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0.1. PREFACE i

0.1 Preface

Disclaimer: This document is adapted from the notes for the course of the same name by Prof.
Dr. Michael Kohlhase. It should be assumed by default that all credit goes primarily to him;
whereas all mistakes should be assumed to be mine.

0.1.1 Course Concept

Objective: The course aims at giving students a solid (and often somewhat theoretically ori-
ented) foundation of the basic concepts and practices of artificial intelligence. The course will
predominantly cover symbolic AI – also sometimes called “good old-fashioned AI (GofAI)” – in
the first semester and offers the very foundations of statistical approaches in the second. Indeed, a
full account sub symbolic, machine learning based AI deserves its own specialization courses and
needs much more mathematical prerequisites than we can assume in this course.
Context: The course “Artificial Intelligence” (AI 1 & 2) at FAU Erlangen is a two-semester
course in the “Wahlpflichtbereich” (specialization phase) in semesters 5/6 of the Bachelor program
“Computer Science” at FAU Erlangen. It is also available as a (somewhat remedial) course in the
“Vertiefungsmodul Künstliche Intelligenz” in the Computer Science Master’s program.
Prerequisites: AI-1 & 2 builds on the mandatory courses in the FAU Bachelor’s program, in
particular the course “Grundlagen der Logik in der Informatik” [Glo], which already covers a lot
of the materials usually presented in the “knowledge and reasoning” part of an introductory AI
course. The AI 1& 2 course also minimizes overlap with the course.

The course is relatively elementary, we expect that any student who attended the mandatory
CS courses at FAU Erlangen can follow it.
Open to external students:

Other Bachelor programs are increasingly co-opting the course as specialization option. There
is no inherent restriction to computer science students in this course. Students with other study
biographies – e.g. students from other Bachelor programs our external Master’s students should
be able to pick up the prerequisites when needed.

0.1.2 Course Contents

Goal: To give students a solid foundation of the basic concepts and practices of the field of
Artificial Intelligence. The course will be based on Russell/Norvig’s book “Artificial Intelligence;
A modern Approach” [RN09]
Artificial Intelligence I (the first semester): introduces AI as an area of study, discusses
“rational agents” as a unifying conceptual paradigm for AI and covers problem solving, search,
constraint propagation, logic, knowledge representation, and planning.
Artificial Intelligence II (the second semester): is more oriented towards exposing students
to the basics of statistically based AI: We start out with reasoning under uncertainty, setting the
foundation with Bayesian Networks and extending this to rational decision theory. Building on
this we cover the basics of machine learning.

0.1.3 This Document

Format: The document mixes the slides presented in class with comments of the instructor to
give students a more complete background reference.
Caveat: This document is made available for the students of this course only. It is still very
much a draft and will develop over the course of the current course and in coming academic
years. Licensing: This document is licensed under a Creative Commons license that requires
attribution, allows commercial use, and allows derivative works as long as these are licensed
under the same license. Knowledge Representation Experiment: This document is also
an experiment in knowledge representation. Under the hood, it uses the STEX package [Koh08;
sTeX], a TEX/LATEX extension for semantic markup, which allows to export the contents into
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active documents that adapt to the reader and can be instrumented with services based on the
explicitly represented meaning of the documents.

0.1.4 Acknowledgments
Materials: Most of the materials in this course is based on Russel/Norvik’s book “Artificial
Intelligence — A Modern Approach” (AIMA [RN95]). Even the slides are based on a LATEX-based
slide set, but heavily edited. The section on search algorithms is based on materials obtained from
Bernhard Beckert (then Uni Koblenz), which is in turn based on AIMA. Some extensions have
been inspired by an AI course by Jörg Hoffmann and Wolfgang Wahlster at Saarland University
in 2016. Finally Dennis Müller suggested and supplied some extensions on AGI. Florian Rabe,
Max Rapp and Katja Berčič have carefully re-read the text and pointed out problems.

All course materials have bee restructured and semantically annotated in the STEX format, so
that we can base additional semantic services on them.
AI Students: The following students have submitted corrections and suggestions to this and
earlier versions of the notes: Rares Ambrus, Ioan Sucan, Yashodan Nevatia, Dennis Müller, Si-
mon Rainer, Demian Vöhringer, Lorenz Gorse, Philipp Reger, Benedikt Lorch, Maximilian Lösch,
Luca Reeb, Marius Frinken, Peter Eichinger, Oskar Herrmann, Daniel Höfer, Stephan Mattejat,
Matthias Sonntag, Jan Urfei, Tanja Würsching, Adrian Kretschmer, Tobias Schmidt, Maxim On-
ciul, Armin Roth, Liam Corona, Tobias Völk, Lena Voigt, Yinan Shao, Michael Girstl, Matthias
Vietz, Anatoliy Cherepantsev, Stefan Musevski, Matthias Lobenhofer, Philipp Kaludercic, Di-
warkara Reddy, Martin Helmke, Stefan Müller, Dominik Mehlich, Paul Martini, Vishwang Dave,
Arthur Miehlich, Christian Schabesberger, Vishaal Saravanan, Simon Heilig, Michelle Fribrance,
Wenwen Wang, Xinyuan Tu, Lobna Eldeeb.

0.1.5 Recorded Syllabus
The recorded syllabus – a record the progress of the course in the academic year 2024– is in

the course page in the ALeA system at https://courses.voll-ki.fau.de/course-home/ai-1.
The table of contents in the AI-2 notes at https://courses.voll-ki.fau.de indicates the ma-
terial covered to date in yellow.

The recorded syllabus of AI-2 can be found at https://courses.voll-ki.fau.de/course-home/
ai-2. For the topics planned for this course, see subsection 0.1.2.

https://courses.voll-ki.fau.de/course-home/ai-1
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-2
https://courses.voll-ki.fau.de/course-home/ai-2
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Chapter 1

Administrativa

We will now go through the ground rules for the course. This is a kind of a social contract
between the instructor and the students. Both have to keep their side of the deal to make learning
as efficient and painless as possible.

About this course...

� AI1 and AI2 are “traditionally” taught by Prof. Michael Kohlhase (since 2016, on sabbatical
this semester)

� This is the first time I’m teaching AI2 as a lecturer! ,

But I’ve been a member of Prof. Kohlhase’s research group since 2015 (Ph.D. 2019)

⇒ I’m familiar with the course content (Lead TA 2016 – 2019)

⇒ I’ve adopted and adapted his course material. The topics are the same, but I changed some
notations, clarified and changed some definitions, restructured some parts (Hopefully for the
better!)

⇒ Feel free to check out older versions of the course material but don’t rely on them entirely
(especially for exam prep!)

Also: I’m working on my habilitation currently

⇒ Teaching this course is part of that

⇒ Please take the course evaluation seriously ;) (I’m still learning and it helps me improve!)

Dennis Müller: Artificial Intelligence 2 1 2024-05-24

Dates, Links, Materials

� Lectures: Tuesday 16:15 – 17:45 H9, Thursday 10:15 – 11:45 H8

� Tutorials:

� Friday 10:15 – 11:45 Room 11501.02.019

� Friday 14:15 – 15:45 Zoom: https://fau.zoom.us/j/97169402146

� Monday 12:15 – 13:45 Room H4

1

http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IE/lselek/e211&anonymous=1&founds=tech/IE/lselek/e211&ref=main&sem=2024s&__e=823
https://fau.zoom.us/j/97169402146
http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/zentr/zentr/h4&anonymous=1&founds=rw/serw/wirau/h4,tech/zentr/zentr/h4&ref=main&sem=2024s&__e=833
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� Tuesday 08:15 – 09:45 Room 11302.02.134-113

(Starting thursday in week 2 (25.04.2024))

� studon: https://www.studon.fau.de/studon/goto.php?target=crs_5645530 (Used
for announcements, e.g. homeworks, and homework submissions)

� Video streams / recordings: https://www.fau.tv/course/id/3816

� Lecture notes / slides / exercises: https://kwarc.info/teaching/AI/ (Most
importantly: notes2.pdf and slides2.pdf)

� ALeA: https://courses.voll-ki.fau.de/course-home/ai-2: Lecture notes, forum,
tuesday quizzes, flashcards,...

Textbook: Russel/Norvig: Artificial Intelligence, A modern Approach [RN09]. Make sure that
you read the edition ≥ 3 ⇝vastly improved over ≤ 2.

Dennis Müller: Artificial Intelligence 2 2 2024-05-24

AI-2 Homework Assignments
Homework Assignments: Every thursday (starting in the second week)

Small individual problem/programming/proof tasks

Homeworks give no bonus points, but without trying you are unlikely to pass the exam.

Homework/Tutorial Discipline:

� Start early! (many assignments need more than one evening’s work)

� Don’t start by sitting at a blank screen (talking & study group help)

� Humans will be trying to understand the text/code/math when grading it. (For those that
do get graded – see later)

� Go to the tutorials, discuss with your TA! (they are there for you!)

� Homeworks will be posted on kwarc.info/teaching/AI/assignments. (Announced on
studon)

� Sign up for AI-2 under https://www.studon.fau.de/crs4941850.html.

� Homeworks are handed in electronically there. (plain text, program files, PDF)

� Do not sign up for the “AI-2 Übungen” on StudOn (we do not use them)

Dennis Müller: Artificial Intelligence 2 3 2024-05-24

It is very well-established experience that without doing the homework assignments (or something
similar) on your own, you will not master the concepts, you will not even be able to ask sensible
questions, and take very little home from the course. Just sitting in the course and nodding is
not enough! If you have questions please make sure you discuss them with the instructor, the
teaching assistants, or your fellow students. There are three sensible venues for such discussions:
online in the lecture, in the tutorials, which we discuss now, or in the course forum – see below.
Finally, it is always a very good idea to form study groups with your friends.

http://univis.uni-erlangen.de/form?__s=2&dsc=anew/room_view&rooms=tech/IMMD/zentr/021341&anonymous=1&founds=tech/IMMD/zentr/021341&ref=main&sem=2024s&__e=823
https://www.studon.fau.de/studon/goto.php?target=crs_5645530
https://www.fau.tv/course/id/3816
https://kwarc.info/teaching/AI/
https://courses.voll-ki.fau.de/course-home/ai-2
https://kwarc.info/teaching/AI/assignments/
kwarc.info/teaching/AI/assignments
https://www.studon.fau.de/crs4941850.html
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Tutorials for Artificial Intelligence 1
Weekly tutorials starting in week two – Lead TA: Florian Rabe (KWARC Postdoc, Privat-

dozent) (Room: 11.137 @ Händler building,
florian.rabe@fau.de)

The tutorials:

� reinforce what was taught in class.

� allow you to ask any question you have in a protected environment.

� discuss the (solutions to) homework assignments

Caveat: We cannot grade all submissions :( (too many students, too few TAs)
Group submission has not worked well in the past (too many freeloaders)
Likely solution: We will grade one exercise per week – but you should attempt all of them!

Life-saving advice: Go to your tutorial, and prepare for it by having looked at the slides and
the homework assignments!

Doing your homework is probably even more important (and predictive of exam success) than
attending the lecture!

Dennis Müller: Artificial Intelligence 2 4 2024-05-24

Tuesday Quizzes
Tuesday Quizzes: Every tuesday we start the lecture with a 10 min online quiz – the tuesday
quiz – about the material from the previous week. (starts in week 2) Motivations: We do this

to

� keep you prepared and working continuously. (primary)

� update the ALeA learner model (fringe benefit)

� give bonus points for the exam! (as an incentive)

florian.rabe@fau.de
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The tuesday quiz will be given in the ALeA system

� https://courses.voll-ki.fau.de/quiz-dash/ai-2

� You have to be logged into ALeA!

� You can take the quiz on your laptop or phone, . . .

� . . . in the lecture or at home . . .

� . . . via WLAN or 4G Network. (do not overload)

� Quizzes will only be available 16:15-16:25!

Dennis Müller: Artificial Intelligence 2 5 2024-05-24

Now we come to a topic that is always interesting to the students: the grading scheme.

Assessment, Grades

� Overall (Module) Grade:

� Grade via the exam (Klausur) ; 100% of the grade.

� Up to 10% bonus on-top for an exam with ≥ 50% points. (≤ 50% ; no bonus)

� Bonus points =̂ percentage sum of the best 10 tuesday quizzes divided by 100.

� Exam: 90 minutes exam conducted in presence on paper (∼ Oct. 1. 2023)

� Retake Exam: 90 min exam six months later (∼ April 1. 2024)

� You have to register for exams in campo in the first month of classes.

� Note: You can de-register from an exam on campo up to three working days before.

Dennis Müller: Artificial Intelligence 2 6 2024-05-24

Due to the current AI hype, the course Artificial Intelligence is very popular and thus many
degree programs at FAU have adopted it for their curricula. Sometimes the course setup that fits
for the CS program does not fit the other’s very well, therefore there are some special conditions.
I want to state here.

Special Admin Conditions

� Some degree programs do not “import” the course Artificial Intelligence, and thus you may

https://courses.voll-ki.fau.de/quiz-dash/ai-2
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not be able to register for the exam via https://campus.fau.de.

� Just send me an e-mail and come to the exam, we will issue a “Schein”.

� Tell your program coordinator about AI-1/2 so that they remedy this situation

� In “Wirtschafts-Informatik” you can only take AI-1 and AI-2 together in the “Wahlpflichtbere-
ich”.

� ECTS credits need to be divisible by five ⇝7.5 + 7.5 = 15.

Dennis Müller: Artificial Intelligence 2 7 2024-05-24

I can only warn of what I am aware, so if your degree program lets you jump through extra hoops,
please tell me and then I can mention them here.

The ALeA System

Dennis Müller: Artificial Intelligence 2 8 2024-05-24

Prerequisites

� Remember: AI-1 dealt with situations with “complete information” and strictly computable,
“perfect” solutions to problems. (i.e. tree search, logical inference, planning, etc.)

� AI-2 will focus on probabilistic scenarios by introducing uncertain situations, and approximate
solutions to problems. (Bayesian networks, Markov models, machine learning, etc.)

The following should therefore be seen as “weak prerequisites”:

� AI-1 (in particular: PEAS, propositional logic/first-order logic (mostly the syntax), some
logic programming)

� (very) elementary complexity theory. (big Oh and friends)

� rudimentary probability theory (e.g. from stochastics)

� basic linear algebra (vectors, matrices,...)

� basic real analysis (primarily:(partial) derivatives)

Meaning: I will assume you know these things, but some of them we will recap, and what
you don’t know will make things slightly harder for you, but by no means prohibitively difficult.

Dennis Müller: Artificial Intelligence 2 9 2024-05-24

“Strict” Prerequisites

� Mathematical Literacy: Mathematics is the language that computer scientists express their
ideas in (“A search problem is a tuple (N,S,G, ...) such that...”)

Note: This is a skill that can be learned, and more importantly, practiced! Not having/honing
this skill will make things more difficult for you. Be aware of this and, if necessary, work on it –
it will pay off, not only in this course.

https://campus.fau.de
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� motivation, interest, curiosity, hard work. (AI-2 is non-trivial)

Note: Grades correlate significantly with invested effort; including, but not limited to: time
spent on exercises, being here, asking questions, talking to your peers,...

Dennis Müller: Artificial Intelligence 2 10 2024-05-24

What you should learn here...

� In the broadest sense: A bunch of tools for your toolchest (i.e. various
(quasi-mathematical) models, first and foremost)

� the underlying principles of these models (assumptions, limitations, the math behind them
...)

� the ability to describe real-world problems in terms of these models, where adequate
(...and knowing when they are adequate!), and

� the ideas behind effective algorithms that solve these problems (and to understand them
well enough to implement them)

Note: You will likely never get payed to implement an algorithm that e.g. solves Bayesian
networks. (They already exist)

But you might get payed to recognize that some given problem can be represented as a
Bayesian network!

Or: you can recognize that it is similar to a Bayesian network, and reuse the underlying
principles to develop new specialized tools.

Dennis Müller: Artificial Intelligence 2 11 2024-05-24

In other words: Many things you learn here are means to an end (e.g. understanding the under-
lying ideas behind algorithms), not the end itself. But the best way to understand these means is
to first treat them as an end in themselves.

Compare two employees

“We have the following problem and we need a solution: ...”

Employee 1: Deep Learning can do everything: “I just need ≈1.5 million labeled examples
of potentially sensitive data, a GPU cluster for training, and a few weeks to train, tweak and
finetune the model.

But then I can solve the problem... with a confidence of 95%, within 40 seconds of inference
per input. Oh, as long as the input isn’t longer than 15unit, or I will need to retrain on a bigger
input layer...”

Employee 2: “...while you were talking, I quickly built a custom UI for an off-the-shelve
<problem> solver that runs on a medium-sized potato and returns a provably correct result
in a few milliseconds. For inputs longer than 1000unit, you might need a slightly bigger potato
though...”

Moral of the story: Know your tools well enough to select the right one for the job.
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Obviously, that is not to say that machine learning is not a useful tool! (It is!)
If your job is to e.g. filter customer support requests, or to recognize cats in pictures, trying to

write a prolog program from scratch is probably the wrong approach: Just use a language model
/ image model and finetune it on a classification head.

But it is also not the only tool, and it is not always the right tool for the job – despite what
some people might tell you. And even in scenarios where machine learning can yield decent results,
it is not always the best tool. (Some people care about efficiency, explainability, etc ;))
Do use the opportunity to discuss the AI-2 topics with others. After all, one of the non-trivial
skills you want to learn in the course is how to talk about Artificial Intelligence topics. And that
takes practice, practice, and practice.
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Chapter 2

Overview over AI and Topics of AI-II

We restart the new semester by reminding ourselves of (the problems, methods, and issues of)
Artificial Intelligence, and what has been achived so far.

2.1 What is Artificial Intelligence?
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21701.
The first question we have to ask ourselves is “What is Artificial Intelligence?”, i.e. how can we
define it. And already that poses a problem since the natural definition like human intelligence,
but artificially realized presupposes a definition of intelligence, which is equally problematic; even
Psychologists and Philosophers – the subjects nominally “in charge” of natural intelligence – have
problems defining it, as witnessed by the plethora of theories e.g. found at [WHI].

What is Artificial Intelligence? Definition
� Definition 2.1.1 (According to

Wikipedia). Artificial Intelligence (AI)
is intelligence exhibited by machines

� Definition 2.1.2 (also). Artificial Intelli-
gence (AI) is a sub-field of computer science
that is concerned with the automation of in-
telligent behavior.

� BUT: it is already difficult to define intel-
ligence precisely.

� Definition 2.1.3 (Elaine Rich). Artificial
Intelligence (AI) studies how we can make
the computer do things that humans can still
do better at the moment.

Dennis Müller: Artificial Intelligence 2 13 2024-05-24

Maybe we can get around the problems of defining “what artificial intelligence is”, by just describing
the necessary components of AI (and how they interact). Let’s have a try to see whether that is
more informative.

What is Artificial Intelligence? Components

9

https://fau.tv/clip/id/21701
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� Elaine Rich: AI studies how we can make the computer do things that humans can still do
better at the moment.

� This needs a combination of

the ability to learn

Inference

Perception

Language understanding

Emotion
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Dennis Müller: Artificial Intelligence 2 14 2024-05-24

Note that list of components is controversial as well. Some say that it lumps together cognitive
capacities that should be distinguished or forgets others, . . . . We state it here much more to get
AI-2 students to think about the issues than to make it normative.

2.2 Artificial Intelligence is here today!
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21697.
The components of Artificial Intelligence are quite daunting, and none of them are fully understood,
much less achieved artificially. But for some tasks we can get by with much less. And indeed that
is what the field of Artificial Intelligence does in practice – but keeps the lofty ideal around. This
practice of “trying to achieve AI in selected and restricted domains” (cf. the discussion starting
with slide ??) has borne rich fruits: systems that meet or exceed human capabilities in such areas.
Such systems are in common use in many domains of application.

Artificial Intelligence is here today!

https://fau.tv/clip/id/21697
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� in outer space

� in outer space systems
need autonomous con-
trol:

� remote control impos-
sible due to time lag

� in artificial limbs

� the user controls the
prosthesis via existing
nerves, can e.g. grip
a sheet of paper.

� in household appliances

� The iRobot Roomba
vacuums, mops, and
sweeps in corners, . . . ,
parks, charges, and
discharges.

� general robotic house-
hold help is on the
horizon.

� in hospitals

� in the USA 90% of the
prostate operations are
carried out by Ro-
boDoc

� Paro is a cuddly robot
that eases solitude in
nursing homes.

� for safety/security

� e.g. Intel verifies cor-
rectness of all chips af-
ter the “Pentium 5 dis-
aster”
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We will conclude this section with a note of caution.

The AI Conundrum

� Observation: Reserving the term “Artificial Intelligence” has been quite a land grab!

� But: researchers at the Dartmouth Conference (1956) really thought they would solve/reach
AI in two/three decades.

� Consequence: AI still asks the big questions.

� Another Consequence: AI as a field is an incubator for many innovative technologies.

� AI Conundrum: Once AI solves a subfield it is called “computer science”. (becomes a
separate subfield of CS)

� Example 2.2.1. Functional/Logic Programming, automated theorem proving, Planning,
machine learning, Knowledge Representation, . . .

� Still Consequence: AI research was alternatingly flooded with money and cut off brutally.
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The current AI Hype — Part of a longer Story

AI becomes
scarily effective,
ubiquitous

Excitement fades;
some applications
profit a lot

AI-bubble bursts,
the next AI winter
comes

1950 1960 1970 1980 1990 2000 2010 2021

Turing Test
Dartmouth Conference

Lighthill report

AI Winter 1
1974-1980

AI Winter 2
1987-1994

WWW ;
Data/-
Computing
Explosion

AI-conse-
quences,
Biases,
Regulation
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2.3 Ways to Attack the AI Problem

A Video Nugget covering this section can be found at https://fau.tv/clip/id/21717.
There are currently three main avenues of attack to the problem of building artificially intelligent
systems. The (historically) first is based on the symbolic representation of knowledge about the
world and uses inference-based methods to derive new knowledge on which to base action decisions.
The second uses statistical methods to deal with uncertainty about the world state and learning
methods to derive new (uncertain) world assumptions to act on.

https://fau.tv/clip/id/21717
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Four Main Approaches to Artificial Intelligence

� Definition 2.3.1. Symbolic AI is a subfield of AI based on the assumption that many
aspects of intelligence can be achieved by the manipulation of symbols, combining them into
meaning-carrying structures (expressions) and manipulating them (using processes) to produce
new expressions.

� Definition 2.3.2. Statistical AI remedies the two shortcomings of symbolic AI approaches:
that all concepts represented by symbols are crisply defined, and that all aspects of the world
are knowable/representable in principle. Statistical AI adopts sophisticated mathematical
models of uncertainty and uses them to create more accurate world models and reason about
them.

� Definition 2.3.3. Subsymbolic AI (also called connectionism or neural AI) is a subfield of
AI that posits that intelligence is inherently tied to brains, where information is represented
by a simple sequence pulses that are processed in parallel via simple calculations realized by
neurons, and thus concentrates on neural computing.

� Definition 2.3.4. Embodied AI posits that intelligence cannot be achieved by reasoning
about the state of the world (symbolically, statistically, or connectivist), but must be embodied
i.e. situated in the world, equipped with a “body” that can interact with it via sensors and
actuators. Here, the main method for realizing intelligent behavior is by learning from the
world.
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As a consequence, the field of Artificial Intelligence (AI) is an engineering field at the intersection
of computer science (logic, programming, applied statistics), cognitive science (psychology, neu-
roscience), philosophy (can machines think, what does that mean?), linguistics (natural language
understanding), and mechatronics (robot hardware, sensors).
Subsymbolic AI and in particular machine learning is currently hyped to such an extent, that
many people take it to be synonymous with “Artificial Intelligence”. It is one of the goals of this
course to show students that this is a very impoverished view.

Two ways of reaching Artificial Intelligence?

� We can classify the AI approaches by their coverage and the analysis depth (they are
complementary)

Deep symbolic not there yet
AI-1 cooperation?

Shallow no-one wants this statistical/sub symbolic
AI-2

Analysis ↑
vs. Narrow Wide

Coverage →

� This semester we will cover foundational aspects of symbolic AI (deep/narrow processing)
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� next semester concentrate on statistical/subsymbolic AI. (shallow/wide-coverage)
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We combine the topics in this way in this course, not only because this reproduces the historical
development but also as the methods of statistical and subsymbolic AI share a common basis.
It is important to notice that all approaches to AI have their application domains and strong points.
We will now see that exactly the two areas, where symbolic AI and statistical/subsymbolic AI
have their respective fortes correspond to natural application areas.

Environmental Niches for both Approaches to AI

� Observation: There are two kinds of applications/tasks in AI

� Consumer tasks: consumer grade applications have tasks that must be fully generic and
wide coverage. ( e.g. machine translation like Google Translate)

� Producer tasks: producer grade applications must be high-precision, but can be domain-
specific (e.g. multilingual documentation, machinery-control, program verification,
medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage

� General Rule: Subsymbolic AI is well suited for consumer tasks, while symbolic AI is better
suited for producer tasks.

� A domain of producer tasks I am interested in: mathematical/technical documents.
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An example of a producer task – indeed this is where the name comes from – is the case of a
machine tool manufacturer T , which produces digitally programmed machine tools worth multiple
million Euro and sells them into dozens of countries. Thus T must also comprehensive machine
operation manuals, a non-trivial undertaking, since no two machines are identical and they must
be translated into many languages, leading to hundreds of documents. As those manual share a lot
of semantic content, their management should be supported by AI techniques. It is critical that
these methods maintain a high precision, operation errors can easily lead to very costly machine
damage and loss of production. On the other hand, the domain of these manuals is quite restricted.
A machine tool has a couple of hundred components only that can be described by a comple of
thousand attribute only.

Indeed companies like T employ high-precision AI techniques like the ones we will cover in this
course successfully; they are just not so much in the public eye as the consumer tasks.

2.4 AI in the KWARC Group

https://translate.google.com/
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The KWARC Research Group

� Observation: The ability to represent knowledge about the world and to draw logical
inferences is one of the central components of intelligent behavior.

� Thus: reasoning components of some form are at the heart of many AI systems.

� KWARC Angle: Scaling up (web-coverage) without dumbing down (too much)

� Content markup instead of full formalization (too tedious)

� User support and quality control instead of “The Truth” (elusive anyway)

� use Mathematics as a test tube ( Mathematics =̂ Anything Formal )

� care more about applications than about philosophy (we cannot help getting this right
anyway as logicians)

� The KWARC group was established at Jacobs Univ. in 2004, moved to FAU Erlangen in
2016

� see http://kwarc.info for projects, publications, and links
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Overview: KWARC Research and Projects

Applications: eMath 3.0, Active Documents, Active Learning, Semantic Spread-
sheets/CAD/CAM, Change Mangagement, Global Digital Math Library, Math
Search Systems, SMGloM: Semantic Multilingual Math Glossary, Serious Games,
. . .
Foundations of Math:
� MathML, OpenMath

� advanced Type Theories

� Mmt: Meta Meta The-
ory

� Logic Morphisms/Atlas

� Theorem Prover/CAS In-
teroperability

� Mathematical Model-
s/Simulation

KM & Interaction:
� Semantic Interpretation

(aka. Framing)

� math-literate interaction

� MathHub: math archi-
ves & active docs

� Active documents: em-
bedded semantic services

� Model-based Education

Semantization:
� LATEXML: LATEX ; XML

� STEX: Semantic LATEX

� invasive editors

� Context-Aware IDEs

� Mathematical Corpora

� Linguistics of Math

� ML for Math Semantics
Extraction

Foundations: Computational Logic, Web Technologies, OMDoc/Mmt
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Research Topics in the KWARC Group

� We are always looking for bright, motivated KWARCies.

� We have topics in for all levels! (Enthusiast, Bachelor, Master, Ph.D.)

� List of current topics: https://gl.kwarc.info/kwarc/thesis-projects/

http://kwarc.info
https://gl.kwarc.info/kwarc/thesis-projects/
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� Automated Reasoning: Maths Representation in the Large

� Logics development, (Meta)n-Frameworks

� Math Corpus Linguistics: Semantics Extraction

� Serious Games, Cognitive Engineering, Math Information Retrieval, Legal Reasoning, . . .

� We always try to find a topic at the intersection of your and our interests.

� We also often have positions!. (HiWi, Ph.D.: 1
2 , PostDoc: full)
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2.5 Agents and Environments in AI2
This part of the course notes addresses inference and agent decision making in partially observable
environments, i.e. where we only know probabilities instead of certainties whether propositions
are true/false. We cover basic probability theory and – based on that – Bayesian Networks and
simple decision making in such environments. Finally we extend this to probabilistic temporal
models and their decision theory.

2.5.1 Recap: Rational Agents as a Conceptual Framework
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27585.

Agents and Environments

� Definition 2.5.1. An agent is anything that

� perceives its environment via sensors (a means of sensing the environment)

� acts on it with actuators (means of changing the environment).

� Example 2.5.2. Agents include humans, robots, softbots, thermostats, etc.
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Agent Schema: Visualizing the Internal Agent Structure

� Agent Schema: We will use the following kind of agent schema to visualize the internal

https://fau.tv/clip/id/27585
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structure of an agent:Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Different agents differ on the contents of the white box in the center.
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Rationality

� Idea: Try to design agents that are successful! (aka. “do the right thing”)

� Definition 2.5.3. A performance measure is a function that evaluates a sequence of envi-
ronments.

� Example 2.5.4. A performance measure for a vacuum cleaner could

� award one point per “square” cleaned up in time T?

� award one point per clean “square” per time step, minus one per move?

� penalize for > k dirty squares?

� Definition 2.5.5. An agent is called rational, if it chooses whichever action maximizes the
expected value of the performance measure given the percept sequence to date.

� Question: Why is rationality a good quality to aim for?
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Possible Consequences of Rationality: Exploration, Learning, Auton-
omy

� Note: a rational agent need not be perfect

� only needs to maximize expected value (rational ̸= omniscient)

� need not predict e.g. very unlikely but catastrophic events in the future

� percepts may not supply all relevant information (rational ̸= clairvoyant)

� if we cannot perceive things we do not need to react to them.
� but we may need to try to find out about hidden dangers (exploration)
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� action outcomes may not be as expected (rational ̸= successful)

� but we may need to take action to ensure that they do (more often) (learning)

� Note: rational may entail exploration, learning, autonomy (depending on the environment
/ task)

� Definition 2.5.6. An agent is called autonomous, if it does not rely on the prior knowledge
about the environment of the designer.

� Autonomy avoids fixed behaviors that can become unsuccessful in a changing environment.
(anything else would be irrational)

� The agent may have to learn all relevant traits, invariants, properties of the environment and
actions.
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PEAS: Describing the Task Environment

� Observation: To design a rational agent, we must specify the task environment in terms of
performance measure, environment, actuators, and sensors, together called the PEAS com-
ponents.

� Example 2.5.7. When designing an automated taxi:

� Performance measure: safety, destination, profits, legality, comfort, . . .

� Environment: US streets/freeways, traffic, pedestrians, weather, . . .

� Actuators: steering, accelerator, brake, horn, speaker/display, . . .

� Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

� Example 2.5.8 (Internet Shopping Agent). The task environment:

� Performance measure: price, quality, appropriateness, efficiency

� Environment: current and future WWW sites, vendors, shippers

� Actuators: display to user, follow URL, fill in form

� Sensors: HTML pages (text, graphics, scripts)
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Environment types

� Observation 2.5.9. Agent design is largely determined by the type of environment it is
intended for.

� Problem: There is a vast number of possible kinds of environments in AI.

� Solution: Classify along a few “dimensions”. (independent characteristics)

� Definition 2.5.10. For an agent a we classify the environment e of a by its type, which is
one of the following. We call e
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1. fully observable, iff the a’s sensors give it access to the complete state of the environment
at any point in time, else partially observable.

2. deterministic, iff the next state of the environment is completely determined by the current
state and a’s action, else stochastic.

3. episodic, iff a’s experience is divided into atomic episodes, where it perceives and then
performs a single action. Crucially, the next episode does not depend on previous ones.
Non-episodic environments are called sequential.

4. dynamic, iff the environment can change without an action performed by a, else static. If
the environment does not change but a’s performance measure does, we call e semidynamic.

5. discrete, iff the sets of e’s state and a’s actions are countable, else continuous.

6. single agent, iff only a acts on e; else multi agent (when must we count parts of e as
agents?)
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Simple reflex agents

� Definition 2.5.11. A simple reflex agent is an agent a that only bases its actions on the last
percept: so the agent function simplifies to fa : P →A.

� Agent Schema:Section 2.4. The Structure of Agents 49

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept ) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

� Example 2.5.12 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
if status = Dirty then . . .
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Model-based Reflex Agents: Idea

� Idea: Keep track of the state of the world we cannot see in an internal model.

� Agent Schema:
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Agent
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What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For
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Model-based Reflex Agents: Definition

� Definition 2.5.13. A model-based agent is an agent whose actions depend on

� a world model: a set S of possible states.

� a sensor model S that given a state s and a percepts p determines a new state S(s, p).

� a transition model T , that predicts a new state T (s, a) from a state s and an action a.

� An action function f that maps (new) states to an actions.

If the world model of a model-based agent A is in state s and A has taken action a, A will
transition to state s′ = T (S(p, s), a) and take action a′ = f(s′).

� Note: As different percept sequences lead to different states, so the agent function fa : P∗→
A no longer depends only on the last percept.

� Example 2.5.14 (Tail Lights Again). Model-based agents can do the ?? if the states
include a concept of tail light brightness.
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2.5.2 Sources of Uncertainty
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27582.

Sources of Uncertainty in Decision-Making

https://fau.tv/clip/id/27582
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Where’s that d. . . Wumpus?
And where am I, anyway??

� Non-deterministic actions:

� “When I try to go forward in this dark cave, I might actually go forward-left or forward-
right.”

� Partial observability with unreliable sensors:

� “Did I feel a breeze right now?”;

� “I think I might smell a Wumpus here, but I got a cold and my nose is blocked.”

� “According to the heat scanner, the Wumpus is probably in cell [2,3].”

� Uncertainty about the domain behavior:

� “Are you sure the Wumpus never moves?”
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Unreliable Sensors

� Robot Localization: Suppose we want to support localization using landmarks to narrow
down the area.

� Example 2.5.15. If you see the Eiffel tower, then you’re in Paris.

� Difficulty: Sensors can be imprecise.

� Even if a landmark is perceived, we cannot conclude with certainty that the robot is at
that location.

� This is the half-scale Las Vegas copy, you dummy.

� Even if a landmark is not perceived, we cannot conclude with certainty that the robot is
not at that location.

� Top of Eiffel tower hidden in the clouds.

� Only the probability of being at a location increases or decreases.
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2.5.3 Agent Architectures based on Belief States

We are now ready to proceed to environments which can only partially observed and where are
our actions are non deterministic. Both sources of uncertainty conspire to allow us only partial
knowledge about the world, so that we can only optimize “expected utility” instead of “actual
utility” of our actions.



24 CHAPTER 2. OVERVIEW OVER AI AND TOPICS OF AI-II

World Models for Uncertainty

� Problem: We do not know with certainty what state the world is in!

� Idea: Just keep track of all the possible states it could be in.

� Definition 2.5.16. A model-based agent has a world model consisting of

� a belief state that has information about the possible states the world may be in, and

� a sensor model that updates the belief state based on sensor information

� a transition model that updates the belief state based on actions.

� Idea: The agent environment determines what the world model can be.

� In a fully observable, deterministic environment,

� we can observe the initial state and subsequent states are given by the actions alone.

� thus the belief state is a singleton (we call its member the world state) and the transition
model is a function from states and actions to states: a transition function.
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That is exactly what we have been doing until now: we have been studying methods that
build on descriptions of the “actual” world, and have been concentrating on the progression from
atomic to factored and ultimately structured representations. Tellingly, we spoke of “world states”
instead of “belief states”; we have now justified this practice in the brave new belief-based world
models by the (re-) definition of “world states” above. To fortify our intuitions, let us recap from
a belief-state-model perspective.

World Models by Agent Type in AI-1

� Search-based Agents: In a fully observable, deterministic environment

� goal-based agent with world state =̂ “current state”

� no inference. (goal =̂ goal state from search problem)

� CSP-based Agents: In a fully observable, deterministic environment

� goal-based agent withworld state =̂ constraint network,

� inference =̂ constraint propagation. (goal =̂ satisfying assignment)

� Logic-based Agents: In a fully observable, deterministic environment

� model-based agent with world state =̂ logical formula

� inference =̂ e.g. DPLL or resolution.

� Planning Agents: In a fully observable, deterministic, environment

� goal-based agent with world state =̂ PL0, transition model =̂ STRIPS,

� inference =̂ state/plan space search. (goal: complete plan/execution)
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Let us now see what happens when we lift the restrictions of total observability and determin-
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ism.

World Models for Complex Environments

� In a fully observable, but stochastic environment,

� the belief state must deal with a set of possible states.

� ; generalize the transition function to a transition relation.

� Note: This even applies to online problem solving, where we can just perceive the state.
(e.g. when we want to optimize utility)

� In a deterministic, but partially observable environment,

� the belief state must deal with a set of possible states.

� we can use transition functions.

� We need a sensor model, which predicts the influence of percepts on the belief state –
during update.

� In a stochastic, partially observable environment,

� mix the ideas from the last two. (sensor model + transition relation)
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Preview: New World Models (Belief) ; new Agent Types

� Probabilistic Agents: In a partially observable environment

� belief state =̂ Bayesian networks,

� inference =̂ probabilistic inference.

� Decision-Theoretic Agents: In a partially observable, stochastic environment

� belief state + transition model =̂ decision networks,

� inference =̂ maximizing expected utility.

� We will study them in detail this semester.
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Overview: AI2

� Basics of probability theory (probability spaces, random variables, conditional probabilities,
independence,...)

� Probabilistic reasoning: Computing the a posteriori probabilities of events given evidence,
causal reasoning (Representing distributions efficiently, Bayesian networks,...)

� Probabilistic Reasoning over time (Markov chains, Hidden Markov models,...)

⇒ We can update our world model episodically based on observations (i.e. sensor data)
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� Decision theory: Making decisions under uncertainty (Preferences, Utilities, Decision
networks, Markov Decision Procedures,...)

⇒ We can choose the right action based on our world model and the likely outcomes of our
actions

� Machine learning: Learning from data (Decision Trees, Classifiers, Neural Networks,...)
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Reasoning with Uncertain
Knowledge
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This part of the course notes addresses inference and agent decision making in partially observable
environments, i.e. where we only know probabilities instead of certainties whether propositions
are true/false. We cover basic probability theory and – based on that – Bayesian Networks and
simple decision making in such environments. Finally we extend this to probabilistic temporal
models and their decision theory.
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Chapter 3

Quantifying Uncertainty

3.1 Probability Theory

Probabilistic Models

� Definition 3.1.1 (Mathematically (slightly simplified)). A probability space or (probabil-
ity model) is a pair ⟨Ω, P ⟩ such that:

� Ω is a set of outcomes (called the sample space),

� P is a function P(Ω)→ [0,1], such that:

� P (Ω) = 1 and
� P (

⋃
iAi) =

∑
i P (Ai) for all pairwise disjoint Ai ∈ P(Ω).

P is called a probability measure.

These properties are called the Kolmogorov axioms.

� Intuition: We run some experiment, the outcome of which is any ω ∈ Ω. P (X) is the
probability that the result of the experiment is any one of the outcomes in X. Naturally,
the probability that any outcome occurs is 1 (hence P (Ω) = 1). The probability of pairwise
disjoint sets of outcomes should just be the sum of their probabilities.

� Example 3.1.2 (Dice throws). Assume we throw a (fair) die two times. Then the sample
space is {(i, j)|1 ≤ i, j ≤ 6}. We define P by letting P ({A}) = 1

36 for every A ∈ Ω.

Since the probability of any outcome is the same, we say P is uniformly distributed
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The definition is simplified in two places: Firstly, we assume that P is defined on the full power
set. This is not always possible, especially if Ω is uncountable. In that case we need an additional
set of “events” instead, and lots of mathematical machinery to make sure that we can safely take
unions, intersections, complements etc. of these events.

Secondly, we would technically only demand that P is additive on countably many disjoint
sets.

In this course we will assume that our sample space is at most countable anyway; usually even
finite.

Random Variables

31
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In practice, we are rarely interested in the specific outcome of an experiment, but rather in
some property of the outcome. This is especially true in the very common situation where we
don’t even know the precise probabilities of the individual outcomes.

� Example 3.1.3. The probability that the sum of our two dice throws is 7 is P ({(i, j) ∈
Ω|i+ j = 7}) = P ({(6, 1), (1, 6), (5, 2), (2, 5), (4, 3), (3, 4)}) = 6

36 = 1
6 .

� Definition 3.1.4 (Again, slightly simplified). Let D be a set. A random variable is a
function X : Ω→D. We call D (somewhat confusingly) the domain of X, denoted dom(X).

For x ∈ D, we define the probability of x as P (X = x) := P ({ω ∈ Ω|X(ω) = x}).

� Definition 3.1.5. We say that a random variable X is finite domain, iff its domain dom(X)
is finite and Boolean, iff dom(X) = {T,F}.
For a Boolean random variable, we will simply write P (X) for P (X = T) and P (¬X) for
P (X = F).
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Note that a random variable, according to the formal definition, is neither random nor a variable:
It is a function with clearly defined domain and codomain – and what we call the domain of the
“variable” is actually its codomain... are you confused yet? ,

This confusion is a side-effect of the mathematical formalism. In practice, a random variable is
some indeterminate value that results from some statistical experiment – i.e. it is random, because
the result is not predetermined, and it is a variable, because it can take on different values.

It just so happens that if we want to model this scenario mathematically, a function is the most
natural way to do so.

Some Examples

� Example 3.1.6. Summing up our two dice throws is a random variable S : Ω→ [2,12] with
S((i, j)) = i+ j. The probability that they sum up to 7 is written as P (S = 7) = 1

6 .

� Example 3.1.7. The first and second of our two dice throws are random variables First,Second: Ω→
[1,6] with First((i, j)) = i and Second((i, j)) = j.

� Remark 3.1.8. Note, that the identity Ω→ Ω is a random variable as well.

� Example 3.1.9. We can model toothache, cavity and gingivitis as Boolean random vari-
ables, with the underlying probability space being...??

� Example 3.1.10. We can model tomorrow’s weather as a random variable with domain
{sunny, rainy, foggy, warm, cloudy, humid, ...}, with the underlying probability space be-
ing...??

⇒ This is why probabilistic reasoning is necessary: We can rarely reduce probabilistic scenarios
down to clearly defined, fully known probability spaces and derive all the interesting things
from there.

But: The definitions here allow us to reason about probabilities and random variables in a
mathematically rigorous way, e.g. to make our intuitions and assumptions precise, and prove
our methods to be sound.
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Propositions
This is nice and all, but in practice we are interested in “compound” probabilities like:

“What is the probability that the sum of our two dice throws is 7, but neither of the two dice is
a 3?”

Idea: Reuse the syntax of propositional logic and define the logical connectives for random
variables!
Example 3.1.11. We can express the above as: P (¬(First = 3) ∧ ¬(Second = 3) ∧ (S = 7))

Definition 3.1.12. Let X1, X2 be random variables, x1 ∈ dom(X1) and x2 ∈ dom(X2). We
define:

1. P (X1 ̸= x1):=P (¬(X1 = x1)) := P ({ω ∈ Ω|X1(ω) ̸= x1})=1− P (X1 = x1).

2. P ((X1 = x1) ∧ (X2 = x2)) := P ({ω ∈ Ω|(X1(ω) = x1) ∧ (X2(ω) = x2)}) =P ({ω ∈
Ω|X1(ω) = x1} ∩ {ω ∈ Ω|X2(ω) = x2}).

3. P ((X1 = x1) ∨ (X2 = x2)) := P ({ω ∈ Ω|(X1(ω) = x1) ∨ (X2(ω) = x2)}) =P ({ω ∈
Ω|X1(ω) = x1} ∪ {ω ∈ Ω|X2(ω) = x2}).

It is also common to write P (A,B) for P (A ∧B)

Example 3.1.13. P ((First ̸= 3)∧ (Second ̸= 3)∧ (S = 7)) = P ({(1, 6), (6, 1), (2, 5), (5, 2)}) =
1
9
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Events
Definition 3.1.14 (Again slightly simplified). Let ⟨Ω, P ⟩ be a probability space. An event is
a subset of Ω.
Definition 3.1.15 (Convention). We call an event (by extension) anything that represents a
subset of Ω: any statement formed from the logical connectives and values of random variables,
on which P (·) is defined.

Problem 1.1
Remember: We can define A ∨ B := ¬(¬A ∧ ¬B), T := A ∨ ¬A and F := ¬T – is this

compatible with the definition of probabilities on propositional formulae? And why is P (X1 ̸=
x1) = 1− P (X1 = x1)?

Problem 1.2 (Inclusion-Exclusion-Principle)
Show that P (A ∨B) = P (A) + P (B)− P (A ∧B).

Problem 1.3
Show that P (A) = P (A ∧B) + P (A ∧ ¬B)
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Conditional Probabilities

� As we gather new information, our beliefs (should) change, and thus our probabilities!

� Example 3.1.16. Your “probability of missing the connection train” increases when you are
informed that your current train has 30 minutes delay.

� Example 3.1.17. The “probability of cavity” increases when the doctor is informed that the
patient has a toothache.

� Example 3.1.18. The probability that S = 3 is clearly higher if I know that First = 1 than
otherwise – or if I know that First = 6!

� Definition 3.1.19. Let A and B be events where P (B) ̸= 0. The conditional probability of
A given B is defined as:

P (A|B):=
P (A ∧B)

P (B)

We also call P (A) the prior probability of A, and P (A|B) the posterior probability.

� Intuition: If we assume B to hold, then we are only interested in the “part” of Ω where A
is true relative to B.

Alternatively: We restrict our sample space Ω to the subset of outcomes where B holds. We
then define a new probability space on this subset by scaling the probability measure so that
it sums to 1 – which we do by dividing by P (B). (We “update our beliefs based on new
evidence”)
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Examples

� Example 3.1.20. If we assume First = 1, then P (S = 3|First = 1) should be precisely
P (Second = 2) = 1

6 . We check:

P (S = 3|First = 1) =
P ((S = 3) ∧ (First = 1))

P (First = 1)
=

1/36

1/6
=

1

6

� Example 3.1.21. Assume the prior probability P (cavity) is 0.122. The probability that a
patient has both a cavity and a toothache is P (cavity∧toothache) = 0.067. The probability
that a patient has a toothache is P (toothache) = 0.15.

If the patient complains about a toothache, we can update our estimation by computing the
posterior probability:

P (cavity|toothache) = P (cavity ∧ toothache)

P (toothache)
=

0.067

0.15
= 0.45.

� Note: We just computed the probability of some underlying disease based on the presence
of a symptom!

Or more generally: We computed the probability of a cause from observing its effect.
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Some Rules
Equations on unconditional probabilities have direct analogues for conditional probabilities.
Problem 1.4

Convince yourself of the following:

� P (A|C) = 1− P (¬A|C).

� P (A|C) = P (A ∧B|C) + P (A ∧ ¬B|C).

� P (A ∨B|C) = P (A|C) + P (B|C)− P (A ∧B|C).

But not on the right hand side!
Problem 1.5

Find counterexamples for the following (false) claims:

� P (A|C) = 1− P (A|¬C)

� P (A|C) = P (A|B ∧ C) + P (A|B ∧ ¬C).

� P (A|B ∨ C) = P (A|B) + P (A|C)− P (A|B ∧ C).
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Bayes’ Rule

� Note: By definition, P (A|B) = P (A∧B)
P (B) . In practice, we often know the conditional

probability already, and use it to compute the probability of the conjunction instead: P (A ∧
B) = P (A|B) · P (B) = P (B|A) · P (A).

� Theorem 3.1.22 (Bayes’ Theorem). Given propositions A and B where P (A) ̸= 0 and
P (B) ̸= 0, we have:

P (A|B) =
P (B|A) · P (A)

P (B)

� Proof:

1. P (A|B) = P (A∧B)
P (B) = P (B|A)·P (A)

P (B)

...okay, that was straightforward... what’s the big deal?

� (Somewhat Dubious) Claim: Bayes’ Rule is the entire scientific method condensed into a
single equation!

This is an extreme overstatement, but there is a grain of truth in it.
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Bayes’ Theorem - Why the Hype?
Say we have a hypothesis H about the world. (e.g. “The universe had a beginning”)
We have some prior belief P (H).
We gather evidence E. (e.g. “We observe a cosmic microwave background at 2.7K

everywhere”)

Bayes’ Rule tells us how to update our belief in H based on H’s ability to predict E (the
likelihood P (E|H)) – and, importantly, the ability of competing hypotheses to predict the same
evidence. (This is actually how scientific hypotheses should be evaluated)

P (H|E)︸ ︷︷ ︸
posterior

=
P (E|H) · P (H)

P (E)
=

likelihood︷ ︸︸ ︷
P (E|H) ·

prior︷ ︸︸ ︷
P (H)

P (E|H)︸ ︷︷ ︸
likelihood

P (H)︸ ︷︷ ︸
prior

+P (E|¬H)P (¬H)︸ ︷︷ ︸
competition

...if I keep gathering evidence and update, ultimately the impact of the prior belief will diminish.

“You’re entitled to your own priors, but not your own likelihoods”
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Independence

� Question: What is the probability that S = 7 and the patient has a toothache?

Or less contrived: What is the probability that the patient has a gingivitis and a cavity?

� Definition 3.1.23. Two events A and B are called independent, iff P (A∧B) = P (A)·P (B).

Two random variables X1, X2 are called independent, iff for all x1 ∈ dom(X1) and x2 ∈
dom(X2), the events X1 = x1 and X2 = x2 are independent.

We write A ⊥ B or X1 ⊥ X2, respectively.

� Theorem 3.1.24. Equivalently: Given events A and B with P (B) ̸= 0, then A and B are
independent iff P (A|B) = P (A) (equivalently: P (B|A) = P (B)).

� Proof:

1.⇒ By definition, P (A|B) = P (A∧B)
P (B) = P (A)·P (B)

P (B) = P (A),
2.⇐ Assume P (A|B) = P (A). Then P (A ∧B) = P (A|B) · P (B) = P (A) · P (B).

� Note: Independence asserts that two events are “not related” – the probability of one does
not depend on the other.

Mathematically, we can determine independence by checking whether P (A ∧ B) = P (A) ·
P (B).

In practice, this is impossible to check. Instead, we assume independence based on domain
knowledge, and then exploit this to compute P (A ∧B).
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Independence (Examples)
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� Example 3.1.25.

� First = 2 and Second = 3 are independent – more generally, First and Second are
independent (The outcome of the first die does not affect the outcome of the second die)
Quick check: P ((First = a) ∧ (Second = b)) = 1

36 = P (First = a) · P (Second = b) ✓

� First and S are not independent. (The outcome of the first die affects the sum of
the two dice.) Counterexample: P ((First = 1)∧ (S = 4)) = 1

36 ̸= P (First = 1) · P (S =
4) = 1

6 · 12 = 1
72

� But: P ((First = a)∧ (S = 7)) = 1
36 = 1

6 · 16 = P (First = a) ·P (S = 7) – so the events
First = a and S = 7 are independent. (Why?)

� Example 3.1.26.

� Are cavity and toothache independent?
...since cavities can cause a toothache, that would probably be a bad design decision...

� Are cavity and gingivitis independent? Cavities do not cause gingivitis, and gingivitis
does not cause cavities, so... yes... right? (...as far as I know. I’m not a dentist.)
Probably not! A patient who has cavities has probably worse dental hygiene than those
who don’t, and is thus more likely to have gingivitis as well.
⇒ cavity may be evidence that raises the probabilty of gingivitis, even if they are not
directly causally related.
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Conditional Independence – Motivation

� A dentist can diagnose a cavity by using a probe, which may (or may not) catch in a cavity.

� Say we know from clinical studies that P (cavity) = 0.2, P (toothache|cavity) = 0.6,
P (toothache|¬cavity) = 0.1, P (catch|cavity) = 0.9, and P (catch|¬cavity) = 0.2.

� Assume the patient complains about a toothache, and our probe indeed catches in the aching
tooth. What is the likelihood of having a cavity P (cavity|toothache ∧ catch)?

⇒ Use Bayes’ rule:

P (cavity|toothache ∧ catch) =
P (toothache ∧ catch|cavity) · P (cavity)

P (toothache ∧ catch)

� Note: P (toothache ∧ catch) = P (toothache ∧ catch|cavity) · P (cavity) + P (toothache ∧
catch|¬cavity) · P (¬cavity)

⇒ Now we’re only missing P (toothache ∧ catch|cavity = b) for b ∈ {T,F}.
... Now what?

� Are toothache and catch independent, maybe? No: Both have a common (possible) cause,
cavity.

Also, there’s this pesky P (·|cavity) in the way. . . ...wait a minute...
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Conditional Independence – Definition

� Assuming the patient has (or does not have) a cavity, the events toothache and catch are
independent: Both are caused by a cavity, but they don’t influence each other otherwise.

i.e. cavity “contains all the information” that links toothache and catch in the first place.

� Definition 3.1.27. Given events A,B,C with P (C) ̸= 0, then A and B are called condi-
tionally independent given C, iff P (A ∧B|C) = P (A|C) · P (B|C).

Equivalently: iff P (A|B ∧ C) = P (A|C), or P (B|A ∧ C) = P (B|C).

Let Y be a random variable. We call two random variables X1, X2 conditionally independent
given Y , iff for all x1 ∈ dom(X1), x2 ∈ dom(X2) and y ∈ dom(Y ), the events X1 = x1

and X2 = x2 are conditionally independent given Y = y.

� Example 3.1.28. Let’s assume toothache and catch are conditionally independent given
cavity/¬cavity. Then we can finally compute:

P (cavity|toothache ∧ catch) = P (toothache∧catch|cavity)·P (cavity)
P (toothache∧catch)

= P (toothache|cavity)·P (catch|cavity)·P (cavity)
P (toothache|cavity)·P (catch|cavity)·P (cavity)+P (toothache|¬cavity)·P (catch|¬cavity)·P (¬cavity) =

0.6·0.9·0.2
0.6·0.9·0.2+0.1·0.2·0.8=0.87
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Conditional Independence

� Lemma 3.1.29. If A and B are conditionally independent given C, then P (A|B ∧ C) =
P (A|C)

Proof:

P (A|B ∧ C) = P (A∧B∧C)
P (B∧C) = P (A∧B|C)·P (C)

P (B∧C) = P (A|C)·P (B|C)·P (C)
P (B∧C) = P (A|C)·P (B∧C)

P (B∧C) =

P (A|C)

� Question: If A and B are conditionally independent given C, does this imply that A and
B are independent? No. See previous slides for a counterexample.

� Question: If A and B are independent, does this imply that A and B are also condition-
ally independent given C? No. For example: First and Second are independent, but not
conditionally independent given S = 4.

� Question: Okay, so what if A, B and C are all pairwise independent? Are A and B
conditionally independent given C now? Still no. Remember: First = a, Second = b and
S = 7 are all independent, but First and Second are not conditionally independent given
S = 7.

� Question: When can we infer conditional independence from a “more general” notion of
independence?

We need mutual independence. Roughly: A set of events is called mutually independent, if
every event is independent from any conjunction of the others. (Not really relevant for this
course though)
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Summary

� Probability spaces serve as a mathematical model (and hence justification) for everything
related to probabilities.

� The “atoms” of any statement of probability are the random variables. (Important special
cases: Boolean and finite domain)

� We can define probabilities on compund (propositional logical) statements, with (outcomes
of) random variables as “propositional variables”.

� Conditional probabilities represent posterior probabilities given some observed outcomes.

� independence and conditional independence are strong assumptions that allow us to simplify
computations of probabilities

� Bayes’ Theorem
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So much about the math...
We now have a mathematical setup for probabilities.

But: The math does not tell us what probabilities are:
Assume we can mathematically derive this to be the case: the probability of rain tomorrow is

0.3. What does this even mean?

� Frequentist: The probability of an event is the limit of its relative frequency in a large
number of trials.

In other words: “In 30% of the cases where we have similar weather conditions, it rained the
next day.”

Objection: Okay, but what about unique events? “The probability of me passing the exam is
80%” – does this mean anything, if I only take the exam once? Am I comparable to “similar
students”? What counts as sufficiently “similar”?

� Bayesian: Probabilities are degrees of belief. It means you should be 30% confident that it
will rain tomorrow.

Objection: And why should I? Is this not purely subjective then?
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Pragmatics
Pragmatically, both interpretations amount to the same thing: I should act as if I’m 30%

confident that it will rain tomorrow. (Whether by fiat, or because in 30% of comparable cases,
it rained.)

Objection: Still: why should I? And why should my beliefs follow the seemingly arbitrary
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Kolmogorov axioms?

� [DF31]: If an agent has a belief that violates the Kolmogorov axioms, then there exists a
combination of “bets” on propositions so that the agent always loses money.

� In other words: If your beliefs are not consistent with the mathematics, and you act in
accordance with your beliefs, there is a way to exploit this inconsistency to your disadvantage.

� ...and, more importantly, your AI agents! ,
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3.2 Probabilistic Reasoning Techniques

Okay, now how do I implement this?
This is a computer science course. We need to implement this stuff.

Do we... implement random variables as functions? Is a probability space a... class maybe?

No. As mentioned, we rarely know the probability space entirely. Instead we will use proba-
bility distributions, which are just arrays (of arrays of...) of probabilities.

And then we represent those are sparse as possible, by exploiting independence, conditional
independence, ...
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Probability Distributions

� Definition 3.2.1. The probability distribution for a random variable X, written P(X), is the
vector of probabilities for the (ordered) domain of X.

� Note: The values in a probability distribution are all positive and sum to 1. (Why?)

� Example 3.2.2. P(First) = P(Second) = ⟨ 16 , 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ⟩. (Both First and Second are

uniformly distributed)

� Example 3.2.3. The probability distribution P(S) is ⟨ 1
36 ,

1
18 ,

1
12 ,

1
9 ,

5
36 ,

1
6 ,

5
36 ,

1
9 ,

1
12 ,

1
18 ,

1
36 ⟩.

Note the symmetry, with a “peak” at 7 – the random variable is (approximately, because our
domain is discrete rather than continuous) normally distributed (or gaussian distributed, or
follows a bell-curve,...).

� Example 3.2.4. Probability distributions for Boolean random variables are naturally pairs
(probabilities for T and F), e.g.:

P(toothache) = ⟨0.15, 0.85⟩
P(cavity) = ⟨0.122, 0.878⟩

� More generally:

Definition 3.2.5. A probability distribution is a vector v of values vi ∈ [0,1] such that∑
i vi = 1.
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The Full Joint Probability Distribution

� Definition 3.2.6. Given random variables X1, . . ., Xn, the full joint probability distribution,
denoted P(X1, . . ., Xn), is the n-dimensional array of size |D1 × . . . × Dn| that lists the
probabilities of all conjunctions of values of the random variables.

� Example 3.2.7. P(cavity, toothache, gingivitis) could look something like this:

toothache ¬toothache
gingivitis ¬gingivitis gingivitis ¬gingivitis

cavity 0.007 0.06 0.005 0.05
¬cavity 0.08 0.003 0.045 0.75

� Example 3.2.8. P(First, S)

First \ S 2 3 4 5 6 7 8 9 10 11 12

1 1
36

1
36

1
36

1
36

1
36

1
36

0 0 0 0 0
2 0 1

36
1
36

1
36

1
36

1
36

1
36

0 0 0 0
3 0 0 1

36
1
36

1
36

1
36

1
36

1
36

0 0 0
4 0 0 0 1

36
1
36

1
36

1
36

1
36

1
36

0 0
5 0 0 0 0 1

36
1
36

1
36

1
36

1
36

1
36

0
6 0 0 0 0 0 1

36
1
36

1
36

1
36

1
36

1
36

Note that if we know the value of First, the value of S is completely determined by the value
of Second.
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Conditional Probability Distributions

� Definition 3.2.9. Given random variables X and Y , the conditional probability distribution
of X given Y , written P(X|Y ) is the table of all conditional probabilities of values of X given
values of Y .

� For sets of variables analogously: P(X1, . . ., Xn|Y 1, . . ., Y m).

� Example 3.2.10. P(cavity|toothache):

toothache ¬toothache
cavity P (cavity|toothache) = 0.45 P (cavity|¬toothache) = 0.065

¬cavity P (¬cavity|toothache) = 0.55 P (¬cavity|¬toothache) = 0.935

� Example 3.2.11. P(First|S)

First \ S 2 3 4 5 6 7 8 9 10 11 12

1 1 1
2

1
3

1
4

1
5

1
6

0 0 0 0 0
2 0 1

2
1
3

1
4

1
5

1
6

1
5

0 0 0 0
3 0 0 1

3
1
4

1
5

1
6

1
5

1
4

0 0 0
4 0 0 0 1

4
1
5

1
6

1
5

1
4

1
3

0 0
5 0 0 0 0 1

5
1
6

1
5

1
4

1
3

1
2

0
6 0 0 0 0 0 1

6
1
5

1
4

1
3

1
2

1
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� Note: Every “column” of a conditional probability distribution is itself a probability distri-
bution.
(Why?)
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Convention
We now “lift” multiplication and division to the level of whole probability distributions:

� Definition 3.2.12. Whenever we use P in an equation, we take this to mean a system of
equations, for each value in the domains of the random variables involved.

Example 3.2.13.

� P(X,Y ) = P(X|Y ) ·P(Y ) represents the system of equations P (X = x∧Y = y) = P (X =
x|Y = y) · P (Y = y) for all x, y in the respective domains.

� P(X|Y ) := P(X,Y )
P(Y ) represents the system of equations P (X = x|Y = y) := P ((X=x)∧(Y=y))

P (Y=y)

� Bayes’ Theorem: P(X|Y ) = P(Y |X)·P(X)
P(Y ) represents the system of equations P (X = x|Y =

y) = P (Y=y|X=x)·P (X=x)
P (Y=y)
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So, what’s the point?

� Obviously, the probability distribution contains all the information about a specific random
variable we need.

� Observation: The full joint probability distribution of variables X1, . . ., Xn contains all the
information about the random variables and their conjunctions we need.

� Example 3.2.14. We can read off the probability P (toothache) from the full joint probability
distribution as 0.007+ 0.06+ 0.08+ 0.003=0.15, and the probability P (toothache∧ cavity)
as 0.007 + 0.06 = 0.067

� We can actually implement this! (They’re just (nested) arrays)

But just as we often don’t have a fully specified probability space to work in, we often don’t
have a full joint probability distribution for our random variables either.

� Also: Given random variables X1, . . ., Xn, the full joint probability distribution has
∏n

i=1 |dom(Xi)|
entries! (P(First, S) already has 60 entries!)

⇒ The rest of this section deals with keeping things small, by computing probabilities instead
of storing them all.
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Probabilistic Reasoning

� Probabilistic reasoning refers to inferring probabilities of events from the probabilities of
other events

as opposed to determining the probabilities e.g. empirically, by gathering (sufficient amounts
of representative) data and counting.

� Note: In practice, we are primarily interested in, and have access to, conditional probabilities
rather than the unconditional probabilities of conjunctions of events:

� We don’t reason in a vacuum: Usually, we have some evidence and want to infer the
posterior probability of some related event. (e.g. infer a plausible cause given some
symptom)
⇒ we are interested in the conditional probability P (hypothesis|observation).

� “80% of patients with a cavity complain about a toothache” (i.e. P (toothache|cavity))
is more the kind of data people actually collect and publish than “1.2% of the general
population have both a cavity and a toothache” (i.e. P (cavity ∧ toothache)).

� Consider the probe catching in a cavity. The probe is a diagnostic tool, which is usually
evaluated in terms of its sensitivity P (catch|cavity) and specificity P (¬catch|¬cavity).
(You have probably heard these words a lot since 2020...)
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Naive Bayes Models
Consider again the dentistry example with random variables cavity, toothache, and catch. We

assume cavity causes both toothache and catch, and that toothache and catch are conditionally
independent given cavity:

Toothache Catch

Cavity

We likely know the sensitivity P (catch|cavity) and specificity P (¬catch|¬cavity), which
jointly give us P(catch|cavity), and from medical studies, we should be able to determine
P (cavity) (the prevalence of cavities in the population) and P(toothache|cavity).

This kind of situation is surprisingly common, and deserves a name
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Naive Bayes Models

Toothache Catch

Cavity

Definition 3.2.15. A naive Bayes model (or, less accurately, Bayesian classifier, or, derogatorily,
idiot Bayes model) consists of:
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1. random variables C,E1, . . ., En such that all the E1, . . ., En are conditionally independent
given C,

2. the probability distribution P(C), and

3. the conditional probability distributions P(Ei|C).

We call C the cause and the E1, . . ., En the effects of the model.

Convention: Whenever we draw a graph of random variables, we take the arrows to connect
causes to their direct effects, and assert that unconnected nodes are conditionally independent
given all their ancestors. We will make this more precise later.

Can we compute the full joint probability distribution P(cavity, toothache, catch) from this
information?
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Recovering the Full Joint Probability Distribution

� Lemma 3.2.16 (Product rule). P(X,Y ) = P(X|Y ) · P(Y ).

We can generalize this to more than two variables, by repeatedly applying the product rule:

� Lemma 3.2.17 (Chain rule). For any sequence of random variables X1, . . ., Xn:

P(X1, . . ., Xn) = P(X1|X2, . . ., Xn) · P(X2|X3, . . .Xn) · . . . · P(Xn−1|Xn) · P (Xn)

.

Hence:

� Theorem 3.2.18. Given a naive Bayes model with effects E1, . . ., En and cause C, we have

P(C,E1, . . ., En) = P(C) ·
n∏

i=1

P(Ei|C).

Proof: Using the chain rule:

1. P(E1, . . ., En, C) = P(E1|E2, . . ., En, C) · . . . · P(En|C) · P(C)

2. Since all the Ei are conditionally independent, we can drop them on the right hand sides
of the P(Ej |..., C)
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Marginalization
Great, so now we can compute P(C|E1, . . ., En) =

P(C,E1,...,En)
P(E1,...,En)

...
...except that we don’t know P(E1, . . ., En) :-/
...except that we can compute the full joint probability distribution, so we can recover it:

Lemma 3.2.19 (Marginalization). Given random variables X1, . . ., Xn and Y 1, . . ., Y m, we
have P(X1, . . ., Xn) =

∑
y1∈dom(Y 1),...,ym∈dom(Y m) P(X1, . . ., Xn, Y 1 = y1, . . ., Y m = ym).

(This is just a fancy way of saying “we can add the relevant entries of the full joint
probability distribution”)
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Example 3.2.20. Say we observed toothache = T and catch = T. Using marginalization, we
can compute

P (cavity|toothache ∧ catch)=
P (cavity ∧ toothache ∧ catch)

P (toothache ∧ catch)

=
P (cavity ∧ toothache ∧ catch)∑

c∈{cavity,¬cavity} P (c ∧ toothache ∧ catch)

=
P (cavity) · P (toothache|cavity) · P (catch|cavity)∑
c∈{cavity,¬cavity} P (c) · P (toothache|c) · P (catch|c)
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Unknowns
What if we don’t know catch? (I’m not a dentist, I don’t have a probe...)
We split our effects into {E1, . . ., En} = {O1, . . ., OnO

}∪{U1, . . ., UnU
} – the observed and

unknown random variables.
Let DU := dom(U1)× . . .× dom(Unu

). Then

P(C|O1, . . ., OnO
)=

P(C,O1, . . ., OnO
)

P(O1, . . ., OnO
)

=

∑
u∈DU

P(C,O1, . . ., OnO
, U1 = u1, . . ., Unu = unu)∑

c∈dom(C)

∑
u∈DU

P(O1, . . ., OnO
, C = c, U1 = u1, . . ., Unu

= unu
)

=

∑
u∈DU

P(C) ·∏nO

i=1 P(Oi|C) ·∏nU

j=1 P(U j = uj |C)∑
c∈dom(C)

∑
u∈DU

P (C = c) ·∏nO

i=1 P(Oi|C = c) ·∏nU

j=1 P (U j = uj |C = c)

=
P(C) ·∏nO

i=1 P(Oi|C) · (∑u∈DU

∏nU

j=1 P(U j = uj |C))∑
c∈dom(C) P (C = c) ·∏nO

i=1 P(Oi|C = c) · (∑u∈DU

∏nU

j=1 P (U j = uj |C = c))

...oof...
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Unknowns

P(C|O1, . . ., OnO
) =

P(C) ·∏nO

i=1 P(Oi|C) · (∑u∈DU

∏nU

j=1 P(U j = uj |C))∑
c∈dom(C) P (C = c) ·∏nO

i=1 P(Oi|C = c) · (∑u∈DU

∏nU

j=1 P (U j = uj |C = c))

First, note that
∑

u∈DU

∏nU

j=1 P (U j = uj |C = c) = 1 (We’re summing over all possible
events on the (conditionally independent) U1, . . ., UnU

given C = c)

P(C|O1, . . ., OnO
) =

P(C) ·∏nO

i=1 P(Oi|C)∑
c∈dom(C) P (C = c) ·∏nO

i=1 P(Oi|C = c)

Secondly, note that the denominator is

1. the same for any given observations O1, . . ., OnO
, independent of the value of C, and

2. the sum over all the numerators in the full distribution.
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That is: The denominator only serves to scale what is almost already the distribution
P(C|O1, . . ., OnO

) to sum up to 1.
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Normalization
Definition 3.2.21 (Normalization). Given a vector w := ⟨w1, . . ., wk⟩ of numbers in [0,1] where∑k

i=1 wi ≤ 1.
Then the normalized vector α(w) is defined (component-wise) as

(α(w))i :=
wi∑k
j=1 wj

.

Note that
∑k

i=1 α(w)i = 1, i.e. α(w) is a probability distribution.

This finally gives us:
Theorem 3.2.22 (Inference in a Naive Bayes model). Let C,E1, . . ., En a naive Bayes model
and E1, . . ., En = O1, . . ., OnO

, U1, . . ., UnU
.

Then

P(C|O1 = o1, . . ., OnO
= onO

) = α(P(C) ·
nO∏

i=1

P(Oi = oi|C))

Note, that this is entirely independent of the unknown random variables U1, . . ., UnU
!

Also, note that this is just a fancy way of saying “first, compute all the numerators, then
divide all of them by their sums”.
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Dentistry Example
Putting things together, we get:

P(cavity|toothache = T)=α(P(cavity) · P(toothache = T|cavity))
=α(⟨P (cavity) · P (toothache|cavity), P (¬cavity) · P (toothache|¬cavity)⟩)

Say we have P (cavity) = 0.1, P (toothache|cavity) = 0.8, and P (toothache|¬cavity) = 0.05.
Then

P(cavity|toothache = T) = α(⟨0.1 · 0.8, 0.9 · 0.05⟩) = α(⟨0.08, 0.045⟩)
0.08 + 0.045 = 0.125, hence

P(cavity|toothache = T) = ⟨ 0.08
0.125

,
0.045

0.125
⟩ = ⟨0.64, 0.36⟩
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Naive Bayes Classification
We can use a naive Bayes model as a very simple classifier :

� Assume we want to classify newspaper articles as one of the categories politics, sports,
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business, fluff, etc. based on the words they contain.

� Given a large set of articles, we can determine the relevant probabilities by counting the
occurrences of the categories P(category), and of words per category – i.e. P(wordi|category)
for some (huge) list of words (wordi)

n
i=1.

� We assume that the occurrence of each word is conditionally independent of the occurrence
of any other word given the category of the document. (This assumption is clearly wrong,
but it makes the model simple and often works well in practice.) (⇒ “Idiot Bayes model”)

� Given a new article, we just count the occurrences ki of the words in it and compute

P(category|word1 = k1, . . .,wordn = kn) = α(P(category) ·
n∏

i=1

P(wordi = ki|category))

� We then choose the category with the highest probability.
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Inference by Enumeration
The rules we established for naive Bayes models, i.e. Bayes’s theorem, the product rule and

chain rule, marginalization and normalization, are general techniques for probabilistic reasoning,
and their usefulness is not limited to the naive Bayes models.

More generally:
Theorem 3.2.23. Let Q,E1, . . ., EnE

, U1, . . ., UnU
be random variables and D := dom(U1)×

. . .× dom(UnU
). Then

P(Q|E1 = e1, . . ., EnE
= ene) = α(

∑

u∈D

P(Q,E1 = e1, . . ., EnE
= ene , U1 = u1, . . ., UnU

= unU
))

.
We call Q the query variable, E1, . . ., EnE

the evidence, and U1, . . ., UnU
the unknown

(or hidden) variables, and computing a conditional probability this way enumeration.

Note that this is just a “mathy” way of saying we

1. sum over all relevant entries of the full joint probability distribution of the variables, and

2. normalize the result to yield a probability distribution.
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We will fortify our intuition about naive Bayes models with a variant of the Wumpus world we
looked at ?? to understand whether logic was up to the job of guiding an agent in the Wumpus
cave.

Example: The Wumpus is Back
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� We have a maze where

� Every cell except [1, 1] possibly contains a pit, with 20% probabil-
ity.

� pits cause a breeze in neighboring cells (we forget the wumpus
and the gold for now)

� Where should the agent go, if there is a breeze at [1, 2] and [2, 1]?

� Pure logical inference can conclude nothing about which square is
most likely to be safe!

We can model this using the Boolean random variables:

� P i,j for i, j ∈ {1, 2, 3, 4}, stating there is a pit at square [i, j], and

� Bi,j for (i, j) ∈ {(1, 1), (1, 2), (2, 1)}, stating there is a breeze at square [i, j]

⇒ let’s apply our machinery!
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Wumpus: Probabilistic Model
First: Let’s try to compute the full joint probability distribution
P(P 1,1, . . ., P 4,4, B1,1, B1,2, B2,1).

1. By the product rule, this is equal to P(B1,1, B1,2, B2,1|P 1,1, . . ., P 4,4) ·
P(P 1,1, . . ., P 4,4).

2. Note that P(B1,1, B1,2, B2,1|P 1,1, . . ., P 4,4) is either 1 (if all the Bi,j

are consistent with the positions of the pits P k,l) or 0 (otherwise).

3. Since the pits are spread independently, we have P(P 1,1, . . ., P 4,4) =∏4,4
i,j=1,1 P(P i,j)

⇒ We know all of these probabilities.

⇒ We can now use enumeration to compute
P(P i,j | < known >) = α(

∑
<unknowns> P(P i,j , < known >,< unknowns >))
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Wumpus Continued
Problem: We only know P i,j for three fields. If we want to compute e.g. P 1,3 via enumera-

tion, that leaves 24
2−4 = 4096 terms to sum over!

Let’s do better.
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� Let b := ¬B1,1 ∧B1,2 ∧B2,1 (All the breezes we know about)

� Let p := ¬P 1,1 ∧ ¬P 1,2 ∧ ¬P 2,1. (All the pits we know about)

� Let F := {P 3,1 ∧ P 2,2,¬P 3,1 ∧ P 2,2, P 3,1 ∧ ¬P 2,2, P 3,1 ∧ ¬P 2,2}
(the current “frontier”)

� Let O be (the set of assignments for) all the other variables P i,j .
(i.e. except p, F and our query P 1,3)

Then the observed breezes b are conditionally independent of O given p
and F . (Whether there is a pit anywhere else does not influence the
breezes we observe.)

⇒ P (b|P 1,3, p, O, F ) = P (b|P 1,3, p, F ). Let’s exploit this!
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Optimized Wumpus

P(P 1,3|p, b)=α(
∑

o∈O,f∈F

P(P 1,3, b, p, f , o))=α(
∑

o∈O,f∈F

P (b|P 1,3, p, o, f) · P(P 1,3, p, f , o))

=α(
∑

f∈F

∑

o∈O

P (b|P 1,3, p, f) · P(P 1,3, p, f , o))=α(
∑

f∈F

P (b|P 1,3, p, f) · (
∑

o∈O

P(P 1,3, p, f , o)))

=α(
∑

f∈F

P (b|P 1,3, p, f) · (
∑

o∈O

P(P 1,3) · P (p) · P (f) · P (o)))

=α(P(P 1,3) · P (p) · (
∑

f∈F

P (b|P 1,3, p, f)︸ ︷︷ ︸
∈{0,1}

·P (f) · (
∑

o∈O

P (o))

︸ ︷︷ ︸
=1

))

⇒ this is just a sum over the frontier, i.e. 4 terms ,
So: P(P 1,3|p, b) = α(⟨0.2 · (0.8)3 · (1 · 0.04 + 1 · 0.16 + 1 · 0.16 + 0), 0.8 · (0.8)3 · (1 · 0.04 +

1 · 0.16 + 0 + 0)⟩) ≈ ⟨0.31, 0.69⟩
Analogously: P(P 3,1|p, b) = ⟨0.31, 0.69⟩ and P(P 2,2|p, b) = ⟨0.86, 0.14⟩ (⇒ avoid [2, 2]!)
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Cooking Recipe
In general, when you want to reason probabilistically, a good heuristic is:

1. Try to frame the full joint probability distribution in terms of the probabilities you know.
Exploit product rule/chain rule, independence, conditional independence, marginalization and
domain knowledge (as e.g. P(b|p, f) ∈ {0, 1})

⇒ the problem can be solved at all!

2. Simplify: Start with the equation for enumeration:

P(Q|E1, ...) = α(
∑

u∈U

P(Q,E1, ..., U1 = u1, ...))
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3. Substitute by the result of 1., and again, exploit all of our machinery

4. Implement the resulting (system of) equation(s)

5. ???

6. Profit
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Summary

� Probability distributions and conditional probability distributions allow us to represent random
variables as convenient datastructures in an implementation (Assuming they are finite
domain...)

� The full joint probability distribution allows us to compute all probabilities of statements
about the random variables contained (But possibly inefficient)

� Marginalization and normalization are the specific techniques for extracting the specific prob-
abilities we are interested in from the full joint probability distribution.

� The product and chain rule, exploiting (conditional) independence, Bayes’ Theorem, and of
course domain specific knowledge allow us to do so much more efficiently.

� Naive Bayes models are one example where all these techniques come together.

Dennis Müller: Artificial Intelligence 2 80 2024-05-24



Chapter 4

Probabilistic Reasoning: Bayesian
Networks

4.1 Introduction

John, Mary, and My Brand-New Alarm
Example 4.1.1 (From Russell/Norvig).

� I got very valuable stuff at home. So I bought an alarm. Unfortunately, the alarm just rings
at home, doesn’t call me on my mobile.

� I’ve got two neighbors, Mary and John, who’ll call me if they hear the alarm.

� The problem is that, sometimes, the alarm is caused by an earthquake.

� Also, John might confuse the alarm with his telephone, and Mary might miss the alarm
altogether because she typically listens to loud music.

⇒ Random variables: Burglary, Earthquake, Alarm, John, Mary.

Given that both John and Mary call me, what is the probability of a burglary?

⇒ This is almost a naive Bayes model, but with multiple causes (Burglary and Earthquake)
for the Alarm, which in turn may cause John and/or Mary.

Dennis Müller: Artificial Intelligence 2 81 2024-05-24

John, Mary, and My Alarm: Assumptions

51
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We assume:

� We (should) know P(Alarm|Burglary, Earthquake),
P(John|Alarm), and P(Mary|Alarm).

� Burglary and Earthquake are independent.

� John and Mary are conditionally independent given
Alarm.

� Moreover: Both John and Mary are conditionally inde-
pendent of any other random variables in the graph given
Alarm. (Only Alarm causes them, and everything else
only causes them indirectly through Alarm)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

First Step: Construct the full joint probability distribution,
Second Step: Use enumeration to compute P(Burglary|John = T, Mary = T).
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John, Mary, and My Alarm: The Distribution

P(John, Mary, Alarm, Burglary, Earthquake)
=P(John|Mary, Alarm, Burglary, Earthquake) · P(Mary|Alarm, Burglary, Earthquake)
· P(Alarm|Burglary, Earthquake) · P(Burglary|Earthquake) · P(Earthquake)

=P(John|Alarm) · P(Mary|Alarm) · P(Alarm|Burglary, Earthquake) · P(Burglary) · P(Earthquake)

We plug into the equation for enumeration:

P(Burglary|John = T, Mary = T)=α(P(Burglary)
∑

a∈{T,F}
P (John|Alarm = a) · P (Mary|Alarm = a)

·
∑

q∈{T,F}
P(Alarm = a|Burglary, Earthquake = q)P (Earthquake = q))

⇒ Now let’s scale things up to arbitrarily many variables!

Dennis Müller: Artificial Intelligence 2 83 2024-05-24

Bayesian Networks: Definition
Definition 4.1.2. A Bayesian network consists of

1. a directed acyclic graph ⟨X , E⟩ of random variables X = {X1, . . ., Xn}, and

2. a conditional probability distribution P(Xi|Parents(Xi)) for every Xi ∈ X (also called the
CPT for conditional probability table)

such that every Xi is conditionally independent of any conjunctions of non-descendents of Xi

given Parents(Xi).

Definition 4.1.3. Let ⟨X , E⟩ be a directed acyclic graph, X ∈ X , and E∗ the reflexive transitive
closure of E. The non-descendents of X are the elements of the set NonDesc(X) := {Y |(X,Y ) ̸∈
E∗}\Parents(X).
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Note that the roots of the graph are conditionally independent given the empty set; i.e. they
are independent.
Theorem 4.1.4. The full joint probability distribution of a Bayesian network ⟨X , E⟩ is given by

P(X1, . . ., Xn) =
∏

Xi∈X
P(Xi|Parents(Xi))
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Some Applications

� A ubiquitous problem: Observe “symptoms”, need to infer “causes”.
Medical Diagnosis Face Recognition

Self-Localization Nuclear Test Ban
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4.2 Constructing Bayesian Networks

Compactness of Bayesian Networks

� Definition 4.2.1. Given random variables X1, . . ., Xn with finite domains D1, . . ., Dn, the
size of B := ⟨{X1, . . ., Xn}, E⟩ is defined as

size(B):=
n∑

i=1

|Di| ·
∏

Xj∈Parents(Xi)

|Dj |

� Note: size(B) =̂ The total number of entries in the conditional probability distributions.

� Note: Smaller BN ; need to assess less probabilities, more efficient inference.

� Observation 4.2.2. Explicit full joint probability distribution has size
∏n

i=1 |Di|.
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� Observation 4.2.3. If |Parents(Xi)| ≤ k for every Xi, and Dmax is the largest random
variable domain, then size(B) ≤ n|Dmax|k+1.

� Example 4.2.4. For |Dmax| = 2, n = 20, k = 4 we have 220 = 1048576 probabilities, but a
Bayesian network of size ≤ 20 · 25 = 640 . . . !

� In the worst case, size(B) = n · ∏n
i=1 |Di|, namely if every variable depends on all its

predecessors in the chosen variable ordering.

� Intuition: BNs are compact – i.e. of small size – if each variable is directly influenced only
by few of its predecessor variables.
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Keeping Networks Small
To keep our Bayesian networks small, we can:

1. Reduce the number of edges: ⇒ Order the variables to allow for exploiting conditional
independence (causes before effects), or

2. represent the conditional probability distributions efficiently:

(a) For Boolean random variables X, we only need to store P(X = T|Parents(X))
(P(X = F|Parents(X)) = 1−P(X = T|Parents(X))) (Cuts the number of entries in half!)

(b) Introduce different kinds of nodes exploiting domain knowledge; e.g. deterministic and
noisy disjunction nodes.

Dennis Müller: Artificial Intelligence 2 87 2024-05-24

Reducing Edges: Variable Order Matters
Given a set of random variables X1, . . ., Xn, consider the following (impractical, but illustra-

tive) pseudo-algorithm for constructing a Bayesian network:

� Definition 4.2.5 (BN construction algorithm).

1. Initialize BN := ⟨{X1, . . ., Xn}, E⟩ where E = ∅.
2. Fix any variable ordering, X1, . . ., Xn.

3. for i := 1, . . . , n do

a. Choose a minimal set Parents(Xi) ⊆ {X1, . . . ,Xi−1} such that

P(Xi|Xi−1, . . . ,X1) = P(Xi|Parents(Xi))

b. For each Xj ∈ Parents(Xi), insert (Xj ,Xi) into E.
c. Associate Xi with P(Xi|Parents(Xi)).

� Attention: Which variables we need to include into Parents(Xi) depends on what “{X1, . . . ,Xi−1}”
is . . . !

� Thus: The size of the resulting BN depends on the chosen variable ordering X1, . . ., Xn.
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� In Particular: The size of a Bayesian network is not a fixed property of the domain. It
depends on the skill of the designer.
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John and Mary Depend on the Variable Order!

� Example 4.2.6. Mary, John, Alarm, Burglary, Earthquake.
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Note: For ?? we try to determine whether – given different value assignments to potential parents
– the probability of Xi being true differs? If yes, we include these parents. In the particular case:

1. M to J yes because the common cause may be the alarm.

2. M,J to A yes because they may have heard alarm.

3. A to B yes because if A then higher chance of B.

4. However, M/J to B no because M/J only react to the alarm so if we have the value of A then
values of M/J don’t provide more information about B.

5. A to E yes because if A then higher chance of E.

6. B to E yes because, if A and not B then chances of E are higher than if A and B.

John and Mary Depend on the Variable Order! Ctd.

� Example 4.2.7. Mary, John, Earthquake, Burglary, Alarm.
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Again: Given different value assignments to potential parents, does the probability of Xi being
true differ? If yes, include these parents.

1. M to J as before.

2. M,J to E as probability of E is higher if M/J is true.

3. Same for B; E to B because, given M and J are true, if E is true as well then prob of B is
lower than if E is false.

4. M/J/B/E to A because if M/J/B/E is true (even when changing the value of just one of
these) then probability of A is higher.

John and Mary, What Went Wrong?

� Intuition: These BNs link from effects to their causes!

⇒ Even though Mary and John are conditionally independent given Alarm, this is not ex-
ploited, since Alarm is not ordered before Mary and John!

⇒ Rule of Thumb: We should order causes before symptoms.
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Representing Conditional Distributions: Deterministic Nodes
Definition 4.2.8. A node X in a Bayesian network is called deterministic, if its value is completely
determined by the values of Parents(X).

Example 4.2.9. The sum of two dice throws S is entirely determined by the values of the two
dice First and Second.
Example 4.2.10. In the Wumpus example, the breezes are entirely determined by the pits

⇒ Deterministic nodes model direct, causal relationships.
⇒ If X is deterministic, then P (X|Parents(X)) ∈ {0, 1}
⇒ we can replace the conditional probability distribution P(X|Parents(X)) by a boolean

function.

Dennis Müller: Artificial Intelligence 2 92 2024-05-24

Representing Conditional Distributions: Noisy Nodes
Sometimes, values of nodes are “almost deterministic”:

Example 4.2.11 (Inhibited Causal Dependencies).
Assume the network on the right contains all possible causes of fever. (Or
add a dummy-node for “other causes”)
If there is a fever, then one of them (at least) must be the cause, but none
of them necessarily cause a fever: The causal relation between parent and
child is inhibited.

Cold

Flu

Malaria

Fever

⇒ We can model the inhibitions by individual inhibition factors qd.

Definition 4.2.12. The conditional probability distribution of a noisy disjunction node X
with Parents(X) = X1, . . ., Xn in a Bayesian network is given by P (X|X1, . . ., Xn) = 1 −∏

{j|Xj=T} qj , where the qi are the inhibition factors of Xi ∈ Parents(X), defined as qi :=

P (¬X|¬X1, . . .,¬Xi−1, Xi,¬Xi+1, . . .,¬Xn)

⇒ Instead of a distribution with 2k parameters, we only need k parameters!
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Representing Conditional Distributions: Noisy Nodes

� Example 4.2.13. Assume the following inhibition factors for Example 4.2.11:

qcold = P (¬fever|cold,¬flu,¬malaria) = 0.6

qflu = P (¬fever|¬cold,flu,¬malaria) = 0.2

qmalaria = P (¬fever|¬cold,¬flu,malaria) = 0.1

If we model Fever as a noisy disjunction node, then the general rule P (Xi|Parents(Xi)) =



58 CHAPTER 4. PROBABILISTIC REASONING: BAYESIAN NETWORKS

∏
{j|Xj=T} qj for the CPT gives the following table:

Cold Flu Malaria P (Fever) P (¬Fever)
F F F 0.0 1.0
F F T 0.9 0.1
F T F 0.8 0.2
F T T 0.98 0.02 = 0.2 · 0.1
T F F 0.4 0.6
T F T 0.94 0.06 = 0.6 · 0.1
T T F 0.88 0.12 = 0.6 · 0.2
T T T 0.988 0.012 = 0.6 · 0.2 · 0.1
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Representing Conditional Distributions: Summary

� Note that deterministic nodes and noisy disjunction nodes are just two examples of “special-
ized” kinds of nodes in a Bayesian network.

� In general, noisy logical relationships in which a variable depends on k parents can be described
by O(k) parameters instead of O(2k) for the full conditional probability table. This can make
assessment (and learning) tractable.

� Example 4.2.14. The CPCS network [Pra+94] uses noisy-OR and noisy-MAX distributions
to model relationships among diseases and symptoms in internal medicine. With 448 nodes
and 906 links, it requires only 8,254 values instead of 133,931,430 for a network with full
conditional probability distributions.
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4.3 Inference in Bayesian Networks

Probabilistic Inference Tasks in Bayesian Networks
Remember:

Definition 4.3.1 (Probabilistic Inference Task). Let X1, . . ., Xn = Q1, . . ., QnQ
, E1, . . ., EnE

, U1, . . ., UnU

be a set of random variables, a probabilistic inference task.
We wish to compute the conditional probability distribution P(Q1, . . ., QnQ

|E1 = e1, . . ., EnE
=

enE
).

We call

� a Q1, . . ., QnQ
the query variables,

� a E1, . . ., EnE
the evidence variables, and

� U1, . . ., UnU
the hidden variables.

We know the full joint probability distribution: P(X1, . . ., Xn) =
∏n

i=1 P(Xi|Parents(Xi))
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And we know about enumeration:

P(Q1, . . ., QnQ
|E1 = e1, . . ., EnE

= enE
)=

α(
∑

u∈DU

P(Q1, . . ., QnQ
, E1 = e1, . . ., EnE

= enE
, U1 = u1, . . ., UnU

= unU
))

(where DU = dom(U1)× . . .× dom(UnU
) )

Dennis Müller: Artificial Intelligence 2 96 2024-05-24

Enumeration: The Alarm-Example
Remember our example: P(Burglary|John, Mary)
(hidden variables: Alarm, Earthquake)

=α(
∑

ba,be∈{T,F} P (John, Mary, Alarm = ba, Earthquake = be, Burglary))

=α(
∑

ba,be∈{T,F} P (John|Alarm = ba) · P (Mary|Alarm = ba)

·P(Alarm = ba|Earthquake = be, Burglary) · P (Earthquake = be) · P(Burglary))
⇒ These are 5 factors in 4 summands (ba, be ∈ {T,F}) over two cases (Burglary ∈ {T,F}),
⇒ 38 arithmetic operations (+3 for α)

General worst case: O(n2n)

Let’s do better!
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Enumeration: First Improvement
Some abbreviations: j := John,m := Mary, a := Alarm, e := Earthquake, b := Burglary,

P(b|j,m) = α(
∑

ba,be∈{T,F}
P (j|a = ba) · P (m|a = ba) · P(a = ba|e = be, b) · P (e = be) · P(b))

Let’s “optimize”:

P(b|j,m) = α(P(b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be, b) · P (j|a = ba) · P (m|a = ba))))

⇒ 3 factors in 2 summand + 2 factors in 2 summands + two factors in the outer product,
over two cases = 28 arithmetic operations (+3 for α)
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Second Improvement: Variable Elimination 1
Consider P(j|b = T). Using enumeration:

=α(P (b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ae∈{T,F}
P (a = ae|e = be, b) · P(j|a = ae) · (

∑

am∈{T,F}
P (m = am|a = ae))

︸ ︷︷ ︸
=1

)))
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⇒ P(John|Burglary = T) does not depend on Mary (duh...)

More generally:
Lemma 4.3.2. Given a query P(Q1, . . ., QnQ

|E1 = e1, . . ., EnE
= enE

), we can ignore (and
remove) all hidden leafs of the Bayesian network.

...doing so yields new leafs, which we can then ignore again, etc., until:
Lemma 4.3.3. Given a query P(Q1, . . ., QnQ

|E1 = e1, . . ., EnE
= enE

), we can ignore (and
remove) all hidden variables that are not ancestors of any of the Q1, . . ., QnQ

or E1, . . ., EnE
.
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Enumeration: First Algorithm
Assume the X1, . . ., Xn are topologically sorted (causes before effects)

function Enumerate-Query(Q,⟨E1 = e1, . . ., EnE = enE ⟩)
P := ⟨⟩ /* = P(Q|Ei = ei) */
X1, . . ., Xn:= variables filtered according to ??, topologically sorted
for all q ∈ dom(Q) do

Pi:=EnumAll(⟨X1, . . ., Xn⟩,⟨E1 = e1, . . ., EnE = enE , Q = q⟩)
return α(P )

function EnumAll(⟨Y 1, . . ., Y nY ⟩,⟨A1 = a1, . . ., AnA = anA ⟩)
/* By construction, Parents(Y 1)⊂{A1, . . ., AnA} */

if ny = 0 then return 1.0
else if Y 1 = Aj then return P (Aj = aj |Parents(Aj))·EnumAll(⟨Y 2, . . ., Y nY ⟩,⟨A1 =
a1, . . ., AnA = anA ⟩)
else return

∑
y∈dom(Y 1)

P (Y 1 = y|Parents(Y 1))·EnumAll(⟨Y 2, . . ., Y nY ⟩,⟨A1 = a1, . . ., AnA =

anA , Y 1 = y⟩)

General worst case: O(2n) – better, but still not great
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Enumeration: Example
Variable order: b, e, a, j,m

� P0 := P (b) ·

+ P (e) ·
[
+

P (a|b, e) · P (j|a) · P (m|a) · 1.0
P (¬a|b, e) · P (j|¬a) · P (m|¬a) · 1.0

P (¬e) ·
[
+

P (a|b,¬e) · P (j|a) · P (m|a) · 1.0
P (¬a|b,¬e) · P (j|¬a) · P (m|¬a) · 1.0

� P1 := P (¬b) ·

+ P (e) ·
[
+

P (a|¬b, e) · P (j|a) · P (m|a) · 1.0
P (¬a|¬b, e) · P (j|¬a) · P (m|¬a) · 1.0

P (¬e) ·
[
+

P (a|¬b,¬e) · P (j|a) · P (m|a) · 1.0
P (¬a|¬b,¬e) · P (j|¬a) · P (m|¬a) · 1.0

⇐ ⟨ P0
P0+P1

, P1
P0+P1

⟩

P(b|j = T,m = T) = α(P(b) · (
∑

be∈{T,F}
P (e = be) · (

∑
ba∈{T,F}

P(a = ba|e = be, b) · P (j|a = ba) · P (m|a = ba))))
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The Evaluation of P (b|j,m) as a “Search Tree”
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P(b|j,m) = α(P(b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be, b) · P (j|a = ba) · P (m|a = ba))))

Note: Enumerate-Query corresponds to depth-first traversal of an arithmetic expression-
tree:
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Variable Elimination 2

P(b|j,m) = α(P(b)·(
∑

be∈{T,F}
P (e = be) · (

∑

ba∈{T,F}
P(a = ba|e = be, b) · P (j|a = ba) · P (m|a = ba))))

The last two factors P (j|a = ba), P (m|a = ba) only depend on a, but are “trapped” behind the
summation over e, hence computed twice in two distinct recursive calls to EnumAll

Idea: Instead of left-to-right (top-down DFS), operate right-to-left (bottom-up) and store in-
termediate “factors” along with their “dependencies”:

α(P(b)︸︷︷︸
f7(b)

· (
∑

be∈{T,F}
P (e = be)︸ ︷︷ ︸

f5(e)

· (
∑

ba∈{T,F}
P(a = ba|e = be, b)︸ ︷︷ ︸

f3(a,b,e)

·P (j|a = ba)︸ ︷︷ ︸
f2(a)

·P (m|a = ba)︸ ︷︷ ︸
f1(a)

)

︸ ︷︷ ︸
f4(b,e)

)

︸ ︷︷ ︸
f6(b)

)
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Variable Elimination: Example
We only show variable elimination by example: (implementation details get tricky, but the

idea is simple)
P(b) · (∑be∈{T,F} P (e = be) · (

∑
ba∈{T,F} P(a = ba|e = be, b) · P (j|a = ba) · P (m|a = ba)))

Assume reverse topological order of variables: m, j, a, e, b

� m is an evidence variable with value T and dependency a, which is a hidden variable. We
introduce a new “factor” f(a):=f1(a) := ⟨P (m|a), P (m|¬a)⟩.

� j works analogously, f2(a) := ⟨P (j|a), P (j|¬a)⟩. We “multiply” with the existing factor,
yielding f(a) := ⟨f1(a) · f2(a), f1(¬a) · f2(¬a)⟩=⟨P (m|a) · P (j|a), P (m|¬a) · P (j|¬a)⟩

� a is a hidden variable with dependencies e (hidden) and b (query).

1. We introduce a new “factor” f3(a, e, b), a 2 × 2 × 2 table with the relevant conditional
probabilities P(a|e, b).

2. We multiply each entry of f3 with the relevant entries of the existing factor f , yielding
f(a, e, b).

3. We “sum out” the resulting factor over a, yielding a new factor f(e, b) = f(a, e, b)+f(¬a, e, b).

� ...

⇒ can speed things up by a factor of 1000! (or more, depending on the order of variables!)
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The Complexity of Exact Inference

� Definition 4.3.4. A graph G is called singly connected, or a polytree (otherwise multiply
connected), if there is at most one undirected path between any two nodes in G.

� Theorem 4.3.5 (Good News). On singly connected Bayesian networks, variable elimination
runs in polynomial time.

� Is our BN for Mary & John a polytree? (Yes.)

� Theorem 4.3.6 (Bad News). For multiply connected Bayesian networks, probabilistic in-
ference is #P-hard. (#P is harder than NP, i.e.
NP ⊆ #P)

� So?: Life goes on . . . In the hard cases, if need be we can throw exactitude to the winds
and approximate.

� Example 4.3.7. Sampling techniques as in MCTS.
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4.4 Conclusion

A Video Nugget covering this section can be found at https://fau.tv/clip/id/29228.

https://fau.tv/clip/id/29228
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Summary

� Bayesian networks (BN) are a wide-spread tool to model uncertainty, and to reason about
it. A BN represents conditional independence relations between random variables. It consists
of a graph encoding the variable dependencies, and of conditional probability tables (CPTs).

� Given a variable ordering, the BN is small if every variable depends on only a few of its
predecessors.

� Probabilistic inference requires to compute the probability distribution of a set of query
variables, given a set of evidence variables whose values we know. The remaining variables
are hidden.

� Inference by enumeration takes a BN as input, then applies Normalization+Marginalization,
the chain rule, and exploits conditional independence. This can be viewed as a tree search
that branches over all values of the hidden variables.

� Variable elimination avoids unnecessary computation. It runs in polynomial time for poly-tree
BNs. In general, exact probabilistic inference is #P-hard. Approximate probabilistic inference
methods exist.

Dennis Müller: Artificial Intelligence 2 106 2024-05-24

Topics We Didn’t Cover Here

� Inference by sampling: A whole zoo of methods for doing this exists.

� Clustering: Pre-combining subsets of variables to reduce the running time of inference.

� Compilation to SAT: More precisely, to “weighted model counting” in CNF formulas. Model
counting extends DPLL with the ability to determine the number of satisfying interpretations.
Weighted model counting allows to define a mass for each such interpretation (= the proba-
bility of an atomic event).

� Dynamic BN: BN with one slice of variables at each “time step”, encoding probabilistic
behavior over time.

� Relational BN: BN with predicates and object variables.

� First-order BN: Relational BN with quantification, i.e. probabilistic logic. E.g., the BLOG
language developed by Stuart Russel and co-workers.
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Reading:

• Chapter 14: Probabilistic Reasoning of [RN03].

– Section 14.1 roughly corresponds to my “What is a Bayesian Network?”.
– Section 14.2 roughly corresponds to my “What is the Meaning of a Bayesian Network?” and

“Constructing Bayesian Networks”.The main change I made here is to define the semantics
of the BN in terms of the conditional independence relations, which I find clearer than RN’s
definition that uses the reconstructed full joint probability distribution instead.

– Section 14.4 roughly corresponds to my “Inference in Bayesian Networks”. RN give full details
on variable elimination, which makes for nice ongoing reading.
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– Section 14.3 discusses how CPTs are specified in practice.

– Section 14.5 covers approximate sampling-based inference.

– Section 14.6 briefly discusses relational and first-order BNs.

– Section 14.7 briefly discusses other approaches to reasoning about uncertainty.

All of this is nice as additional background reading.



Chapter 5

Making Simple Decisions Rationally

5.1 Introduction
A Video Nugget covering this section can be found at https://fau.tv/clip/id/30338.

Overview
We now know how to update our world model, represented as (a set of) random variables,

given observations. Now we need to act.

For that we need to answer two questions:
Questions:

� Given a world model and a set of actions, what will the likely consequences of each action
be?

� How “good” are these consequences?

Idea:

� Represent actions as “special random variables”:

Given disjoint actions a1, . . ., an, introduce a random variable A with domain {a1, . . ., an}.
Then we can model/query P(X|A = ai).

� Assign numerical values to the possible outcomes of actions (i.e. a function u : dom(X)→R)
indicating their desirability.

� Choose the action that maximizes the expected value of u

Definition 5.1.1. Decision theory investigates decision problems, i.e. how a model-based agent
a deals with choosing among actions based on the desirability of their outcomes given by a
real-valued utility function u on states s ∈ S: i.e. u : S→ R.
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Decision Theory
If our states are random variables, then we obtain a random variable for the utility function:

Observation: Let Xi : Ω→ Di random variables on a probability model ⟨Ω, P ⟩ and f : D1 ×
. . .×Dn→ E. Then F (x) := f(X0(x), . . ., Xn(x)) is a random variable Ω→ E.

65
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Definition 5.1.2. Given a probability model ⟨Ω, P ⟩ and a random variable X : Ω → D with
D ⊆ R, then E(X):=

∑
x∈D P (X = x) · x is called the expected value (or expectation) of X.

(Assuming the sum/series is actually defined!)
Analogously, let e1, . . ., en a sequence of events. Then the expected value of X given e1, . . ., en

is defined as E(X|e1, . . ., en):=
∑

x∈D P (X = x|e1, . . ., en) · x.

Putting things together:
Definition 5.1.3. Let A : Ω→D a random variable (where D is a set of actions) Xi : Ω→Di

random variables (the state), and u : D1 × . . . ×Dn→ R a utility function. Then the expected
utility of the action a ∈ D is the expected value of u (interpreted as a random variable) given
A = a ; i.e.

EU(a) :=
∑

⟨x1,...,xn⟩∈D1×...×Dn

P (X1 = x1, . . ., Xn = xn|A = a) · u(x1, . . ., xn)
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Utility-based Agents

� Definition 5.1.4. A utility-based agent uses a world model along with a utility function that
models its preferences among the states of that world. It chooses the action that leads to the
best expected utility.

� Agent Schema:
54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
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Maximizing Expected Utility (Ideas)
Definition 5.1.5 (MEU principle for Rationality). We call an action rational if it maximizes
expected (MEU). An utility-based agent is called rational, iff it always chooses a rational action.
Hooray: This solves all of AI. (in principle)
Problem: There is a long, long way towards an operationalization ;)

Note: An agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities.
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Example 5.1.6. A simple reflex agent for tic tac toe based on a perfect lookup table is rational
if we take (the negative of) “winning/drawing in n steps” as the utility function.

Example 5.1.7 (AI1). Heuristics in tree search (greedy search, A∗) and game-play (minimax,
alpha-beta pruning) maximize “expected” utility.
⇒ In fully observable, deterministic environments, “expected utility” reduces to a specific

determined utility value:
EU(a) = U(T (S(s, e), a)), where e the most recent percept, s the current state, S the sensor

function and T the transition function.

Now let’s figure out how to actually assign utilities!
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5.2 Decision Networks
A Video Nugget covering this section can be found at https://fau.tv/clip/id/30345.
Now that we understand multi-attribute utilitysutility function, we can complete our design of

a utility-based agent, which we now recapitulate as a refresher. As we already use Bayesian
networks for the belief state of an utility-based agent, integrating utilities and possible actions
into the network suggests itself naturally. This leads to the notion of a decision network.

Decision networks

Definition 5.2.1. A decision network is a Bayesian network with
two additional kinds of nodes:

� action nodes, representing a set of possible actions, and
(square nodes)

� A single utility node (also called value node). (diamond node)

General Algorithm: Given evidence Ej = ej , and action nodes A1, . . ., Ak, compute the
expected utility of each action, given the evidence, i.e. return the sequence of actions

argmax a1, . . ., ak

=expected utility of a1, . . ., ak︷ ︸︸ ︷∑

⟨x1,...,xn⟩
P (Xi = xi|A1 = a1, . . ., Ak = ak, Ej = ej)︸ ︷︷ ︸

usual Bayesian Network inference

·U(Xi = xi)

Note the sheer amount of summands in the sum above in the general case! (⇒ We will
simplify where possible later)
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Decision Networks: Example

� Example 5.2.2 (A Decision-Network for Aortic Coarctation). from [Luc96]

https://fau.tv/clip/id/30345
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5.3 Preferences and Utilities

Preferences in Deterministic Environments
Problem: How do we determine the utility of a state? (We cannot directly measure our
satisfaction/happiness in a possibly future state...) (What unit would we even use?)
Example 5.3.1. I have to decide whether to go to class today (or sleep in). What is the utility
of this lecture? (obviously 42)

Idea: We can let people/agents choose between two states (subjective preference) and derive a
utility from these choices.
Example 5.3.2. Give me your cell-phone or I will give you a bloody nose. ;
To make a decision in a deterministic environment, the agent must determine whether it prefers
a state without phone to one with a bloody nose?

Definition 5.3.3. Given states A and B (we call them prizes) an agent can express preferences
of the form

� A≻B A prefered over B

� A∼B indifference between A and B

� A⪰B B not prefered over A

i.e. Given a set S (of states), we define binary relations ≻ and ∼ on S.
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Preferences in Non-Deterministic Environments
Problem: In nondeterministic environments we do not have full information about the states
we choose between.
Example 5.3.4 (Airline Food). Do you want chicken or pasta(but we cannot see through the
tin foil)
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Definition 5.3.5.

Let S a set of states. We call a random variable X with domain {A1, . . ., An} ⊆
S a lottery and write [p1,A1 ; . . . ; pn,An], where pi = P (X = Ai).

L

A

B

p

1− p

Idea: A lottery represents the result of a nondeterministic action that can have outcomes Ai with
prior probability pi. For the binary case, we use [p,A;1−p,B]. We can then extend preferences
to include lotteries, as a measure of how strongly we prefer one prize over another.

Convention: We assume S to be closed under lotteries, i.e. lotteries themselves are also states.
That allows us to consider lotteries such as [p,A;1−p,[q,B;1−q,C]].
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Rational Preferences
Note: Preferences of a rational agent must obey certain constraints – An agent with rational
preferences can be described as an MEU-agent.

Definition 5.3.6. We call a set ≻ of preferences rational, iff the following constraints hold:

Orderability A≻B ∨B≻A ∨A∼B
Transitivity A≻B ∧B≻C⇒A≻C
Continuity A≻B≻C⇒ (∃p [p,A;1−p,C]∼B)
Substitutability A∼B⇒ [p,A;1−p,C]∼[p,B;1−p,C]
Monotonicity A≻B⇒ (p > q)⇔ [p,A;1−p,B]≻[q,A;1−q,B]
Decomposability [p,A;1−p,[q,B;1−q,C]]∼[p,A ; ((1− p)q),B ; ((1− p)(1− q)),C]

From a set of rational preferences, we can obtain a meaningful utility function.
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The rationality constraints can be understood as follows:

Orderability: A≻B ∨B≻A∨A∼B Given any two prizes or lotteries, a rational agent must either
prefer one to the other or else rate the two as equally preferable. That is, the agent cannot
avoid deciding. Refusing to bet is like refusing to allow time to pass.

Transitivity: A≻B ∧B≻C⇒A≻C

Continuity: A≻B≻C⇒ (∃p [p,A;1−p,C]∼B) If some lottery B is between A and C in preference,
then there is some probability p for which the rational agent will be indifferent between getting
B for sure and the lottery that yields A with probability p and C with probability 1− p.

Substitutability: A∼B⇒ [p,A;1−p,C]∼[p,B;1−p,C] If an agent is indifferent between two lotteries
A and B, then the agent is indifferent between two more complex lotteries that are the same
except that B is substituted for A in one of them. This holds regardless of the probabilities and
the other outcome(s) in the lotteries.

Monotonicity: A≻B⇒ (p > q)⇔ [p,A;1−p,B]≻[q,A;1−q,B] Suppose two lotteries have the same
two possible outcomes, A and B. If an agent prefers A to B, then the agent must prefer the
lottery that has a higher probability for A (and vice versa).

Decomposability: [p,A;1−p,[q,B;1−q,C]]∼[p,A;((1−p)q),B ;((1−p)(1−q)),C] Compound lotteries
can be reduced to simpler ones using the laws of probability. This has been called the “no fun
in gambling” rule because it says that two consecutive lotteries can be compressed into a single
equivalent lottery: the following two are equivalent:
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A

B

C

p

1 − p
q

1 − q

A

B

C

p

(1 − p)q

(1 − p)(1 − q)

Rational preferences contd.

� Violating the rationality constraints from ?? leads to self-evident irrationality.

� Example 5.3.7. An agent with intransitive preferences can be induced to give away all its
money:

� If B≻C, then an agent who has C would pay (say) 1 cent to get B

� If A≻B, then an agent who has B would pay (say) 1 cent to get A

� If C≻A, then an agent who has A would pay (say) 1 cent to get C
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5.4 Utilities

Ramseys Theorem and Value Functions

� Theorem 5.4.1. (Ramsey, 1931; von Neumann and Morgenstern, 1944)

Given a rational set of preferences there exists a real valued function U such that U(A) ≥
U(B), iff A⪰B and U([p1,S1 ; . . . ; pn,Sn]) =

∑
i piU(Si)

� This is an existence theorem, uniqueness not guaranteed.

� Note: Agent behavior is invariant w.r.t. positive linear transformations, i.e. an agent with
utility function U ′(x) = k1U(x) + k2 where k1 > 0 behaves exactly like one with U .

� Observation: With deterministic prizes only (no lottery choices), only a total ordering on
prizes can be determined.

� Definition 5.4.2. We call a total ordering on states a value function or ordinal utility function.
(If we don’t need to care about relative utilities of states, e.g. to compute non-trivial

expected utilities, that’s all we need anyway!)
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Utilities

� Intuition: Utilities map states to real numbers.

� Question: Which numbers exactly?

� Definition 5.4.3 (Standard approach to assessment of human utilities). Compare a
given state A to a standard lottery Lp that has

� “best possible prize” u⊤ with probability p

� “worst possible catastrophe” u⊥ with probability 1− p

adjust lottery probability p until A∼Lp. Then U(A) = p.

� Example 5.4.4. Choose u⊤ =̂ current state, u⊥ =̂ instant death

pay $30∼L
continue as before

instant death

0.999999

0.000001
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Popular Utility Functions

� Definition 5.4.5. Normalized utilities: u⊤ = 1, u⊥ = 0.

(Not very meaningful, but at least it’s independent of the specific problem...)

� Obviously: Money (Very intuitive, often easy to determine, but actually not well-suited as
a utility function (see later))

� Definition 5.4.6. Micromorts: one millionth chance of instant death.

(useful for Russian roulette, paying to reduce product risks, etc.)

But: Not necessarily a good measure of risk, if the risk is “merely” severe injury or illness. . .

Better:

� Definition 5.4.7. QALYs: quality adjusted life years

QALYs are useful for medical decisions involving substantial risk.
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Comparing Utilities
Problem: What is the monetary value of a micromort?
Just ask people: What would you pay to avoid playing Russian roulette with a million-barrelled
revolver? (Usually: quite a lot!)

But their behavior suggests a lower price:

� Driving in a car for 370km incurs a risk of one micromort;

� Over the life of your car – say, 150, 000km that’s 400 micromorts.
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� People appear to be willing to pay about 10, 000€ more for a safer car that halves the risk
of death. (; 25€ per micromort)

This figure has been confirmed across many individuals and risk types.

Of course, this argument holds only for small risks. Most people won’t agree to kill themselves
for 25M€. (Also: People are pretty bad at estimating and comparing risks, especially if they
are small.) (Various cognitive biases and heuristics are at work here!)

Dennis Müller: Artificial Intelligence 2 121 2024-05-24

Money vs. Utility

� Money does not behave as a utility function should.

� Given a lottery L with expected monetary value EMV(L), usually U(L) < U(EMV(L)),
i.e., people are risk averse.

� Utility curve: For what probability p am I indifferent between a prize x and a lottery
[p,M$;1−p,0$] for large numbers M?

� Typical empirical data, extrapolated with risk prone behavior for debitors:

� Empirically: Comes close to the logarithm on the positive numbers.
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5.5 Multi-Attribute Utility
Video Nuggets covering this section can be found at https://fau.tv/clip/id/30343 and
https://fau.tv/clip/id/30344.
In this section we will make the ideas introduced above more practical. The discussion above

conceived utility functions as functions on atomic states, which were good enough for introducing
the theory. But when we build decision models for utility-based agent we want to characterize
states by attributes that are already random variables in the Bayesian network we use to represent
the belief state. For factored states, the utility function can be expressed as a multivariate function
on attribute values.

Utility Functions on Attributes
Recap: So far we understand how to obtain utility functions u : S → R on states s ∈ S from
(rational) preferences.

https://fau.tv/clip/id/30343
https://fau.tv/clip/id/30344
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But in practice, our actions often impact multiple distinct “attributes” that need to be weighed
against each other.
⇒ Lotteries become complex very quickly

Definition 5.5.1. Let X1, . . ., Xn be random variables with domains D1, . . ., Dn. Then we call
a function u : D1 × . . .×Dn→ R a (multi-attribute) utility function on attributes X1, . . ., Xn.

Note: In the general (worst) case, a multi-attribute utility function on n random variables with
domain sizes k each requires kn parameters to represent.
But: A utility function on multiple attributes often has “internal structure” that we can exploit
to simplify things.

For example, the distinct attributes are often “independent” with respect to their utility
(a higher-quality product is better than a lower-quality one that costs the same, and a cheaper
product is better than an expensive one of the same quality)
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Multi-Attribute Utility: Example

� Example 5.5.2 (Assessing an Airport Site).

Construction

Litigation

Air Traffic Deaths

Noise

Cost

� Attributes: Deaths,
Noise, Cost.

� Question: What is
U(Deaths,Noise,Cost)
for a projected airport?

� How can complex utility function be assessed from preference behaviour?

� Idea 1: Identify conditions under which decisions can be made without complete identifica-
tion of U(X1, . . ., Xn).

� Idea 2: Identify various types of independence in preferences and derive consequent canonical
forms for U(X1, . . ., Xn).

Dennis Müller: Artificial Intelligence 2 124 2024-05-24

Strict Dominance
First Assumption: U is often monotone in each argument. (wlog. growing)
Definition 5.5.3. (Informally) An action B strictly dominates an action A, iff every possible
outcome of B is at least as good as every possible outcome of A,

If A strictly dominates B, we can just ignore B entirely.
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Observation: Strict dominance seldom holds in practice (life is difficult) but is useful for
narrowing down the field of contenders.
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Stochastic Dominance
Definition 5.5.4. Let X1, X2 distributions with domains ⊆ R.

X1 stochastically dominates X2 iff for all t ∈ R, we have P (X1 ≥ t) ≥ P (X2 ≥ t), and for
some t, we have P (X1 ≥ t) > P (X2 ≥ t).
Observation 5.5.5. If U is monotone in X1, and P(X1|a) stochastically dominates P(X1|b) for
actions a, b, then a is always the better choice than b, with all other attributes Xi being equal.
⇒ If some action P(Xi|a) stochastically dominates P(Xi|b) for all attributes Xi, we can

ignore b.

Observation: Stochastic dominance can often be determined without exact distributions using
qualitative reasoning.
Example 5.5.6 (Construction cost increases with distance). If airport location S1 is closer
to the city than S2 ; S1 stochastically dominates S2 on cost.q
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We have seen how we can do inference with attribute-based utility functions, let us consider the
computational implications. We observe that we have just replaced one evil – exponentially many
states (in terms of the attributes) – by another – exponentially many parameters of the utility
functions.

Wo we do what we always do in AI-2: we look for structure in the domain, do more theory to
be able to turn such structures into computationally improved representations.

Preference structure: Deterministic

� Recall: In deterministic environments an agent has a value function.

� Definition 5.5.7. X1 and X2 preferentially independent of X3 iff preference between
⟨x1, x2, z⟩ and ⟨x′

1, x
′
2, z⟩ does not depend on z. (i.e. the tradeoff between x1 and x2 is

independent of z)

� Example 5.5.8. E.g., ⟨Noise,Cost,Safety⟩: are preferentially independent
⟨20,000 suffer, 4.6 G$, 0.06 deaths/mpm⟩ vs.⟨70,000 suffer, 4.2 G$, 0.06 deaths/mpm⟩

� Theorem 5.5.9 (Leontief, 1947). If every pair of attributes is preferentially independent of
its complement, then every subset of attributes is preferentially independent of its complement:
mutual preferential independence.

� Theorem 5.5.10 (Debreu, 1960). Mutual preferential independence implies that there is
an additive value function: V (S) =

∑
i Vi(Xi(S)), where Vi is a value function referencing

just one variable Xi.

� Hence assess n single-attribute functions. (often a good approximation)

� Example 5.5.11. The value function for the airport decision might be

V (noise, cost, deaths) = −noise · 104 − cost− deaths · 1012
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Preference structure: Stochastic
Definition 5.5.12. X is utility independent of Y iff preferences over lotteries in X do not depend
on particular values in Y
Definition 5.5.13. A set X is mutually utility independent (MUI), iff each subset is utility
independent of its complement.

Theorem 5.5.14. For a MUI set of attributes X , there is a multiplicative utility function of the
form: [Kee74]

U =
∑

{X0,...,Xk}⊆X

k∏

i=1

Ui(Xi = xi)

⇒ U can be represented using n single-attribute utility functions.

System Support: Routine procedures and software packages for generating preference tests to
identify various canonical families of utility functions.
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Decision networks - Improvements
Ways to improve inference in decision networks:

� Exploit “inner structure” of the utility function to simplify the computation,

� eliminate dominated actions,

� label pairs of nodes with stochastic dominance: If (the utility of) some attribute dominates
(the utility of) another attribute, focus on the dominant one (e.g. if price is always more
important than quality, ignore quality whenever the price between two choices differs)

� various techniques for variable elimination,

� policy iteration (more on that when we talk about Markov decision procedures)
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5.6 The Value of Information
Video Nuggets covering this section can be found at https://fau.tv/clip/id/30346 and
https://fau.tv/clip/id/30347.
So far we have tacitly been concentrating on actions that directly affect the environment. We
will now come to a type of action we have hypothesized in the beginning of the course, but have
completely ignored up to now: information gathering actions.

What if we do not have all information we need?
We now know how to exploit the information we have to make decisions. But if we knew

more, we might be able to make even better decisions in the long run - potentially at the cost of
gaining utility. (exploration vs. exploitation)
Example 5.6.1 (Medical Diagnosis).

� We do not expect a doctor to already know the results of the diagnostic tests when the
patient comes in.

https://fau.tv/clip/id/30346
https://fau.tv/clip/id/30347
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� Tests are often expensive, and sometimes hazardous. (directly or by delaying treatment)

� Therefore: Only test, if

� knowing the results lead to a significantly better treatment plan,

� information from test results is not drowned out by a-priori likelihood.

Definition 5.6.2. Information value theory is concerned with agent making decisions on infor-
mation gathering rationally.
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Value of Information by Example
Idea: Compute the expected gain in utility from acquring information.
Example 5.6.3 (Buying Oil Drilling Rights). There are n blocks of drilling rights available,
exactly one block actually has oil worth k€, in particular:

� The prior probability of a block having oil is 1
n each (mutually exclusive).

� The current price of each block is k
n€.

� A “consultant” offers an accurate survey of block (say) 3. How much should we be willing to
pay for the survey?

Solution: Compute the expected value of the best action given the information, minus the
expected value of the best action without information.
Example 5.6.4 (Oil Drilling Rights contd.).

� Survey may say oil in block 3 with probability 1
n ; we buy block 3 for k

n€ and make a
profit of (k − k

n )€.

� Survey may say no oil in block 3 with probability n−1
n ; we buy another block, and make

an expected profit of k
n−1 − k

n€.

� Without the survery, the expected profit is 0

� Expected profit is 1
n ·

(n−1)k
n + n−1

n · k
n(n−1) =

k
n .

� So, we should pay up to k
n€ for the information. (as much as block 3 is worth!)
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General formula (VPI)
Definition 5.6.5. Let A the set of available actions and F a random variable. Given evi-
dence Ei = ei, let α be the action that maximizes expected utility a priori, and αf the ac-
tion that maximizes expected utility given F = f , i.e.: α = argmax

a∈A
EU(a|Ei = ei) and

αf = argmax
a∈A

EU(a|Ei = ei, F = f)

The value of perfect information (VPI) on F given evidence Ei = ei is defined as

VPIEi=ei(F ):=(
∑

f∈dom(F )

P (F = f |Ei = ei) · EU(αf |Ei = ei, F = f))− EU(α|Ei = ei)
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Intuition: The VPI is the expected gain from knowing the value of F relative to the current
expected utility, and considering the relative probabilities of the possible outcomes of F .
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Properties of VPI

� Observation 5.6.6 (VPI is Non-negative).
VPIE(F ) ≥ 0 for all j and E (in expectation, not post hoc)

� Observation 5.6.7 (VPI is Non-additive).
VPIE(F,G) ̸= VPIE(F ) + VPIE(G) (consider, e.g., obtaining F twice)

� Observation 5.6.8 (VPI is Order-independent).

VPIE(F,G) = VPIE(F ) + VPIE,F (G) = VPIE(G) + VPIE,G(F )

� Note: When more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
; evidence-gathering becomes a sequential decision problem.
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Qualitative behavior of VPI

� Question: Say we have three distributions for P (U |Ej)

Qualitatively: What is the value of information (VPI) in these three cases?

� Answers: reserved for the plenary sessions ; be there!
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We will now use information value theory to specialize our utility-based agent from above.

A simple Information-Gathering Agent

� Definition 5.6.9. A simple information gathering agent. (gathers info before acting)

function Information−Gathering−Agent (percept) returns an action
persistent: D, a decision network
integrate percept into D
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j := argmax
k

VPIE(Ek)/Cost(Ek)

if VPIE(Ej) > Cost(Ej) return Request(Ej)
else return the best action from D

The next percept after Request(Ej) provides a value for Ej .

� Problem: The information gathering implemented here is myopic, i.e. only acquires a single
evidence variable, or acts immediately. (cf. greedy search)

� But it works relatively well in practice. (e.g. outperforms humans for selecting diagnostic
tests)

� Strategies for nonmyopic information gathering exist (Not discussed in this lecture)
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Summary

� An MEU agent maximizes expected utility.

� Decision theory provides a framework for rational decision making.

� Decision networks augment Bayesian networks with action nodes and a utility node.

� rational preferences allow us to obtain a utility function (orderability, transitivity, continuity,
substitutability, monotonicity, decomposability)

� multi-attribute utility functions can usually be “destructured” to allow for better inference
and representation (can be monotone, attributes may dominate others, actions may dominate
others, may be multiplicative,...)

� information value theory tells us when to explore rather than exploit, using

� VPI (value of perfect information) to determine how much to “pay” for information.
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Chapter 6

Temporal Probability Models

6.1 Modeling Time and Uncertainty

Stochastic Processes
The world changes in stochastically predictable ways.

Example 6.1.1.

� The weather changes, but the weather tomorrow is somewhat predictable given today’s
weather and other factors, (which in turn (somewhat) depends on yesterday’s weather,
which in turn...)

� the stock market changes, but the stock price tomorrow is probably related to today’s price,

� A patient’s blood sugar changes, but their blood sugar is related to their blood sugar 10
minutes ago (in particular if they didn’t eat anything in between)

How do we model this?

Definition 6.1.2. Let ⟨Ω, P ⟩ a probability space and ⟨S,⪯⟩ a (not necessarily totally) ordered
set.

A sequence of random variables (Xt)t∈S with dom(Xt) = D is called a stochastic process
over the time structure S.
Intuition: Xt models the outcome of the random variable X at time step t. The sample space
Ω corresponds to the set of all possible sequences of outcomes.
Note: We will almost exclusively use ⟨S,⪯⟩ = ⟨N,≤⟩.
Definition 6.1.3. Given a stochastic process Xt over S and a, b ∈ S with a ⪯ b, we write Xa:b

for the sequence Xa, Xa+1, . . ., Xb−1, Xb and E=e
a:b for Ea = ea, . . ., Eb = eb.
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Stochastic Processes (Running Example)
Example 6.1.4 (Umbrellas). You are a security guard in a secret underground facility, want to
know it if is raining outside. Your only source of information is whether the director comes in
with an umbrella.

� We have a stochastic process Rain0, Rain1, Rain2, . . . of hidden variables, and

� a related stochastic process Umbrella0, Umbrella1, Umbrella2, . . . of evidence variables.

79



80 CHAPTER 6. TEMPORAL PROBABILITY MODELS

...and a combined stochastic process ⟨Rain0, Umbrella0⟩, ⟨Rain1, Umbrella1⟩, . . .
Note that Umbrellat only depends on Raint, not on e.g. Umbrellat−1 (except indirectly

through Raint / Raint−1).

Definition 6.1.5. We call a stochastic process of hidden variables a state variable.
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Markov Processes
Idea: Construct a Bayesian network from these variables (parents?)

...without everything exploding in size...?

Definition 6.1.6. Let (Xt)t∈S a stochastic process. X has the (nth order) Markov property iff
Xt only depends on a bounded subset of X0:t−1 – i.e. for all t ∈ S we have P(Xt|X0, . . .Xt−1) =
P(Xt|Xt−n, . . .Xt−1) for some n ∈ S.

A stochastic process with the Markov property for some n is called a (nth order) Markov
process.

Important special cases:
Definition 6.1.7.

� First-order Markov property: P(Xt|X0:t−1) = P(Xt|Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2

A first order Markov process is called a Markov chain.

� Second-order Markov property: P(Xt|X0:t−1) = P(Xt|Xt−2,Xt−1)

Xt−2 Xt−1 Xt Xt+1 Xt+2
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Markov Process Example: The Umbrella
Example 6.1.8 (Umbrellas continued). We model the situation in a Bayesian network:

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Problem: This network does not actually have the First-order Markov property...

Possible fixes: We have two ways to fix this:

1. Increase the order of the Markov process. (more dependencies ⇒ more complex inference)

2. Add more state variables, e.g., Tempt, Pressuret. (more information sources)
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Markov Process Example: Robot Motion
Example 6.1.9 (Random Robot Motion). Assume we want to track a robot wandering ran-
domly on the X/Y plane, whose position we can only observe roughly (e.g. by approximate GPS
coordinates:) Markov chain

Vt−1 Vt Vt+1

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

� the velocity V i may change unpredictably.

� the exact position Xi depends on previous position Xi−1 and velocity V i−1

� the position Xi influences the observed position Zi.

Example 6.1.10 (Battery Powered Robot). If the robot has a battery, the Markov property
is violated!

� Battery exhaustion has a systematic effect on the change in velocity.

� This depends on how much power was used by all previous manoeuvres.
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Markov Process Example: Robot Motion
Idea: We can restore the Markov property by including a state variable for the charge level Bt.
(Better still: Battery level sensor)
Example 6.1.11 (Battery Powered Robot Motion).

Mt−1 Mt Mt+1

Bt−1 Bt Bt+1

Vt−1 Vt Vt+1

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

� Battery level Bi is influenced by previous level Bi−1and velocity V i−1.

� Velocity V i is influenced by previous level Bi−1and velocity V i−1.

� Battery meter M i is only influenced by Battery level Bi.
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Stationary Markov Processes as Transition Models
Remark 6.1.12. Given a stochastic process with state variables Xt and evidence variables Et,
then P(Xt|X0:t) is a transition model and P(Et|X0:t,E1:t−1) a sensor model in the sense of a
model-based agent.

Note that we assume that the Xt do not depend on the Et.
Also note that with the Markov property, the transition model simplifies to P(Xt|Xt−n).

Problem: Even with the Markov property the transition model is infinite. (t ∈ N)
Definition 6.1.13. A Markov chain is called stationary if the transition model is independent of
time, i.e. P(Xt|Xt−1) is the same for all t.

Example 6.1.14 (Umbrellas are stationary). P(Raint|Raint−1) does not depend on t. (need
only one table)

Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P (Rt)

T 0.7
F 0.3

Don’t confuse “stationary” (Markov processes) with “static” (environments).
We restrict ourselves to stationary Markov processes in AI-2.
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Markov Sensor Models
Recap: The sensor model P(Et|X0:t,E1:t−1) allows us (using Bayes rule et al) to update our
belief state about Xt given the observations E0:t.
Problem: The evidence variables Et could depend on any of the variables X0:t,E1:t−1...

Definition 6.1.15. We say that a sensor model has the sensor Markov property, iff P(Et|X0:t,E1:t−1) =
P(Et|Xt) – i.e., the sensor model depends only on the current state.

Assumptions on Sensor Models: We usually assume the sensor Markov property and make it
stationary as well: P(Et|Xt) is fixed for all t.

Definition 6.1.16 (Note).

� If a Markov chain X is stationary and discrete, we can represent the transition model as a
matrix Tij := P (Xt = j|Xt−1 = i).

� If a sensor model has the sensor Markov property, we can represent each observation Et = et
at time t as the diagonal matrix Ot with Otii := P (Et = et|Xt = i).

� A pair ⟨X,E⟩ where X is a (stationary) Markov chains, Ei only depends on Xi, and E has
the sensor Markov property is called a (stationary) Hidden Markov Model (HMM). (X and
E are single variables)
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Umbrellas, the full Story
Example 6.1.17 (Umbrellas, Transition & Sensor Models).
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Raint−1 Raint Raint+1

Umbrellat−1 Umbrellat Umbrellat+1

Rt−1 P (Rt)

T 0.7
F 0.3 Rt P (Ut)

T 0.9
F 0.2

This is a hidden Markov model
Observation 6.1.18. If we know the initial prior probabilities P(X0) (=̂ time t = 0), then we
can compute the full joint probability distribution as

P(X0:t,E1:t) = P(X0) ·
t∏

i=1

P(Xi|Xi−1) · P(Ei|Xi)
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6.2 Inference: Filtering, Prediction, and Smoothing

Inference tasks
Definition 6.2.1. Given a Markov process with state variables Xt and evidence variables Et, we
are interested in the following Markov inference tasks:

� Filtering (or monitoring) P(Xt|E=e
1:t): Given the sequence of observations up until time t,

compute the likely state of the world at current time t.

� Prediction (or state estimation) P(Xt+k|E=e
1:t) for k > 0: Given the sequence of observations

up until time t, compute the likely future state of the world at time t+ k.

� Smoothing (or hindsight) P(Xt−k|E=e
1:t) for 0 < k < t: Given the sequence of observations

up until time t, compute the likely past state of the world at time t− k.

� Most likely explanation argmax
x1:t

(P (X=x
1:t |E=e

1:t)): Given the sequence of observations up until

time t, compute the most likely sequence of states that led to these observations.

Note: The most likely sequence of states is not (necessarily) the sequence of most likely states
;-)

In this section, we assume X and E to represent multiple variables, where X jointly forms a
Markov chain and the E jointly have the sensor Markov property.

In the case where X and E are stationary single variables, we have a stationary hidden Markov
model and can use the matrix forms.
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Filtering (Computing the Belief State given Evidence)
Note:

� Using the full joint probability distribution, we can compute any conditional probability we
want, but not necessarily efficiently.

� We want to use filtering to update our ‘ ‘world model” P(Xt) based on a new observation
Et = et and our previous world model P(Xt−1).
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⇒ We want a function P(Xt|E=e
1:t) = F (et,P(Xt−1|E=e

1:t−1)︸ ︷︷ ︸
F (et−1,...)

)

Spoiler:
F (et,P(Xt−1|E=e

1:t−1)) = α(Ot ·TT · P(Xt−1|E=e
1:t−1))
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Filtering Derivation

P(Xt|E=e
1:t) = P(Xt|Et = et, E

=e
1:t−1) (dividing up evidence)

= α(P(Et = et|Xt, E
=e
1:t−1) · P(Xt|E=e

1:t−1)) (using Bayes’ rule)
= α(P(Et = et|Xt) · P(Xt|E=e

1:t−1)) (sensor Markov property)
= α(P(Et = et|Xt) · (

∑

x∈dom(X)

P(Xt|Xt−1 = x,E=e
1:t−1) · P (Xt−1 = x|E=e

1:t−1))) (marginalization)

= α(P(Et = et|Xt)︸ ︷︷ ︸
sensor model

·(
∑

x∈dom(X)

P(Xt|Xt−1 = x)︸ ︷︷ ︸
transition model

·P (Xt−1 = x|E=e
1:t−1)︸ ︷︷ ︸

recursive call

)) (conditional independence)

Reminder: In a stationary HMM, we have the matrices Tij = P (Xt = j|Xt−1 = i) and
Otii = P (Et = et|Xt = i).

Then interpreting P(Xt−1|E=e
1:t−1) as a vector, the above corresponds exactly to the matrix

multiplication α(Ot ·TT · P(Xt−1|E=e
1:t−1))

Definition 6.2.2. We call the inner part of the above expression the forward algorithm, i.e.
P(Xt|E=e

1:t) = α(FORWARD(et,P(Xt−1|E=e
1:t−1))) =: f1:t.
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Filtering the Umbrellas
Example 6.2.3. Let’s assume:

� P(R0) = ⟨0.5, 0.5⟩, (Note that with growing t (and evidence), the impact of the prior at
t = 0 vanishes anyway)

� P (Rt+1|Rt) = 0.6, P (¬Rt+1|¬Rt) = 0.8, P (Ut|Rt) = 0.9 and P (¬Ut|¬Rt) = 0.85

⇒ T =

(
0.6 0.4
0.2 0.8

)

� The director carries an umbrella on days 1 and 2, and not on day 3.

⇒ O1 = O2 =

(
0.9 0
0 0.15

)
and O3 =

(
0.1 0
0 0.85

)
.

Then:

� f1:1 := P(R1|U1 = T) = α(P(U1 = T|R1) · (
∑

b∈{T,F}
P(R1|R0 = b) · P (R0 = b)))

=α(⟨0.9, 0.15⟩ · (⟨0.6, 0.4⟩ · 0.5 + ⟨0.2, 0.8⟩ · 0.5)) = α(⟨0.36, 0.09⟩) = ⟨0.8, 0.2⟩
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� Using matrices: α(O1 · TT ·
(

0.5
0.5

)
) = α(

(
0.9 0
0 0.15

)
·
(

0.6 0.2
0.4 0.8

)
·
(

0.5
0.5

)
)

=α(

(
0.9 · 0.6 0.9 · 0.2
0.15 · 0.4 0.15 · 0.8

)
·
(

0.5
0.5

)
) = α(

(
0.9 · 0.6 · 0.5 + 0.9 · 0.2 · 0.5
0.15 · 0.4 · 0.5 + 0.15 · 0.8 · 0.5

)
) = α(

(
0.36
0.09

)
)
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Filtering the Umbrellas (Continued)
Example 6.2.4. f1:1 := P(R1|U1 = T) = ⟨0.8, 0.2⟩

� f1:2 := P(R2|U2 = T, U1 = T) = α(O2·TT ·f1:1) = α(P(U2 = T|R2)·(
∑

b∈{T,F}
P(R2|R1 = b) · f1:1(b)))

=α(⟨0.9, 0.15⟩ · (⟨0.6, 0.4⟩ · 0.8 + ⟨0.2, 0.8⟩ · 0.2)) = α(⟨0.468, 0.072⟩) = ⟨0.87, 0.13⟩

� f1:3 := P(R3|U3 = F, U2 = T, U1 = T) = α(O3 ·TT · f1:2)
=α(P(U3 = F|R3) · (

∑

b∈{T,F}
P(R3|R2 = b) · f1:2(b)))

=α(⟨0.1, 0.85⟩ · (⟨0.6, 0.4⟩ · 0.87 + ⟨0.2, 0.8⟩ · 0.13)) = α(⟨0.0547, 0.3853⟩) = ⟨0.12, 0.88⟩
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Prediction in Markov Chains
Prediction: P(Xt+k|E=e

1:t) for k > 0.
Intuition: Prediction is filtering without new evidence – i.e. we can use filtering until t, and
then continue as follows:
Lemma 6.2.5. By the same reasoning as filtering:

P(Xt+k+1|E=e
1:t) =

∑

x∈dom(X)

P(Xt+k+1|Xt+k = x)︸ ︷︷ ︸
transition model

·P (Xt+k = x|E=e
1:t)︸ ︷︷ ︸

recursive call

=TT · P(Xt+k = x|E=e
1:t)︸ ︷︷ ︸

HMM

Observation 6.2.6. As k → ∞, P(Xt+k|E=e
1:t) converges towards a fixed point called the

stationary distribution of the Markov chain. (which we can compute from the equation
S = TT · S)
⇒ the impact of the evidence vanishes.
⇒ The stationary distribution only depends on the transition model.
⇒ There is a small window of time (depending on the transition model) where the evidence

has enough impact to allow for prediction beyond the mere stationary distribution, called the
mixing time of the Markov chain.
⇒ Predicting the future is difficult, and the further into the future, the more difficult it is

(Who knew...)
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Smoothing
Smoothing: P(Xt−k|E=e

1:t) for k > 0.
Intuition: Use filtering to compute P(Xt|E=e

1:t−k), then recurse backwards from t until t− k.
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P(Xt−k|E=e
1:t) = P(Xt−k|E=e

t−(k−1):t, E
=e
1:t−k) (Divide the evidence)

= α(P(E=e
t−(k−1):t|Xt−k, E

=e
1:t−k) · P(Xt−k|E=e

1:t−k)) (Bayes Rule)

= α(P(E=e
t−(k−1):t|Xt−k)︸ ︷︷ ︸
=:bt−(k−1):t

·P(Xt−k|E=e
1:t−k)︸ ︷︷ ︸

=f1:t−k

) (cond. independence)

= α(f1:t−k × bt−(k−1):t)

(where × denotes component-wise multiplication)
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Smoothing (continued)
Definition 6.2.7 (Backward message). bt−k:t = P(E=e

t−k:t|Xt−(k+1))

=
∑

x∈dom(X)

P(E=e
t−k:t|Xt−k = x,Xt−(k+1)) · P(Xt−k = x|Xt−(k+1))

=
∑

x∈dom(X)

P (E=e
t−k:t|Xt−k = x) · P(Xt−k = x|Xt−(k+1))

=
∑

x∈dom(X)

P (Et−k = et−k, E
=e
t−(k−1):t|Xt−k = x) · P(Xt−k = x|Xt−(k+1))

=
∑

x∈dom(X)

P (Et−k = et−k|Xt−k = x)︸ ︷︷ ︸
sensor model

·P (E=e
t−(k−1):t|Xt−k = x)

︸ ︷︷ ︸
=bt−(k−1):t

·P(Xt−k = x|Xt−(k+1))︸ ︷︷ ︸
transition model

Note: in a stationary hidden Markov model, we get the matrix formulation bt−k:t = T ·Ot−k ·
bt−(k−1):t

Definition 6.2.8. We call the associated algorithm the backward algorithm, i.e. P(Xt−k|E=e
1:t) =

α(FORWARD(et−k, f1:t−(k+1))︸ ︷︷ ︸
f1:t−k

×BACKWARD(et−(k−1),bt−(k−2):t)︸ ︷︷ ︸
bt−(k−1):t

).

As a starting point for the recursion, we let bt+1:t the uniform vector with 1 in every compo-
nent.
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Smoothing example
Example 6.2.9 (Smoothing Umbrellas). Reminder: We assumed P(R0) = ⟨0.5, 0.5⟩, P (Rt+1|Rt) =
0.6, P (¬Rt+1|¬Rt) = 0.8, P (Ut|Rt) = 0.9, P (¬Ut|¬Rt) = 0.85

⇒ T =

(
0.6 0.4
0.2 0.8

)
, O1 = O2 =

(
0.9 0
0 0.15

)
and O3 =

(
0.1 0
0 0.85

)
. (The

director carries an umbrella on days 1 and 2, and not on day 3)
f1:1 = ⟨0.8, 0.2⟩, f1:2 = ⟨0.87, 0.13⟩ and f1:3 = ⟨0.12, 0.88⟩
Let’s compute

P(R1|U1 = T, U2 = T, U3 = F) = α(f1:1 × b2:3)

� We need to compute b2:3 and b3:3:

� b3:3 = T ·O3 · b4:3 =

(
0.6 0.4
0.2 0.8

)
·
(

0.1 0
0 0.85

)
·
(

1
1

)
=

(
0.4
0.7

)
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� b2:3 = T ·O2 · b3:3 =

(
0.6 0.4
0.2 0.8

)
·
(

0.9 0
0 0.15

)
·
(

0.4
0.7

)
=

(
0.258
0.156

)

⇒ α(

(
0.8
0.2

)
×
(

0.258
0.156

)
) = α(

(
0.2064
0.0312

)
) =

(
0.87
0.13

)

⇒ Given the evidence U2,¬U3, the posterior probability for R1 went up from 0.8 to 0.87!
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Forward/Backward Algorithm for Smoothing
Definition 6.2.10. Forward backward algorithm: returns the sequence of posterior distributions
P(X1). . .P(Xt) given evidence e1, . . ., et:

function Forward-Backward(⟨e1, . . ., et⟩,P(X0))
f := ⟨P(X0)⟩
b := ⟨1, 1, . . .⟩
S := ⟨P(X0)⟩
for i = 1, . . . , t do

fi := FORWARD(fi−1, ei) /* filtering */
for i = t, . . . , 1 do

Si := α(fi × b) /* smoothing */
b := BACKWARD(b, ei)

return S

Time complexity linear in t (polytree inference), Space complexity O(t · |f |).
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Country dance algorithm
Idea: If T and Oi are invertible, we can avoid storing all forward messages in the smoothing
algorithm by running filtering backwards:

f1:i+1 = α(Oi+1 ·TT · f1:i)

⇒ f1:i = α(TT−1 ·Oi+1
−1 · f1:i+1)

⇒ we can trade space complexity for time complexity:

� In the first for-loop, we only compute the final f1:t (No need to store the intermediate
results)

� In the second for-loop, we compute both f1:i and bt−i:t (Only one copy of f1:i, bt−i:t is
stored)

⇒ constant space.

But: Requires that both matrices are invertible, i.e. every observation must be possible in
every state. (Possible hack: increase the probabilities of 0 to “negligibly small”)
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Most Likely Explanation
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Smoothing allows us to compute the sequence of most likely states X1, . . ., Xt given E=e
1:t .

What if we want the most likely sequence of states? i.e. max
x1,...,xt

(P (X=x
1:t |E=e

1:t))?

Example 6.2.11. Given the sequence U1, U2,¬U3, U4, U5, the most likely state for R3 is F, but
the most likely sequence might be that it rained throughout...
Prominent Application: In speech recognition, we want to find the most likely word sequence,
given what we have heard. (can be quite noisy)

Idea:

� For every xt ∈ dom(X) and 0 ≤ i ≤ t, recursively compute the most likely path X1, . . ., Xi

ending in Xi = xi given the observed evidence.

� remember the xi−1 that most likely leads to xi.

� Among the resulting paths, pick the one to the Xt = xt with the most likely path,

� and then recurse backwards.

⇒ we want to know max
x1,...,xt−1

P(X=x
1:t−1, Xt|E=e

1:t), and then pick the xt with the maximal

value.
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Most Likely Explanation (continued)
By the same reasoning as for filtering:

max
x1,...,xt−1

P(X=x
1:t−1, Xt|E=e

1:t)

= α(P(Et = et|Xt)︸ ︷︷ ︸
sensor model

·max
xt−1

(P(Xt|Xt−1 = xt−1)︸ ︷︷ ︸
transition model

· max
x1,...,xt−2

(P (X=x
1:t−2, Xt−1 = xt−1|E=e

1:t−1))

︸ ︷︷ ︸
=:m1:t−1(xt−1)

))

m1:t(i) gives the maximal probability that the most likely path up to t leads to state Xt = i.
Note that we can leave out the α, since we’re only interested in the maximum.

Example 6.2.12. For the sequence [T,T,F,T,T]:
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Rain1

m1:1

true

Rain5

m1:5

true

Rain4

m1:4

true

Rain3

m1:3

false

Rain2

m1:2

trueUmbrellat

(a)

(b)
.8182

.1818

.0210

.0024

.0334

.0173

.0361

.1237

.5155

.0491

true

false

true

false

true

false

true

false

true

false

Figure 15.5 (a) Possible state sequences for Raint can be viewed as paths through a graph
of the possible states at each time step. (States are shown as rectangles to avoid confusion
with nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella obser-
vation sequence [true, true, false, true, true]. For each t, we have shown the values of the
message m1:t, which gives the probability of the best sequence reaching each state at time t.
Also, for each state, the bold arrow leading into it indicates its best predecessor as measured
by the product of the preceding sequence probability and the transition probability. Following
the bold arrows back from the most likely state in m1:5 gives the most likely sequence.

butions over single time steps, whereas to find the most likely sequence we must consider
joint probabilities over all the time steps. The results can in fact be quite different. (See
Exercise 15.4.)

There is a linear-time algorithm for finding the most likely sequence, but it requires a
little more thought. It relies on the same Markov property that yielded efficient algorithms for
filtering and smoothing. The easiest way to think about the problem is to view each sequence
as a path through a graph whose nodes are the possible states at each time step. Such a
graph is shown for the umbrella world in Figure 15.5(a). Now consider the task of finding
the most likely path through this graph, where the likelihood of any path is the product of
the transition probabilities along the path and the probabilities of the given observations at
each state. Let’s focus in particular on paths that reach the state Rain5 = true . Because of
the Markov property, it follows that the most likely path to the state Rain5 = true consists of
the most likely path to some state at time 4 followed by a transition to Rain5 = true; and the
state at time 4 that will become part of the path to Rain5 = true is whichever maximizes the
likelihood of that path. In other words, there is a recursive relationship between most likely
paths to each state xt+1 and most likely paths to each state xt. We can write this relationship
as an equation connecting the probabilities of the paths:

max
x1...xt

P(x1, . . . , xt, Xt+1 | e1:t+1)

= α P(et+1 | Xt+1)max
xt

(
P(Xt+1 | xt) max

x1...xt−1

P (x1, . . . , xt−1, xt | e1:t)

)
. (15.11)

Equation (15.11) is identical to the filtering equation (15.5) except that

bold arrows: best predecessor measured by “best preceding sequence probability × transition
probability”
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The Viterbi Algorithm
Definition 6.2.13. The Viterbi algorithm now proceeds as follows:
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function Viterbi(⟨e1, . . ., et⟩,P(X0))
m := P(X0) /* m1:i */
prev := ⟨⟩ /* the most likely predecessor of each possible xi */
for i = 1, . . . , t do

m′ := max
xi−1

(P(Ei = ei|Xi) · P(Xi|Xi−1 = xi−1) ·mxi−1 )

previ−1 := argmax
xi−1

(P(Ei = ei|Xi) · P(Xi|Xi−1 = xi−1) ·mxi−1 )

m←− m′

P := ⟨0, 0, ..., argmax
(x∈dom(X))

mx⟩

for i = t− 1, . . . , 0 do
Pi := previ,Pi+1

return P

Observation 6.2.14. Viterbi has linear time complexity and linear space complexity (needs to
keep the most likely sequence leading to each state).
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6.3 Hidden Markov Models – Extended Example

Example: Robot Localization using Common Sense
Example 6.3.1 (Robot Localization in a Maze). A robot has four sonar sensors that tell it
about obstacles in four directions: N, S, W, E.

We write the result where the sensor that detects obstacles in the north, south, and east as
N S E.

We filter out the impossible states:

a) Possible robot locations after e1 = N S W

b) Possible robot locations after e1 = N S W and e2 = N S

Remark 6.3.2. This only works for perfect sensors. (else no impossible states)
What if our sensors are imperfect?
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HMM Example: Robot Localization (Modeling)
Example 6.3.3 (HMM-based Robot Localization). We have the following setup:
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� A hidden Random variable Xt for robot location (domain: 42 empty squares)

� Let N(i) be the set of neighboring fields of the field Xi = xi

� The Transition matrix for the move action (T has 422 = 1764 entries)

P (Xt+1 = j|Xt = i) = Tij =

{ 1
|N(i)| if j ∈ N(i)

0 else

� We do not know where the robot starts: P (X0) =
1
n (here n = 42)

� Evidence variable Et: four bit presence/absence of obstacles in N, S, W, E. Let dit be the
number of wrong bits and ϵ the error rate of the sensor. Then

P (Et = et|Xt = i) = Otii = (1− ϵ)
4−dit · ϵdit

(We assume the sensors are independent)

For example, the probability that the sensor on a square with obstacles in north and south
would produce N S E is (1− ϵ)

3 · ϵ1.

We can now use filtering for localization, smoothing to determine e.g. the starting location,
and the Viterbi algorithm to find out how the robot got to where it is now.
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HMM Example: Robot Localization
We use HMM filtering equation f1:t+1 = α · Ot+1T

tf1:t to compute posterior distribution
over locations. (i.e. robot localization)

Example 6.3.4. Redoing ??, with ϵ = 0.2.

582 Chapter 15. Probabilistic Reasoning over Time

(a) Posterior distribution over robot location after E1 = NSW

(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 Posterior distribution over robot location: (a) one observation E1 =NSW ;
(b) after a second observation E2 =NS. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate is ε =0.2.

NS, for example, to mean that the north and south sensors report an obstacle and the east and
west do not. Suppose that each sensor’s error rate is ε and that errors occur independently for
the four sensor directions. In that case, the probability of getting all four bits right is (1 − ε)4

and the probability of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the
number of bits that are different—between the true values for square i and the actual reading
et, then the probability that a robot in square i would receive a sensor reading et is

P (Et = et | Xt = i) = Otii = (1 − ε)4−ditεdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading NSE is (1 − ε)3ε1.

Given the matrices T and Ot, the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the
distributions P(X1 |E1 = NSW ) and P(X2 |E1 =NSW,E2 = NS). This is the same maze
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most
likely with noisy sensing, but now every location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing
(Equation (15.13)) to work out where it was at any given past time—for example, where it
began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

a) Posterior distribution over robot location after E1 = N S W
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(b) Posterior distribution over robot location after E1 = NSW, E2 = NS

Figure 15.7 Posterior distribution over robot location: (a) one observation E1 =NSW ;
(b) after a second observation E2 =NS. The size of each disk corresponds to the probability
that the robot is at that location. The sensor error rate is ε =0.2.

NS, for example, to mean that the north and south sensors report an obstacle and the east and
west do not. Suppose that each sensor’s error rate is ε and that errors occur independently for
the four sensor directions. In that case, the probability of getting all four bits right is (1 − ε)4

and the probability of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the
number of bits that are different—between the true values for square i and the actual reading
et, then the probability that a robot in square i would receive a sensor reading et is

P (Et = et | Xt = i) = Otii = (1 − ε)4−ditεdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading NSE is (1 − ε)3ε1.

Given the matrices T and Ot, the robot can use Equation (15.12) to compute the pos-
terior distribution over locations—that is, to work out where it is. Figure 15.7 shows the
distributions P(X1 |E1 = NSW ) and P(X2 |E1 =NSW,E2 = NS). This is the same maze
we saw before in Figure 4.18 (page 146), but there we used logical filtering to find the loca-
tions that were possible, assuming perfect sensing. Those same locations are still the most
likely with noisy sensing, but now every location has some nonzero probability.

In addition to filtering to estimate its current location, the robot can use smoothing
(Equation (15.13)) to work out where it was at any given past time—for example, where it
began at time 0—and it can use the Viterbi algorithm to work out the most likely path it has

b) Posterior distribution over robot location after E1 = N S W and E2 = N S

Still the same locations as in the “perfect sensing” case, but now other locations have non-zero
probability.
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HMM Example: Further Inference Applications
Idea: We can use smoothing: bk+1:t = TOk+1bk+2:t to find out where it started and the
Viterbi algorithm to find the most likely path it took.
Example 6.3.5.Performance of HMM localization vs. observation length (various error rates ϵ)

Section 15.3. Hidden Markov Models 583
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Figure 15.8 Performance of HMM localization as a function of the length of the observa-
tion sequence for various different values of the sensor error probability ε; data averaged over
400 runs. (a) The localization error, defined as the Manhattan distance from the true location.
(b) The Viterbi path accuracy, defined as the fraction of correct states on the Viterbi path.

taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy
for various values of the per-bit sensor error rate ε. Even when ε is 20%—which means that
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its
location within two squares after 25 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
on the location sequence by the transition model. When ε is 10%, the performance after
a half-dozen observations is hard to distinguish from the performance with perfect sensing.
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in
the prior distribution P(X0) and in the transition model itself. Broadly speaking, high levels
of localization and path accuracy are maintained even in the face of substantial errors in the
models used.

The state variable for the example we have considered in this section is a physical
location in the world. Other problems can, of course, include other aspects of the world.
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
(randomly selected) heading. To model this robot, each state in the model consists of a
(location, heading) pair. For the environment in Figure 15.7, which has 42 empty squares,
this leads to 168 states and a transition matrix with 1682 = 28, 224 entries—still a manageable
number. If we add the possibility of dirt in the squares, the number of states is multiplied by
242 and the transition matrix ends up with more than 1029 entries—no longer a manageable
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with
many state variables. If we allow the robot to move continuously rather than in a discrete
grid, the number of states becomes infinite; the next section shows how to handle this case.
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taken to get where it is now. Figure 15.8 shows the localization error and Viterbi path accuracy
for various values of the per-bit sensor error rate ε. Even when ε is 20%—which means that
the overall sensor reading is wrong 59% of the time—the robot is usually able to work out its
location within two squares after 25 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
on the location sequence by the transition model. When ε is 10%, the performance after
a half-dozen observations is hard to distinguish from the performance with perfect sensing.
Exercise 15.7 asks you to explore how robust the HMM localization algorithm is to errors in
the prior distribution P(X0) and in the transition model itself. Broadly speaking, high levels
of localization and path accuracy are maintained even in the face of substantial errors in the
models used.

The state variable for the example we have considered in this section is a physical
location in the world. Other problems can, of course, include other aspects of the world.
Exercise 15.8 asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
(randomly selected) heading. To model this robot, each state in the model consists of a
(location, heading) pair. For the environment in Figure 15.7, which has 42 empty squares,
this leads to 168 states and a transition matrix with 1682 = 28, 224 entries—still a manageable
number. If we add the possibility of dirt in the squares, the number of states is multiplied by
242 and the transition matrix ends up with more than 1029 entries—no longer a manageable
number; Section 15.5 shows how to use dynamic Bayesian networks to model domains with
many state variables. If we allow the robot to move continuously rather than in a discrete
grid, the number of states becomes infinite; the next section shows how to handle this case.

Localization error (Manhattan dis-
tance from true location)

Viterbi path accuracy (fraction of
correct states on Viterbi path)
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6.4 Dynamic Bayesian Networks
A Video Nugget covering this section can be found at https://fau.tv/clip/id/30355.

Dynamic Bayesian networks

� Definition 6.4.1. A Bayesian network D is called dynamic (a DBN), iff its random variables
are indexed by a time structure. We assume that D is

� time sliced, i.e. that the time slices Dt – the subgraphs of t-indexed random variables and
the edges between them – are isomorphic.

� a stationary Markov chain, i.e. that variables Xt can only have parents in Dt and Dt−1.

� Xt, Et contain arbitrarily many variables in a replicated Bayesian network.

� Example 6.4.2.

Umbrellas Robot Motion
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https://fau.tv/clip/id/30355
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DBNs vs. HMMs

� Observation 6.4.3.

� Every HMM is a single-variable DBN. (trivially)

� Every DBN can be turned into an HMM. (combine variables into tuple ⇒ lose
information about dependencies)

� DBNs have sparse dependencies ; exponentially fewer parameters;

� Example 6.4.4 (Sparse Dependencies). With 20 Boolean state variables, three parents
each, a DBN has 20 · 23 = 160 parameters, the corresponding HMM has 220 · 220 ≈ 1012.
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Exact inference in DBNs

� Definition 6.4.5 (Naive method). Unroll the network and run any exact algorithm.

Rain0 Rain1

Umbrella1

P (R0)

0.7
R0 P (R1)

T 0.7
F 0.3 R1 P (U1)

T 0.9
F 0.2

Rain0 Rain1

Umbrella1

Rain2

Umbrella2

Rain3

Umbrella3

Rain4

Umbrella4

Rain5

Umbrella5

P (R0)

0.7

R0 P (R1)

T 0.7
F 0.3

R1 P (U1)

T 0.9
F 0.2

R1 P (R2)

T 0.7
F 0.3

R2 P (U2)

T 0.9
F 0.2

R2 P (R3)

T 0.7
F 0.3

R3 P (U3)

T 0.9
F 0.2

R3 P (R4)

T 0.7
F 0.3

R4 P (U4)

T 0.9
F 0.2

R4 P (R5)

T 0.7
F 0.3

R5 P (U5)

T 0.9
F 0.2

� Problem: Inference cost for each update grows with t.

� Definition 6.4.6. Rollup filtering: add slice t+1, “sum out” slice t using variable elimination.

� Observation: Largest factor is O(dn+1), update cost O(dn+2), where d is the maximal
domain size.

� Note: Much better than the HMM update cost of O(d2n)
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Summary

� Temporal probability models use state and evidence variables replicated over time.

� Markov property and stationarity assumption, so we need both

� a transition model and P(Xt|Xt−1)

� a sensor model P(Et|Xt).

� Tasks are filtering, prediction, smoothing, most likely sequence; (all done recursively with
constant cost per time step)

� Hidden Markov models have a single discrete state variable; (used for speech recognition)

� DBNs subsume HMMs, exact update intractable.
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Chapter 7

Making Complex Decisions

We will now pick up the thread from chapter 5 but using temporal models instead of simply
probabilistic ones. We will first look at a sequential decision theory in the special case, where the
environment is stochastic, but fully observable (Markov decision processes) and then lift that to
obtain POMDPs and present an agent design based on that.

Outline
We will now combine the ideas of stochastic process with that of acting based on maximizing

expected utility:

� Markov decision processes (MDPs) for sequential environments.

� Value/policy iteration for computing utilities in MDPs.

� Partially observable MDP (POMDPs).

� Decision theoretic agents for POMDPs.
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7.1 Sequential Decision Problems

Sequential Decision Problems

� Definition 7.1.1. In sequential decision problems, the agent’s utility depends on a sequence
of decisions (or their result states).

� Definition 7.1.2. Utility functions on action sequences are often expressed in terms of
immediate rewards that are incurred upon reaching a (single) state.

� Methods: depend on the environment:

� If it is fully observable ; Markov decision process (MDPs)

� else ; partially observable MDP (POMDP).

� Sequential decision problems incorporate utilities, uncertainty, and sensing.

� Preview: Search problems and planning tasks are special cases.

95
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Search

Planning

Decision-theoretic
Planning

Markov Decision
Problems (MDPs)

Partially observable
MDPs (POMDPs)

explicit actions
and subgoals

uncertainty
and utility

uncertainty
and utility

uncertain
sensing

explicit actions
and subgoals belief states
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We will fortify our intuition by an example. It is specifically chosen to be very simple, but
to exhibit all the peculiarities of Markov decision problems, which we will generalize from this
example.

Markov Decision Problem: Running Example

� Example 7.1.3 (Running Example: The 4x3 World). A (fully observable) 4× 3 environ-
ment with non-deterministic actions:

� States s ∈ S, actions a ∈ Act(s).

� Transition model: P (s′|s, a) =̂ probability that a in s leads to s′.

� reward function:

R(s) :=

{
−0.04 if (small penalty) for nonterminal states
±1 if for terminal states
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Perhaps what is more interesting than the components of an MDP is that is not a component: a
belief and/or sensor model. Recall that MDPs are for fully observable environments.

Markov Decision Process

� Motivation: Let us (for now) consider sequential decision problems in a fully observable,
stochastic environment with a Markovian transition model on a finite set of states and an
additive reward function. (We will switch to partially observable ones later)

� Definition 7.1.4. A Markov decision process (MDP) ⟨S ,Act, T , s0 , R⟩ consists of

� a set of S of states (with initial state s0 ∈ S),
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� for every state s, a sets of actions Act(s).

� a transition model T (s, a) = P(S|s, a), and

� a reward function R : S → R; we call R(s) a reward.

� Idea: We use the rewards as a utility function: The goal is to choose actions such that the
expected cumulative rewards for the “foreseeable future” is maximized

⇒ need to take future actions and future states into account
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Solving MDPs

� In MDPs, the aim is to find an optimal policy π(s), which tells us the best action for every
possible state s. (because we can’t predict where we might end up, we need to consider all
states)

� Definition 7.1.5. A policy π for an MDP is a function mapping each state s to an action
a ∈ Act(s).

An optimal policy is a policy that maximizes the expected total rewards. (for some notion of
“total”...)

� Example 7.1.6. Optimal policy when state penalty R(s) is 0.04:

Note: When you run against a wall, you stay in your square.
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Risk and Reward

� Example 7.1.7. Optimal policy depends on the reward function R(s).

1 2 3

1

2

3 + 1

–1

4

–1

+1

 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0 

–1

+1

–1

+1

–1

+1

R(s) > 0 

– 0.4278 < R(s) < – 0.0850

1 2 3
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–1
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 R(s) < –1.6284

(a) (b)
– 0.0221 < R(s) < 0 

–1

+1

–1

+1

–1

+1

R(s) > 0 

– 0.4278 < R(s) < – 0.0850

� Question: Explain what you see in a qualitative manner!
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� Answer: reserved for the plenary sessions ; be there!
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7.2 Utilities over Time
In this section we address the problem that even if the transition models are stationary, the

utilities may not be. In fact we generally have to take the utilities of state sequences into account
in sequential decision problems. If we can derive a notion of the utility of a (single) state from
that, we may be able to reuse the machinery we introduced above, so that is exactly what we will
attempt.

Utility of state sequences
Why rewards?

� Recall: We cannot observe/assess utility functions, only preferences ; induce utility func-
tions from rational preferences

� Problem: In MDPs we need to understand preferences between sequences of states.

� Definition 7.2.1. We call preferences on reward sequences stationary, iff

[r, r0, r1, r2, . . .]≻[r, r′0, r′1, r′2, . . .]⇔ [r0, r1, r2, . . .]≻[r′0, r′1, r′2, . . .]

(i.e. rewards over time are “independent” of each other)

� Good news:

Theorem 7.2.2. For stationary preferences, there are only two ways to combine rewards over
time.

� additive rewards: U([s0, s1, s2, . . .]) = R(s0) +R(s1) +R(s2) + · · ·
� discounted rewards: U([s0, s1, s2, . . .]) = R(s0)+γR(s1)+γ2R(s2)+· · · where 0 ≤ γ ≤ 1

is called discount factor.

⇒ we can reduce utilities over time to rewards on individual states
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Utilities of State Sequences
Problem: Infinite lifetimes ; additive rewards may become infinite.

Possible Solutions:

1. Finite horizon: terminate utility computation at a fixed time T

U([s0, . . . , s∞]) = R(s0) + · · ·+R(sT )

; nonstationary policy: π(s) depends on time left.

2. If there are absorbing states: for any policy π agent eventually “dies” with probability 1 ;
expected utility of every state is finite.
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3. Discounting: assuming γ < 1, R(s) ≤ Rmax,

U([s0, s1, . . .]) =

∞∑

t=0

γtR(st) ≤
∞∑

t=0

γtRmax = Rmax/(1− γ)

Smaller γ ; shorter horizon.

We will only consider discounted rewards in this course
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Why discounted rewards?
Discounted rewards are both convenient and (often) realistic:

� stationary preferences imply (additive rewards or) discounted rewards anyway,

� discounted rewards lead to finite utilities for (potentially) infinite sequences of states (we
can compute expected utilities for the entire future),

� discounted rewards lead to stationary policies, which are easier to compute and often more
adequate (unless we know that remaining time matters),

� discounted rewards mean we value short-term gains over long-term gains (all else being
equal), which is often realistic (e.g. the same amount of money gained early gives more
opportunity to spend/invest ⇒ potentially more utility in the long run)

� we can interpret the discount factor as a measure of uncertainty about future rewards ⇒
more robust measure in uncertain environments.
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Utility of States
Remember: Given a sequence of states S = s0, s1, s2, . . ., and a discount factor 0 ≤ γ < 1,
the utility of the sequence is

u(S) =

∞∑

t=0

γtR(st)

Definition 7.2.3. Given a policy π and a starting state s0, let Sπ
s0 be the random variable giving

the sequence of states resulting from executing π at every state starting at s0. (Since the
environment is stochastic, we don’t know the exact sequence.)

Then the expected utility obtained by executing π starting in s0 is given by

Uπ(s0):=EU(Sπ
s0).

We define the optimal policy π∗
s0 :=argmax

π
Uπ(s0).

Note: This is perfectly well-defined, but almost always computationally infeasible. (requires
considering all possible (potentially infinite) sequences of states)
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Utility of States (continued)
Observation 7.2.4. π∗

s0 is independent of the state s0.
Proof sketch: If π∗

a and π∗
b reach point c, then there is no reason to disagree from that point on

– or with π∗
c , and we expect optimal policies to “meet at some state” sooner or later.

Observation 7.2.4 does not hold for finite horizon policies!

Definition 7.2.5. We call π∗ := π∗
s for some s the optimal policy.

Definition 7.2.6. The utility U(s) of a state s is Uπ∗
(s).

Remark: R(s) =̂ “immediate reward”, whereas U =̂ “long-term reward”.

Given the utilities of the states, choosing the best action is just MEU: maximize the expected
utility of the immediate successor states

π∗(s) = argmax
a∈A(s)

(
∑

s′

P (s′|s, a) · U(s′))

⇒ given the “true” utilities, we can compute the optimal policy and vice versa.
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Utility of States (continued)

� Example 7.2.7 (Running Example Continued).

Expected Utility Optimal Policy

� Question: Why do we go left in (3, 1) and not up? (follow the utility)
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7.3 Value/Policy Iteration
A Video Nugget covering this section can be found at https://fau.tv/clip/id/30359.

Dynamic programming: the Bellman equation

� Problem: We have defined U(s) via the optimal policy: U(s) := Uπ∗
(s), but how to

compute it without knowing π∗?

� Observation: A simple relationship among utilities of neighboring states:

expected sum of rewards = current reward + γ · exp. reward sum after best action

https://fau.tv/clip/id/30359


7.3. VALUE/POLICY ITERATION 101

� Theorem 7.3.1 (Bellman equation (1957)).

U(s) = R(s) + γ · max
a∈A(s)

∑

s′

U(s′) · P (s′|s, a)

We call this equation the Bellman equation

� Example 7.3.2. U(1, 1) = −0.04
+ γ max{0.8U(1, 2) + 0.1U(2, 1) + 0.1U(1, 1), up

0.9U(1, 1) + 0.1U(1, 2) left
0.9U(1, 1) + 0.1U(2, 1) down
0.8U(2, 1) + 0.1U(1, 2) + 0.1U(1, 1)} right

� Problem: One equation/state ; n nonlinear (max isn’t) equations in n unknowns.
; cannot use linear algebra techniques for solving them.
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Value Iteration Algorithm

� Idea: We use a simple iteration scheme to find a fixpoint:

1. start with arbitrary utility values,

2. update to make them locally consistent with the Bellman equation,

3. everywhere locally consistent ; global optimality.

� Definition 7.3.3. The value iteration algorithm for utilitysutility function is given by
function VALUE−ITERATION (mdp,ϵ) returns a utility fn.

inputs: mdp, an MDP with states S, actions A(s), transition model P (s′|s, a),
rewards R(s), and discount γ

ϵ, the maximum error allowed in the utility of any state
local variables: U , U ′, vectors of utilities for states in S, initially zero

δ, the maximum change in the utility of any state in an iteration
repeat

U := U ′; δ := 0
for each state s in S do
U ′[s] := R(s) + γ · max

a∈A(s)
(
∑

s′ U [s′] · P (s′|s, a))
if |U ′[s]− U [s]| > δ then δ := |U ′[s]− U [s]|

until δ < ϵ(1− γ)/γ
return U

� Remark: Retrieve the optimal policy with π[s]:=argmax
a∈A(s)

(
∑

s′ U [s′] · P (s′|s, a))
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Value Iteration Algorithm (Example)

� Example 7.3.4 (Iteration on 4x3).
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Section 17.2. Value Iteration 653

function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S , actions A(s), transition model P (s′ | s, a),

rewards R(s), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U , U ′, vectors of utilities for states in S , initially zero
δ, the maximum change in the utility of any state in an iteration

repeat
U ←U ′; δ ← 0
for each state s in S do

U ′[s ] ←R(s) + γ max
a ∈ A(s)

∑

s′
P (s′ | s, a) U [s′]

if |U ′[s ] − U [s]| > δ then δ ← |U ′[s ] − U [s]|
until δ < ε(1 − γ)/γ
return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termina-
tion condition is from Equation (17.8).
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Figure 17.5 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations k required to guarantee an error of at most
ε = c · Rmax, for different values of c, as a function of the discount factor γ.

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained
using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is shown in
Figure 17.4.

We can apply value iteration to the 4× 3 world in Figure 17.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ-
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∑

s′
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where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see Section 17.2.3), in which case the final utility values must be solutions to the Bellman
equations. In fact, they are also the unique solutions, and the corresponding policy (obtained
using Equation (17.4)) is optimal. The algorithm, called VALUE-ITERATION, is shown in
Figure 17.4.

We can apply value iteration to the 4× 3 world in Figure 17.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 17.5(a). Notice how the states at differ-

(where ε = c ·Rmax)
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Convergence

� Definition 7.3.5. The maximum norm is defined as ∥U∥ = max
s
|U(s)|, so ∥U − V ∥ =

maximum difference between U and V .

� Let U t and U t+1 be successive approximations to the true utility U during value iteration.

� Theorem 7.3.6. For any two approximations U t and V t

∥∥U t+1 − V t+1
∥∥ ≤ γ

∥∥U t − V t
∥∥

I.e., any distinct approximations get closer to each other over time
In particular, any approximation gets closer to the true U over time
⇒ value iteration converges to a unique, stable, optimal solution.

� Theorem 7.3.7. If
∥∥U t+1 − U t

∥∥ < ϵ, then
∥∥U t+1 − U

∥∥ < 2ϵγ/1− γ
(once the change in U t becomes small, we are almost done.)

� Remark: The policy resulting from U t may be optimal long before the utilities convergence!
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So we see that iteration with Bellman updates will always converge towards the utility of a state,
even without knowing the optimal policy. That gives us a first way of dealing with sequential
decision problems: we compute utility functions based on states and then use the standard MEU
machinery. We have seen above that optimal policies and state utilities are essentially inter-
changeable: we can compute one from the other. This leads to another approach to computing
state utilities: policy iteration, which we will discuss now.

Policy Iteration

� Recap: Value iteration computes utilities ; optimal policy by MEU.

� This even works if the utility estimate is inaccurate. ( ⇝policy loss small)

� Idea: Search for optimal policy and utility values simultaneously [How60]: Iterate
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� policy evaluation: given policy πi, calculate Ui = Uπi , the utility of each state were πi to
be executed.

� policy improvement: calculate a new MEU policy πi+1 using 1 lookahead

Terminate if policy improvement yields no change in computed utilities.

� Observation 7.3.8. Upon termination Ui is a fixpoint of Bellman update
; Solution to Bellman equation ; πi is an optimal policy.

� Observation 7.3.9. Policy improvement improves policy and policy space is finite ; termi-
nation.
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Policy Iteration Algorithm

� Definition 7.3.10. The policy iteration algorithm is given by the following pseudocode:
function POLICY−ITERATION(mdp) returns a policy

inputs: mdp, and MDP with states S, actions A(s), transition model P (s′|s, a)
local variables: U a vector of utilities for states in S, initially zero

π a policy indexed by state, initially random,
repeat

U := POLICY−EVALUATION(π,U ,mdp)
unchanged? := true
foreach state s in X do

if max
a∈A(s)

(
∑

s′ P (s′|s, a) · U(s′)) >
∑

s′ P (s′|s, π[s′]) · U(s′) then do

π[s] := argmax
b∈A(s)

(
∑

s′ P (s′|s, b) · U(s′))

unchanged? := false
until unchanged?
return π
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Policy Evaluation

� Problem: How to implement the POLICY−EVALUATION algorithm?

� Solution: To compute utilities given a fixed π: For all s we have

U(s) = R(s) + γ(
∑

s′

U(s′) · P (s′|s, π(s)))

(i.e. Bellman equation with the maximum replaced by the current policy π)

� Example 7.3.11 (Simplified Bellman Equations for π).

U i(1, 1) = −0.04 + 0.8U i(1, 2) + 0.1U i(1, 1) + 0.1U i(2, 1)

U i(1, 2) = −0.04 + 0.8U i(1, 3) + 0.1U i(1, 2)

...
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� Observation 7.3.12. n simultaneous linear equations in n unknowns, solve in O(n3) with
standard linear algebra methods.
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Modified Policy Iteration

� Value iteration requires many iterations, but each one is cheap.

� Policy iteration often converges in few iterations, but each is expensive.

� Idea: Use a few steps of value iteration (but with π fixed), starting from the value function
produced the last time to produce an approximate value determination step.

� Often converges much faster than pure VI or PI.

� Leads to much more general algorithms where Bellman value updates and Howard policy
updates can be performed locally in any order.

� Remark: Reinforcement learning algorithms operate by performing such updates based on
the observed transitions made in an initially unknown environment.
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7.4 Partially Observable MDPs
We will now lift the last restriction we made in the decision problems for our agents: in the

definition of Markov decision processes we assumed that the environment was fully observable. As
we have seen Observation 25.2.6 (Utilities over Time) in the AI lecture notes this entails that the
optimal policy only depends on the current state.

Partial Observability

� Definition 7.4.1. A partially observable MDP (a POMDP for short) is a MDP together with
an observation model O that has the sensor Markov property and is stationary: O(s, e) =
P (e|s).

� Example 7.4.2 (Noisy 4x3 World).

Add a partial and/or noisy sensor.
e.g. count number of adjacent walls (1 ≤ w ≤ 2)
with 0.1 error (noise)
If sensor reports 1, we are in (3, ?) (probably)

� Problem: Agent does not know which state it is in ; makes no sense to talk about policy
π(s)!

� Theorem 7.4.3 (Astrom 1965). The optimal policy in a POMDP is a function π(b) where
b is the belief state (probability distribution over states).
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� Idea: Convert a POMDP into an MDP in belief state space, where T (b, a, b′) is the proba-
bility that the new belief state is b′ given that the current belief state is b and the agent does
a. I.e., essentially a filtering update step.
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POMDP: Filtering at the Belief State Level

� Recap: Filtering updates the belief state for new evidence.

� For POMDPs, we also need to consider actions. (but the effect is the same)

� If b is the previous belief state and agent does action A = a and then perceives E = e, then
the new belief state is

b′ = α(P(E = e|s′) · (
∑

s

P(s′|S = s,A = a) · b(s)))

We write b′ = FORWARD(b, a, e) in analogy to recursive state estimation.

� Fundamental Insight for POMDPs: The optimal action only depends on the agent’s
current belief state. (good, it does not know the state!)

� Consequence: The optimal policy can be written as a function π∗(b) from belief states to
actions.

� Definition 7.4.4. The POMDP decision cycle is to iterate over

1. Given the current belief state b, execute the action a = π∗(b)

2. Receive percept e.

3. Set the current belief state to FORWARD(b, a, e) and repeat.

� Intuition: POMDP decision cycle is search in belief state space.
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Partial Observability contd.

� Recap: The POMDP decision cycle is search in belief state space.

� Observation 7.4.5. Actions change the belief state, not just the (physical) state.

� Thus POMDP solutions automatically include information gathering behavior.

� Problem: The belief state is continuous: If there are n states, b is an n-dimensional real-
valued vector.

� Example 7.4.6. The belief state of the 4x3 world is a 11 dimensional continuous space.(11
states)

� Theorem 7.4.7. Solving POMDPs is very hard! (actually, PSPACE hard)

� In particular, none of the algorithms we have learned applies. (discreteness assumption)
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� The real world is a POMDP (with initially unknown transition model T and sensor model O)
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Reducing POMDPs to Belief-State MDPs

� Idea: Calculating the probability that an agent in belief state b reaches belief state b′ after
executing action a.

� if we knew the action and the subsequent percept e, then b′ = FORWARD(b, a, e).
(deterministic update to the belief state)

� but we don’t, since b′ depends on e. (let’s calculate P (e|a, b))

� Idea: To compute P (e|a, b) — the probability that e is perceived after executing a in belief
state b — sum up over all actual states the agent might reach:

P (e|a, b) =
∑

s′

P (e|a, s′, b) · P (s′|a, b)

=
∑

s′

P (e|s′) · P (s′|a, b)

=
∑

s′

P (e|s′) · (
∑

s

P (s′|s, a), b(s))

Write the probability of reaching b′ from b, given action a, as P (b′|b, a), then

P (b′|b, a) = P (b′|a, b) =
∑

e

P (b′|e, a, b) · P (e|a, b)

=
∑

e

P (b′|e, a, b) · (
∑

s′

P (e|s′) · (
∑

s

P (s′|s, a), b(s)))

where P (b′|e, a, b) is 1 if b′ = FORWARD(b, a, e) and 0 otherwise.

� Observation: This equation defines a transition model for belief state space!

� Idea: We can also define a reward function for belief states:

ρ(b):=
∑

s

b(s) ·R(s)

i.e., the expected reward for the actual states the agent might be in.

� Together, P (b′|b, a) and ρ(b) define an (observable) MDP on the space of belief states.

� Theorem 7.4.8. An optimal policy π∗(b) for this MDP, is also an optimal policy for the
original POMDP.

� Upshot: Solving a POMDP on a physical state space can be reduced to solving an MDP
on the corresponding belief state space.

� Remember: The belief state is always observable to the agent, by definition.
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Ideas towards Value-Iteration on POMDPs

� Recap: The value iteration algorithm from ?? computes one utility value per state.

� Problem: We have infinitely many belief states ; be more creative!

� Observation: Consider an optimal policy π∗

� applied in a specific belief state b: π∗ generates an action,

� for each subsequent percept, the belief state is updated and a new action is generated . . .

For this specific b: π∗ =̂ a conditional plan!

� Idea: Think about conditional plans and how the expected utility of executing a fixed
conditional plan varies with the initial belief state. (instead of optimal policies)

Definition 7.4.9. Given a set of percepts E and a set of actions A, a conditional plan is either
an action a ∈ A, or a tuple ⟨a,E′, p1, p2⟩ such that a ∈ A,E′ ⊆ E, and p1, p2 are conditional
plans.

It represents the strategy “First execute a, If we subsequently perceive e ∈ E′, continue with
p1, otherwise continue with p2.”

The depth of a conditional plan p is the maximum number of actions in any path from p
before reaching a single action plan.
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Expected Utilities of Conditional Plans on Belief States

� Observation 1: Let p be a conditional plan and αp(s) the utility of executing p in state s.

� the expected utility of p in belief state b is
∑

s b(s) · αp(s) =̂ b·αp as vectors.

� the expected utility of a fixed conditional plan varies linearly with b

� ; the “best conditional plan to execute” corresponds to a hyperplane in belief state space.

� Observation 2: We can replace the original actions by conditional plans on those actions!

Let π∗ be the subsequent optimal policy. At any given belief state b,

� π∗ will choose to execute the conditional plan with highest expected utility

� the expected utility of b under the π∗ is the utility of that plan:

U(b) = Uπ∗
(b) = max

b
(b·αp)

� If the optimal policy π∗ chooses to execute p starting at b, then it is reasonable to expect
that it might choose to execute p in belief states that are very close to b;

� if we bound the depth of the conditional plans, then there are only finitely many such
plans

� the continuous space of belief states will generally be divided into regions, each corre-
sponding to a particular conditional plan that is optimal in that region.

� Observation 3 (conbined): The utility function U(b) on belief states, being the maximum
of a collection of hyperplanes, is piecewise linear and convex.
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A simple Illustrating Example

� Example 7.4.10. A world with states S0 and S1, where R(S0) = 0 and R(S1) = 1 and two
actions:

� “Stay” stays put with probability 0.9

� “Go” switches to the other state with probability 0.9.

� The sensor reports the correct state with probability 0.6.

Obviously, the agent should “Stay” when it thinks it’s in state S1 and “Go” when it thinks it’s
in state S0.

� The belief state has dimension 1. (the two probabilities sum up to 1)

� Consider the one-step plans [Stay] and [Go] and their direct utilities:

α([Stay])(S0) = 0.9R(S0) + 0.1R(S1) = 0.1

α([stay])(S1) = 0.9R(S1) + 0.1R(S0) = 0.9

α([go])(S0) = 0.9R(S1) + 0.1R(S0) = 0.9

α([go])(S1) = 0.9R(S0) + 0.1R(S1) = 0.1

� Let us visualize the hyperplanes b·α([Stay]) and b·α([Go]).
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Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

� The maximum represents the utility function for the finite-horizon problem that allows
just one action

� in each “piece” the optimal action is the first action of the corresponding plan.

� Here the optimal one-step policy is to “Stay” when b(1) > 0.5 and “Go” otherwise.

� compute the utilities for conditional plans of depth 2 by considering

� each possible first action,

� each possible subsequent percept, and then

� each way of choosing a depth-1 plan to execute for each percept:

There are eight of depth 2:

[Stay, if P = 0 then Stay else Stay fi], [Stay, if P = 0 then Stay else Go fi], . . .
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for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

Four of them (dashed lines) are suboptimal for the whole belief space
We call them dominated (they can be ignored)

� There are four undominated plans, each optimal in their region
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are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of
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Figure 17.8 (a) Utility of two one-step plans as a function of the initial belief state b(1)
for the two-state world, with the corresponding utility function shown in bold. (b) Utilities
for 8 distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility
function for optimal eight-step plans.

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 17.8(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDOMINATED PLAN

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 17.8(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-d − 1 subplan for percept e is p.e; then

αp(s) = R(s) + γ

(∑

s′
P (s′ | s, a)

∑

e

P (e | s′)αp.e(s
′)

)
. (17.13)

This recursion naturally gives us a value iteration algorithm, which is sketched in Figure 17.9.
The structure of the algorithm and its error analysis are similar to those of the basic value iter-
ation algorithm in Figure 17.4 on page 653; the main difference is that instead of computing
one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of

� Idea: Repeat for depth 3 and so on.

� Theorem 7.4.11 (POMDP Plan Utility). Let p be a depth-d conditional plan whose initial
action is a and whose depth-d− 1-subplan for percept e is p.e, then

αp(s) = R(s) + γ(
∑

s′

P (s′|s, a)(
∑

e

P (e|s′) · αp.e(s
′)))

� This recursion naturally gives us a value iteration algorithm,
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A Value Iteration Algorithm for POMDPs
Definition 7.4.12. The POMDP value iteration algorithm for POMDPs is given by recursively
updating

αp(s) = R(s) + γ(
∑

s′

P (s′|s, a)(
∑

e

P (e|s′) · αp.e(s
′)))
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Observations: The complexity depends primarily on the generated plans:

� Given |A| actions and |E| possible observations, there are are |A||E|d−1

distinct depth-d plans.

� Even for the example with d = 8, we have 2255 (144 undominated)

� The elimination of dominated plans is essential for reducing this doubly exponential growth
(but they are already constructed)

Hopelessly inefficient in practice – even the 3x4 POMDP is too hard!
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7.5 Online Agents with POMDPs
In the last section we have seen that even though we can in principle compute utilities of states –
and thus use the MEU principle – to make decisions in sequential decision problems, all methods
based on the “lifting idea” are hopelessly inefficient.

This section describes a different, approximate method for solving POMDPs, one based on
look-ahead search. A Video Nugget covering this section can be found at https://fau.tv/
clip/id/30361.

DDN: Decision Networks for POMDPs

� Idea: Let’s try to use the computationally efficient representations (dynamic Bayesian net-
works and decision networks) for POMDPs.

� Definition 7.5.1. A dynamic decision network (DDN) is a graph-based representation of a
POMDP, where

� Transition and sensor model are represented as a DBN.

� Action nodes and utility nodes are added as in decision networks.

� In a DDN, a filtering algorithm is used to incorporate each new percept and action and to
update the belief state representation.

� Decisions are made in DDN by projecting forward possible action sequences and choosing the
best one.

� DDNs – like the DBNs they are based on – are factored representations
; typically exponential complexity advantages!
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Structure of DDNs for POMDPs

� DDN for POMDPs: The generic structure of a dymamic decision network at time t is

https://fau.tv/clip/id/30361
https://fau.tv/clip/id/30361
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Figure 17.10 The generic structure of a dynamic decision network. Variables with known
values are shaded. The current time is t and the agent must decide what to do—that is, choose
a value for At. The network has been unrolled into the future for three steps and represents
future rewards, as well as the utility of the state at the look-ahead horizon.

17.4.3 Online agents for POMDPs

In this section, we outline a simple approach to agent design for partially observable, stochas-
tic environments. The basic elements of the design are already familiar:

• The transition and sensor models are represented by a dynamic Bayesian network
(DBN), as described in Chapter 15.

• The dynamic Bayesian network is extended with decision and utility nodes, as used in
decision networks in Chapter 16. The resulting model is called a dynamic decision
network, or DDN.DYNAMIC DECISION

NETWORK

• A filtering algorithm is used to incorporate each new percept and action and to update
the belief state representation.

• Decisions are made by projecting forward possible action sequences and choosing the
best one.

DBNs are factored representations in the terminology of Chapter 2; they typically have
an exponential complexity advantage over atomic representations and can model quite sub-
stantial real-world problems. The agent design is therefore a practical implementation of the
utility-based agent sketched in Chapter 2.

In the DBN, the single state St becomes a set of state variables Xt, and there may be
multiple evidence variables Et. We will use At to refer to the action at time t, so the transition
model becomes P(Xt+1|Xt, At) and the sensor model becomes P(Et|Xt). We will use Rt to
refer to the reward received at time t and Ut to refer to the utility of the state at time t. (Both
of these are random variables.) With this notation, a dynamic decision network looks like the
one shown in Figure 17.10.

Dynamic decision networks can be used as inputs for any POMDP algorithm, including
those for value and policy iteration methods. In this section, we focus on look-ahead methods
that project action sequences forward from the current belief state in much the same way as do
the game-playing algorithms of Chapter 5. The network in Figure 17.10 has been projected
three steps into the future; the current and future decisions A and the future observations

� POMDP state St becomes a set of random variables Xt

� there may be multiple evidence variables Et

� Action at time t denoted by At. agent must choose a value for At.

� Transition model: P(Xt+1|Xt, At); sensor model: P(Et|Xt).

� Reward functions Rt and utility Ut of state St.

� Variables with known values are gray, rewards for t = 0, . . . , t+ 2, but utility for t+ 3(=̂
discounted sum of rest)

� Problem: How do we compute with that?

� Answer: All POMDP algorithms can be adapted to DDNs! (only need CPTs)
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Lookahead: Searching over the Possible Action Sequences

� Idea: Search over the tree of possible action sequences (like in game-play)

� Part of the lookahead solution of the DDN above (three steps lookahead)Section 17.4. Partially Observable MDPs 665
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Figure 17.11 Part of the look-ahead solution of the DDN in Figure 17.10. Each decision
will be taken in the belief state indicated.

E and rewards R are all unknown. Notice that the network includes nodes for the rewards
for Xt+1 and Xt+2, but the utility for Xt+3. This is because the agent must maximize the
(discounted) sum of all future rewards, and U(Xt+3) represents the reward for Xt+3 and all
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate
form: if exact utility values were available, look-ahead beyond depth 1 would be unnecessary.

Figure 17.11 shows part of the search tree corresponding to the three-step look-ahead
DDN in Figure 17.10. Each of the triangular nodes is a belief state in which the agent makes
a decision At+i for i= 0, 1, 2, . . .. The round (chance) nodes correspond to choices by the
environment, namely, what evidence Et+i arrives. Notice that there are no chance nodes
corresponding to the action outcomes; this is because the belief-state update for an action is
deterministic regardless of the actual outcome.

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm
takes into account the fact that, for decision At+i, the agent will have available percepts
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this
way, a decision-theoretic agent automatically takes into account the value of information and
will execute information-gathering actions where appropriate.

A decision can be extracted from the search tree by backing up the utility values from
the leaves, taking an average at the chance nodes and taking the maximum at the decision
nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes,
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre-
spond to belief states rather than actual states. The time complexity of an exhaustive search
to depth d is O(|A|d · |E|d), where |A| is the number of available actions and |E| is the num-
ber of possible percepts. (Notice that this is far less than the number of depth-d conditional

� circle =̂ chance nodes (the environment decides)

� triangle =̂ belief state (each action decision is taken there)
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Designing Online Agents for POMDPs
Section 17.4. Partially Observable MDPs 665
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Figure 17.11 Part of the look-ahead solution of the DDN in Figure 17.10. Each decision
will be taken in the belief state indicated.

E and rewards R are all unknown. Notice that the network includes nodes for the rewards
for Xt+1 and Xt+2, but the utility for Xt+3. This is because the agent must maximize the
(discounted) sum of all future rewards, and U(Xt+3) represents the reward for Xt+3 and all
subsequent rewards. As in Chapter 5, we assume that U is available only in some approximate
form: if exact utility values were available, look-ahead beyond depth 1 would be unnecessary.

Figure 17.11 shows part of the search tree corresponding to the three-step look-ahead
DDN in Figure 17.10. Each of the triangular nodes is a belief state in which the agent makes
a decision At+i for i= 0, 1, 2, . . .. The round (chance) nodes correspond to choices by the
environment, namely, what evidence Et+i arrives. Notice that there are no chance nodes
corresponding to the action outcomes; this is because the belief-state update for an action is
deterministic regardless of the actual outcome.

The belief state at each triangular node can be computed by applying a filtering al-
gorithm to the sequence of percepts and actions leading to it. In this way, the algorithm
takes into account the fact that, for decision At+i, the agent will have available percepts
Et+1, . . . , Et+i, even though at time t it does not know what those percepts will be. In this
way, a decision-theoretic agent automatically takes into account the value of information and
will execute information-gathering actions where appropriate.

A decision can be extracted from the search tree by backing up the utility values from
the leaves, taking an average at the chance nodes and taking the maximum at the decision
nodes. This is similar to the EXPECTIMINIMAX algorithm for game trees with chance nodes,
except that (1) there can also be rewards at non-leaf states and (2) the decision nodes corre-
spond to belief states rather than actual states. The time complexity of an exhaustive search
to depth d is O(|A|d · |E|d), where |A| is the number of available actions and |E| is the num-
ber of possible percepts. (Notice that this is far less than the number of depth-d conditional

� Belief state at triangle computed by filtering with actions/percepts leading to it

� for decision At+i will use percepts Et+1:t+i (even if values at time t unknown)

� thus a POMDP agent automatically takes into account the value of information and
executes information gathering actions where appropriate.

� Observation: Time complexity for exhaustive search up to depth d is O(|A|d · |E|d)(|A| =̂
number of actions, |E| =̂ number of percepts)

� Upshot: Much better than POMDP value iteration with O(|A||E|d−1

).

� Empirically: For problems in which the discount factor γ is not too close to 1, a shallow
search is often good enough to give near-optimal decisions.
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Summary

� Decision theoretic agents for sequential environments

� Building on temporal, probabilistic models/inference (dynamic Bayesian networks)

� MDPs for fully observable case.

� Value/Policy Iteration for MDPs ; optimal policies.

� POMDPs for partially observable case.

� POMDPs=̂ MDP on belief state space.

� The world is a POMDP with (initially) unknown transition and sensor models.
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Machine Learning
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115

This part introduces the foundations of machine learning methods in AI. We discuss the prob-
lem learning from observations in general, study inference-based techniques, and then go into
elementary statistical methods for learning.

The current hype topics of deep learning, reinforcement learning, and large language models
are only very superficially covered, leaving them to specialized lectures.
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Chapter 8

Learning from Observations

In this chapter we introduce the concepts, methods, and limitations of inductive learning, i.e.
learning from a set of given examples.

Outline

� Learning agents

� Inductive learning

� Decision tree learning

� Measuring learning performance

� Computational Learning Theory

� Linear regression and classification

� Neural Networks

� Support Vector Machines
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8.1 Forms of Learning

Learning (why is this a good idea)

� Learning is essential for unknown environments:

� i.e., when designer lacks omniscience.

� The world is a POMDP with (initially) unknown transition and sensor models.

� Learning is useful as a system construction method.

� i.e., expose the agent to reality rather than trying to write it down

� Learning modifies the agent’s decision mechanisms to improve performance.
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Recap: Learning Agents

Dennis Müller: Artificial Intelligence 2 207 2024-05-24

Recap: Learning Agents (continued)

� Definition 8.1.1. Performance element is what we called “agent” up to now.

� Definition 8.1.2. Critic/learning element/problem generator do the “improving”.

� Definition 8.1.3. Performance standard is fixed; (outside the environment)

� We can’t adjust performance standard to flatter own behaviour!

� No standard in the environment: e.g. ordinary chess and suicide chess look identical.

� Essentially, certain kinds of percepts are “hardwired” as good/bad (e.g.,pain, hunger)

� Definition 8.1.4. Learning element may use knowledge already acquired in the performance
element.

� Definition 8.1.5. Learning may require experimentation actions an agent might not normally
consider such as dropping rocks from the Tower of Pisa.
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Ways of Learning

� Supervised learning: There’s an unknown function f : A→B called the target function. We
do know a set of pairs T := {⟨ai, f(ai)⟩} of examples. The goal is to find a hypothesis
h ∈ H ⊆ A→B based on T , that is “approximately” equal to f . (Most of the techniques
we will consider)

� Unsupervised learning: Given a set of data A, find a pattern in the data; i.e. a function
f : A→B for some predetermined B. (Primarily clustering/dimensionality reduction)

� Reinforcement learning: The agent receives a reward for each action performed. The goal is
to iteratively adapt the action function to maximize the total reward. (Useful in e.g. game
play)
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8.2 Supervised Learning

Supervised learning a.k.a. inductive learning (a.k.a. Science)
Definition 8.2.1. A supervised (or inductive) learning problem consists of the following data:

� A set of hypotheses H consisting of functions A→B,

� a set of examples T ⊆ A × B called the training set, such that for every a ∈ A, there is at
most one b ∈ B with ⟨a, b⟩ ∈ T , (⇒ T is a function on some subset of A)

We assume there is an unknown function f : A→B called the target function with T ⊆ f .
Definition 8.2.2. Inductive learning algorithms solve inductive learning problems by finding a
hypothesis h ∈ H such that h ∼ f (for some notion of similarity).

Definition 8.2.3. We call a supervised learning problem with target function A→ B a classifi-
cation problem if B is finite, and call the members of B classes.

We call it a regression problem if B = R.
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Inductive Learning Method

� Idea: Construct/adjust hypothesis h ∈ H to agree with a training set T .

� Definition 8.2.4. We call h consistent with f (on a set T ⊆ dom(f)), if it agrees with f
(on all examples in T ).

� Example 8.2.5 (Curve Fitting).
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Training Set

Linear Hypothesis

partially, approximatively
consistent

Quadratic Hypothesis

partially consistent

Degree-4 Hypothesis

consistent

High-degree Hypothesis

consistent
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� Ockham’s-razor: maximize a combination of consistency and simplicity.
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Choosing the Hypothesis Space

� Observation: Whether we can find a consistent hypothesis for a given training set depends
on the chosen hypothesis space.

� Definition 8.2.6. We say that an supervised learning problem is realizable, iff there is a
hypothesis h ∈ H consistent with the training set T .

� Problem: We do not always know whether a given learning problem is realizable, unless we
have prior knowledge. (depending on the hypothesis space)

� Solution: Make H large, e.g. the class of all Turing machines.

� Tradeoff: The computational complexity of the supervised learning problem is tied to the size
of the hypothesis space. E.g. consistency is not even decidable for general Turing machines.

� Much of the research in machine learning has concentrated on simple hypothesis spaces.

� Preview: We will concentrate on propositional logic and related languages first.
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Independent and Identically Distributed

� Problem: We want to learn a hypothesis that fits the future data best.

� Intuition: This only works, if the training set is “representative” for the underlying process.

� Idea: We think of examples (seen and unseen) as a sequence, and express the “representa-
tiveness” as a stationarity assumption for the probability distribution.

� Method: Each example before we see it is a random variable Ej , the observed value
ej = (xj ,yj) samples its distribution.

� Definition 8.2.7. A sequence of E1, . . ., En of random variables is independent and identi-
cally distributed (short IID), iff they are

� independent, i.e. P(Ej |E(j−1), E(j−2), . . .) = P(Ej) and

� identically distributed, i.e. P(Ei) = P(Ej) for all i and j.

� Example 8.2.8. A sequence of die tosses is IID. (fair or loaded does not matter)

� Stationarity Assumption: We assume that the set E of examples is IID in the future.
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8.3 Learning Decision Trees
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Attribute-based Representations

� Definition 8.3.1. In attribute-based representations, examples are described by

� attributes: (simple) functions on input samples, (think pre classifiers on examples)

� their value, and (classify by attributes)

� classifications. (Boolean, discrete, continuous, etc.)

� Example 8.3.2 (In a Restaurant). Situations where I will/won’t wait for a table:

Example
Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

� Definition 8.3.3. For a boolean classification we say that an example is positive (T) or
negative (F) depending on its class.
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Decision Trees

� Decision trees are one possible representation for hypotheses.

� Example 8.3.4 (Restaurant continued). Here is the “true” tree for deciding whether to
wait:
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We evaluate the tree by going down the tree from the top, and always take the branch whose
attribute matches the situation; we will eventually end up with a Boolean value; the result. Using
the attribute values from X3 in Example 8.3.2 to descend through the tree in Example 8.3.4 we
indeed end up with the result “true”. Note that

1. some of the original set of attributes X3 are irrelevant.

2. the training set in Example 8.3.2 is realizable – i.e. the target is definable in hypothesis class
of decision trees.

Decision Trees (Definition)

� Definition 8.3.5. A decision tree for a given attribute-based representation is a tree, where
the non-leaf nodes are labeled by attributes, their outgoing edges by disjoint sets of attribute
values, and the leaf nodes are labeled by the classifications.

� Definition 8.3.6. We call an attribute together with a set of attribute values (an inner node)
with outgoing edge label an attribute test.

� the target function is a function A1 × . . . × An → C, where Ai are the domains of the
attributes and C is the set of classifications.
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Expressiveness

� Decision trees can express any function of the input attributes ⇒ H = A1 × . . .×An

� Example 8.3.7. For Boolean functions, a path from the root to a leaf corresponds to a row
in a truth table:

⇒ a decision tree corresponds to a truth table (Formula in DNF)

� Trivially, for any training set there is a consistent hypothesis with one path to a leaf for each
example, but it probably won’t generalize to new examples.

� Solution: Prefer to find more compact decision trees.
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Decision Tree learning

� Aim: Find a small decision tree consistent with the training examples.
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� Idea: (recursively) choose “most significant” attribute as root of (sub)tree.

� Definition 8.3.8. The following algorithm performs decision tree learning (DTL)

function DTL(examples, attributes, default) returns a decision tree
if examples is empty then return default
else if all examples have the same classification then return the classification
else if attributes is empty then return MODE(examples)
else

best := Choose−Attribute(attributes, examples)
tree := a new decision tree with root test best
m := MODE(examples)
for each value vi of best do

examplesi := {elements of examples with best = vi}
subtree := DTL(examplesi, attributes \ best, m)
add a branch to tree with label vi and subtree subtree

return tree

MODE(examples)= most frequent value in example.
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Note: We have three base cases:

1. empty examples ⇝arises for empty branches of non Boolean parent attribute.

2. uniform example classifications ⇝this is “normal” leaf.

3. attributes empty ⇝target is not deterministic in input attributes.

The recursive step steps pick an attribute and then subdivides the examples.

Choosing an Attribute

� Idea: A good attribute splits the examples into subsets that are (ideally) “all positive” or
“all negative”.

� Example 8.3.9.

Attribute “Patrons?” is a better choice, it gives gives information about the classification.

� Can we make this more formal? ; Use information theory! (up next)
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8.4 Using Information Theory

Video Nuggets covering this section can be found at https://fau.tv/clip/id/20373 and
https://fau.tv/clip/id/30374.

https://fau.tv/clip/id/20373
https://fau.tv/clip/id/30374
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Information Entropy
Intuition: Information answers questions – the less I know initially, the more Information is
contained in an answer.
Definition 8.4.1. Let ⟨p1, . . ., pn⟩ the distribution of a random variable P . The information
(also called entropy) of P is

I(⟨p1, . . ., pn⟩):=
n∑

i=1

−pi · log2(pi)

Note: For pi = 0, we consider pi · log2(pi) = 0 (log2(0) is undefined)
The unit of information is a bit, where 1b := I(⟨ 12 , 1

2 ⟩)=1
Example 8.4.2 (Information of a Coin Toss).

� For a fair coin toss we have I(⟨ 12 , 1
2 ⟩) = − 1

2 log2(
1
2 )− 1

2 log2(
1
2 ) = 1b.

� With a loaded coin (99% heads) we have I(⟨ 1
100 ,

99
100 ⟩) = 0.08b.

Rightarrow Information goes to 0 as head probability goes to 1.

“How likely is the outcome actually going to tell me something informative?”
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Information Gain in Decision Trees
Idea: Suppose we have p examples classified as positive and n examples as negative. We can
then estimate the probability distribution of the classification C with P(C) = ⟨ p

p+n ,
n

p+n ⟩, and
need I(P(C)) bits to correctly classify a new example.
Example 8.4.3. For 12 restaurant examples and p = n = 6, we need I(P(WillWait)) =
I(⟨ 6

12 ,
6
12 ⟩) = 1b of information. (i.e. exactly the information which of the two classes)

Treating attributes also as random variables, we can compute how much information is needed
after knowing the value for one attribute:
Example 8.4.4. If we know Pat = Full, we only need I(P(WillWait|Pat = Full)) = I(⟨ 46 , 2

6 ⟩) ≊
0.9 bits of information.
Note: The expected number of bits needed after an attribute test on A is

∑

a

P (A = a) · I(P(C|A = a))

Definition 8.4.5. The information gain from an attribute test A is

Gain(A):=I(P(C))−
∑

a

P (A = a) · I(P(C|A = a))

Dennis Müller: Artificial Intelligence 2 221 2024-05-24

Information Gain (continued)

� Definition 8.4.6. Assume we know the results of some attribute tests b := B1 = b1 ∧ . . . ∧
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Bn = bn. Then the conditional information gain from an attribute test A is

Gain(A|b):=I(P(C|b))−
∑

a

P (A = a|b) · I(P(C|a, b))

� Example 8.4.7. If the classification C is Boolean and we have p positive and n negative
examples, the information gain is

Gain(A) = I(⟨ p

p+ n
,

n

p+ n
⟩)−

∑

a

pa + na

p+ n
I(⟨ pa

pa + na
,

na

pa + na
⟩)

where pa and na are the positive and negative examples with A = a.

� Example 8.4.8.

Gain(Patrons?) = 1− (
2

12
I(⟨0, 1⟩) + 4

12
I(⟨1, 0⟩) + 6

12
I(⟨2

6
,
4

6
⟩))

≈ 0.541b

Gain(Type) = 1− (
2

12
I(⟨1

2
,
1

2
⟩) + 2

12
I(⟨1

2
,
1

2
⟩) + 4

12
I(⟨2

4
,
2

4
⟩) + 4

12
I(⟨2

4
,
2

4
⟩))

≈ 0b

� Idea: Choose the attribute that maximizes information gain.
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Restaurant Example contd.

� Example 8.4.9. Decision tree learned by DTL from the 12 examples using information gain
maximization for Choose−Attribute:

� Result: Substantially simpler than “true” tree – a more complex hypothesis isn’t justified by
small amount of data.
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8.5 Evaluating and Choosing the Best Hypothesis
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Performance measurement

� Question: How do we know that h≊f? (Hume’s Problem of Induction)

1. Use theorems of computational/statistical learning theory.

2. Try h on a new test set of examples. (use same distribution over example space as
training set)

� Definition 8.5.1. The learning curve =̂ percentage correct on test set as a function of
training set size.

� Example 8.5.2. Restaurant data; graph averaged over 20 trials
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Performance measurement contd.

� Observation 8.5.3. The learning curve depends on

� realizable (can express target function) vs. non-realizable
non-realizability can be due to missing attributes or restricted hypothesis class (e.g., thresh-
olded linear function)

� redundant expressiveness (e.g., lots of irrelevant attributes)

Dennis Müller: Artificial Intelligence 2 225 2024-05-24



128 CHAPTER 8. LEARNING FROM OBSERVATIONS

Generalization and Overfitting

� Observation: Sometimes a learned hypothesis is more specific than the experiments warrant.

� Definition 8.5.4. We speak of overfitting, if a hypothesis h describes random error in the
(limited) training set rather than the underlying relationship. Underfitting occurs when h
cannot capture the underlying trend of the data.

� Qualitatively: Overfitting increases with the size of hypothesis space and the number of
attributes, but decreases with number of examples.

� Idea: Combat overfitting by “generalizing” decision trees computed by DTL.

Dennis Müller: Artificial Intelligence 2 226 2024-05-24

Decision Tree Pruning

� Idea: Combat overfitting by “generalizing” decision trees ; prune “irrelevant” nodes.

� Definition 8.5.5. For decision tree pruning repeat the following on a learned decision tree:

� Find a terminal test node n (only result leaves as children)

� If test is irrelevant, i.e. has low information gain, prune it by replacing n by with a leaf
node.

� Question: How big should the information gain be to split (; keep) a node?

� Idea: Use a statistical significance test.

� Definition 8.5.6. A result has statistical significance, if the probability they could arise
from the null hypothesis (i.e. the assumption that there is no underlying pattern) is very low
(usually 5%).
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Determining Attribute Irrelevance

� For decision tree pruning, the null hypothesis is that the attribute is irrelevant.

� Compute the probability that the example distribution (p positive, n negative) for a terminal
node deviates from the expected distribution under the null hypothesis.

� For an attribute A with d values, compare the actual numbers pk and nk in each subset sk
with the expected numbers (expected if A is irrelevant)
p̂k = p · pk+nk

p+n and n̂k = n · pk+nk

p+n .

� A convenient measure of the total deviation is (sum of squared errors)

∆ =

d∑

k=1

(pk − p̂k)
2

p̂k
+

(nk − n̂k)
2

n̂k
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� Lemma 8.5.7 (Neyman-Pearson). Under the null hypothesis, the value of ∆ is distributed
according to the χ2 distribution with d− 1 degrees of freedom. [NeyPea:pmtsh33]

� Definition 8.5.8. Decision tree pruning with Pearson’s χ2 with d− 1 degrees of freedom for
∆ is called χ2 pruning. (χ2 values from stats library.)

� Example 8.5.9. The type attribute has four values, so three degrees of freedom, so ∆ = 7.82
would reject the null hypothesis at the 5% level.
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Error Rates and Cross-Validation

� Recall: We want to learn a hypothesis that fits the future data best.

� Definition 8.5.10. Given an inductive learning problem with a set of examples T ⊆ AB, we
define the error rate of a hypothesis h ∈ H as the fraction of errors:

|{⟨x, y⟩ ∈ T |h(x) ̸= y}|
|T |

� Caveat: A low error rate on the training set does not mean that a hypothesis generalizes
well.

� Idea: Do not use homework questions in the exam.

� Definition 8.5.11. The practice of splitting the data available for learning into

1. a training set from which the learning algorithm produces a hypothesis h and

2. a test set, which is used for evaluating h

is called holdout cross validation. (no peeking at test set allowed)
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Error Rates and Cross-Validation

� Question: What is a good ratio between training set and test set size?

� small training set ; poor hypothesis.

� small test set ; poor estimate of the accuracy.

� Definition 8.5.12. In k fold cross validation, we perform k rounds of learning, each with
1/k of the data as test set and average over the k error rates.

� Intuition: Each example does double duty: for training and testing.

� k = 5 and k = 10 are popular ; good accuracy at k times computation time.

� Definition 8.5.13. If k = |dom(f)|, then k fold cross validation is called leave one out
cross validation (LOOCV).
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Model Selection

� Definition 8.5.14. The model selection problem is to determine – given data – a good
hypothesis space.

� Example 8.5.15. What is the best polynomial degree to fit the data

� Observation 8.5.16. We can solve the problem of “learning from observations f ” in a
two-part process:

1. model selection determines a hypothesis space H,

2. optimization solves the induced inductive learning problem.

� Idea: Solve the two parts together by iteration over “size”. (they inform each other)

� Problem: Need a notion of “size” ⇝e.g. number of nodes in a decision tree.

� Concrete Problem: Find the “size” that best balances overfitting and underfitting to
optimize test set accuracy.
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Model Selection Algorithm (Wrapper)

� Definition 8.5.17. The model selection algorithm (MSA) jointly optimizes model selection
and optimization by partitioning and cross-validation:
function CROSS−VALIDATION−WRAPPER(Learner,k,examples) returns a hypothesis

local variables: errT , an array, indexed by size, storing training−set error rates
errV , an array, indexed by size, storing validation−set error rates

for size = 1 to ∞ do
errT [size], errV [size] := CROSS−VALIDATION(Learner,size,k,examples)
if errT has converged then do

best_size := the value of size with minimum errV [size]
return Learner(best_size,examples)

function CROSS−VALIDATION(Learner,size,k,examples) returns two values:
average training set error rate, average validation set error rate

fold_errT := 0; fold_errV := 0
for fold = 1 to k do

training_set, validation_set := PARTITION(examples,fold,k)
h := Learner(size,training_set)
fold_errT := fold_errT + ERROR−RATE(h,training_set)
fold_errV := fold_errV + ERROR−RATE(h,validation_set)

return fold_errT/k, fold_errV/k

function PARTITION(examples,fold,k) returns two sets:
a validation set of size |examples|/k and the rest; the split is different for each fold value
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Error Rates on Training/Validation Data

� Example 8.5.18 (An Error Curve for Restaurant Decision Trees).
Modify DTL to be breadth-first, information gain sorted, stop after k nodes.
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Stops when training set error rate converges, choose optimal tree for validation curve.(here a
tree with 7 nodes)
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From Error Rates to Loss Functions

� So far we have been minimizing error rates. (better than maximizing ,)

� Example 8.5.19 (Classifying Spam). It is much worse to classify ham (legitimate mails)
as spam than vice versa. (message loss)

� Recall Rationality: Decision-makers should maximize expected utility (MEU).

� So: Machine learning should maximize “utility”. (not only minimize error rates)

� machine learning traditionally deals with utilities in form of “loss functions”.

� Definition 8.5.20. The loss function L is defined by setting L(x, y, ŷ) to be the amount of
utility lost by prediction h(x) = ŷ instead of f(x) = y. If L is independent of x, we often use
L(y, ŷ).

� Example 8.5.21. L(spam, ham) = 1, while L(ham, spam) = 10.
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Generalization Loss

� Note: L(y, y) = 0. (no loss if you are exactly correct)
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� Definition 8.5.22 (Popular general loss functions).

absolute value loss L1(y, ŷ):= |y − ŷ| small errors are good
squared error loss L2(y, ŷ):=(y − ŷ)

2 dito, but differentiable
0/1 loss L0/1(y, ŷ):=0, if y = ŷ, else 1 error rate

� Idea: Maximize expected utility by choosing hypothesis h that minimizes expected loss over
all (x,y) ∈ f .

� Definition 8.5.23. Let E be the set of all possible examples and P(X,Y ) the prior probability
distribution over its components, then the expected generalization loss for a hypothesis h with
respect to a loss function L is

GenLossL(h):=
∑

(x,y)∈E
L(y, h(x)) · P (x, y)

and the best hypothesis h∗ := argmin
h∈H

GenLossL(h).
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Empirical Loss

� Problem: P(X,Y ) is unknown ; learner can only estimate generalization loss:

� Definition 8.5.24. Let L be a loss function and E a set of examples with |E| = N , then
we call

EmpLossL,E(h):=
1

N
(

∑

(x,y)∈E

L(y, h(x)))

the empirical loss and ĥ∗ := argmin
h∈H

EmpLossL,E(h) the estimated best hypothesis.

� There are four reasons why ĥ∗ may differ from f :

1. Realizablility: then we have to settle for an approximation ĥ∗ of f .

2. Variance: different subsets of f give different ĥ∗; more examples.

3. Noise: if f is non deterministic, then we cannot expect perfect results.

4. Computational complexity: if H is too large to systematically explore, we make due with
subset and get an approximation.
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Regularization

� Idea: Directly use empirical loss to solve model selection. (finding a good H)

Minimize the weighted sum of empirical loss and hypothesis complexity. (to avoid
overfitting).

� Definition 8.5.25. Let λ ∈ R, h ∈ H, and E a set of examples, then we call

CostL,E(h):=EmpLossL,E(h) + λComplexity(h)
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the total cost of h on E.

� Definition 8.5.26. The process of finding a total cost minimizing hypothesis

ĥ∗ := argmin
h∈H

CostL,E(h)

is called regularization; Complexity is called the regularization function or hypothesis com-
plexity.

� Example 8.5.27 (Regularization for Polynomials).

A good regularization function for polynomials is
the sum of squares of exponents. ; keep away
from wriggly curves!
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Minimal Description Length

� Remark: In regularization, empirical loss and hypothesis complexity are not measured in
the same scale ; λ mediates between scales.

� Idea: Measure both in the same scale ; use information content, i.e. in bits.

� Definition 8.5.28. Let h ∈ H be a hypothesis and E a set of examples, then the description
length of (h,E) is computed as follows:

1. encode the hypothesis as a Turing machine program, count bits.

2. count data bits:

� correctly predicted example ; 0b

� incorrectly predicted example ; according to size of error.

The minimum description length or MDL hypothesis minimizes the total number of bits
required.

� This works well in the limit, but for smaller problems there is a difficulty in that the choice
of encoding for the program affects the outcome.

� e.g., how best to encode a decision tree as a bit string?
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The Scale of Machine Learning

� Traditional methods in statistics and early machine learning concentrated on small-scale
learning (50-5000 examples)

� Generalization error mostly comes from

� approximation error of not having the true f in the hypothesis space
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� estimation error of too few training examples to limit variance.

� In recent years there has been more emphasis on large-scale learning. (millions of examples)

� Generalization error is dominated by limits of computation

� there is enough data and a rich enough model that we could find an h that is very
close to the true f ,

� but the computation to find it is too complex, so we settle for a sub-optimal approxi-
mation.

� Hardware advances (GPU farms, Amazon EC2, Google Data Centers, . . . ) help.
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8.6 Computational Learning Theory
Video Nuggets covering this section can be found at https://fau.tv/clip/id/30377 and
https://fau.tv/clip/id/30378.

A (General) Theory of Learning?

� Main Question: How can we be sure that our learning algorithm has produced a hypothesis
that will predict the correct value for previously unseen inputs?

� Formally: How do we know that the hypothesis h is close to the target function f if we
don’t know what f is?

� Other - more recent - Questions:

� How many examples do we need to get a good h?

� What hypothesis space H should we use?

� If the H is very complex, can we even find the best h, or do we have to settle for a local
maximum in H.

� How complex should h be?

� How do we avoid overfitting?

� “Computational Learning Theory” tries to answer these using concepts from AI, statistics,
and theoretical CS.
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PAC Learning

� Basic idea of Computational Learning Theory:

� Any hypothesis h that is seriously wrong will almost certainly be “found out” with high
probability after a small number of examples, because it will make an incorrect prediction.

� Thus, if h is consistent with a sufficiently large set of training examples is unlikely to be
seriously wrong.

� ; h is probably approximately correct.

https://fau.tv/clip/id/30377
https://fau.tv/clip/id/30378
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� Definition 8.6.1. Any learning algorithm that returns hypotheses that are probably approx-
imately correct is called a PAC learning algorithm.

� Derive performance bounds for PAC learning algorithms in general, using the

� Stationarity Assumption (again): We assume that the set E of possible examples is IID
; we have a fixed distribution P(E) = P(X,Y ) on examples.

� Simplifying Assumptions: f is a function (deterministic) and f ∈ H.
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PAC Learning

� Start with PAC theorems for Boolean functions, for which L0/1 is appropriate.

� Definition 8.6.2. The error rate error(h) of a hypothesis h is the probability that h mis-
classifies a new example.

error(h):=GenLossL0/1
(h) =

∑

(x,y)∈E
L0/1(y, h(x)) · P (x, y)

� Intuition: error(h) is the probability that h misclassifies a new example.

� This is the same quantity as measured in the learning curves above.

� Definition 8.6.3. A hypothesis h is called approximatively correct, iff error(h) ≤ ϵ for some
small ϵ > 0.

We write Hb:={h ∈ H | error(h) > ϵ} for the “seriously bad” hypotheses.
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Sample Complexity

� Let’s compute the probability that hb ∈ Hb is consistent with the first N examples.

� We know error(hb) > ϵ

; P (hb agrees with N examples) ≤ (1− ϵ)
N . (independence)

; P (Hb contains consistent hyp.)≤|Hb| · (1− ϵ)
N ≤|H| · (1− ϵ)

N . (Hb ⊆ H)
; to bound this by a small δ, show the algorithm N ≥ 1

ϵ · (log2( 1δ ) + log2(|H|)) examples.

� Definition 8.6.4. The number of required examples as a function of ϵ and δ is called the
sample complexity of H.

� Example 8.6.5. If H is the set of n-ary Boolean functions, then |H| = 22
n

.
; sample complexity grows with O(log2(22

n

)) = O(2n).
There are 2n possible examples,
; PAC learning for Boolean functions needs to see (nearly) all examples.
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Escaping Sample Complexity

� Problem: PAC learning for Boolean functions needs to see (nearly) all examples.

� H contains enough hypotheses to classify any given set of examples in all possible ways.

� In particular, for any set of N examples, the set of hypotheses consistent with those
examples contains equal numbers of hypotheses that predict xN+1 to be positive and
hypotheses that predict xN+1 to be negative.

� Idea/Problem: restrict the H in some way (but we may lose realizability)

� Three Ways out of this Dilemma:

1. bring prior knowledge into the problem. (??)

2. prefer simple hypotheses. (e.g. decision tree pruning)

3. focus on “learnable subsets” of H. (next)
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PAC Learning: Decision Lists

� Idea: Apply PAC learning to a “learnable hypothesis space”.

� Definition 8.6.6. A decision list consists of a sequence of tests, each of which is a conjunction
of literals.

� If a test succeeds when applied to an example description, the decision list specifies the
value to be returned.

� If the test fails, processing continues with the next test in the list.

� Remark: Like decision trees, but restricted branching, but more complex tests.

� Example 8.6.7 (A decision list for the Restaurant Problem).

Patrons(x, Some) Patrons(x, Full) ∧ Fri/Sat(x)

Yes Yes

No
Yes Yes

No No

� Lemma 8.6.8. Given arbitrary size conditions, decision lists can represent arbitrary Boolean
functions.

� This directly defeats our purpose of finding a “learnable subset” of H.
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Decision Lists: Learnable Subsets (Size-Restricted Cases)

� Definition 8.6.9. The set of decision lists where tests are of conjunctions of at most k
literals is denoted by k−DL.
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� Example 8.6.10. The decision list from Example 8.6.7 is in 2−DL.

� Observation 8.6.11. k−DL contains k−DT, the set of decision trees of depth at most k.

� Definition 8.6.12. We denote the set of k−DL decision lists with at most n Boolean
attributes with k−DL(n). The set of conjunctions of at most k literals over n attributes is
written as Conj(k, n).

� Decision lists are constructed of optional yes/no tests, so there are at most 3|Conj(k,n)| distinct
sets of component tests. Each of these sets of tests can be in any order, so |k−DL(n)| ≤
3|Conj(k,n)| · |Conj(k, n)|!
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Decision Lists: Learnable Subsets (Sample Complexity)

� The number of conjunctions of k literals from n attributes is given by

|Conj(k, n)| =
k∑

i=1

(
2n

i

)

thus |Conj(k, n)|=O(nk). Hence, we obtain (after some work)

|k−DL(n)|=2O(nklog2(n
k))

� Plug this into the equation for the sample complexity: N ≥ 1
ϵ · (log2( 1δ ) + log2(|H|)) to

obtain
N ≥ 1

ϵ
· (log2(

1

δ
) + log2(O(nklog2(n

k))))

� Intuitively: Any algorithm that returns a consistent decision list will PAC learn a k−DL
function in a reasonable number of examples, for small k.
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Decision Lists Learning

� Idea: Use a greedy search algorithm that repeats

1. find test that agrees exactly with some subset E of the training set,

2. add it to the decision list under construction and removes E,

3. construct the remainder of the DL using just the remaining examples,

until there are no examples left.

� Definition 8.6.13. The following algorithm performs decision list learning

function DLL(E) returns a decision list, or failure
if E is empty then return (the trivial decision list) No
t := a test that matches a nonempty subset Et of E

such that the members of Et are all positive or all negative
if there is no such t then return failure
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if the examples in Et are positive then o := Yes else o := No
return a decision list with initial test t and outcome o and remaining tests given by

DLL(E\Et)
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Decision Lists Learning in Comparison

� Learning curves: for DLL (and DTL for comparison)
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� Upshot: The simpler DLL works quite well!
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8.7 Regression and Classification with Linear Models

Univariate Linear Regression

� Definition 8.7.1. A univariate or unary function is a function with one argument.

� Recall: A mapping f between vector spaces is called linear, iff it preserves plus and scalar
multiplication, i.e. f(α · v1 + v2) = α · f(v1) + f(v2).

� Observation 8.7.2. A univariate, linear function f : R→R is of the form f(x) = w1x+w0

for some wi ∈ R.

� Definition 8.7.3. Given a vector w := (w0,w1), we define hw(x):=w1x+w0.

� Definition 8.7.4. Given a set of examples E ⊆ R×R, the task of finding hw that best fits
E is called linear regression.
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� Example 8.7.5.

Examples of house price vs. square
feet in houses sold in Berkeley in
July 2009.
Also: linear function hypothesis
that minimizes squared error loss
y = 0.232x+ 246.
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Univariate Linear Regression by Loss Minimization

� Idea: Minimize squared error loss over {(xi,yi)|i ≤ N} (used already by Gauss)

Loss(hw) =

N∑

j=1

L2(yj , hw(xj)) =

N∑

j=1

(yj − hw(xj))
2
=

N∑

j=1

(yj − (w1xj +w0))
2

Task: find w∗ := argmin
w

Loss(hw).

� Recall:
∑N

j=1 (yj − (w1xj +w0))
2 is minimized, when the partial derivatives wrt. the wi

are zero, i.e. when

∂

∂w0
(

N∑

j=1

(yj − (w1xj +w0))
2
) = 0 and

∂

∂w1
(

N∑

j=1

(yj − (w1xj +w0))
2
) = 0

� Observation: These equations have a unique solution:

w1 =
N(

∑
j xjyj)− (

∑
j xj)(

∑
j yj)

N(
∑

j xj
2)− (

∑
j xj)

2 w0 =
(
∑

j yj)−w1(
∑

j xj)

N

� Remark: Closed-form solutions only exist for linear regression, for other (differentiable)
hypothesis spaces use gradient descent methods for adjusting/learning weights.
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A Picture of the Weight Space

� Remark: Many forms of learning involve adjusting weights to minimize loss.

� Definition 8.7.6. The weight space of a parametric model is the space of all possible
combinations of parameters (called the weights). Loss minimization in a weight space is
called weight fitting.
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�

The weight space of univariate linear re-
gression is R2.
; graph the loss function over R2.
Note: it is convex. w0

w1

Loss   

� Observation 8.7.7. The squared error loss function is convex for any linear regression
problem ; there are no local minima.
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Gradient Descent Methods

� If we do not have closed form solutions for minimizing loss, we need to search.

� Idea: Use local search (hill climbing) methods.

� Definition 8.7.8. The gradient descent algorithm for finding a minimum of a continuous
function F is hill climbing in the direction of the steepest descent, which can be computed
by the partial derivatives of F .

function gradient−descent(F ,w,α) returns a local minimum of F
inputs: a differentiable function F and initial weights w.
loop until w converges do

for each wi do
wi ←− wi − α ∂

∂wi
(F (w))

end for
end loop

The parameter α is called the learning rate. It can be a fixed constant or it can decay as
learning proceeds.
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Gradient-Descent for Loss

� Let’s try gradient descent for Loss.

� Work out the partial derivatives for one example (x,y):

∂Loss(w)

∂wi
=

∂(y − hw(x))
2

∂wi
= 2(y − hw(x))

∂(y − (w1x+w0))

∂wi

and thus
∂Loss(w)

∂w0
= −2(y − hw(x))

∂Loss(w)

∂w1
= −2(y − hw(x))x

Plug this into the gradient descent updates:

w0 ←− w0 − α− 2(y − hw(x)) w1 ←− w1 − α− 2(y − hw(x))x
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Gradient-Descent for Loss (continued)

� Analogously for n training examples (xj ,yj):

� Definition 8.7.9.

w0 ←− w0 − α(
∑

j

−2(yj − hw(xj))) w1 ←− w1 − α(
∑

j

−2(yj − hw(xn))xn)

These updates constitute the batch gradient descent learning rule for univariate linear regres-
sion.

� Convergence to the unique global loss minimum is guaranteed (as long as we pick α small
enough) but may be very slow.

� Doing batch gradient descent on random subsets of the examples of fixed batch size n is
called stochastic gradient descent (SGD). (More computationally efficient than updating for
every example)
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Multivariate Linear Regression

� Definition 8.7.10. A multivariate or n-ary function is a function with one or more arguments.

� We can use it for multivariate linear regression.

� Idea: Every example x⃗j is an n element vector and the hypothesis space is the set of
functions

hsw(x⃗j) = w0 +w1xj,1 + . . .+wnxj,n = w0 +
∑

i

wixj,i

� Trick: Invent xj,0 := 1 and use matrix notation:

hsw(x⃗j) = w⃗·x⃗j = w⃗tx⃗j =
∑

i

wixj,i

� Definition 8.7.11. The best vector of weights, w∗, minimizes squared-error loss over the
examples: w∗ := argmin

w
(
∑

j L2(yj)(w·x⃗j)).

� Gradient descent will reach the (unique) minimum of the loss function; the update equation
for each weight wi is

wi ←− wi − α(
∑

j

xj,i(yj − hw(x⃗j)))
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Multivariate Linear Regression (Analytic Solutions)
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� We can also solve analytically for the w∗ that minimizes loss.

� Let y⃗ be the vector of outputs for the training examples, and X be the data matrix, i.e., the
matrix of inputs with one n-dimensional example per row.

Then the solution w∗ = (XTX)
−1

XT y⃗ minimizes the squared error.
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Multivariate Linear Regression (Regularization)

� Remark: Univariate linear regression does not overfit, but in the multivariate case there
might be “redundant dimensions” that result in overfitting.

� Idea: Use regularization with a complexity function based on weights.

� Definition 8.7.12. Complexity(hw) = Lq(w) =
∑

i |wi|q

� Caveat: Do not confuse this with the loss functions L1 and L2.

� Problem: Which q should be pick? (L1 and L2 minimize sum of absolute values/squares)

� Answer: It depends on the application.

� Remark: L1-regularization tends to produce a sparse model, i.e. it sets many weights to 0,
effectively declaring the corresponding attributes to be irrelevant.

Hypotheses that discard attributes can be easier for a human to understand, and may be less
likely to overfit. (see [RN03, Section 18.6.2])
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Linear Classifiers with a hard Threshold

� Idea: The result of linear regression can be used for classification.

� Example 8.7.13 (Nuclear Test Ban Verification).

Plots of seismic data parameters:
body wave magnitude x1 vs. sur-
face wave magnitude x2. White:
earthquakes, black: underground
explosions
Also: hw∗ as a decision boundary
x2 = 17x1 − 4.9.
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� Definition 8.7.14. A decision boundary is a line (or a surface, in higher dimensions) that
separates two classes of points. A linear decision boundary is called a linear separator and
data that admits one are called linearly separable.

� Example 8.7.15 (Nuclear Tests continued). The linear separator for Example 8.7.13is
defined by −4.9 + 1.7x1 − x2 = 0, explosions are characterized by −4.9 + 1.7x1 − x2 > 0,
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earthquakes by −4.9 + 1.7x1 − x2 < 0.

� Useful Trick: If we introduce dummy coordinate x0 = 1, then we can write the classification
hypothesis as hw(x) = 1 if w·x > 0 and 0 otherwise.
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Linear Classifiers with a hard Threshold (Perceptron Rule)

� So hw(x) = 1 if w·x > 0 and 0 otherwise is well-defined, how to choose w?

� Think of hw(x) = T (w·x), where T (z) = 1, if z > 0 and T (z) = 0 otherwise. We call T a
threshold function.

� Problem: T is not differentiable and ∂T
∂z = 0 where defined ;

� No closed-form solutions by setting ∂T
∂z = 0 and solving.

� Gradient-descent methods in weight-space do not work either.

� We can learn weights by iterating over the following rule:

� Definition 8.7.16.Given an example (x,y), the perceptron learning rule is

wi ←− wi + α · (y − hw(x)) · xi

� as we are considering 0/1 classification, there are three possibilities:

1. If y = hw(x), then wi remains unchanged.

2. If y = 1 and hw(x) = 0, then wi is in/decreased if xi is positive/negative. (we want to
make w·x bigger so that T (w·x) = 1)

3. If y = 0 and hw(x) = 1, then wi is de/increased if xi is positive/negative. (we want to
make w·x smaller so that T (w·x) = 0)
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Learning Curves for Linear Classifiers (Perceptron Rule)

� Example 8.7.17.
Learning curves (plots of total
training set accuracy vs. number
of iterations) for the perceptron
rule on the earthquake/explosions
data.  2.5
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original data noisy, non-separable data learning rate decay
α(t) = 1000/(1000 + t)
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� Theorem 8.7.18. Finding the minimal-error hypothesis is NP hard, but possible with learning
rate decay.
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Linear Classification with Logistic Regression

� So far: Passing the output of a linear function through a threshold function T yields a linear
classifier.

� Problem: The hard nature of T brings problems:

� T is not differentiable nor continuous ; learning via perceptron rule becomes unpre-
dictable.

� T is “overly precise” near the boundary ⇝need more graded judgments.

� Idea: Soften the threshold, approximate it with a differentiable function.

We use the standard logistic function l(x) = 1
1+e−x

So we have hw(x) = l(w·x) = 1
1+e−(w·x)

� Example 8.7.19 (Logistic Regression Hypothesis in Weight Space).

Plot of a logistic regression hypothesis for
the earthquake/explosion data.
The value at (w0,w1) is the probability
of belonging to the class labeled 1. -2  0  2  4  6

-4-2 0 2 4 6 8 10
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We speak of the cliff in the classifier intuitively.
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Logistic Regression

� Definition 8.7.20. The process of weight fitting in hw(x) = 1
1+e−(w·x) is called logistic

regression.

� There is no easy closed form solution, but gradient descent is straightforward,

� As our hypotheses have continuous output, use the squared error loss function L2.
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� For an example (x,y) we compute the partial derivatives: (via chain rule)

∂

∂wi
(L2(w)) =

∂

∂wi
(y − hw(x)

2
)

= 2 · hw(x) · ∂

∂wi
(y − hw(x))

= −2 · hw(x) · l′(w·x) · ∂

∂wi
(w·x)

= −2 · hw(x) · l′(w·x) · xi
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Logistic Regression (continued)

� The derivative of the logistic function satisfies l′(z) = l(z)(1− l(z)), thus

l′(w·x) = l(w·x)(1− l(w·x)) = hw(x)(1− hw(x))

� Definition 8.7.21. The rule for logistic update (weight update for minimizing the loss) is

wi ←− wi + α · (y − hw(x)) · hw(x) · (1− hw(x)) · xi

� Example 8.7.22 (Redoing the Learning Curves).

original data noisy, non-separable data learning rate decay
α(t) = 1000/(1000 + t)
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� Upshot: Logistic update seems to perform better than perceptron update.
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8.8 Support Vector Machines

Support Vector Machines
Definition 8.8.1. Given a linearly separable data set E the maximum margin separator is the
linear separator s that maximizes the margin, i.e. the distance of the E from s.
Example 8.8.2. All lines on the left are valid linear separators:
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We expect the maximum margin separator on the right to generalize best
Note: To find the maximum margin separator, we only need to consider the innermost points
(circled above).
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Support Vector Machines (contd.)
Definition 8.8.3. Support-vector machines (SVMs; also support-vector networks) are supervised
learning models for classification and regression.

SVMs construct a maximum margin separator by prioritizing critical examples (support vec-
tors).

SVMs are still one of the most popular approaches for “off-the-shelf” supervised learning.

Setting:

� We have a training set E = {⟨x1, y1⟩, . . ., ⟨xn, yn⟩} where xi ∈ Rp and yi ∈ { − 1, 1}
(instead of {1, 0})

� The goal is to find a hyperplane in Rp that maximally separates the two classes (i.e.
yi = −1 from yi = 1)

Remember A hyperplane can be represented as the set {x|(w·x) + b = 0} for some vector w
and scalar b. (w is orthogonal to the plane, b determines the offset from the origin)
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Finding the Maximum Margin Separator (Separable Case)

Idea: The margin is bounded by the two hyperplanes described by
{x|(w·x) + b+ 1 = 0} (lower boundary) and {x|(w·x) + b− 1 = 0}
(upper boundary).
⇒ The distance between them is 2

∥w∥2
.

Constraints: To maximize the margin, minimize ∥w∥2 while keeping
xi out of the margin:
(w·xi) + b ≥ 1 for yi = 1 and (w·xi) + b ≤ −1 for yi = −1
; yi((w·xi)− b) ≥ 1 for 1≤i≤n.
; This is an optimization problem.  0
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Theorem 8.8.4 (SVM equation). Let α = argmax
α

(
∑

j

αj −
1

2
(
∑

j,k

αjαkyjyk(xj ·xk))) under

the constraints αj ≥ 0 and
∑

j αjyj = 0.
The maximum margin separator is given by w =

∑
j αjxj and b = w·xi−yi for any xi where

αi ̸= 0.

Proof sketch: By the duality principle for optimization problems
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Finding the Maximum Margin Separator (Separable Case)

α = argmax
α

(
∑

j

αj −
1

2
(
∑

j,k

αjαkyjyk(xj ·xk))),where αj ≥ 0,
∑

j

αjyj = 0

Important Properties:

� The weights αj associated with each data point are zero except at the support vectors (the
points closest to the separator),

� The expression is convex ; the single global maximum can found efficiently,

� Data enter the expression only in the form of dot products of point pairs ; once the optimal
αi have been calculated, we have h(x) = sign(

∑
j αjyj(x·xj)− b)

� There are good software packages for solving such quadratic programming optimizations
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Support Vector Machines (Kernel Trick)
What if the data is not linearly separable?

Idea: Transform the data into a feature space where they are.
Definition 8.8.5. A feature for data in Rp is a function Rp→ Rq.

Example 8.8.6 (Projecting Up a Non-Separable Data Set).
The true decision boundary is x1

2 + x2
2 ≤ 1.
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; use the feature “distance from center”
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Support Vector Machines (Kernel Trick continued)
Idea: Replace xi·xj by some other product on the feature space in the SVM equation

Definition 8.8.7. A kernel function is a function K : Rp×Rp → R of the form K(x1, x2) =
⟨F (x1),F (x2)⟩ for some feature F and inner product ⟨·, ·⟩ on the codomain of F .

Smart choices for a kernel function often allow us to compute K(xi, xj) without needing to
compute F at all.

Example 8.8.8. If we encode the distance from the center as the feature F (x) = ⟨x1
2, x2

2,
√
2x1x2⟩

and define the kernel function as K(xi, xj) = F (xi)·F (xj), then this simplifies to K(xi, xj) =

(xi·xj)
2
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Support Vector Machines (Kernel Trick continued)
Generally: We can learn non-linear separators by solving

argmax
α

(
∑

j

αj −
1

2
(
∑

j,k

αjαkyjykK(xj ,xk)))

where K is a kernel function

Definition 8.8.9. Let X = {x1, . . ., xn}. A symmetric function K : X×X→R is called positive
definite iff the matrix Ki,j = K(xi, xj) is a positive definite matrix.
Theorem 8.8.10 (Mercer’s Theorem). Every positive definite function K on X is a kernel
function on X for some feature F .

Definition 8.8.11. The function K(xj ,xk) = (1 + (xj ·xj))
d is a kernel function corresponding

to a feature space whose dimension is exponential in d. It is called the polynomial kernel.
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8.9 Artificial Neural Networks

Outline

� Brains

� Neural networks

� Perceptrons
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� Multilayer perceptrons

� Applications of neural networks
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Brains

� Axiom 8.9.1 (Neuroscience Hypothesis). Mental activity consists consists primarily of
electrochemical activity in networks of brain cells called neurons.

� Definition 8.9.2. The animal brain is a biological neural network

� with 1011 neurons of > 20 types, 1014 synapses, (1ms)− (10ms) cycle time.

� Signals are noisy “spike trains” of electrical potential.
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Neural Networks as an approach to Artificial Intelligence

� One approach to Artificial Intelligence is to model and simulate brains. (and hope that AI
comes along naturally)

� Definition 8.9.3. The AI sub field of neural networks (also called connectionism, parallel
distributed processing, and neural computation) studies computing systems inspired by the
biological neural networks that constitute brains.

� Neural networks are attractive computational devices, since they perform important AI tasks
– most importantly learning and distributed, noise-tolerant computation – naturally and effi-
ciently.
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Neural Networks – McCulloch-Pitts “unit”
Definition 8.9.4. An artificial neural network is a directed graph such that every edge ai → aj
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is associated with a weight wi,j ∈ R, and each node aj with parents a1, . . ., an is associated with
a function f(w1,j , . . ., wn,j , x1, . . . , xn) ∈ R.

We call the output of a node’s function its activation, the matrix wi,j the weight matrix, the
nodes units and the edges links.

In 1943 McCulloch and Pitts proposed a simple model for a neuron/brain:
Definition 8.9.5. A McCulloch-Pitts unit first computes a weighted sum of all inputs and then
applies an activation function g to it.

ini =
∑

j

wj,iaj

ai ← g(ini) = g(
∑

j

wj,iaj)
Output

Σ
Input
Links

Activation
Function

Input
Function

Output
Links

a0 = 1 aj = g(inj)

aj

g
injwi,j

w0,j

Bias Weight

ai

If g is a threshold function, we call the unit a perceptron unit, if g is a logistic function a sigmoid
perceptron unit.

A McCulloch-Pitts network is a neural network with McCulloch-Pitts units.
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Implementing Logical Functions as Units

� McCulloch-Pitts units are a gross oversimplification of real neurons, but its purpose is to
develop understanding of what neural networks of simple units can do.

� Theorem 8.9.6 (McCulloch and Pitts). Every Boolean function can be implemented as
McCulloch-Pitts networks.

� Proof: by construction

1. Recall that ai ←− g(
∑

j wj,iaj). Let g(r) = 1 iff r > 0, else 0.
2. As for linear regression we use a0 = 1 ; w0,i as a bias weight (or intercept)

(determines the threshold)

3.

w0 = −1
w1 = 1

w2 = 1 AND

w0 = −0.5
w1 = 1

w2 = 1 OR

w0 = 0.5

w1 = −1

NOT

4. Any Boolean function can be implemented as a DAG of McCulloch-Pitts units.
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Network Structures: Feed-Forward Networks

� We have models for neurons ; connect them to neural networks.

� Definition 8.9.7. A neural network is called a feed-forward network, if it is acyclic.

� Intuition: Feed-forward networks implement functions, they have no internal state.

� Definition 8.9.8.Feed-forward networks are usually organized in layers: a n layer network has
a partition {L0, . . ., Ln} of the nodes, such that edges only connect nodes from subsequent
layer.

L0 is called the input layer and its members input units, and Ln the output layer and its
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members output units. Any unit that is not in the input layer or the output layer is called
hidden.
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Network Structures: Recurrent Networks

� Definition 8.9.9. A neural network is called recurrent (a RNNs), iff it has cycles.

� Hopfield networks have symmetric weights (wi,j = wj,i) g(x) = sign(x), ai = ±1;
(holographic associative memory)

� Boltzmann machines use stochastic activation functions.

� Recurrent neural networks have cycles with delay ; have internal state (like flip-flops), can
oscillate etc.

Recurrent neural networks follow largely the same principles as feed-forward networks, so we will
not go into details here.
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Single-layer Perceptrons

� Definition 8.9.10. A perceptron network is a feed-forward network of perceptron units. A
single layer perceptron network is called a perceptron.

� Example 8.9.11.

Output
Layer

wi,j
Input
Layer

-2  0  2  4  6

-4-2 0 2 4 6 8 10

 0
 0.2
 0.4
 0.6
 0.8

 1

x1

x2

� All input units are directly connected to output units.

� Output units all operate separately, no shared weights ; treat as the combination of n
perceptron units.

� Adjusting weights moves the location, orientation, and steepness of cliff.
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Feed-forward Neural Networks (Example)

� Feed-forward network =̂ a parameterized family of nonlinear functions:
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� Example 8.9.12. We show two feed-forward networks:

1

2

3

4

w1,3

w2,3

w1,4

w2,4

1

2

3

4

5

6

w1,3

w2,3

w1,4

w2,4

w3,5

w4,5

w3,6

w4,6

a) single layer (perceptron network) b) 2 layer feed-forward network

a5 = g(w3,5 · a3 +w4,5 · a4)
= g(w3,5 · g(w1,3 · a1 +w2,3a2) +w4,5 · g(w1,4 · a1 +w2,4a2))

� Idea: Adjusting weights changes the function: do learning this way!
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Expressiveness of Perceptrons

� Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

� Can represent AND, OR, NOT, majority, etc., but not XOR (and thus no adders)

� Represents a linear separator in input space:
∑

j

wjxj > 0 or W,x· > 0

(a) x1 and x2

1

0
0 1

x1

x2

(b) x1 or x2

0 1

1

0

x1

x2

(c) x1 xor x2

?

0 1

1

0

x1

x2

� Minsky & Papert (1969) pricked the first neural network balloon!
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Perceptron Learning
For learning, we update the weights using gradient descent based on the generalization loss

function.
Let e.g. L(w) = (y − hw(x))2 (the squared error loss).
We compute the gradient:
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∂L(w)

∂wj,k
= 2 · (yk − hw(x)k) ·

∂(y − hw(x))

∂wj,k
= 2 · (yk − hw(x)k) ·

∂

∂wj,k
(y − g(

n∑

j=0

wj,kxj))

= −2 · (yk − hw(x)k) · g′(ink) · xj

; Replacing the constant factor −2 by a learning rate parameter α we get the update rule:

wj,k ← wj,k + α · (yk − hw(x)k) · g′(ink) · xj
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Perceptron learning contd.
The perceptron learning rule converges to a consistent function – for any linearly separable

data set
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Perceptron learns the majority function easily, where DTL is hopeless.
Conversely, DTL learns the restaurant function easily, where a perceptron is hopeless. (not

representable)
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Multilayer perceptrons

� Definition 8.9.13. In multi layer perceptron (MLPs), layers are usually fully connected;
numbers of hidden units typically chosen by hand.

Output Layer ai

wi,j

Hidden Layer aj

wi,j

Input Layer ak

� Definition 8.9.14. Some MLPs have residual connections, i.e. connections that skip layers.
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Expressiveness of MLPs

� All continuous functions w/ 2 layers, all functions w/ 3 layers.
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� Combine two opposite-facing threshold functions to make a ridge.

� Combine two perpendicular ridges to make a bump.

� Add bumps of various sizes and locations to fit any surface.

� Proof requires exponentially many hidden units. (cf. DTL proof)
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Learning in Multilayer Networks
Note: The output layer of a multilayer neural network is a single-layer perceptron whose input
is the output of the last hidden layer.

; We can use the perceptron learning rule to update the weights of the output layer; e.g.
for a squared error loss function: wj,k ← wj,k + α · (yk − hw(x)k) · g′(ink) · aj

What about the hidden layers?
Idea: The hidden node j is “responsible” for some fraction of the error proportional to the weight
wj,k.

; Back-propagate the error ∆k = (yk − hw(x)k) · g′(inj) from node k in the output layer
to the hidden node j.

Let’s justify this:

∂L(w)k
∂wi,j

= −2 · (yk − hw(x)k) · g′(ink)︸ ︷︷ ︸
=:∆k

· ∂ink
∂wi,j

(as before)

= −2 ·∆k ·
∂(
∑

ℓ wℓ,kaℓ)

∂wi,j
= −2 ·∆k ·wj,k ·

∂aj
∂wi,j

= −2 ·∆k ·wj,k ·
∂g(inj)

∂wi,j

= −2 ·∆k ·wj,k · g′(inj)︸ ︷︷ ︸
=:∆j,k

·ai
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Learning in Multilayer Networks (Hidden Layers)
∂L(w)k
∂wi,j

= −2 ·∆k ·wj,k · g′(inj)︸ ︷︷ ︸
=:∆j,k

·ai

Idea: The total “error” of the hidden node j is the sum of all the connected nodes k in the next
layer
Definition 8.9.15. The back-propagation rule for hidden nodes of a multilayer perceptron is
∆j ← g′(inj) · (

∑

i

wj,i∆i) And the update rule for weights in a hidden layer is wk,j ← wk,j +

α · ak ·∆j

Remark: Most neuroscientists deny that back-propagation occurs in the brain.

The back-propagation process can be summarized as follows:

1. Compute the ∆ values for the output units, using the observed error.

2. Starting with output layer, repeat the following for each layer in the network, until the earliest
hidden layer is reached:

(a) Propagate the ∆ values back to the previous (hidden) layer.

(b) Update the weights between the two layers.
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Backprogagation Learning Algorithm

� Definition 8.9.16. The back-propagation learning algorithm is given the following pseu-
docode
function BACK−PROP−LEARNING(examples,network) returns a neural network

inputs: examples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights wi,j , activation function g

local variables: ∆, a vector of errors, indexed by network node
foreach weight wi,j in network do
wi,j := a small random number

repeat
foreach example (x,y) in examples do

/∗ Propagate the inputs forward to compute the outputs ∗/
foreach node i in the input layer do ai := xi

for l = 2 to L do
foreach node j in layer l do
inj :=

∑
i wi,jai

aj := g(inj)
/∗ Propagate deltas backward from output layer to input layer ∗/
foreach node j in the output layer do ∆[j] := g′(inj) · (yj − aj)
for l = L− 1 to 1 do

foreach node i in layer l do ∆[i] := g′(ini) · (
∑

j wi,j∆[j])

/∗ Update every weight in network using deltas ∗/
foreach weight wi,j in network do wi,j := wi,j + α · ai ·∆[j]

until some stopping criterion is satisfied
return network
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Back-Propagation – Properties

� Sum gradient updates for all examples in some “batch” and apply gradient descent.

� Learning curve for 100 restaurant examples: finds exact fit.
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� Typical problems: slow convergence, local minima.
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Back-Propagation – Properties (contd.)

� Example 8.9.17. Learning curve for MLPs with 4 hidden units:
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� Experience shows: MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily.

� This makes MLPs ineligible for some tasks, such as credit card and loan approvals, where
law requires clear unbiased criteria.
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Handwritten digit recognition
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� 400–300–10 unit MLP = 1.6% error

� LeNet: 768–192–30–10 unit MLP = 0.9% error

� Current best (kernel machines, vision algorithms) ≈ 0.6% error
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XKCD on Machine Learning

� A Skepticists View: see https://xkcd.com/1838/
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Summary of Inductive Learning

� Learning needed for unknown environments, lazy designers.

� Learning agent = performance element + learning element.

� Learning method depends on type of performance element, available feedback, type of com-
ponent to be improved, and its representation.

� For supervised learning, the aim is to find a simple hypothesis that is approximately consistent
with training examples

� Decision tree learning using information gain.

https://xkcd.com/1838/
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� Learning performance = prediction accuracy measured on test set

� PAC learning as a general theory of learning boundaries.

� Linear regression (hypothesis space of univariate linear functions).

� Linear classification by linear regression with hard and soft thresholds.
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