. A production rule whose head is a single non-terminal and

whose body consists of a single terminal is called lexical or a lexical insertion rule.
Definition 2.17. The subset of lexical rules of a grammar G is called the
lexicon of G and the set of body symbols the vocabulary (or alphabet). The
nonterminals in their heads are called lexical categories of G .

▶ Definition 2.18. The non-lexicon production rules are called structural, and
the nonterminals in the heads are called phrasal or syntactic categories.

Michael Kohlhase: Artificial Intelligence 1 73 2025-02-06

Phrase Structure Grammars (Theory)
▶ Idea: Each symbol sequence in a formal language can be analyzed/generated

by the grammar.
▶ Definition 2.19. Given a phrase structure grammar G := ⟨N ,Σ,P ,S ⟩, we say
G derives t ∈ (Σ ∪ N)∗ from s ∈ (Σ ∪ N)∗ in one step, iff there is a production
rule p ∈ P with p = h→ b and there are u, v ∈ (Σ ∪ N)∗, such that s = suhv
and t = ubv . We write s→p

G t (or s→G t if p is clear from the context) and use
→∗

G for the reflexive transitive closure of →G . We call s→∗
G t a G derivation of

t from s.

TEST1: A →G B
C →G D

TEST2:
A →G B

→G C
→G D

TEST3:

s →G2 asb
→G2 aaSbb
→G2 aaaSbbb
→G2 aaaaSbbbb
→G2 aaaabbbb

▶ Definition 2.20. Given a phrase structure grammar G := ⟨N ,Σ,P ,S ⟩, we say
that s ∈ (N ∪ Σ)∗ is a sentential form of G , iff S→∗

G s. A sentential form that
does not contain nontermials is called a sentence of G , we also say that G
accepts s. We say that G rejects s, iff it is not a sentence of G .

▶ Definition 2.21. The language L(G) of G is the set of its sentences. We say
that L(G) is generated by G .
Definition 2.22. We call two grammars equivalent, iff they have the same
languages.
Definition 2.23. A grammar G is said to be universal if L(G) = Σ∗.

▶ Definition 2.24. Parsing, syntax analysis, or syntactic analysis is the process of
analyzing a string of symbols, either in a formal or a natural language by means
of a grammar.

Michael Kohlhase: Artificial Intelligence 1 74 2025-02-06

Phrase Structure Grammars (Example)

▶ Example 2.25. In the grammar G from ??:

1. Article teacher Vi is a sentential form,

S →G NP Vi

→G Article N Vi

→G Article teacher Vi

2. The teacher sleeps is a sentence.

S →∗
G Article teacher Vi

→G the teacher Vi

→G the teacher sleeps

S → NP Vi
NP → Article N

Article → the | a | an | . . .
N → dog | teacher | . . .
Vi → sleeps | smells | . . .

Michael Kohlhase: Artificial Intelligence 1 75 2025-02-06

Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.26. We call a grammar:

1. context-sensitive (or type 1), if the bodies of production rules have no less symbols
than the heads,

2. context-free (or type 2), if the heads have exactly one symbol,
3. regular (or type 3), if additionally the bodies are empty or consist of a nonterminal,

optionally followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular (or type 1/type 2/type 3 respectively), iff
it is the language of a respective grammar. Context-free grammars are
sometimes CFGs and context-free languages CFLs.

▶ Example 2.27 (Context-sensitive). The language {a[n]b[n]c [n]}
▶ Example 2.28 (Context-free). The language {a[n]b[n]}
▶ Example 2.29 (Regular). The language {a[n]}
▶ Observation: Natural languages are probably context-sensitive but parsable in

real time! (like languages low in the hierarchy)

Michael Kohlhase: Artificial Intelligence 1 76 2025-02-06

Grammar Types (Chomsky Hierarchy [Cho65])
▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.30. We call a grammar:

1. context-sensitive (or type 1), if the bodies of production rules have no less symbols
than the heads,

2. context-free (or type 2), if the heads have exactly one symbol,
3. regular (or type 3), if additionally the bodies are empty or consist of a nonterminal,

optionally followed by a terminal symbol.
By extension, a formal language L is called
context-sensitive/context-free/regular (or type 1/type 2/type 3 respectively), iff
it is the language of a respective grammar. Context-free grammars are
sometimes CFGs and context-free languages CFLs.

▶ Example 2.31 (Context-sensitive). The language {a[n]b[n]c [n]} is accepted by

S → a b c | A
A → a A B c | a b c

c B → B c
b B → b b

▶ Example 2.32 (Context-free). The language {a[n]b[n]}
▶ Example 2.33 (Regular). The language {a[n]}
▶ Observation: Natural languages are probably context-sensitive but parsable in

real time! (like languages low in the hierarchy)

Michael Kohlhase: Artificial Intelligence 1 76 2025-02-06

Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.34. We call a grammar:

1. context-sensitive (or type 1), if the bodies of production rules have no less symbols
than the heads,

2. context-free (or type 2), if the heads have exactly one symbol,
3. regular (or type 3), if additionally the bodies are empty or consist of a nonterminal,

optionally followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular (or type 1/type 2/type 3 respectively), iff
it is the language of a respective grammar. Context-free grammars are
sometimes CFGs and context-free languages CFLs.

▶ Example 2.35 (Context-sensitive). The language {a[n]b[n]c [n]}
▶ Example 2.36 (Context-free). The language {a[n]b[n]} is accepted by

S → a S b | ϵ.

▶ Example 2.37 (Regular). The language {a[n]}
▶ Observation: Natural languages are probably context-sensitive but parsable in

real time! (like languages low in the hierarchy)

Michael Kohlhase: Artificial Intelligence 1 76 2025-02-06

Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.38. We call a grammar:

1. context-sensitive (or type 1), if the bodies of production rules have no less symbols
than the heads,

2. context-free (or type 2), if the heads have exactly one symbol,
3. regular (or type 3), if additionally the bodies are empty or consist of a nonterminal,

optionally followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular (or type 1/type 2/type 3 respectively), iff
it is the language of a respective grammar. Context-free grammars are
sometimes CFGs and context-free languages CFLs.

▶ Example 2.39 (Context-sensitive). The language {a[n]b[n]c [n]}
▶ Example 2.40 (Context-free). The language {a[n]b[n]}
▶ Example 2.41 (Regular). The language {a[n]} is accepted by S → S a

▶ Observation: Natural languages are probably context-sensitive but parsable in
real time! (like languages low in the hierarchy)

Michael Kohlhase: Artificial Intelligence 1 76 2025-02-06

Grammar Types (Chomsky Hierarchy [Cho65])

▶ Observation: The shape of the grammar determines the “size” of its language.
▶ Definition 2.42. We call a grammar:

1. context-sensitive (or type 1), if the bodies of production rules have no less symbols
than the heads,

2. context-free (or type 2), if the heads have exactly one symbol,
3. regular (or type 3), if additionally the bodies are empty or consist of a nonterminal,

optionally followed by a terminal symbol.

By extension, a formal language L is called
context-sensitive/context-free/regular (or type 1/type 2/type 3 respectively), iff
it is the language of a respective grammar. Context-free grammars are
sometimes CFGs and context-free languages CFLs.

▶ Example 2.43 (Context-sensitive). The language {a[n]b[n]c [n]}
▶ Example 2.44 (Context-free). The language {a[n]b[n]}
▶ Example 2.45 (Regular). The language {a[n]}
▶ Observation: Natural languages are probably context-sensitive but parsable in

real time! (like languages low in the hierarchy)

Michael Kohlhase: Artificial Intelligence 1 76 2025-02-06

Useful Extensions of Phrase Structure Grammars

▶ Definition 2.46. The Bachus Naur form or Backus normal form (BNF) is a
metasyntax notation for context-free grammars.
It extends the body of a production rule by mutiple (admissible) constructors:
▶ alternative: s1 | . . . | sn,
▶ repetition: s∗ (arbitrary many s) and s+ (at least one s),
▶ optional: [s] (zero or one times),
▶ grouping: (s1 ; . . . ; sn), useful e.g. for repetition,
▶ character sets: [s−t] (all characters c with s≤c≤t for a given ordering on the

characters), and
▶ complements: [∧s1,. . .,sn], provided that the base alphabet is finite.

▶ Observation: All of these can be eliminated, .e.g (; many more rules)
▶ replace X →Z (s∗) W with the production rules X →Z Y W , Y → ϵ, and

Y →Y s.
▶ replace X →Z (s+) W with the production rules X →Z Y W , Y → s, and

Y →Y s.

Michael Kohlhase: Artificial Intelligence 1 77 2025-02-06

An Grammar Notation for AI-1
▶ Problem: In grammars, notations for nonterminal symbols should be

▶ short and mnemonic (for the use in the body)
▶ close to the official name of the syntactic category (for the use in the head)

▶ In AI-1 we will only use context-free grammars (simpler, but problem still
applies)

▶ in AI-1: I will try to give “grammar overviews” that combine those, e.g. the
grammar of first-order logic.

variables X ∈ V1
function constants f k ∈ Σf

k

predicate constants pk ∈ Σp
k

terms t ::= X variable
| f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction
| ∀X .A quantifier

Michael Kohlhase: Artificial Intelligence 1 78 2025-02-06

4.3 Mathematical Language Recap

Michael Kohlhase: Artificial Intelligence 1 78 2025-02-06

Mathematical Structures
▶ Observation: Mathematicians often cast classes of complex objects as

mathematical structures.
▶ We have just seen an example of a mathematical structure: (repeated here for

convenience)
▶ Definition 3.1. A phrase structure grammar (also called type 0 grammar,

unrestricted grammar, or just grammar) is a tuple ⟨N ,Σ,P ,S ⟩ where
▶ N is a finite set of nonterminal symbols,
▶ Σ is a finite set of terminal symbols, members of Σ ∪ N are called symbols.
▶ P is a finite set of production rules: pairs p := h→ b (also written as h⇒b), where

h ∈ (Σ ∪ N)∗N(Σ ∪ N)∗ and b ∈ (Σ ∪ N)∗. The string h is called the head of p and
b the body.

▶ S ∈ N is a distinguished symbol called the start symbol (also sentence symbol).

The sets N and Σ are assumed to be disjoint. Any word w ∈ Σ∗ is called a
terminal word.

▶ Intuition: All grammars share structure: they have four components, which
again share struccture, which is further described in the definition above.

▶ Observation: Even though we call production rules “pairs” above, they are
also mathematical structures ⟨h, b⟩ with a funny notation h→ b.

Michael Kohlhase: Artificial Intelligence 1 79 2025-02-06

Mathematical Structures in Programming
▶ Observation: Most programming languages have some way of creating

“named structures”. Referencing components is usually done via “dot notation”.

▶ Example 3.2 (Structs in C). C data structures for representing grammars:
struct grule {

char[][] head;
char[][] body;

}
struct grammar {

char[][] nterminals;
char[][] termininals;
grule[] grules;
char[] start;

}
int main() {

struct grule r1;
r1.head = "foo";
r1.body = "bar";

}

▶ Example 3.3 (Classes in OOP). Classes in object-oriented programming
languages are based on the same ideas as mathematical structures, only that
OOP adds powerful inheritance mechanisms.

Michael Kohlhase: Artificial Intelligence 1 80 2025-02-06

Mathematical Structures in Programming
▶ Observation: Most programming languages have some way of creating

“named structures”. Referencing components is usually done via “dot notation”.
▶ Example 3.4 (Structs in C). C data structures for representing grammars:

struct grule {
char[][] head;
char[][] body;

}
struct grammar {

char[][] nterminals;
char[][] termininals;
grule[] grules;
char[] start;

}
int main() {

struct grule r1;
r1.head = "foo";
r1.body = "bar";

}

▶ Example 3.5 (Classes in OOP). Classes in object-oriented programming
languages are based on the same ideas as mathematical structures, only that
OOP adds powerful inheritance mechanisms.

Michael Kohlhase: Artificial Intelligence 1 80 2025-02-06

Mathematical Structures in Programming
▶ Observation: Most programming languages have some way of creating

“named structures”. Referencing components is usually done via “dot notation”.
▶ Example 3.6 (Structs in C). C data structures for representing grammars:

struct grule {
char[][] head;
char[][] body;

}
struct grammar {

char[][] nterminals;
char[][] termininals;
grule[] grules;
char[] start;

}
int main() {

struct grule r1;
r1.head = "foo";
r1.body = "bar";

}

▶ Example 3.7 (Classes in OOP). Classes in object-oriented programming
languages are based on the same ideas as mathematical structures, only that
OOP adds powerful inheritance mechanisms.

Michael Kohlhase: Artificial Intelligence 1 80 2025-02-06

In AI-1 we use a mixture between Math and Programming
Styles

▶ In AI-1 we use mathematical notation, . . .
▶ Definition 3.8. A structure signature combines the components, their “types”,

and accessor names of a mathematical structure in a tabular overview.
▶ Example 3.9.

grammar =

〈 N Set nonterminal symbols,
Σ Set terminal symbols,
P {h→ b | . . . } production rules,
S N start symbol

〉

production rule h→ b =
〈

h (Σ ∪ N)∗,N, (Σ ∪ N)∗ head,
b (Σ ∪ N)∗ body

〉
Read the first line “N Set nonterminal symbols” in the structure above as “N is
in an (unspecified) set and is a nonterminal symbol”.
Here – and in the future – we will use Set for the class of sets ; “N is a set”.

▶ I will try to give structure signatures where necessary.

Michael Kohlhase: Artificial Intelligence 1 81 2025-02-06

Chapter 5
Rational Agents: a Unifying Framework for

Artificial Intelligence

Michael Kohlhase: Artificial Intelligence 1 81 2025-02-06

5.1 Introduction: Rationality in Artificial
Intelligence

Michael Kohlhase: Artificial Intelligence 1 81 2025-02-06

What is AI? Going into Details

▶ Recap: AI studies how we can make the computer do things that humans can
still do better at the moment. (humans are proud to be rational)

▶ What is AI?: Four possible answers/facets: Systems that

think like humans think rationally
act like humans act rationally

expressed by four different definitions/quotes:

Humanly Rational
Thinking “The exciting new effort

to make computers think
. . . machines with human-like
minds” [Hau85]

“The formalization of mental
faculties in terms of computa-
tional models” [CM85]

Acting “The art of creating machines
that perform actions requiring
intelligence when performed by
people” [Kur90]

“The branch of CS concerned
with the automation of appro-
priate behavior in complex situ-
ations” [LS93]

▶ Idea: Rationality is performance-oriented rather than based on imitation.

Michael Kohlhase: Artificial Intelligence 1 82 2025-02-06

So, what does modern AI do?

▶ Acting Humanly: Turing test, not much pursued outside Loebner prize
▶ =̂ building pigeons that can fly so much like real pigeons that they can fool pigeons
▶ Not reproducible, not amenable to mathematical analysis

▶ Thinking Humanly: ; Cognitive Science.
▶ How do humans think? How does the (human) brain work?
▶ Neural networks are a (extremely simple so far) approximation

▶ Thinking Rationally: Logics, Formalization of knowledge and inference
▶ You know the basics, we do some more, fairly widespread in modern AI

▶ Acting Rationally: How to make good action choices?
▶ Contains logics (one possible way to make intelligent decisions)
▶ We are interested in making good choices in practice (e.g. in AlphaGo)

Michael Kohlhase: Artificial Intelligence 1 83 2025-02-06

Acting humanly: The Turing test
▶ Introduced by Alan Turing (1950) “Computing machinery and

intelligence” [Tur50]:
▶ “Can machines think?” −→ “Can machines behave intelligently?”
▶ Definition 1.1. The Turing test is an operational test for intelligent behavior

based on an imitation game over teletext (arbitrary topic)

▶ It was predicted that by 2000, a machine might have a 30% chance of fooling a
lay person for 5 minutes.

▶ Note: In [Tur50], Alan Turing
▶ anticipated all major arguments against AI in following 50 years and
▶ suggested major components of AI: knowledge, reasoning, language understanding,

learning
▶ Problem: Turing test is not reproducible, constructive, or amenable to

mathematical analysis!

Michael Kohlhase: Artificial Intelligence 1 84 2025-02-06

Thinking humanly: Cognitive Science
▶ 1960s: “cognitive revolution”: information processing psychology replaced

prevailing orthodoxy of behaviorism.
▶ Requires scientific theories of internal activities of the brain
▶ What level of abstraction? “Knowledge” or “circuits”?
▶ How to validate?: Requires

1. Predicting and testing behavior of human subjects or (top-down)
2. Direct identification from neurological data. (bottom-up)

▶ Definition 1.2. Cognitive science is the interdisciplinary, scientific study of the
mind and its processes. It examines the nature, the tasks, and the functions of
cognition.

▶ Definition 1.3. Cognitive neuroscience studies the biological processes and
aspects that underlie cognition, with a specific focus on the neural connections
in the brain which are involved in mental processes.

▶ Both approaches/disciplines are now distinct from AI.
▶ Both share with AI the following characteristic: the available theories do not

explain (or engender) anything resembling human-level general intelligence
▶ Hence, all three fields share one principal direction!

Michael Kohlhase: Artificial Intelligence 1 85 2025-02-06

Thinking rationally: Laws of Thought

▶ Normative (or prescriptive) rather than descriptive
▶ Aristotle: what are correct arguments/thought processes?
▶ Several Greek schools developed various forms of logic: notation and rules of

derivation for thoughts; may or may not have proceeded to the idea of
mechanization.

▶ Direct line through mathematics and philosophy to modern AI
▶ Problems:

1. Not all intelligent behavior is mediated by logical deliberation
2. What is the purpose of thinking? What thoughts should I have out of all the

thoughts (logical or otherwise) that I could have?

Michael Kohlhase: Artificial Intelligence 1 86 2025-02-06

Acting Rationally

▶ Idea: Rational behavior =̂ doing the right thing!
▶ Definition 1.4. Rational behavior consists of always doing what is expected to

maximize goal achievement given the available information.
▶ Rational behavior does not necessarily involve thinking e.g., blinking reflex —

but thinking should be in the service of rational action.
▶ Aristotle: Every art and every inquiry, and similarly every action and pursuit,

is thought to aim at some good. (Nicomachean Ethics)

Michael Kohlhase: Artificial Intelligence 1 87 2025-02-06

The Rational Agents

▶ Definition 1.5. An agent is an entity that perceives and acts.
▶ Central Idea: This course is about designing agent that exhibit rational

behavior, i.e. for any given class of environments and tasks, we seek the agent
(or class of agents) with the best performance.

▶ Caveat: Computational limitations make perfect rationality unachievable
; design best program for given machine resources.

Michael Kohlhase: Artificial Intelligence 1 88 2025-02-06

5.2 Agents and Environments as a Framework
for AI

Michael Kohlhase: Artificial Intelligence 1 88 2025-02-06

Agents and Environments
▶ Definition 2.1. An agent is anything that

▶ perceives its environment via sensors (a means of sensing the environment)
▶ acts on it with actuators (means of changing the environment).

Definition 2.2. Any recognizable, coherent employment of the actuators of an
agent is called an action.

▶ Example 2.3. Agents include humans, robots, softbots, thermostats, etc.
▶ remark: The notion of an agent and its environment is intentionally designed

to be inclusive. We will classify and discuss subclasses of both later

Michael Kohlhase: Artificial Intelligence 1 89 2025-02-06

Modeling Agents Mathematically and Computationally

▶ Definition 2.4. A percept is the perceptual input of an agent at a specific time
instant.

▶ Definition 2.5. Any recognizable, coherent employment of the actuators of an
agent is called an action.

▶ Definition 2.6. The agent function f a of an agent a maps from percept
histories to actions:

f a : P∗ →A
▶ We assume that agents can always perceive their own actions. (but not

necessarily their consequences)
▶ Problem: Agent functions can become very big and may be uncomputable.

(theoretical tool only)
▶ Definition 2.7. An agent function can be implemented by an agent program

that runs on a (physical or hypothetical) agent architecture.

Michael Kohlhase: Artificial Intelligence 1 90 2025-02-06

Agent Schema: Visualizing the Internal Agent Structure

▶ Agent Schema: We will use the following kind of agent schema to visualize
the internal structure of an agent:

Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Different agents differ on the contents of the white box in the center.

Michael Kohlhase: Artificial Intelligence 1 91 2025-02-06

Example: Vacuum-Cleaner World and Agent

▶ percepts: location and
contents, e.g., [A,Dirty]

▶ actions: Left, Right, Suck ,
NoOp

Percept sequence Action
[A,Clean] Right
[A,Dirty] Suck
[B,Clean] Left
[B,Dirty] Suck
[A,Clean], [A,Clean] Right
[A,Clean], [A,Dirty] Suck
[A,Clean], [B,Clean] Left
[A,Clean], [B,Dirty] Suck
[A,Dirty], [A,Clean] Right
[A,Dirty], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right
[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

▶ Science Question: What is the right agent function?
▶ AI Question: Is there an agent architecture and agent program that

implements it.

Michael Kohlhase: Artificial Intelligence 1 92 2025-02-06

Table-Driven Agents

▶ Idea: We can just implement the agent function as a lookup table and lookup
actions.

▶ We can directly implement this:

function Table−Driven−Agent(percept) returns an action
persistent table /∗ a table of actions indexed by percept sequences ∗/
var percepts /∗ a sequence, initially empty ∗/
append percept to the end of percepts
action := lookup(percepts, table)
return action

▶ Problem: Why is this not a good idea?
▶ The table is much too large: even with n binary percepts whose order of occurrence

does not matter, we have 2n rows in the table.
▶ Who is supposed to write this table anyways, even if it “only” has a million entries?

Michael Kohlhase: Artificial Intelligence 1 93 2025-02-06

Example: Vacuum-Cleaner Agent Program

▶ A much better implementation idea is to trigger actions from specific percepts.
▶ Example 2.8 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

▶ This is the kind of agent programs we will be looking for in AI-1.

Michael Kohlhase: Artificial Intelligence 1 94 2025-02-06

5.3 Good Behavior ; Rationality

Michael Kohlhase: Artificial Intelligence 1 94 2025-02-06

Rationality

▶ Idea: Try to design agents that are successful! (aka. “do the right thing”)
▶ Problem: What do we mean by “successful”, how do we measure “success”?
▶ Definition 3.1. A performance measure is a function that evaluates a sequence

of environments.
▶ Example 3.2. A performance measure for a vacuum cleaner could

▶ award one point per “square” cleaned up in time T?
▶ award one point per clean “square” per time step, minus one per move?
▶ penalize for > k dirty squares?

▶ Definition 3.3. An agent is called rational, if it chooses whichever action
maximizes the expected value of the performance measure given the percept
sequence to date.

▶ Critical Observation: We only need to maximize the expected value, not the
actual value of the performance measure!

▶ Question: Why is rationality a good quality to aim for?

Michael Kohlhase: Artificial Intelligence 1 95 2025-02-06

Consequences of Rationality: Exploration, Learning,
Autonomy

▶ Note: A rational agent need not be perfect:
▶ It only needs to maximize expected value (rational ̸= omniscient)

▶ need not predict e.g. very unlikely but catastrophic events in the future
▶ Percepts may not supply all relevant information (rational ̸= clairvoyant)

▶ if we cannot perceive things we do not need to react to them.
▶ but we may need to try to find out about hidden dangers (exploration)

▶ Action outcomes may not be as expected (rational ̸= successful)
▶ but we may need to take action to ensure that they do (more often) (learning)

▶ Note: Rationality may entail exploration, learning, autonomy (depending on
the environment / task)

▶ Definition 3.4. An agent is called autonomous, if it does not rely on the prior
knowledge about the environment of the designer.

▶ Autonomy avoids fixed behaviors that can become unsuccessful in a changing
environment. (anything else would be irrational)

▶ The agent may have to learn all relevant traits, invariants, properties of the
environment and actions.

Michael Kohlhase: Artificial Intelligence 1 96 2025-02-06

PEAS: Describing the Task Environment

▶ Observation: To design a rational agent, we must specify the task
environment in terms of performance measure, environment, actuators, and
sensors, together called the PEAS components.

▶ Example 3.5. When designing an automated taxi:
▶ Performance measure: safety, destination, profits, legality, comfort, . . .
▶ Environment: US streets/freeways, traffic, pedestrians, weather, . . .
▶ Actuators: steering, accelerator, brake, horn, speaker/display, . . .
▶ Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

▶ Example 3.6 (Internet Shopping Agent). The task environment:
▶ Performance measure: price, quality, appropriateness, efficiency
▶ Environment: current and future WWW sites, vendors, shippers
▶ Actuators: display to user, follow URL, fill in form
▶ Sensors: HTML pages (text, graphics, scripts)

Michael Kohlhase: Artificial Intelligence 1 97 2025-02-06

Examples of Agents: PEAS descriptions

Agent Type Performance
measure

Environment Actuators Sensors

Chess/Go player win/loose/draw game board moves board position
Medical diagno-
sis system

accuracy of di-
agnosis

patient, staff display ques-
tions, diagnoses

keyboard entry
of symptoms

Part-picking
robot

percentage of
parts in correct
bins

conveyor belt
with parts, bins

jointed arm and
hand

camera, joint
angle sensors

Refinery con-
troller

purity, yield,
safety

refinery, opera-
tors

valves, pumps,
heaters, displays

temperature,
pressure, chem-
ical sensors

Interactive En-
glish tutor

student’s score
on test

set of students,
testing accuracy

display exer-
cises, sugges-
tions, correc-
tions

keyboard entry

Michael Kohlhase: Artificial Intelligence 1 98 2025-02-06

Agents

▶ Which are agents?
(A) James Bond.
(B) Your dog.
(C) Vacuum cleaner.
(D) Thermometer.

▶ Answer:
(A/B) : Definite yes. (James Bond & your dog)
(C) : Yes, if it’s an autonomous vacuum cleaner. Else, no.
(D) : No, because it cannot do anything. (Changing the displayed temperature value

could be considered an “action”, but that is not the intended usage of the term)

Michael Kohlhase: Artificial Intelligence 1 99 2025-02-06

Agents

▶ Which are agents?
(A) James Bond.
(B) Your dog.
(C) Vacuum cleaner.
(D) Thermometer.

▶ Answer:
(A/B) : Definite yes. (James Bond & your dog)
(C) : Yes, if it’s an autonomous vacuum cleaner. Else, no.
(D) : No, because it cannot do anything. (Changing the displayed temperature value

could be considered an “action”, but that is not the intended usage of the term)

Michael Kohlhase: Artificial Intelligence 1 99 2025-02-06

5.4 Classifying Environments

Michael Kohlhase: Artificial Intelligence 1 99 2025-02-06

Environment types
▶ Observation 4.1. Agent design is largely determined by the type of

environment it is intended for.
▶ Problem: There is a vast number of possible kinds of environments in AI.
▶ Solution: Classify along a few “dimensions”. (independent characteristics)
▶ Definition 4.2. For an agent a we classify the environment e of a by its type,

which is one of the following. We call e
1. fully observable, iff the a’s sensors give it access to the complete state of the

environment at any point in time, else partially observable.
2. deterministic, iff the next state of the environment is completely determined by the

current state and a’s action, else stochastic.
3. episodic, iff a’s experience is divided into atomic episodes, where it perceives and

then performs a single action. Crucially, the next episode does not depend on
previous ones. Non-episodic environments are called sequential.

4. dynamic, iff the environment can change without an action performed by a, else
static. If the environment does not change but a’s performance measure does, we
call e semidynamic.

5. discrete, iff the sets of e’s state and a’s actions are countable, else continuous.
6. single-agent, iff only a acts on e; else multi-agent(when must we count parts of e as

agents?)

Michael Kohlhase: Artificial Intelligence 1 100 2025-02-06

Environment Types (Examples)
▶ Example 4.3. Some environments classified:

Solitaire Backgammon Internet shopping Taxi
fully observable No Yes No No
deterministic Yes No Partly No
episodic No Yes No No
static Yes Semi Semi No
discrete Yes Yes Yes No
single-agent Yes No Yes (except auctions) No

▶ Note: Take the example above with a grain of salt. There are often multiple
interpretations that yield different classifications and different agents. (agent
designer’s choice)

▶ Example 4.4. Seen as a multi-agent game, chess is deterministic, as a
single-agent game, it is stochastic.

▶ Observation 4.5. The real world is (of course) a partially observable,
stochastic, sequential, dynamic, continuous, and multi-agent environment.(worst
case for AI)

▶ Preview: We will concentrate on the “easy” environment types (fully
observable, deterministic, episodic, static, and single-agent) in AI-1 and extend
them to “realworld”-compatible ones in AI-2.

Michael Kohlhase: Artificial Intelligence 1 101 2025-02-06

Environment Types (Examples)
▶ Example 4.6. Some environments classified:

Solitaire Backgammon Internet shopping Taxi
fully observable No Yes No No
deterministic Yes No Partly No
episodic No Yes No No
static Yes Semi Semi No
discrete Yes Yes Yes No
single-agent Yes No Yes (except auctions) No

▶ Note: Take the example above with a grain of salt. There are often multiple
interpretations that yield different classifications and different agents. (agent
designer’s choice)

▶ Example 4.7. Seen as a multi-agent game, chess is deterministic, as a
single-agent game, it is stochastic.

▶ Observation 4.8. The real world is (of course) a partially observable,
stochastic, sequential, dynamic, continuous, and multi-agent environment.(worst
case for AI)

▶ Preview: We will concentrate on the “easy” environment types (fully
observable, deterministic, episodic, static, and single-agent) in AI-1 and extend
them to “realworld”-compatible ones in AI-2.

Michael Kohlhase: Artificial Intelligence 1 101 2025-02-06

Environment Types (Examples)
▶ Example 4.9. Some environments classified:

Solitaire Backgammon Internet shopping Taxi
fully observable No Yes No No
deterministic Yes No Partly No
episodic No Yes No No
static Yes Semi Semi No
discrete Yes Yes Yes No
single-agent Yes No Yes (except auctions) No

▶ Note: Take the example above with a grain of salt. There are often multiple
interpretations that yield different classifications and different agents. (agent
designer’s choice)

▶ Example 4.10. Seen as a multi-agent game, chess is deterministic, as a
single-agent game, it is stochastic.

▶ Observation 4.11. The real world is (of course) a partially observable,
stochastic, sequential, dynamic, continuous, and multi-agent environment.(worst
case for AI)

▶ Preview: We will concentrate on the “easy” environment types (fully
observable, deterministic, episodic, static, and single-agent) in AI-1 and extend
them to “realworld”-compatible ones in AI-2.

Michael Kohlhase: Artificial Intelligence 1 101 2025-02-06

5.5 Types of Agents

Michael Kohlhase: Artificial Intelligence 1 101 2025-02-06

Agent Types

▶ Observation: So far we have described (and analyzed) agents only by their
behavior (cf. agent function f : P∗ →A).

▶ Problem: This does not help us to build agents. (the goal of AI)
▶ To build an agent, we need to fix an agent architecture and come up with an

agent program that runs on it.
▶ Preview: Four basic types of agent architectures in order of increasing

generality:
1. simple reflex agents
2. model-based agents
3. goal-based agents
4. utility-based agents

All these can be turned into learning agents.

Michael Kohlhase: Artificial Intelligence 1 102 2025-02-06

Simple reflex agents

▶ Definition 5.1. A simple reflex agent is an agent a that only bases its actions
on the last percept: so the agent function simplifies to f a : P →A.

▶ Agent Schema:
Section 2.4. The Structure of Agents 49

Agent
E

n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

▶ Example 5.2 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
if status = Dirty then . . .

Michael Kohlhase: Artificial Intelligence 1 103 2025-02-06

Simple reflex agents (continued)

▶ General Agent Program:
function Simple−Reflex−Agent (percept) returns an action

persistent: rules /∗ a set of condition−action rules∗/

state := Interpret−Input(percept)
rule := Rule−Match(state,rules)
action := Rule−action[rule]
return action

▶ Problem: Simple reflex agents can only react to the perceived state of the
environment, not to changes.

▶ Example 5.3. Automobile tail lights signal braking by brightening. A simple
reflex agent would have to compare subsequent percepts to realize.

▶ Problem: Partially observable environments get simple reflex agents into
trouble.

▶ Example 5.4. Vacuum cleaner robot with defective location sensor ; infinite
loops.

Michael Kohlhase: Artificial Intelligence 1 104 2025-02-06

Model-based Reflex Agents: Idea

▶ Idea: Keep track of the state of the world we cannot see in an internal model.
▶ Agent Schema:

Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

Michael Kohlhase: Artificial Intelligence 1 105 2025-02-06

Model-based Reflex Agents: Definition

▶ Definition 5.5. A model-based agent is an agent whose actions depend on
▶ a world model: a set S of possible states.
▶ a sensor model S that given a state s and a percepts p determines a new state

S(s, p).
▶ a transition model T , that predicts a new state T (s, a) from a state s and an action

a.
▶ An action function f that maps (new) states to an actions.

If the world model of a model-based agent A is in state s and A has taken action
a, A will transition to state s ′ = T (S(p, s), a) and take action a′ = f (s ′).

▶ Note: As different percept sequences lead to different states, so the agent
function f a : P∗ →A no longer depends only on the last percept.

▶ Example 5.6 (Tail Lights Again). Model-based agents can do the ?? if the
states include a concept of tail light brightness.

Michael Kohlhase: Artificial Intelligence 1 106 2025-02-06

Model-Based Agents (continued)

▶ Observation 5.7. The agent program for a model-based agent is of the
following form:

function Model−Based−Agent (percept) returns an action
var state /∗ a description of the current state of the world ∗/
persistent rules /∗ a set of condition−action rules ∗/
var action /∗ the most recent action, initially none ∗/

state := Update−State(state,action,percept)
rule := Rule−Match(state,rules)
action := Rule−action(rule)
return action

▶ Problem: Having a world model does not always determine what to do
(rationally).

▶ Example 5.8. Coming to an intersection, where the agent has to decide
between going left and right.

Michael Kohlhase: Artificial Intelligence 1 107 2025-02-06

Goal-based Agents

▶ Problem: A world model does not always determine what to do (rationally).
▶ Observation: Having a goal in mind does! (determines future actions)
▶ Agent Schema:

52 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from

Michael Kohlhase: Artificial Intelligence 1 108 2025-02-06

Goal-based agents (continued)

▶ Definition 5.9. A goal-based agent is a model-based agent with transition
model T that deliberates actions based on 3 and a world model: It employs
▶ a set G of goals and a goal function f that given a (new) state s ′ selects an action a

to best reach G.

The action function is then s 7→ f (T (s),G).
▶ Observation: A goal-based agent is more flexible in the knowledge it can

utilize.
▶ Example 5.10. A goal-based agent can easily be changed to go to a new

destination, a model-based agent’s rules make it go to exactly one destination.

Michael Kohlhase: Artificial Intelligence 1 109 2025-02-06

Utility-based Agents

▶ Definition 5.11. A utility-based agent uses a world model along with a utility
function that models its preferences among the states of that world. It chooses
the action that leads to the best expected utility.

▶ Agent Schema:
54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

Michael Kohlhase: Artificial Intelligence 1 110 2025-02-06

Utility-based vs. Goal-based Agents

▶ Question: What is the difference between goal-based and utility-based agents?
▶ Utility-based Agents are a Generalization: We can always force

goal-directedness by a utility function that only rewards goal states.
▶ Goal-based Agents can do less: A utility function allows rational decisions

where mere goals are inadequate:
▶ conflicting goals (utility gives tradeoff to make rational decisions)
▶ goals obtainable by uncertain actions (utility × likelihood helps)

Michael Kohlhase: Artificial Intelligence 1 111 2025-02-06

Learning Agents

▶ Definition 5.12. A learning agent is an agent that augments the performance
element – which determines actions from percept sequences with
▶ a learning element which makes improvements to the agent’s components,
▶ a critic which gives feedback to the learning element based on an external

performance standard,
▶ a problem generator which suggests actions that lead to new and informative

experiences.
▶ The performance element is what we took for the whole agent above.

Michael Kohlhase: Artificial Intelligence 1 112 2025-02-06

Learning Agents
▶ Agent Schema:

Section 2.4. The Structure of Agents 55

Performance standard

Agent

E
n
v
iro

n
m

en
t

Sensors

Performance
element

changes

knowledge

learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

Michael Kohlhase: Artificial Intelligence 1 113 2025-02-06

Learning Agents: Example

▶ Example 5.13 (Learning Taxi Agent). It has the components
▶ Performance element: the knowledge and procedures for selecting driving actions.

(this controls the actual driving)
▶ critic: observes the world and informs the learning element (e.g. when passengers

complain brutal braking)
▶ Learning element modifies the braking rules in the performance element (e.g.

earlier, softer)
▶ Problem generator might experiment with braking on different road surfaces

▶ The learning element can make changes to any “knowledge components” of the
diagram, e.g. in the
▶ model from the percept sequence (how the world evolves)
▶ success likelihoods by observing action outcomes (what my actions do)

▶ Observation: here, the passenger complaints serve as part of the “external
performance standard” since they correlate to the overall outcome – e.g. in form
of tips or blacklists.

Michael Kohlhase: Artificial Intelligence 1 114 2025-02-06

Domain-Specific vs. General Agents

▶
Domain-Specific Agent vs. General Agent

vs.
Solver specific to a particular prob-
lem (“domain”).

vs. Solver based on description in a
general problem-description language
(e.g., the rules of any board game).

More efficient. vs. Much less design/maintenance work.
▶ What kind of agent are you?

Michael Kohlhase: Artificial Intelligence 1 115 2025-02-06

5.6 Representing the Environment in Agents

Michael Kohlhase: Artificial Intelligence 1 115 2025-02-06

Representing the Environment in Agents

▶ We have seen various components of agents that answer questions like
▶ What is the world like now?
▶ What action should I do now?
▶ What do my actions do?

▶ Next natural question: How do these work? (see the rest of the course)

▶ Important Distinction: How the agent implements the world model.
▶ Definition 6.1. We call a state representation

▶ atomic, iff it has no internal structure (black box)
▶ factored, iff each state is characterized by attributes and their values.
▶ structured, iff the state includes representations of objects, their properties and

relationships.
▶ Intuition: From atomic to structured, the representations agent designer more

flexibility and the algorithms more components to process.
▶ Also The additional internal structure will make the algorithms more complex.

Michael Kohlhase: Artificial Intelligence 1 116 2025-02-06

Representing the Environment in Agents

▶ We have seen various components of agents that answer questions like
▶ What is the world like now?
▶ What action should I do now?
▶ What do my actions do?

▶ Next natural question: How do these work? (see the rest of the course)
▶ Important Distinction: How the agent implements the world model.
▶ Definition 6.2. We call a state representation

▶ atomic, iff it has no internal structure (black box)
▶ factored, iff each state is characterized by attributes and their values.
▶ structured, iff the state includes representations of objects, their properties and

relationships.

▶ Intuition: From atomic to structured, the representations agent designer more
flexibility and the algorithms more components to process.

▶ Also The additional internal structure will make the algorithms more complex.

Michael Kohlhase: Artificial Intelligence 1 116 2025-02-06

Representing the Environment in Agents

▶ We have seen various components of agents that answer questions like
▶ What is the world like now?
▶ What action should I do now?
▶ What do my actions do?

▶ Next natural question: How do these work? (see the rest of the course)
▶ Important Distinction: How the agent implements the world model.
▶ Definition 6.3. We call a state representation

▶ atomic, iff it has no internal structure (black box)
▶ factored, iff each state is characterized by attributes and their values.
▶ structured, iff the state includes representations of objects, their properties and

relationships.
▶ Intuition: From atomic to structured, the representations agent designer more

flexibility and the algorithms more components to process.
▶ Also The additional internal structure will make the algorithms more complex.

Michael Kohlhase: Artificial Intelligence 1 116 2025-02-06

Atomic/Factored/Structured State Representations
▶ Schematically: We can visualize the three kinds by

B C

(a) Atomic (b) Factored (b) Structured

B C

▶ Example 6.4. Consider the problem of finding a driving route from one end of
a country to the other via some sequence of cities.
▶ In an atomic representation the state is represented by the name of a city.

▶ In a factored representation we may have attributes “gps-location”, “gas”,. . . (allows
information sharing between states and uncertainty)

▶ But how to represent a situation, where a large truck blocking the road, since it is
trying to back into a driveway, but a loose cow is blocking its path. (attribute
“TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow” is unlikely)

▶ In a structured representation, we can have objects for trucks, cows, etc. and their
relationships. (at “run-time”)

Michael Kohlhase: Artificial Intelligence 1 117 2025-02-06

Atomic/Factored/Structured State Representations
▶ Schematically: We can visualize the three kinds by

B C

(a) Atomic (b) Factored (b) Structured

B C

▶ Example 6.5. Consider the problem of finding a driving route from one end of
a country to the other via some sequence of cities.
▶ In an atomic representation the state is represented by the name of a city.
▶ In a factored representation we may have attributes “gps-location”, “gas”,. . . (allows

information sharing between states and uncertainty)
▶ But how to represent a situation, where a large truck blocking the road, since it is

trying to back into a driveway, but a loose cow is blocking its path. (attribute
“TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow” is unlikely)

▶ In a structured representation, we can have objects for trucks, cows, etc. and their
relationships. (at “run-time”)

Michael Kohlhase: Artificial Intelligence 1 117 2025-02-06

Atomic/Factored/Structured State Representations
▶ Schematically: We can visualize the three kinds by

B C

(a) Atomic (b) Factored (b) Structured

B C

▶ Example 6.6. Consider the problem of finding a driving route from one end of
a country to the other via some sequence of cities.
▶ In an atomic representation the state is represented by the name of a city.
▶ In a factored representation we may have attributes “gps-location”, “gas”,. . . (allows

information sharing between states and uncertainty)
▶ But how to represent a situation, where a large truck blocking the road, since it is

trying to back into a driveway, but a loose cow is blocking its path. (attribute
“TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow” is unlikely)

▶ In a structured representation, we can have objects for trucks, cows, etc. and their
relationships. (at “run-time”)

Michael Kohlhase: Artificial Intelligence 1 117 2025-02-06

5.7 Rational Agents: Summary

Michael Kohlhase: Artificial Intelligence 1 117 2025-02-06

Summary

▶ Agents interact with environments through actuators and sensors.
▶ The agent function describes what the agent does in all circumstances.
▶ The performance measure evaluates the environment sequence.
▶ A perfectly rational agent maximizes expected performance.
▶ Agent programs implement (some) agent functions.
▶ PEAS descriptions define task environments.
▶ Environments are categorized along several dimensions:

fully observable? deterministic? episodic? static? discrete? single-agent?
▶ Several basic agent architectures exist:

reflex, model-based, goal-based, utility-based

Michael Kohlhase: Artificial Intelligence 1 118 2025-02-06

Corollary: We are Agent Designers!

▶ State: We have seen (and will add more details to) different
▶ agent architectures,
▶ corresponding agent programs and algorithms, and
▶ world representation paradigms.

▶ Problem: Which one is the best?

▶ Answer: That really depends on the environment type they have to
survive/thrive in! The agent designer – i.e. you – has to choose!

▶ The course gives you the necessary competencies.
▶ There is often more than one reasonable choice.
▶ Often we have to build agents and let them compete to see

what really works.
▶ Consequence: The rational agents paradigm used in this course challenges

you to become a good agent designer.

Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

Corollary: We are Agent Designers!

▶ State: We have seen (and will add more details to) different
▶ agent architectures,
▶ corresponding agent programs and algorithms, and
▶ world representation paradigms.

▶ Problem: Which one is the best?
▶ Answer: That really depends on the environment type they have to

survive/thrive in! The agent designer – i.e. you – has to choose!

▶ The course gives you the necessary competencies.
▶ There is often more than one reasonable choice.
▶ Often we have to build agents and let them compete to see

what really works.
▶ Consequence: The rational agents paradigm used in this course challenges

you to become a good agent designer.

Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

References I

[Cho65] Noam Chomsky. Syntactic structures. Den Haag: Mouton, 1965.

[CM85] Eugene Charniak and Drew McDermott. Introduction to Artificial
Intelligence. Addison Wesley, 1985.

[Fis] John R. Fisher. prolog :- tutorial. url:
https://saksagan.ceng.metu.edu.tr/courses/ceng242/
documents/prolog/jrfisher/contents.html (visited on
10/29/2024).

[Fla94] Peter Flach. Wiley, 1994. isbn: 0471 94152 2. url:
https://github.com/simply-logical/simply-
logical/releases/download/v1.0/SL.pdf.

[GJ79] Michael R. Garey and David S. Johnson. Computers and
Intractability—A Guide to the Theory of NP-Completeness. BN book:
Freeman, 1979.

[Hau85] John Haugeland. Artificial intelligence: the very idea. Massachusetts
Institute of Technology, 1985.

Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

https://saksagan.ceng.metu.edu.tr/courses/ceng242/documents/prolog/jrfisher/contents.html
https://saksagan.ceng.metu.edu.tr/courses/ceng242/documents/prolog/jrfisher/contents.html
https://github.com/simply-logical/simply-logical/releases/download/v1.0/SL.pdf
https://github.com/simply-logical/simply-logical/releases/download/v1.0/SL.pdf

References II

[Kow97] Robert Kowalski. “Algorithm = Logic + Control”. In: Communications
of the Association for Computing Machinery 22 (1997), pp. 424–436.

[Kur90] Ray Kurzweil. The Age of Intelligent Machines. MIT Press, 1990. isbn:
0-262-11121-7.

[LPN] Learn Prolog Now! url: http://lpn.swi-prolog.org/ (visited on
10/10/2019).

[LS93] George F. Luger and William A. Stubblefield. Artificial Intelligence:
Structures and Strategies for Complex Problem Solving. World Student
Series. The Benjamin/Cummings, 1993. isbn: 9780805347852.

[SWI] SWI Prolog Reference Manual. url:
https://www.swi-prolog.org/pldoc/refman/ (visited on
10/10/2019).

[Tur50] Alan Turing. “Computing Machinery and Intelligence”. In: Mind 59
(1950), pp. 433–460.

Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

http://lpn.swi-prolog.org/
https://www.swi-prolog.org/pldoc/refman/

	3 Logic Programming
	3.1 Introduction to Logic Programming and ProLog
	3.2 Programming as Search
	3.2.1 Knowledge Bases and Backtracking
	3.2.2 Programming Features
	3.2.3 Advanced Relational Programming

	4 Recap of Prerequisites from Math & Theoretical Computer Science
	4.1 Recap: Complexity Analysis in AI?
	4.2 Recap: Formal Languages and Grammars
	4.3 Mathematical Language Recap

	5 Rational Agents: a Unifying Framework for Artificial Intelligence
	5.1 Introduction: Rationality in Artificial Intelligence
	5.2 Agents and Environments as a Framework for AI
	5.3 Good Behavior Rationality
	5.4 Classifying Environments
	5.5 Types of Agents
	5.6 Representing the Environment in Agents
	5.7 Rational Agents: Summary
	References

