
1

Artificial Intelligence 1
Winter Semester 2024/25

– Lecture Notes –
Part IV: Planning and Acting

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2025-02-06

Michael.Kohlhase@FAU.de

2

This document contains Part IV of the course notes for the course “Artificial Intelligence 1” held
at FAU Erlangen-Nürnberg in the Winter Semesters 2016/17 ff. This part covers the AI
subfield of “planning”, i.e. search-based problem solving with a structured representation language
for environment state and actions — in planning, the focus is on the latter.

We first introduce the framework of planning (structured representation languages for problems
and actions) and then present algorithms and complexity results. Finally, we lift some of the
simplifying assumptions – deterministic, fully observable environments – we made in the previous
parts of the course. Other parts of the lecture notes can be found at http://kwarc.info/
teaching/AI/notes-*.pdf.

http://kwarc.info/teaching/AI/notes-*.pdf
http://kwarc.info/teaching/AI/notes-*.pdf

Contents

17 Planning I: Framework 5
17.1 Logic-Based Planning . 6
17.2 Planning: Introduction . 10
17.3 Planning History . 17
17.4 STRIPS Planning . 19
17.5 Partial Order Planning . 25
17.6 PDDL Language . 41
17.7 Conclusion . 44

18 Planning II: Algorithms 45
18.1 Introduction . 45
18.2 How to Relax . 47
18.3 Delete Relaxation . 59
18.4 The h+Heuristic . 65
18.5 Conclusion . 77

19 Searching, Planning, and Acting in the Real World 79
19.1 Introduction . 79
19.2 The Furniture Coloring Example . 81
19.3 Searching/Planning with Non-Deterministic Actions 82
19.4 Agent Architectures based on Belief States . 85
19.5 Searching/Planning without Observations . 87
19.6 Searching/Planning with Observation . 90
19.7 Online Search . 95
19.8 Replanning and Execution Monitoring . 98

20 What did we learn in AI 1? 103

3

4 CONTENTS

Chapter 17

Planning I: Framework

Reminder: Classical Search Problems

� Example 17.0.1 (Solitaire as a Search Problem).

� States: Card positions (e.g. position_Jspades=Qhearts).

� Actions: Card moves (e.g. move_Jspades_Qhearts_freecell4).

� Initial state: Start configuration.

� Goal states: All cards “home”.

� Solutions: Card moves solving this game.

Michael Kohlhase: Artificial Intelligence 1 549 2025-02-06

Planning

� Ambition: Write one program that can solve all classical search problems.

� Idea: For CSP, going from “state/action-level search” to “problem-description level
search” did the trick.

� Definition 17.0.2. Let Π be a search problem (see ??)

� The blackbox description of Π is an API providing functionality allowing to
construct the state space: InitialState(), GoalTest(s), . . .

5

6 CHAPTER 17. PLANNING I: FRAMEWORK

� “Specifying the problem” =̂ programming the API.

� The declarative description of Π comes in a problem description language. This
allows to implement the API, and much more.

� “Specifying the problem” =̂ writing a problem description.

� Here, “problem description language” =̂ planning language. (up next)

� But Wait: Didn’t we do this already in the last chapter with logics? (For the
Wumpus?)

Michael Kohlhase: Artificial Intelligence 1 550 2025-02-06

17.1 Logic-Based Planning
Before we go into the planning framework and its particular methods, let us see what we would

do with the methods from ?? if we were to develop a “logic-based language” for describing states
and actions. We will use the Wumpus world from ?? as a running example.

Fluents: Time-Dependent Knowledge in Planning

� Recall from ??: We can represent the Wumpus rules in logical systems.
(propositional/first-order/ALC)

� Use inference systems to deduce new world knowledge from percepts and actions.

� Problem: Representing (changing) percepts immediately leads to contradictions!

� Example 17.1.1. If the agent moves and a cell with a draft at (a perceived breeze)
is followed by one without.

� Obvious Idea: Make representations of percepts time-dependent

� Example 17.1.2. Dt for t ∈ N for PL0 and draft(t) in PL1 and PLnq.

� Definition 17.1.3. We use the word fluent to refer an aspect of the world that
changes, all others we call atemporal.

Michael Kohlhase: Artificial Intelligence 1 551 2025-02-06

Let us recall the agent-based setting we were using for the inference procedures from ??. We will
elaborate this further in this section.

Recap: Logic-Based Agents

� Recall: A model-based agent uses inference to model the environment, percepts,
and actions.

17.1. LOGIC-BASED PLANNING 7Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

function KB−AGENT (percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time
TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))
action := ASK(KB, MAKE−ACTION−QUERY(t))
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+1

return action

� Still Unspecified: (up next)

� MAKE−PERCEPT−SENTENCE: the effects of percepts.

� MAKE−ACTION−QUERY: what is the best next action?

� MAKE−ACTION−SENTENCE: the effects of that action.

In particular, we will look at the effect of time/change. (neglected so far)

Michael Kohlhase: Artificial Intelligence 1 552 2025-02-06

Now that we have the notion of fluents to represent the percepts at a given time point, let us try
to model how they influence the agent’s world model.

Fluents: Modeling the Agent’s Sensors

� Idea: Relate percept fluents to atemporal cell attributes.

� Example 17.1.4. E.g., if the agent perceives a draft at at time t, when it is in cell
[x, y], then there must be a breeze there:

∀t, x, y.Ag@(t, x, y)⇒ (draft(t)⇔ breeze(x, y))

� Axioms like these model the agent’s sensors – here that they are totally reliable:
there is a breeze, iff the agent feels a draft at.

� Definition 17.1.5. We call fluents that describe the agent’s sensors sensor axioms.

� Problem: Where do fluents like Ag@(t, x, y) come from?

Michael Kohlhase: Artificial Intelligence 1 553 2025-02-06

You may have noticed that for the sensor axioms we have only used first-order logic. There is a
general story to tell here: If we have finite domains (as we do in the Wumpus cave) we can always
“compile first-order logic into propositional logic”; if domains are infinite, we usually cannot.

We will develop this here before we go on with the Wumpus models.

8 CHAPTER 17. PLANNING I: FRAMEWORK

Digression: Fluents and Finite Temporal Domains

� Observation: Fluents like ∀t, x, y.Ag@(t, x, y)⇒ (draft(t)⇔ breeze(x, y)) from
?? are best represented in first-order logic. In PL0 and PLnq we would have to use
concrete instances like Ag@(7, 2, 1) ⇒ (draft(7) ⇔ breeze(2, 1)) for all suitable t,
x, and y.

� Problem: Unless we restrict ourselves to finite domains and an end time tend
we have infinitely many axioms. Even then, formalization in PL0 and PLnq is very
tedious.

� Solution: Formalize in first-order logic and then compile down:

1. enumerate ranges of bound variables, instantiate body, (; PLnq)

2. translate PLnq atoms to propositional variables. (; PL0)

� In Practice: The choice of domain, end time, and logic is up to agent designer,
weighing expressivity vs. efficiency of inference.

� WLOG: We will use PL1 in the following. (easier to read)

Michael Kohlhase: Artificial Intelligence 1 554 2025-02-06

We now continue to our logic-based agent models: Now we focus on effect axioms to model the
effects of an agent’s actions.

Fluents: Effect Axioms for the Transition Model

� Problem: Where do fluents like Ag@(t, x, y) come from?

� Thus: We also need fluents to keep track of the agent’s actions. (The transition
model of the underlying search problem).

� Idea: We also use fluents for the representation of actions.

� Example 17.1.6. The action of “going forward” at time t is captured by the fluent
forw(t).

� Definition 17.1.7. Effect axioms describe how the environment changes under an
agent’s actions.

� Example 17.1.8. If the agent is in cell [1, 1] facing east at time 0 and goes forward,
she is in cell [2, 1] and no longer in [1, 1]:

Ag@(0, 1, 1) ∧ faceeast(0) ∧ forw(0)⇒Ag@(1, 2, 1) ∧ ¬Ag@(1, 1, 1)

Generally: (barring exceptions for domain border cells)

∀t, x, y.Ag@(t, x, y)∧faceeast(t)∧forw(t)⇒Ag@(t+1, x+1, y)∧¬Ag@(t+1, x, y)

This compiles down to 16 · tend PLnq/PL0 axioms.

Michael Kohlhase: Artificial Intelligence 1 555 2025-02-06

Unfortunately, the percept fluents, sensor axioms, and effect axioms are not enough, as we will
show in ??. We will see that this is a more general problem – the famous frame problem that

17.1. LOGIC-BASED PLANNING 9

needs to be considered whenever we deal with change in environments.

Frames and Frame Axioms

� Problem: Effect axioms are not enough.

� Example 17.1.9. Say that the agent has an arrow at time 0, and then moves
forward at into [2, 1], perceives a glitter, and knows that the Wumpus is ahead.

To evaluate the action shoot(1) the corresponding effect axiom needs to know
havarrow(1), but cannot prove it from havarrow(0).

Problem: The information of having an arrow has been lost in the move forward.

� Definition 17.1.10. The frame problem describes that for a representation of
actions we need to formalize their effects on the aspects they change, but also their
non-effect on the static frame of reference.

� Partial Solution: (there are many many more; some better)

Frame axioms formalize that particular fluents are invariant under a given action.

� Problem: For an agent with n actions and an environment with m fluents, we
need O(nm) frame axioms.

Representing and reasoning with them easily drowns out the sensor and transition
models.

Michael Kohlhase: Artificial Intelligence 1 556 2025-02-06

We conclude our discussion with a relatively complete implementation of a logic-based Wumpus
agent, building on the schema from slide 552.

A Hybrid Agent for the Wumpus World

� Example 17.1.11 (A Hybrid Agent). This agent uses

� logic inference for sensor and transition modeling,

� special code and A∗ for action selection & route planning.

function HYBRID−WUMPUS−AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal

"wumpus physics"
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))

then some special code for action selection, and then (up next)

action := POP(plan)
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+ 1
return action

So far, not much new over our original version.

Michael Kohlhase: Artificial Intelligence 1 557 2025-02-06

10 CHAPTER 17. PLANNING I: FRAMEWORK

Now look at the “special code” we have promised.

A Hybrid Agent: Custom Action Selection

� Example 17.1.12 (A Hybrid Agent (continued)). So that we can plan the best
strategy:

TELL(KB, the temporal "physics" sentences for time t)
safe := {[x, y] |ASK(KB,OK(t, x, y))=T}
if ASK(KB,glitter(t)) = T then

plan := [grab] + PLAN−ROUTE(current,{[1, 1]},safe) + [exit]
if plan is empty then

unvisited := {[x, y] |ASK(KB,Ag@(t′, x, y))=F} for all t′ ≤ t
plan := PLAN−ROUTE(current,unvisited ∪ safe,safe)

if plan is empty and ASK(KB,havarrow(t)) = T then
possible_wumpus := {x, y | [x, y]}ASK(KB,¬wumpus(t, x, y)) = F
plan := PLAN−SHOT(current,possible_wumpus,safe)

if plan is empty then // no choice but to take a risk
not_unsafe := {[x, y] |ASK(KB,¬OK(t, x, y)) = F}
plan := PLAN−ROUTE(current,unvisited ∪ not_unsafe,safe)

if plan is empty then
plan := PLAN−ROUTE(current,{[1, 1]},safe) + [exit]

Note that OK wumpus, and glitter are fluents, since the Wumpus might have died
or the gold might have been grabbed.

Michael Kohlhase: Artificial Intelligence 1 558 2025-02-06

And finally the route planning part of the code. This is essentially just A∗ search.

A Hybrid Agent: Custom Action Selection

� Example 17.1.13 (Action Selection). And the code for PLAN−ROUTE
(PLAN−SHOT similar)

function PLAN−ROUTE(curr,goals,allowed) returns an action sequence
inputs: curr, the agent’s current position

goals, a set of squares;
try to plan a route to one of them

allowed, a set of squares that can form part of the route
problem := ROUTE−PROBLEM(curr,goals,allowed)
return A∗(problem)

� Evaluation: Even though this works for the Wumpus world, it is not the “universal,
logic-based problem solver” we dreamed of!

� Planning tries to solve this with another representation of actions. (up next)

Michael Kohlhase: Artificial Intelligence 1 559 2025-02-06

17.2 Planning: Introduction

A Video Nugget covering this section can be found at https://fau.tv/clip/id/26892.

https://fau.tv/clip/id/26892

17.2. PLANNING: INTRODUCTION 11

How does a planning language describe a problem?

� Definition 17.2.1. A planning language is a way of describing the components of
a search problem via formulae of a logical system. In particular the

� states (vs. blackbox: data structures). (E.g.: predicate Eq(., .).)

� initial state I (vs. data structures). (E.g.: Eq(x, 1).)

� goal states G (vs. a goal test). (E.g.: Eq(x, 2).)

� set A of actions in terms of preconditions and effects (vs. functions returning
applicable actions and successor states). (E.g.: “increment x: pre Eq(x, 1), iff
Eq(x ∧ 2) ∧ ¬Eq(x, 1)”.)

A logical description of all of these is called a planning task.

� Definition 17.2.2. Solution (plan) =̂ sequence of actions from A, transforming I
into a state that satisfies G. (E.g.: “increment x”.)

The process of finding a plan given a planning task is called planning.

Michael Kohlhase: Artificial Intelligence 1 560 2025-02-06

Planning Language Overview

� Disclaimer: Planning languages go way beyond classical search problems. There
are variants for inaccessible, stochastic, dynamic, continuous, and multi-agent set-
tings.

� We focus on classical search for simplicity (and practical relevance).

� For a comprehensive overview, see [GNT04].

Michael Kohlhase: Artificial Intelligence 1 561 2025-02-06

Application: Natural Language Generation

S:e

NP:r1 ↓ VP:e

sleeps

V:e

N:r1

rabbit

NP:r1
the

N:r1
white N:r1 *

S:e

VP:e

sleeps

V:e

rabbit

NP:r1

the N:r1

white

{sleep(e,r1)}

{white(r1)}{rabbit(r1)}

� Input: Tree-adjoining grammar, intended meaning.

� Output: Sentence expressing that meaning.

12 CHAPTER 17. PLANNING I: FRAMEWORK

Michael Kohlhase: Artificial Intelligence 1 562 2025-02-06

Application: Business Process Templates at SAP

Application: Business Process Templates at SAP

Create CQ

Check CQ
Consistency

Check CQ
Completeness

Check CQ
Approval
Status

Decide CQ
Approval

Submit CQ

Mark CQ as
Accepted

Create Follow-
Up for CQ

Archive CQ

Approval:
Necessary

Approval:
not

Necessary

I Input: SAP-scale model of behavior of activities on Business Objects, process
endpoint.

I Output: Process template leading to this point.

Kohlhase: Künstliche Intelligenz 1 484 July 5, 2018

Application: Business Process Templates at SAP

Create CQ

Check CQ
Consistency

Check CQ
Completeness

Check CQ
Approval

Status

Decide CQ
Approval

Submit CQ

Mark CQ as
Accepted

Create Follow-
Up for CQ

Archive CQ

Approval:
Necessary

Approval:
not

Necessary

I Input: SAP-scale model of behavior of activities on Business Objects, process
endpoint.

I Output: Process template leading to this point.

Kohlhase: Künstliche Intelligenz 1 484 July 5, 2018

� Input: model of behavior of activities on business objects, process endpoint.

� Output: Process template leading to this point.

Michael Kohlhase: Artificial Intelligence 1 563 2025-02-06

Application: Automatic Hacking

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

17.2. PLANNING: INTRODUCTION 13

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

Router
Firewall

DB Server

Workstation

DMZ

SENSITIVE USERS

Web Server Application Server

Internet

Attacker

� Input: Network configuration, location of sensible data.

� Output: Sequence of exploits giving access to that data.

Michael Kohlhase: Artificial Intelligence 1 564 2025-02-06

Reminder: General Problem Solving, Pros and Cons

� Powerful: In some applications, generality is absolutely necessary. (E.g. SAP)

� Quick: Rapid prototyping: 10s lines of problem description vs. 1000s lines of C++
code. (E.g. language generation)

� Flexible: Adapt/maintain the description. (E.g. network security)

� Intelligent: Determines automatically how to solve a complex problem efficiently!
(The ultimate goal, no?!)

� Efficiency loss: Without any domain-specific knowledge about chess, you don’t
beat Kasparov . . .

� Trade-off between “automatic and general” vs. “manual work but efficient”.

� Research Question: How to make fully automatic algorithms efficient?

Michael Kohlhase: Artificial Intelligence 1 565 2025-02-06

14 CHAPTER 17. PLANNING I: FRAMEWORK

Search vs. planning

� Consider the task get milk, bananas, and a cordless drill.

� Standard search algorithms seem to fail miserably:

After-the-fact heuristic/goal test inadequate

Michael Kohlhase: Artificial Intelligence 1 566 2025-02-06

Search vs. planning (cont.)

� Planning systems do the following:

1. open up action and goal representation to allow selection

2. divide-and-conquer by subgoaling

� relax requirement for sequential construction of solutions

Search Planning
States Lisp data structures Logical sentences
Actions Lisp code Preconditions/outcomes
Goal Lisp code Logical sentence (conjunction)
Plan Sequence from S0 Constraints on actions

Michael Kohlhase: Artificial Intelligence 1 567 2025-02-06

Reminder: Greedy Best-First Search and A∗

� Recall: Our heuristic search algorithms (duplicate pruning omitted for simplicity)

function Greedy_Best−First_Search (problem)
returns a solution, or failure

17.2. PLANNING: INTRODUCTION 15

n := node with n.state=problem.InitialState
frontier := priority queue ordered by ascending h, initially [n]
loop do

if Empty?(frontier) then return failure
n := Pop(frontier)
if problem.GoalTest(n.state) then return Solution(n)
for each action a in problem.Actions(n.state) do
n′ := ChildNode(problem,n,a)
Insert(n′, h(n′), frontier)

For A∗

� order frontier by g + h instead of h (line 4)

� insert g(n′) + h(n′) instead of h(n′) to frontier (last line)

� Is greedy best-first search optimal? No ; satisficing planning.

� Is A∗ optimal? Yes, but only if h is admissible ; optimal planning, with such h.

Michael Kohlhase: Artificial Intelligence 1 568 2025-02-06

ps. “Making Fully Automatic Algorithms Efficient”

� Example 17.2.3.

� n blocks, 1 hand.

� A single action either takes a block with the hand or puts a
block we’re holding onto some other block/the table.

blocks states
1 1
2 3
3 13
4 73
5 501
6 4051
7 37633
8 394353

blocks states
9 4596553

10 58941091
11 824073141
12 12470162233
13 202976401213
14 3535017524403
15 65573803186921
16 1290434218669921

� Observation 17.2.4. State spaces typically are huge even for simple problems.

� In other words: Even solving “simple problems” automatically (without help from
a human) requires a form of intelligence.

� With blind search, even the largest super computer in the world won’t scale beyond
20 blocks!

Michael Kohlhase: Artificial Intelligence 1 569 2025-02-06

Algorithmic Problems in Planning

� Definition 17.2.5. We speak of satisficing planning if

16 CHAPTER 17. PLANNING I: FRAMEWORK

Input: A planning task Π.
Output: A plan for Π, or “unsolvable” if no plan for Π exists.
and of optimal planning if
Input: A planning task Π.
Output: An optimal plan for Π, or “unsolvable” if no plan for Π exists.

� The techniques successful for either one of these are almost disjoint. And satisficing
planning is much more efficient in practice.

� Definition 17.2.6. Programs solving these problems are called (optimal) planner,
planning system, or planning tool.

Michael Kohlhase: Artificial Intelligence 1 570 2025-02-06

Our Agenda for This Topic

� Now: Background, planning languages, complexity.

� Sets up the framework. Computational complexity is essential to distinguish
different algorithmic problems, and for the design of heuristic functions. (see
next)

� Next: How to automatically generate a heuristic function, given planning language
input?

� Focussing on heuristic search as the solution method, this is the main question
that needs to be answered.

Michael Kohlhase: Artificial Intelligence 1 571 2025-02-06

Our Agenda for This Chapter

1. The History of Planning: How did this come about?

� Gives you some background, and motivates our choice to focus on heuristic
search.

2. The STRIPS Planning Formalism: Which concrete planning formalism will we be
using?

� Lays the framework we’ll be looking at.

3. The PDDL Language: What do the input files for off-the-shelf planning software
look like?

� So you can actually play around with such software. (Exercises!)

4. Planning Complexity: How complex is planning?

� The price of generality is complexity, and here’s what that “price” is, exactly.

Michael Kohlhase: Artificial Intelligence 1 572 2025-02-06

17.3. PLANNING HISTORY 17

17.3 The History of Planning
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26894.

Planning History: In the Beginning . . .

� In the beginning: Man invented Robots:

� “Planning” as in “the making of plans by an autonomous robot”.

� Shakey the Robot (Full video here)

� In a little more detail:

� [NS63] introduced general problem solving.

� . . . not much happened (well not much we still speak of today) . . .

� 1966-72, Stanford Research Institute developed a robot named “Shakey”.

� They needed a “planning” component taking decisions.

� They took inspiration from general problem solving and theorem proving, and
called the resulting algorithm STRIPS.

Michael Kohlhase: Artificial Intelligence 1 573 2025-02-06

History of Planning Algorithms

� Compilation into Logics/Theorem Proving:

� e.g. ∃s0, a, s1.at(A, s0) ∧ execute(s0, a, s1) ∧ at(B, s1)

� Popular when: Stone Age – 1990.

� Approach: From planning task description, generate PL1 formula φ that is
satisfiable iff there exists a plan; use a theorem prover on φ.

� Keywords/cites: Situation calculus, frame problem, . . .

� Partial order planning

� e.g. open = {at(B)}; apply move(A,B); ; open = {at(A)} . . .

� Popular when: 1990 – 1995.

� Approach: Starting at goal, extend partially ordered set of actions by inserting
achievers for open sub-goals, or by adding ordering constraints to avoid conflicts.

� Keywords/cites: UCPOP [PW92], causal links, flaw selection strategies, . . .

Michael Kohlhase: Artificial Intelligence 1 574 2025-02-06

History of Planning Algorithms, ctd.

� GraphPlan

� e.g. F0 = at(A);A0 = {move(A,B)};F1 = {at(B)};
mutex A0 = {move(A,B),move(A,C)}.

https://fau.tv/clip/id/26894
https://vimeo.com/5072714
https://www.youtube.com/watch?v=GmU7SimFkpU

18 CHAPTER 17. PLANNING I: FRAMEWORK

� Popular when: 1995 – 2000.

� Approach: In a forward phase, build a layered “planning graph” whose “time
steps” capture which pairs of action can achieve which pairs of facts; in a back-
ward phase, search this graph starting at goals and excluding options proved to
not be feasible.

� Keywords/cites: [BF95; BF97; Koe+97], action/fact mutexes, step-optimal
plans, . . .

� Planning as SAT:

� SAT variables at(A)0, at(B)0, move(A,B)0, move(A,C)0, at(A)1, at(B)1;
clauses to encode transition behavior e.g. at(B)1

F∨move(A,B)0
T; unit clauses

to encode initial state at(A)0
T, at(B)0

T; unit clauses to encode goal at(B)1
T.

� Popular when: 1996 – today.

� Approach: From planning task description, generate propositional CNF formula
φk that is satisfiable iff there exists a plan with k steps; use a SAT solver on φk,
for different values of k.

� Keywords/cites: [KS92; KS98; RHN06; Rin10], SAT encoding schemes, Black-
Box, . . .

Michael Kohlhase: Artificial Intelligence 1 575 2025-02-06

History of Planning Algorithms, ctd.

� Planning as Heuristic Search:

� init at(A); apply move(A,B); generates state at(B); . . .

� Popular when: 1999 – today.

� Approach: Devise a method R to simplify (“relax”) any planning task Π; given
Π, solve R(Π) to generate a heuristic function h for informed search.

� Keywords/cites: [BG99; HG00; BG01; HN01; Ede01; GSS03; Hel06; HHH07;
HG08; KD09; HD09; RW10; NHH11; KHH12a; KHH12b; KHD13; DHK15],
critical path heuristics, ignoring delete lists, relaxed plans, landmark heuristics,
abstractions, partial delete relaxation, . . .

Michael Kohlhase: Artificial Intelligence 1 576 2025-02-06

The International Planning Competition (IPC)

� Definition 17.3.1. The International Planning Competition (IPC) is an event for
benchmarking planners (http://ipc.icapsconference.org/)

� How: Run competing planners on a set of benchmarks.

� When: Runs every two years since 2000, annually since 2014.

� What: Optimal track vs. satisficing track; others: uncertainty, learning, . . .

� Prerequisite/Result:

http://ipc.icaps conference.org/

17.4. STRIPS PLANNING 19

� Standard representation language: PDDL [McD+98; FL03; HE05; Ger+09]

� Problem Corpus: ≈ 50 domains, ≫ 1000 instances, 74 (!!) planners in 2011

Michael Kohlhase: Artificial Intelligence 1 577 2025-02-06

International Planning Competition

� Question: If planners x and y compete in IPC’YY, and x wins, is x “better than”
y?

� Answer: reserved for the plenary sessions ; be there!

� Generally: reserved for the plenary sessions ; be there!

Michael Kohlhase: Artificial Intelligence 1 578 2025-02-06

Planning History, p.s.: Planning is Non-Trivial!

� Example 17.3.2. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C) fail:

� If we pursue on(A,B) by unstacking C, and
moving A onto B, we achieve the first subgoal,
but cannot achieve the second without undoing
the first.

� If we pursue on(B,C) by moving B onto C, we
achieve the second subgoal, but cannot achieve
the first without undoing the second.

Michael Kohlhase: Artificial Intelligence 1 579 2025-02-06

17.4 The STRIPS Planning Formalism
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26896.

STRIPS Planning

� Definition 17.4.1. STRIPS = Stanford Research Institute Problem Solver.

https://fau.tv/clip/id/26896

20 CHAPTER 17. PLANNING I: FRAMEWORK

STRIPS is the simplest possible (reasonably expressive) logics based planning
language.

� STRIPS has only propositional variables as atomic formulae.

� Its preconditions/effects/goals are as canonical as imaginable:

� Preconditions, goals: conjunctions of atoms.

� Effects: conjunctions of literals

� We use the common special-case notation for this simple formalism.

� I’ll outline some extensions beyond STRIPS later on, when we discuss PDDL.

� Historical note: STRIPS [FN71] was originally a planner (cf. Shakey), whose
language actually wasn’t quite that simple.

Michael Kohlhase: Artificial Intelligence 1 580 2025-02-06

STRIPS Planning: Syntax

� Definition 17.4.2. A STRIPS task is a quadruple ⟨P ,A, I ,G⟩ where:

� P is a finite set of facts: atomic proposition in PL0 or PLnq.

� A is a finite set of actions; each a ∈ A is a triple a = ⟨prea, adda,dela⟩ of
subsets of P referred to as the action’s preconditions, add list, and delete list
respectively; we require that adda ∩ dela = ∅.

� I ⊆ P is the initial state.

� G ⊆ P is the goal state.

We will often give each action a ∈ A a name (a string), and identify a with that
name.

� Note: We assume, for simplicity, that every action has cost 1. (Unit costs, cf.
??)

Michael Kohlhase: Artificial Intelligence 1 581 2025-02-06

“TSP” in Australia

� Example 17.4.3 (Salesman Travelling in Australia).

17.4. STRIPS PLANNING 21

Strictly speaking, this is not actually a TSP problem instance; simplified/adapted
for illustration.

Michael Kohlhase: Artificial Intelligence 1 582 2025-02-06

STRIPS Encoding of “TSP”

� Example 17.4.4 (continuing).

� Facts P : {at(x), vis(x) |x ∈ {Sy,Ad,Br,Pe,Da}}.
� Initial state I: {at(Sy), vis(Sy)}.
� Goal state G:{at(Sy)} ∪ {vis(x) |x ∈ {Sy,Ad,Br,Pe,Da}}.
� Actions a ∈ A: drv(x, y) where x and y have a road.

Preconditions prea: {at(x)}.
Add list adda: {at(y), vis(y)}.
Delete list dela: {at(x)}.

� Plan: ⟨drv(Sy,Br),drv(Br,Sy),drv(Sy,Ad),drv(Ad,Pe),drv(Pe,Ad), . . .
. . . ,drv(Ad,Da),drv(Da,Ad),drv(Ad,Sy)⟩

Michael Kohlhase: Artificial Intelligence 1 583 2025-02-06

STRIPS Planning: Semantics

22 CHAPTER 17. PLANNING I: FRAMEWORK

� Idea: We define a plan for a STRIPS task Π as a solution to an induced search
problem ΘΠ. (save work by reduction)

� Definition 17.4.5. Let Π := ⟨P ,A, I ,G⟩ be a STRIPS task. The search problem
induced by Π is ΘΠ = ⟨SP , A, T , I, SG⟩ where:

� The states (also world state) SP := P(P) are the subsets of P .

� A is just Π’s action. (so we can define plans easily)

� The transition model TA is {s a−→ apply(s, a) |prea ⊆ s}.
If prea ⊆ s, then a ∈ A is applicable in s and apply(s, a) := (s ∪ adda)\dela.
If prea ̸⊆s, then apply(s, a) is undefined.

� I is Π’s initial state.

� The goal states SG = {s ∈ SP |G ⊆ s} are those that satisfy Π’s goal state.

An (optimal) plan for Π is an (optimal) solution for ΘΠ, i.e., a path from s to some
s′ ∈ SG. Π is solvable if a plan for Π exists.

� Definition 17.4.6. For a plan a = ⟨a1, . . ., an⟩, we define

apply(s, a) := apply(. . . apply(apply(s, a1), a2) . . . , an)

if each ai is applicable in the respective state; else, apply(s, a) is undefined.

Michael Kohlhase: Artificial Intelligence 1 584 2025-02-06

STRIPS Encoding of Simplified TSP

� Example 17.4.7 (Simplified traveling salesman problem in Australia).

Let TSP− be the STRIPS task, ⟨P ,A, I ,G⟩, where

� Facts P : {at(x), vis(x) |x ∈ {Sy,Ad,Br}}.
� Initial state state I: {at(Sy), vis(Sy)}.
� Goal state G: {vis(x) |x ∈ {Sy,Ad,Br}} (note: noat(Sy))

� Actions A: a ∈ A: drv(x, y) where x y have a road.

� preconditions prea: {at(x)}.
� add list adda: {at(y), vis(y)}.
� delete list dela: {at(x)}.

Michael Kohlhase: Artificial Intelligence 1 585 2025-02-06

17.4. STRIPS PLANNING 23

Questionaire: State Space of TSP−

� The state space of the search problem ΘTSP− induced by TSP− from ?? is

at(Sy)
vis(Sy)

at(Br)
vis(Sy)
vis(Br)

at(Ad)
vis(Sy)
vis(Ad)

at(Sy)
vis(Sy)
vis(Br)

at(Sy)
vis(Sy)
vis(Ad)

at(Ad)
vis(Sy)
vis(Br)
vis(Ad)

at(Br)
vis(Sy)
vis(Ad)
vis(Br)

at(Sy)
vis(Sy)
vis(Ad)
vis(Br)

drv(Sy,Br)

drv(Sy,Ad)

drv(Br, Sy)

drv(Ad, Sy)

drv(Sy,Ad)

drv(Sy,Br)

drv(Br, Sy)

drv(Ad, Sy)

� Question: Are there any plans for TSP− in this graph?

� Answer: Yes, two – plans for TSP− are solutions for ΘTSP− , dashed node =̂ I,
thick nodes =̂ G:

� drv(Sy,Br),drv(Br,Sy),drv(Sy,Ad) (upper path)

� drv(Sy,Ad),drv(Ad,Sy),drv(Sy,Br). (lower path)

� Question: Is the graph above actually the state space induced by ?

� Answer: No, only the part reachable from I. The state space of ΘTSP− also
includes e.g. the states {vis(Sy)} and {at(Sy), at(Br)}.

Michael Kohlhase: Artificial Intelligence 1 586 2025-02-06

The Blocksworld

� Definition 17.4.8. The blocks world is a simple planning domain: a set of wooden
blocks of various shapes and colors sit on a table. The goal is to build one or more
vertical stacks of blocks. Only one block may be moved at a time: it may either be
placed on the table or placed atop another block.

� Example 17.4.9.

Initial State Goal State

D

B

A

C

E

D

CBAE

� Facts: on(x, y), onTable(x), clear(x), holding(x), armEmpty.

� initial state: {onTable(E), clear(E), . . . , onTable(C), on(D,C), clear(D), armEmpty}.
� Goal state: {on(E,C), on(C,A), on(B,D)}.
� Actions: stack(x, y), unstack(x, y), putdown(x), pickup(x).

� stack(x, y)?

24 CHAPTER 17. PLANNING I: FRAMEWORK

pre : {holding(x), clear(y)}
add : {on(x, y), armEmpty, clearx}
del : {holding(x), clear(y)}.

Michael Kohlhase: Artificial Intelligence 1 587 2025-02-06

STRIPS for the Blocksworld

� Question: Which are correct encodings (ones that are part of some correct overall
model) of the STRIPS Blocksworld pickup(x) action schema?

(A)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x)}

(B)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{armEmpty}

(C)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty, clear(x)}

(D)
{onTable(x), clear(x), armEmpty}
{holding(x)}
{onTable(x), armEmpty}

Recall: an actions a represented by a tuple ⟨prea, adda,dela⟩ of lists of facts.

� Hint: The only differences between them are the delete lists

� Answer: reserved for the plenary sessions ; be there!

Michael Kohlhase: Artificial Intelligence 1 588 2025-02-06

The next example for a planning task is not obvious at first sight, but has been quite influential,
showing that many industry problems can be specified declaratively by formalizing the domain
and the particular planning tasks in PDDL and then using off-the-shelf planners to solve them.
[KS00] reports that this has significantly reduced labor costs and increased maintainability of the
implementation.

Miconic-10: A Real-World Example

� Example 17.4.10. Elevator control as a planning problem; details at [KS00]
Specify mobility needs before boarding, let a planner schedule/otimize trips

17.5. PARTIAL ORDER PLANNING 25

� VIP: Served first.

� D: Lift may only go down when inside; sim-
ilar for U.

� NA: Never-alone

� AT: Attendant.

� A, B: Never together in the same elevator

� P: Normal passenger

DVIP

U

NA

AT

B

A

P

???

Michael Kohlhase: Artificial Intelligence 1 589 2025-02-06

17.5 Partial Order Planning
In this section we introduce a new and different planning algorithm: partial order planning that

works on several subgoals independently without having to specify in which order they will be
pursued and later combines them into a global plan. A Video Nugget covering this section can
be found at https://fau.tv/clip/id/28843.

To fortify our intuitions about partial order planning let us have another look at the Sussman
anomaly, where pursuing two subgoals independently and then reconciling them is a prerequi-
site.

Planning History, p.s.: Planning is Non-Trivial!

� Example 17.5.1. The Sussman anomaly is a simple blocksworld planning problem:

B

C

A

A B

C

Simple planners that split the goal into subgoals on(A,B) and on(B,C) fail:

https://fau.tv/clip/id/28843

26 CHAPTER 17. PLANNING I: FRAMEWORK

� If we pursue on(A,B) by unstacking C, and
moving A onto B, we achieve the first subgoal,
but cannot achieve the second without undoing
the first.

� If we pursue on(B,C) by moving B onto C, we
achieve the second subgoal, but cannot achieve
the first without undoing the second.

Michael Kohlhase: Artificial Intelligence 1 590 2025-02-06

Before we go into the details, let us try to understand the main ideas of partial order planning.

Partial Order Planning

� Definition 17.5.2. Any algorithm that can place two actions into a plan without
specifying which comes first is called as partial order planning.

� Ideas for partial order planning:

� Organize the planning steps in a DAG that supports multiple paths from initial
to goal state

� nodes (steps) are labeled with actions (actions can occur multiply)
� edges with propositions added by source and presupposed by target

acyclicity of the graph induces a partial ordering on steps.

� additional temporal constraints resolve subgoal interactions and induce a linear
order.

� Advantages of partial order planning:

� problems can be decomposed ; can work well with non-cooperative environ-
ments.

� efficient by least-commitment strategy

� causal links (edges) pinpoint unworkable subplans early.

Michael Kohlhase: Artificial Intelligence 1 591 2025-02-06

We now make the ideas discussed above concrete by giving a mathematical formulation. It is
advantageous to cast a partially ordered plan as a labeled DAG rather than a partial ordering
since it draws the attention to the difference between actions and steps.

Partially Ordered Plans

� Definition 17.5.3. Let ⟨P ,A, I ,G⟩ be a STRIPS task, then a partially ordered
plan P = ⟨V ,E⟩ is a labeled DAG, where the nodes in V (called steps) are labeled
with actions from A, or are a

� start step, which has label “effect” I, or a

� finish step, which has label “precondition” G.

17.5. PARTIAL ORDER PLANNING 27

Every edge (S,T) ∈ E is either labeled by:

� A non-empty set p ⊆ P of facts that are effects of the action of S and the
preconditions of that of T . We call such a labeled edge a causal link and write
it S p−→T .

� ≺, then call it a temporal constraint and write it as S ≺ T .

An open condition is a precondition of a step not yet causally linked.

� Definition 17.5.4. Let Π be a partially ordered plan, then we call a step U possibly
intervening in a causal link S p−→T , iff Π ∪ {S ≺ U,U ≺ T} is acyclic.

� Definition 17.5.5. A precondition is achieved iff it is the effect of an earlier step
and no possibly intervening step undoes it.

� Definition 17.5.6. A partially ordered plan Π is called complete iff every precon-
dition is achieved.

� Definition 17.5.7. Partial order planning is the process of computing complete
and acyclic partially ordered plans for a given planning task.

Michael Kohlhase: Artificial Intelligence 1 592 2025-02-06

A Notation for STRIPS Actions

� Definition 17.5.8 (Notation). In diagrams, we often write STRIPS actions into
boxes with preconditions above and effects below.

� Example 17.5.9.

� Actions: Buy(x)

� Preconditions: At(p), Sells(p, x)

� Effects: Have(x)

At(p) Sells(p, x)

Buy(x)

Have(x)

� Notation: A causal link S p−→T can also be denoted by a direct arrow between the
effects p of S and the preconditions p of T in the STRIPS action notation above.

Show temporal constraints as dashed arrows.

Michael Kohlhase: Artificial Intelligence 1 593 2025-02-06

Planning Process

� Definition 17.5.10. Partial order planning is search in the space of partial plans
via the following operations:

� add link from an existing action to an open precondition,

� add step (an action with links to other steps) to fulfil an open precondition,

� order one step wrt. another (by adding temporal constraints) to remove possible
conflicts.

28 CHAPTER 17. PLANNING I: FRAMEWORK

� Idea: Gradually move from incomplete/vague plans to complete, correct plans.
backtrack if an open condition is unachievable or if a conflict is unresolvable.

Michael Kohlhase: Artificial Intelligence 1 594 2025-02-06

Example: Shopping for Bananas, Milk, and a Cordless Drill

� Example 17.5.11.

17.5. PARTIAL ORDER PLANNING 29

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

30 CHAPTER 17. PLANNING I: FRAMEWORK

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Buy(Drill)

At(HWS) Sell(HWS,Drill)

Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

17.5. PARTIAL ORDER PLANNING 31

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Go(HWS)

At(Home)

Buy(Drill)

At(HWS) Sell(HWS,Drill)

Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

32 CHAPTER 17. PLANNING I: FRAMEWORK

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Go(HWS)

At(Home)

Buy(Drill)

At(HWS) Sell(HWS,Drill)

Go(SM)

At(X)

Buy(Milk)

At(SM) Sell(SM,Milk)

Have(Milk)At(Home)Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

17.5. PARTIAL ORDER PLANNING 33

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Go(HWS)

At(Home)

Buy(Drill)

At(HWS) Sell(HWS,Drill)

Go(SM)

At(X)

Buy(Milk)

At(SM) Sell(SM,Milk)

Buy(Ban)

At(SM)Sell(SM,Ban)

Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

34 CHAPTER 17. PLANNING I: FRAMEWORK

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Go(HWS)

At(Home)

Buy(Drill)

At(HWS) Sell(HWS,Drill)

Go(SM)

At(X)

Buy(Milk)

At(SM) Sell(SM,Milk)

Buy(Ban)

At(SM)Sell(SM,Ban)

Go(Home)

At(SM)

Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

17.5. PARTIAL ORDER PLANNING 35

Start
Sell(SM,Milk)At(Home) Sell(HWS,Drill)Sell(SM,Ban)

Go(HWS)

At(Home)

Buy(Drill)

At(HWS) Sell(HWS,Drill)

Go(SM)

At(HWS)

Buy(Milk)

At(SM) Sell(SM,Milk)

Buy(Ban)

At(SM)Sell(SM,Ban)

Go(Home)

At(SM)

Have(Milk)At(Home) Have(Ban)Have(Drill)

Finish

Michael Kohlhase: Artificial Intelligence 1 595 2025-02-06

Here we show a successful search for a partially ordered plan. We start out by initializing the plan
by with the respective start and finish steps. Then we consecutively add steps to fulfill the open
preconditions – marked in red – starting with those of the finish step.

In the end we add three temporal constraints that complete the partially ordered plan.
The search process for the links and steps is relatively plausible and standard in this example, but
we do not have any idea where the temporal constraints should systematically come from. We
look at this next.

36 CHAPTER 17. PLANNING I: FRAMEWORK

Clobbering and Promotion/Demotion

� Definition 17.5.12. In a partially ordered plan, a step C clobbers a causal link
L := S p−→T , iff it destroys the condition p achieved by L.

� Definition 17.5.13. If C clobbers S p−→T in a partially ordered plan Π, then we
can solve the induced conflict by

� demotion: add a temporal constraint C ≺ S to Π, or

� promotion: add T ≺ C to Π.

� Example 17.5.14. Go(Home) clobbers At(Supermarket):

At(SM)

Buy(Milk)

Go(SM)

At(SM)

Go(Home)

At(Home)

demotion =̂ put before

promotion =̂ put after

Michael Kohlhase: Artificial Intelligence 1 596 2025-02-06

POP algorithm sketch

� Definition 17.5.15. The POP algorithm for constructing complete partially or-
dered plans:

function POP (initial, goal, operators) : plan
plan:= Make−Minimal−Plan(initial, goal)
loop do

if Solution?(goal,plan) then return plan
Sneed, c := Select−Subgoal(plan)
Choose−Operator(plan, operators, Sneed,c)
Resolve−Threats(plan)

end

function Select−Subgoal (plan, Sneed, c)
pick a plan step Sneed from Steps(plan)

with a precondition c that has not been achieved
return Sneed, c

Michael Kohlhase: Artificial Intelligence 1 597 2025-02-06

POP algorithm contd.

17.5. PARTIAL ORDER PLANNING 37

� Definition 17.5.16. The missing parts for the POP algorithm.

function Choose−Operator (plan, operators, Sneed, c)
choose a step Sadd from operators or Steps(plan) that has c as an effect
if there is no such step then fail
add the causal−link Sadd

c−→Sneed to Links(plan)
add the temporal−constraint Sadd ≺ Sneed to Orderings(plan)
if Sadd is a newly added \step from operators then

add Sadd to Steps(plan)
add Start≺ Sadd ≺ Finish to Orderings(plan)

function Resolve−Threats (plan)
for each Sthreat that threatens a causal−link Si

c−→Sj in Links(plan) do
choose either

demotion: Add Sthreat ≺ Si to Orderings(plan)
promotion: Add Sj ≺ Sthreat to Orderings(plan)

if not Consistent(plan) then fail

Michael Kohlhase: Artificial Intelligence 1 598 2025-02-06

Properties of POP

� Nondeterministic algorithm: backtracks at choice points on failure:

� choice of Sadd to achieve Sneed,

� choice of demotion or promotion for clobberer,

� selection of Sneed is irrevocable.

� Observation 17.5.17. POP is sound, complete, and systematic i.e. no repetition

� There are extensions for disjunction, universals, negation, conditionals.

� It can be made efficient with good heuristics derived from problem description.

� Particularly good for problems with many loosely related subgoals.

Michael Kohlhase: Artificial Intelligence 1 599 2025-02-06

Example: Solving the Sussman Anomaly

38 CHAPTER 17. PLANNING I: FRAMEWORK

Michael Kohlhase: Artificial Intelligence 1 600 2025-02-06

Example: Solving the Sussman Anomaly (contd.)

� Example 17.5.18. Solving the Sussman anomaly

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

Initializing the partial order plan with with Start and Finish.

17.5. PARTIAL ORDER PLANNING 39

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C), On(B,C)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

Refining for the subgoal On(B,C).

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C), On(B,C)
Cl(A)Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

Refining for the subgoal ON(A,C).

40 CHAPTER 17. PLANNING I: FRAMEWORK

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C), On(B,C)
Cl(A)Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C, T)

Cl(A) On(C, T)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

Refining for the subgoal Cl(A).

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C), On(B,C)
Cl(A)Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C, T)

Cl(A) On(C, T)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

Move(A,B) clobbers Cl(B) ; demote.

17.6. PDDL LANGUAGE 41

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C), On(B,C)
Cl(A)Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C, T)

Cl(A) On(C, T)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

Move(B,C) clobbers Cl(C) ; demote.

Start

On(C,A) On(A, T) Cl(B) On(B, T) Cl(C)

Cl(B) Cl(C)

Move(B,C)

¬Cl(C), On(B,C)
Cl(A)Cl(A) Cl(B)

Move(A,B)

¬Cl(B) On(A,B)

Cl(C)

Move(C, T)

Cl(A) On(C, T)

On(A,B)On(A,B) On(B,C)On(B,C)

Finish

A totally ordered plan.

Michael Kohlhase: Artificial Intelligence 1 601 2025-02-06

17.6 The PDDL Language
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26897.

PDDL: Planning Domain Description Language

� Definition 17.6.1. The Planning Domain Description Language (PDDL) is a stan-
dardized representation language for planning benchmarks in various extensions of
the STRIPS formalism.

� Definition 17.6.2. PDDL is not a propositional language

https://fau.tv/clip/id/26897

42 CHAPTER 17. PLANNING I: FRAMEWORK

� Representation is lifted, using object variables to be instantiated from a finite
set of objects. (Similar to predicate logic)

� Action schemas parameterized by objects.

� Predicates to be instantiated with objects.

� Definition 17.6.3. A PDDL planning task comes in two pieces

� The problem file gives the objects, the initial state, and the goal state.

� The domain file gives the predicates and the actions.

Michael Kohlhase: Artificial Intelligence 1 602 2025-02-06

History and Versions:

• Used in the International Planning Competition (IPC).

• 1998: PDDL [McD+98].

• 2000: “PDDL subset for the 2000 competition” [Bac00].

• 2002: PDDL2.1, Levels 1-3 [FL03].

• 2004: PDDL2.2 [HE05].

• 2006: PDDL3 [Ger+09].

The Blocksworld in PDDL: Domain File

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (domain blocksworld)
(:predicates (clear ?x) (holding ?x) (on ?x ?y)

(on−table ?x) (arm−empty))
(:action stack
:parameters (?x ?y)
:precondition (and (clear ?y) (holding ?x))
:effect (and (arm−empty) (on ?x ?y)

(not (clear ?y)) (not (holding ?x))))
. . .)

Michael Kohlhase: Artificial Intelligence 1 603 2025-02-06

The Blocksworld in PDDL: Problem File

17.6. PDDL LANGUAGE 43

Initial State Goal State

D

B

A

C

E

D

CBAE

(define (problem bw−abcde)
(:domain blocksworld)
(:objects a b c d e)
(:init (on−table a) (clear a)

(on−table b) (clear b)
(on−table e) (clear e)
(on−table c) (on d c) (clear d)
(arm−empty))

(:goal (and (on e c) (on c a) (on b d))))

Michael Kohlhase: Artificial Intelligence 1 604 2025-02-06

Miconic-ADL “Stop” Action Schema in PDDL
(:action stop
:parameters (?f − floor)
:precondition (and (lift−at ?f)
(imply
(exists
(?p − conflict−A)
(or (and (not (served ?p))

(origin ?p ?f))
(and (boarded ?p)

(not (destin ?p ?f)))))
(forall
(?q − conflict−B)
(and (or (destin ?q ?f)

(not (boarded ?q)))
(or (served ?q)

(not (origin ?q ?f))))))
(imply (exists

(?p − conflict−B)
(or (and (not (served ?p))

(origin ?p ?f))
(and (boarded ?p)

(not (destin ?p ?f)))))
(forall
(?q − conflict−A)
(and (or (destin ?q ?f)

(not (boarded ?q)))
(or (served ?q)

(not (origin ?q ?f))))))

(imply
(exists
(?p − never−alone)
(or (and (origin ?p ?f)

(not (served ?p)))
(and (boarded ?p)

(not (destin ?p ?f)))))
(exists
(?q − attendant)
(or (and (boarded ?q)

(not (destin ?q ?f)))
(and (not (served ?q))

(origin ?q ?f)))))
(forall
(?p − going−nonstop)
(imply (boarded ?p) (destin ?p ?f)))

(or (forall
(?p − vip) (served ?p))

(exists
(?p − vip)
(or (origin ?p ?f) (destin ?p ?f))))

(forall
(?p − passenger)
(imply
(no−access ?p ?f) (not (boarded ?p)))))

)

Michael Kohlhase: Artificial Intelligence 1 605 2025-02-06

Planning Domain Description Language

� Question: What is PDDL good for?

(A) Nothing.

(B) Free beer.

(C) Those AI planning guys.

(D) Being lazy at work.

44 CHAPTER 17. PLANNING I: FRAMEWORK

� Answer: reserved for the plenary sessions ; be there!

Michael Kohlhase: Artificial Intelligence 1 606 2025-02-06

17.7 Conclusion
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26900.

Summary

� General problem solving attempts to develop solvers that perform well across a large
class of problems.

� Planning, as considered here, is a form of general problem solving dedicated to the
class of classical search problems. (Actually, we also address inaccessible, stochastic,
dynamic, continuous, and multi-agent settings.)

� Heuristic search planning has dominated the International Planning Competition
(IPC). We focus on it here.

� STRIPS is the simplest possible, while reasonably expressive, language for our pur-
poses. It uses Boolean variables (facts), and defines actions in terms of precondition,
add list, and delete list.

� PDDL is the de-facto standard language for describing planning problems.

� Plan existence (bounded or not) is PSPACE-complete to decide for STRIPS. If
we bound plans polynomially, we get down to NP-completeness.

Michael Kohlhase: Artificial Intelligence 1 607 2025-02-06

Suggested Reading:

• Chapters 10: Classical Planning and 11: Planning and Acting in the Real World in [RN09].

– Although the book is named “A Modern Approach”, the planning section was written long
before the IPC was even dreamt of, before PDDL was conceived, and several years before
heuristic search hit the scene. As such, what we have right now is the attempt of two outsiders
trying in vain to catch up with the dramatic changes in planning since 1995.

– Chapter 10 is Ok as a background read. Some issues are, imho, misrepresented, and it’s far
from being an up-to-date account. But it’s Ok to get some additional intuitions in words
different from my own.

– Chapter 11 is useful in our context here because we don’t cover any of it. If you’re interested
in extended/alternative planning paradigms, do read it.

• A good source for modern information (some of which we covered in the course) is Jörg
Hoffmann’s Everything You Always Wanted to Know About Planning (But Were Afraid to
Ask) [Hof11] which is available online at http://fai.cs.uni-saarland.de/hoffmann/papers/
ki11.pdf

https://fau.tv/clip/id/26900
http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf

Chapter 18

Planning II: Algorithms

18.1 Introduction
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26901.

Reminder: Our Agenda for This Topic

� ??: Background, planning languages, complexity.

� Sets up the framework. computational complexity is essential to distinguish
different algorithmic problems, and for the design of heuristic functions.

� This Chapter: How to automatically generate a heuristic function, given planning
language input?

� Focussing on heuristic search as the solution method, this is the main question
that needs to be answered.

Michael Kohlhase: Artificial Intelligence 1 608 2025-02-06

Reminder: Search

� Starting at initial state, produce all successor states step by step:

Reminder: Search

I Starting at initial state, produce all successor states step by step:

03/23

General Search

From the initial state, produce all successive states step
by step  search tree.

(3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)(a) initial state

(b) after expansion

of (3,2,0)

of (3,3,1)

(c) after expansion (3,3,1)

(2,3,0) (3,2,0) (2,2,0) (1,3,0) (3,1,0)

(3,3,1)

In planning, this is referred to as forward search, or forward state-space search.

Kohlhase: Künstliche Intelligenz 1 532 July 5, 2018

45

https://fau.tv/clip/id/26901

46 CHAPTER 18. PLANNING II: ALGORITHMS

In planning, this is referred to as forward search, or forward state-space search.

Michael Kohlhase: Artificial Intelligence 1 609 2025-02-06

Search in the State Space?
Search in the State Space?

I Use heuristic function to guide the search towards the goal!

Kohlhase: Künstliche Intelligenz 1 533 July 5, 2018

� Use heuristic function to guide the search towards the goal!

Michael Kohlhase: Artificial Intelligence 1 610 2025-02-06

Reminder: Informed Search

goal
init

cost
esti

mate
h

cost estimate h

cost estimate h

cost estimate h

� Heuristic function h estimates the cost of an optimal path from a state s to the
goal state; search prefers to expand states s with small h(s).

� Live Demo vs. Breadth-First Search:

http://qiao.github.io/PathFinding.js/visual/

Michael Kohlhase: Artificial Intelligence 1 611 2025-02-06

http://qiao.github.io/PathFinding.js/visual/

18.2. HOW TO RELAX 47

Reminder: Heuristic Functions

� Definition 18.1.1. Let Π be a STRIPS task with states S. A heuristic function,
short heuristic, for Π is a function h : S→N∪ {∞} so that h(s) = 0 whenever s is
a goal state.

� Exactly like our definition from ??. Except, because we assume unit costs here, we
use N instead of R+.

� Definition 18.1.2. Let Π be a STRIPS task with states S. The perfect heuristic
h∗ assigns every s ∈ S the length of a shortest path from s to a goal state, or ∞
if no such path exists. A heuristic h for Π is admissible if, for all s ∈ S, we have
h(s) ≤ h∗(s).

� Exactly like our definition from ??, except for path length instead of path cost (cf.
above).

� In all cases, we attempt to approximate h∗(s), the length of an optimal plan for s.
Some algorithms guarantee to lower bound h∗(s).

Michael Kohlhase: Artificial Intelligence 1 612 2025-02-06

Our (Refined) Agenda for This Chapter

� How to Relax: How to relax a problem?

� Basic principle for generating heuristic functions.

� The Delete Relaxation: How to relax a planning problem?

� The delete relaxation is the most successful method for the automatic generation
of heuristic functions. It is a key ingredient to almost all IPC winners of the last
decade. It relaxes STRIPS tasks by ignoring the delete lists.

� The h+ Heuristic: What is the resulting heuristic function?

� h+ is the “ideal” delete relaxation heuristic.

� Approximating h+: How to actually compute a heuristic?

� Turns out that, in practice, we must approximate h+.

Michael Kohlhase: Artificial Intelligence 1 613 2025-02-06

18.2 How to Relax in Planning
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26902.
We will now instantiate our general knowledge about heuristic search to the planning domain. As
always, the main problem is to find good heuristics. We will follow the intuitions of our discussion
in ?? and consider full solutions to relaxed problems as a source for heuristics.

How to Relax

https://fau.tv/clip/id/26902

48 CHAPTER 18. PLANNING II: ALGORITHMS

� Recall: We introduced the concept of a relaxed search problem (allow cheating)
to derive heuristics from them.

� Observation: This can be generalized to arbitrary problem solving.

� Definition 18.2.1 (The General Case).

P

P ′

N ∪ {∞}

R

h∗
P

h∗
P′

1. You have a class P of problems, whose perfect heuristic h∗
P you wish to estimate.

2. You define a class P ′ of simpler problems, whose perfect heuristic h∗
P′ can be

used to estimate h∗
P .

3. You define a transformation – the relaxation mapping R – that maps instances
Π ∈ P into instances Π′ ∈ P ′.

4. Given Π ∈ P, you let Π′ := R(Π), and estimate h∗P(Π) by h∗P′(Π′).

� Definition 18.2.2. For planning tasks, we speak of relaxed planning.

Michael Kohlhase: Artificial Intelligence 1 614 2025-02-06

Reminder: Heuristic Functions from Relaxed Problems

� Problem Π: Find a route from Saarbrücken to Edinburgh.

Michael Kohlhase: Artificial Intelligence 1 615 2025-02-06

Reminder: Heuristic Functions from Relaxed Problems

18.2. HOW TO RELAX 49

� Relaxed Problem Π′: Throw away the map.

Michael Kohlhase: Artificial Intelligence 1 616 2025-02-06

Reminder: Heuristic Functions from Relaxed Problems

� Heuristic function h: Straight line distance.

Michael Kohlhase: Artificial Intelligence 1 617 2025-02-06

Relaxation in Route-Finding

50 CHAPTER 18. PLANNING II: ALGORITHMS

� Problem class P: Route finding.

� Perfect heuristic h∗
P for P: Length of a shortest route.

� Simpler problem class P ′: Route finding on an empty map.

� Perfect heuristic h∗
P′ for P ′: Straight-line distance.

� Transformation R: Throw away the map.

Michael Kohlhase: Artificial Intelligence 1 618 2025-02-06

How to Relax in Planning? (A Reminder!)

� Example 18.2.3 (Logistics).

� facts P : {truck(x) |x ∈ {A,B,C,D}} ∪ {pack(x) |x ∈ {A,B,C,D, T}}.
� initial state I: {truck(A),pack(C)}.
� goal state G: {truck(A),pack(D)}.
� actions A: (Notated as “precondition ⇒ adds, ¬ deletes”)

� drive(x, y), where x and y have a road: “truck(x) ⇒ truck(y),¬truck(x)”.
� load(x): “truck(x),pack(x) ⇒ pack(T),¬pack(x)”.
� unload(x): “truck(x),pack(T) ⇒ pack(x),¬pack(T)”.

� Example 18.2.4 (“Only-Adds” Relaxation). Drop the preconditions and deletes.

� “drive(x, y): ⇒ truck(y)”;

� “load(x): ⇒ pack(T)”;

� “unload(x): ⇒ pack(x)”.

� Heuristics value for I is?

� hR(I) = 1: A plan for the relaxed task is ⟨unload(D)⟩.

Michael Kohlhase: Artificial Intelligence 1 619 2025-02-06

We will start with a very simple relaxation, which could be termed “positive thinking”: we do not

18.2. HOW TO RELAX 51

consider preconditions of actions and leave out the delete lists as well.

How to Relax During Search: Overview

� Attention: Search uses the real (un-relaxed) Π. The relaxation is applied (e.g.,
in Only-Adds, the simplified actions are used) only within the call to h(s)!!!

Problem Π Solution to ΠHeuristic search on Π

R h∗
P′

state s

R(Πs)

h(s) = h∗P′(R(Πs))

� Here, Πs is Π with initial state replaced by s, i.e., Π := ⟨P ,A, I ,G⟩ changed
to Πs := ⟨P ,A, {s}, G⟩: The task of finding a plan for search state s.

� A common student error is to instead apply the relaxation once to the whole
problem, then doing the whole search “within the relaxation”.

� The next slide illustrates the correct search process in detail.

Michael Kohlhase: Artificial Intelligence 1 620 2025-02-06

How to Relax During Search: Only-Adds

Real problem:
� Initial state I: AC; goal G: AD.

� Actions A: pre, add, del.

� drXY, loX, ulX.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

Relaxed problem:
� State s: AC; goal G: AD.

� Actions A: add.

� hR(s) =1: ⟨ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

ACAC

1

52 CHAPTER 18. PLANNING II: ALGORITHMS

Relaxed problem:
� State s: AC; goal G: AD.

� Actions A: add.

� hR(s) =1: ⟨ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

Real problem:
� State s: BC; goal G: AD.

� Actions A: pre, add, del.

� AC
drAB−−−−→ BC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

drAB

Relaxed problem:
� State s: BC; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

drAB

Relaxed problem:
� State s: BC; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

18.2. HOW TO RELAX 53

Real problem:
� State s: CC; goal G: AD.

� Actions A: pre, add, del.

� BC
drBC−−−−→ CC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

drBC

Relaxed problem:
� State s: CC; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

drBC

Relaxed problem:
� State s: CC; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

Real problem:
� State s: AC; goal G: AD.

� Actions A: pre, add, del.

� BC
drBA−−−−→ AC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

drB
A

54 CHAPTER 18. PLANNING II: ALGORITHMS

Real problem:
� State s: AC; goal G: AD.

� Actions A: pre, add, del.

� Duplicate state, prune.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

Real problem:
� State s: DC; goal G: AD.

� Actions A: pre, add, del.

� CC
drCD−−−−→ DC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC
dr
C
D

Relaxed problem:
� State s: DC; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC
dr
C
D

Relaxed problem:
� State s: DC; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

18.2. HOW TO RELAX 55

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

Real problem:
� State s: CT ; goal G: AD.

� Actions A: pre, add, del.

� CC
loC−−→ CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

loC

Relaxed problem:
� State s: CT ; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

loC

Relaxed problem:
� State s: CT ; goal G: AD.

� Actions A: add.

� hR(s) =2: ⟨drBA, ulD⟩.
Greedy best-first search: (tie-breaking: alphabetic)

56 CHAPTER 18. PLANNING II: ALGORITHMS

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

Real problem:
� State s: BC; goal G: AD.

� Actions A: pre, add, del.

� CC
drCB−−−−→ BC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

drC
B

Real problem:
� State s: BC; goal G: AD.

� Actions A: pre, add, del.

� Duplicate state, prune.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

Real problem:
� State s: CT ; goal G: AD.

� Actions A: pre, add, del.

� Successors: BT , DT , CC.
Greedy best-first search: (tie-breaking: alphabetic)

18.2. HOW TO RELAX 57

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

ulC

Real problem:
� State s: BT ; goal G: AD.

� Actions A: pre, add, del.

� Successors: AT , BB, CT .
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

Real problem:
� State s: AT ; goal G: AD.

� Actions A: pre, add, del.

� Successors: AA, BT .
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drA
B

Real problem:
� State s: AA; goal G: AD.

� Actions A: pre, add, del.

� Successors: BA, AT .
Greedy best-first search: (tie-breaking: alphabetic)

58 CHAPTER 18. PLANNING II: ALGORITHMS

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drA
B BA

2drAB

AT

D

loA

Real problem:
� State s: BA; goal G: AD.

� Actions A: pre, add, del.

� Successors: CA, AA.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drA
B BA

2drAB

AT

D

loA CA

2drBC

AA

D

drB
A

Real problem:
� State s: BA; goal G: AD.

� Actions A: pre, add, del.

� Successors: CA, AA.
Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

1

BC

2drAB

CC

2drBC

AC

D

drB
A

DC

2

dr
C
D

CT

2loC

BC

D

drC
B

BT

2

dr
C
B

DT

2drCD

CC

D

ulC

AT

1

dr
B
A

BB

2

ul
B

CT

DdrBC

AA

1ulA

BT

D

drA
B BA

2drAB

AT

D

loA CA

2drBC

AA

D

drB
A

Michael Kohlhase: Artificial Intelligence 1 621 2025-02-06

18.3. DELETE RELAXATION 59

Only-Adds is a “Native” Relaxation

� Definition 18.2.5 (Native Relaxations). Confusing special case where P ′ ⊆ P.

P

P ′ ⊆ P

N ∪ {∞}

R

h∗
P

h∗
P′

� Problem class P: STRIPS tasks.

� Perfect heuristic h∗
P for P: Length h∗ of a shortest plan.

� Transformation R: Drop the preconditions and delete lists.

� Simpler problem class P ′ is a special case of P, P ′ ⊆ P: STRIPS tasks with
empty preconditions and delete lists.

� Perfect heuristic for P ′: Shortest plan for only-adds STRIPS task.

Michael Kohlhase: Artificial Intelligence 1 622 2025-02-06

18.3 The Delete Relaxation
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26903.

We turn to a more realistic relaxation, where we only disregard the delete list.

How the Delete Relaxation Changes the World (I)

� Relaxation mapping R saying that:

“When the world changes, its previous state remains true as well.”
Real world: (before)

Real world:
(after)

Relaxed
world: (before)

https://fau.tv/clip/id/26903

60 CHAPTER 18. PLANNING II: ALGORITHMS

Relaxed
world: (after)

Michael Kohlhase: Artificial Intelligence 1 623 2025-02-06

How the Delete Relaxation Changes the World (II)

� Relaxation mapping R saying that:

Real world: (before)

Real world: (after)

Relaxed world: (before)

Relaxed world: (after)

18.3. DELETE RELAXATION 61

Michael Kohlhase: Artificial Intelligence 1 624 2025-02-06

How the Delete Relaxation Changes the World (III)

� Relaxation mapping R saying that:

Real world:

Relaxed world:

Michael Kohlhase: Artificial Intelligence 1 625 2025-02-06

The Delete Relaxation

� Definition 18.3.1 (Delete Relaxation). Let Π := ⟨P ,A, I ,G⟩ be a STRIPS task.
The delete relaxation of Π is the task Π+ = ⟨P ,A+, I, G⟩ where A+:={a+ | a ∈ A}
with prea+ :=prea, adda+ :=adda, and dela+ :=∅.

62 CHAPTER 18. PLANNING II: ALGORITHMS

� In other words, the class of simpler problems P ′ is the set of all STRIPS tasks with
empty delete lists, and the relaxation mapping R drops the delete lists.

� Definition 18.3.2 (Relaxed Plan). Let Π := ⟨P ,A, I ,G⟩ be a STRIPS task, and
let s be a state. A relaxed plan for s is a plan for ⟨P ,A, s,G⟩+. A relaxed plan for
I is called a relaxed plan for Π.

� A relaxed plan for s is an action sequence that solves s when pretending that all
delete lists are empty.

� Also called delete-relaxed plan: “relaxation” is often used to mean delete relaxation
by default.

Michael Kohlhase: Artificial Intelligence 1 626 2025-02-06

A Relaxed Plan for “TSP” in Australia

1. Initial state: {at(Sy), vis(Sy)}.

2. drv(Sy,Br)
+: {at(Br), vis(Br), at(Sy), vis(Sy)}.

3. drv(Sy,Ad)
+: {at(Ad), vis(Ad), at(Br), vis(Br), at(Sy), vis(Sy)}.

4. drv(Ad,Pe)
+: {at(Pe), vis(Pe), at(Ad), vis(Ad), at(Br), vis(Br), at(Sy), vis(Sy)}.

5. drv(Ad,Da)
+: {at(Da), vis(Da), at(Pe), vis(Pe), at(Ad), vis(Ad), at(Br), vis(Br), at(Sy), vis(Sy)}.

Michael Kohlhase: Artificial Intelligence 1 627 2025-02-06

A Relaxed Plan for “Logistics”

� Facts P : {truck(x) |x ∈ {A,B,C,D}} ∪ {pack(x) |x ∈ {A,B,C,D, T}}.

� Initial state I: {truck(A),pack(C)}.

� Goal G: {truck(A),pack(D)}.

� Relaxed actions A+: (Notated as “precondition ⇒ adds”)

� drive(x, y)
+: “truck(x) ⇒ truck(y)”.

18.3. DELETE RELAXATION 63

� load(x)
+: “truck(x),pack(x) ⇒ pack(T)”.

� unload(x)
+: “truck(x),pack(T) ⇒ pack(x)”.

Relaxed plan:

⟨drive(A,B)
+
,drive(B,C)

+
, load(C)

+
,drive(C,D)

+
,unload(D)

+⟩

� We don’t need to drive the truck back, because “it is still at A”.

Michael Kohlhase: Artificial Intelligence 1 628 2025-02-06

PlanEx+

� Definition 18.3.3 (Relaxed Plan Existence Problem). By PlanEx+, we denote
the problem of deciding, given a STRIPS task Π := ⟨P ,A, I ,G⟩, whether or not
there exists a relaxed plan for Π.

� This is easier than PlanEx for general STRIPS!

� PlanEx+ is in P.

� Proof: The following algorithm decides PlanEx+

1.

var F := I
while G ̸⊆ F do

F ′ := F ∪⋃
a∈A:prea⊆F adda

if F ′ = F then return ‘‘unsolvable’’ endif (∗)
F := F ′

endwhile
return ‘‘solvable’’

2. The algorithm terminates after at most |P | iterations, and thus runs in poly-
nomial time.

3. Correctness: See slide 632

Michael Kohlhase: Artificial Intelligence 1 629 2025-02-06

Deciding PlanEx+ in “TSP” in Australia

Iterations on F :

64 CHAPTER 18. PLANNING II: ALGORITHMS

1. {at(Sy), vis(Sy)}

2. ∪ {at(Ad), vis(Ad), at(Br), vis(Br)}

3. ∪ {at(Da), vis(Da), at(Pe), vis(Pe)}

Michael Kohlhase: Artificial Intelligence 1 630 2025-02-06

Deciding PlanEx+ in “Logistics”

� Example 18.3.4 (The solvable Case).
Iterations on F :

1. {truck(A),pack(C)}

2. ∪{truck(B)}

3. ∪{truck(C)}

4. ∪{truck(D),pack(T)}

5. ∪{pack(A),pack(B),pack(D)}

� Example 18.3.5 (The unsolvable Case).
Iterations on F :

1. {truck(A),pack(C)}

2. ∪{truck(B)}

3. ∪{truck(C)}

4. ∪{pack(T)}

5. ∪{pack(A),pack(B)}

6. ∪∅

Michael Kohlhase: Artificial Intelligence 1 631 2025-02-06

PlanEx+ Algorithm: Proof
Proof: To show: The algorithm returns “solvable” iff there is a relaxed plan for Π.

1. Denote by Fi the content of F after the ith iteration of the while-loop,
2. All a ∈ A0 are applicable in I, all a ∈ A1 are applicable in apply(I, A+

0), and so
forth.

3. Thus Fi = apply(I, ⟨A+
0 , . . . , A

+
i−1⟩). (Within each A+

j , we can sequence the
actions in any order.)

4. Direction “⇒” If “solvable” is returned after iteration n then G ⊆ Fn = apply(I, ⟨A+
0 , . . . , A

+
n−1⟩)

so ⟨A+
0 , . . . , A

+
n−1⟩ can be sequenced to a relaxed plan which shows the claim.

5. Direction “⇐”
5.1. Let ⟨a+0 , . . . , a+n−1⟩ be a relaxed plan, hence G ⊆ apply(I, ⟨a+0 , . . . , a+n−1⟩).
5.2. Assume, for the moment, that we drop line (*) from the algorithm. It is then

18.4. THE h+HEURISTIC 65

easy to see that ai ∈ Ai and apply(I, ⟨a+0 , . . . , a+i−1⟩) ⊆ Fi, for all i.
5.3. We get G ⊆ apply(I, ⟨a+0 , . . . , a+n−1⟩) ⊆ Fn, and the algorithm returns “solv-

able” as desired.
5.4. Assume to the contrary of the claim that, in an iteration i < n, (*) fires.

Then G̸⊆F and F = F ′. But, with F = F ′, F = Fj for all j > i, and we get
G̸⊆Fn in contradiction.

Michael Kohlhase: Artificial Intelligence 1 632 2025-02-06

18.4 The h+Heuristic
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26905.

Hold on a Sec – Where are we?

P

P ′ ⊆ P

N ∪ {∞}

R

h∗
P

h∗
P′

� P: STRIPS tasks; h∗
P : Length h∗ of a shortest plan.

� P ′ ⊆ P: STRIPS tasks with empty delete lists.

� R: Drop the delete lists.

� Heuristic function: Length of a shortest relaxed plan (h∗ ◦ R).

� PlanEx+ is not actually what we’re looking for. PlanEx+ =̂ relaxed plan exis-
tence; we want relaxed plan length h∗ ◦ R.

Michael Kohlhase: Artificial Intelligence 1 633 2025-02-06

h+: The Ideal Delete Relaxation Heuristic

� Definition 18.4.1 (Optimal Relaxed Plan). Let ⟨P ,A, I ,G⟩ be a STRIPS
task, and let s be a state. A optimal relaxed plan for s is an optimal plan for
⟨P ,A, {s}, G⟩+.

� Same as slide 626, just adding the word “optimal”.

� Here’s what we’re looking for:

� Definition 18.4.2. Let Π := ⟨P ,A, I ,G⟩ be a STRIPS task with states S. The
ideal delete relaxation heuristic h+ for Π is the function h+ : S → N ∪ {∞} where
h+(s) is the length of an optimal relaxed plan for s if a relaxed plan for s exists,
and h+(s) = ∞ otherwise.

� In other words, h+ = h∗ ◦ R, cf. previous slide.

https://fau.tv/clip/id/26905

66 CHAPTER 18. PLANNING II: ALGORITHMS

Michael Kohlhase: Artificial Intelligence 1 634 2025-02-06

h+ is Admissible

� Lemma 18.4.3. Let Π := ⟨P ,A, I ,G⟩ be a STRIPS task, and let s be a state. If
⟨a1, . . ., an⟩ is a plan for Πs := ⟨P ,A, {s}, G⟩, then ⟨a+1 , . . ., a+n ⟩ is a plan for Π+.

� Proof sketch: Show by induction over 0 ≤ i ≤ n that
apply(s, ⟨a1, . . . , ai⟩) ⊆ apply(s, ⟨a+1 , . . . , a+i ⟩).

� If we ignore deletes, the states along the plan can only get bigger.

� Theorem 18.4.4. h+ is Admissible.

� Proof:

1. Let Π := ⟨P ,A, I ,G⟩ be a STRIPS task with states P , and let s ∈ P .
2. h+(s) is defined as optimal plan length in Π+

s .
3. With the lemma above, any plan for Π also constitutes a plan for Π+

s .
4. Thus optimal plan length in Π+

s can only be shorter than that in Πsi, and the
claim follows.

Michael Kohlhase: Artificial Intelligence 1 635 2025-02-06

How to Relax During Search: Ignoring Deletes

Real problem:

� Initial state I: AC; goal G:
AD.

� Actions A: pre, add,del.

� drXY, loX, ulX.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

Relaxed problem:

� State s: AC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drAB, drBC, drCD, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

18.4. THE h+HEURISTIC 67

We are here

AC

Relaxed problem:

� State s: AC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drAB, drBC, drCD, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

Real problem:

� State s: BC; goal G: AD.

� Actions A: pre, add,del.

� AC
drAB−−−−→ BC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

drAB

Relaxed problem:

� State s: BC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drBA, drBC, drCD, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

68 CHAPTER 18. PLANNING II: ALGORITHMS

We are here

AC

5

BC

drAB

Relaxed problem:

� State s: BC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drBA, drBC, drCD, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

Real problem:

� State s: CC; goal G: AD.

� Actions A: pre, add,del.

� BC
drBC−−−−→ CC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

drBC

Relaxed problem:

� State s: CC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drCB, drBA, drCD, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

18.4. THE h+HEURISTIC 69

We are here

AC

5

BC

5drAB

CC

drBC

Relaxed problem:

� State s: CC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drCB, drBA, drCD, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC BC

5drAB

CC

5drBC

Real problem:

� State s: AC; goal G: AD.

� Actions A: pre, add,del.

� BC
drBA−−−−→ AC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

drB
A

Real problem:

� State s: AC; goal G: AD.

� Actions A: pre, add,del.

� Duplicate state, prune.

Greedy best-first search: (tie-breaking: alphabetic)

70 CHAPTER 18. PLANNING II: ALGORITHMS

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

Real problem:

� State s: DC; goal G: AD.

� Actions A: pre, add,del.

� CC
drCD−−−−→ DC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC
dr
C
D

Relaxed problem:

� State s: DC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drDC, drCB, drBA, loC, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC
dr
C
D

Relaxed problem:

� State s: DC; goal G: AD.

� Actions A: pre, add.

� h+(s) =5: e.g.
⟨drDC, drCB, drBA, loC, ulD⟩.

18.4. THE h+HEURISTIC 71

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

Real problem:

� State s: CT ; goal G: AD.

� Actions A: pre, add,del.

� CC
loC−−→ CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

loC

Relaxed problem:

� State s: CT ; goal G: AD.

� Actions A: pre, add.

� h+(s) =4: e.g.
⟨drCB, drBA, drCD, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

loC

72 CHAPTER 18. PLANNING II: ALGORITHMS

Relaxed problem:

� State s: CT ; goal G: AD.

� Actions A: pre, add.

� h+(s) =4: e.g.
⟨drCB, drBA, drCD, ulD⟩.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

Real problem:

� State s: BC; goal G: AD.

� Actions A: pre, add,del.

� CC
drCB−−−−→ BC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

drC
B

Real problem:

� State s: BC; goal G: AD.

� Actions A: pre, add,del.

� Duplicate state, prune.

Greedy best-first search: (tie-breaking: alphabetic)

18.4. THE h+HEURISTIC 73

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

Real problem:

� State s: CT ; goal G: AD.

� Actions A: pre, add,del.

� Successors: BT , DT , CC.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

Real problem:

� State s: BT ; goal G: AD.

� Actions A: pre, add,del.

� Successors: AT , BB, CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

74 CHAPTER 18. PLANNING II: ALGORITHMS

Real problem:

� State s: AT ; goal G: AD.

� Actions A: pre, add,del.

� Successors: AA, BT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drA
B

Real problem:

� State s: DT ; goal G: AD.

� Actions A: pre, add,del.

� Successors: DD, CT .

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C

Real problem:

� State s: DD; goal G: AD.

� Actions A: pre, add,del.

� Successors: CD, DT .

Greedy best-first search: (tie-breaking: alphabetic)

18.4. THE h+HEURISTIC 75

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD

Real problem:

� State s: CD; goal G: AD.

� Actions A: pre, add,del.

� Successors: BD, DD.

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD BD

1drCB

DD

D

drC
D

Real problem:

� State s: BD; goal G: AD.

� Actions A: pre, add,del.

� Successors: AD, CD.

Greedy best-first search: (tie-breaking: alphabetic)

76 CHAPTER 18. PLANNING II: ALGORITHMS

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD BD

1drCB

DD

D

drC
D AD

0drBA

CD

D

drB
C

Real problem:

� State s: AD; goal G: AD.

� Actions A: pre, add,del.

� Goal state!

Greedy best-first search: (tie-breaking: alphabetic)

We are here

AC

5

BC

5drAB

CC

5drBC

AC

D

drB
A

DC

5

dr
C
D

CT

4loC

BC

D

drC
B

BT

4

dr
C
B

DT

4drCD

CC

D

ulC

AT

4

dr
B
A

BB

5

ul
B

CT

DdrBC

AA

5ulA

BT

D

drA
B

DD

3ulD

CT

D

drD
C CD

2drDC

DT

D

loD BD

1drCB

DD

D

drC
D AD

0drBA

CD

D

drB
C

Michael Kohlhase: Artificial Intelligence 1 636 2025-02-06

Of course there are also bad cases. Here is one.

h+ in the Blocksworld

�

CD

B

C

B

A
A

Initial State Goal State

� Optimal plan: ⟨putdown(A),unstack(B,D), stack(B,C),pickup(A), stack(A,B)⟩.

� Optimal relaxed plan: ⟨stack(A,B),unstack(B,D), stack(B,C)⟩.

� Observation: What can we say about the “search space surface” at the initial
state here?

18.5. CONCLUSION 77

� The initial state lies on a local minimum under h+, together with the successor
state s where we stacked A onto B. All direct other neighbors of these two states
have a strictly higher h+ value.

Michael Kohlhase: Artificial Intelligence 1 637 2025-02-06

18.5 Conclusion
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26906.

Summary

� Heuristic search on classical search problems relies on a function h mapping states
s to an estimate h(s) of their goal state distance. Such functions h are derived by
solving relaxed problems.

� In planning, the relaxed problems are generated and solved automatically. There
are four known families of suitable relaxation methods: abstractions, landmarks,
critical paths, and ignoring deletes (aka delete relaxation).

� The delete relaxation consists in dropping the deletes from STRIPS tasks. A relaxed
plan is a plan for such a relaxed task. h+(s) is the length of an optimal relaxed plan
for state s. h+ is NP-hard to compute.

� hFF approximates h+ by computing some, not necessarily optimal, relaxed plan.
That is done by a forward pass (building a relaxed planning graph), followed by a
backward pass (extracting a relaxed plan).

Michael Kohlhase: Artificial Intelligence 1 638 2025-02-06

Topics We Didn’t Cover Here

� Abstractions, Landmarks, Critical-Path Heuristics, Cost Partitions, Compil-
ability between Heuristic Functions, Planning Competitions:

� Tractable fragments: Planning sub-classes that can be solved in polynomial time.
Often identified by properties of the “causal graph” and “domain transition graphs”.

� Planning as SAT: Compile length-k bounded plan existence into satisfiability of
a CNF formula φ. Extensive literature on how to obtain small φ, how to schedule
different values of k, how to modify the underlying SAT solver.

� Compilations: Formal framework for determining whether planning formalism X
is (or is not) at least as expressive as planning formalism Y .

� Admissible pruning/decomposition methods: Partial-order reduction, symme-
try reduction, simulation-based dominance pruning, factored planning, decoupled
search.

� Hand-tailored planning: Automatic planning is the extreme case where the com-
puter is given no domain knowledge other than “physics”. We can instead allow the

https://fau.tv/clip/id/26906

78 CHAPTER 18. PLANNING II: ALGORITHMS

user to provide search control knowledge, trading off modeling effort against search
performance.

� Numeric planning, temporal planning, planning under uncertainty . . .

Michael Kohlhase: Artificial Intelligence 1 639 2025-02-06

Suggested Reading (RN: Same As Previous Chapter):

• Chapters 10: Classical Planning and 11: Planning and Acting in the Real World in [RN09].

– Although the book is named “A Modern Approach”, the planning section was written long
before the IPC was even dreamt of, before PDDL was conceived, and several years before
heuristic search hit the scene. As such, what we have right now is the attempt of two outsiders
trying in vain to catch up with the dramatic changes in planning since 1995.

– Chapter 10 is Ok as a background read. Some issues are, imho, misrepresented, and it’s far
from being an up-to-date account. But it’s Ok to get some additional intuitions in words
different from my own.

– Chapter 11 is useful in our context here because we don’t cover any of it. If you’re interested
in extended/alternative planning paradigms, do read it.

• A good source for modern information (some of which we covered in the course) is Jörg
Hoffmann’s Everything You Always Wanted to Know About Planning (But Were Afraid to
Ask) [Hof11] which is available online at http://fai.cs.uni-saarland.de/hoffmann/papers/
ki11.pdf

http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf

Chapter 19

Searching, Planning, and Acting in
the Real World

Outline

� So Far: we made idealizing/simplifying assumptions:
The environment is fully observable and deterministic.

� Outline: In this chapter we will lift some of them

� The real world (things go wrong)

� Agents and Belief States

� Conditional planning

� Monitoring and replanning

� Note: The considerations in this chapter apply to both search and planning.

Michael Kohlhase: Artificial Intelligence 1 640 2025-02-06

19.1 Introduction
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26908.

The real world

� Example 19.1.1. We have a flat tire – what to do?

79

https://fau.tv/clip/id/26908

80 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

Michael Kohlhase: Artificial Intelligence 1 641 2025-02-06

Generally: Things go wrong (in the real world)

� Example 19.1.2 (Incomplete Information).

� Unknown preconditions, e.g., Intact(Spare)?

� Disjunctive effects, e.g., Inflate(x) causes Inflated(x)∨SlowHiss(x)∨Burst(x)∨
BrokenPump ∨ . . .

� Example 19.1.3 (Incorrect Information).

� Current state incorrect, e.g., spare NOT intact

� Missing/incorrect effects in actions.

� Definition 19.1.4. The qualification problem in planning is that we can never finish
listing all the required preconditions and possible conditional effects of actions.

� Root Cause: The environment is partially observable and/or non-deterministic.

� Technical Problem: We cannot know the “current state of the world”, but search/-
planning algorithms are based on this assumption.

� Idea: Adapt search/planning algorithms to work with “sets of possible states”.

Michael Kohlhase: Artificial Intelligence 1 642 2025-02-06

What can we do if things (can) go wrong?

� One Solution: Sensorless planning: plans that work regardless of state/outcome.

� Problem: Such plans may not exist! (but they often do in practice)

� Another Solution: Conditional plans:

� Plan to obtain information, (observation actions)

� Subplan for each contingency.

19.2. THE FURNITURE COLORING EXAMPLE 81

� Example 19.1.5 (A conditional Plan). (AAA =̂ ADAC)
[Check(T1), if Intact(T1) then Inflate(T1) else CallAAA fi]

� Problem: Expensive because it plans for many unlikely cases.

� Still another Solution: Execution monitoring/replanning

� Assume normal states/outcomes, check progress during execution, replan if nec-
essary.

� Problem: Unanticipated outcomes may lead to failure. (e.g., no AAA card)

� Observation 19.1.6. We really need a combination; plan for likely/serious even-
tualities, deal with others when they arise, as they must eventually.

Michael Kohlhase: Artificial Intelligence 1 643 2025-02-06

19.2 The Furniture Coloring Example
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29180.
We now introduce a planning example that shows off the various features.

The Furniture-Coloring Example: Specification

� Example 19.2.1 (Coloring Furniture).

Paint a chair and a table in matching colors.

� The initial state is:

� we have two cans of paint of unknown color,

� the color of the furniture is unknown as well,

� only the table is in the agent’s field of view.

� Actions:

� remove lid from can

� paint object with paint from open can.

Michael Kohlhase: Artificial Intelligence 1 644 2025-02-06

We formalize the example in PDDL for simplicity. Note that the :percept scheme is not part of
the official PDDL, but fits in well with the design.

The Furniture-Coloring Example: PDDL

� Example 19.2.2 (Formalization in PDDL).

� The PDDL domain file is as expected (actions below)

(define (domain furniture−coloring)
(:predicates (object ?x) (can ?x) (inview ?x) (color ?x ?y))
...)

https://fau.tv/clip/id/29180

82 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

� The PDDL problem file has a “free” variable ?c for the (undetermined) joint
color.
(define (problem tc−coloring)

(:domain furniture−objects)
(:objects table chair c1 c2)
(:init (object table) (object chair) (can c1) (can c2) (inview table))
(:goal (color chair ?c) (color table ?c)))

� Two action schemata: remove can lid to open and paint with open can

(:action remove−lid
:parameters (?x)
:precondition (can ?x)
:effect (open can))

(:action paint
:parameters (?x ?y)
:precondition (and (object ?x) (can ?y) (color ?y ?c) (open ?y))
:effect (color ?x ?c))

has a universal variable ?c for the paint action ⇝we cannot just give paint a
color argument in a partially observable environment.

� Sensorless Plan: Open one can, paint chair and table in its color.

� Note: Contingent planning can create better plans, but needs perception

� Two percept schemata: color of an object and color in a can

(:percept color
:parameters (?x ?c)
:precondition (and (object ?x) (inview ?x)))

(:percept can−color
:parameters (?x ?c)
:precondition (and (can ?x) (inview ?x) (open ?x)))

To perceive the color of an object, it must be in view, a can must also be open.
Note: In a fully observable world, the percepts would not have preconditions.

� An action schema: look at an object that causes it to come into view.

(:action lookat
:parameters (?x)
:precond: (and (inview ?y) and (notequal ?x ?y))
:effect (and (inview ?x) (not (inview ?y))))

� Contingent Plan:

1. look at furniture to determine color, if same ; done.
2. else, look at open and look at paint in cans
3. if paint in one can is the same as an object, paint the other with this color
4. else paint both in any color

Michael Kohlhase: Artificial Intelligence 1 645 2025-02-06

19.3 Searching/Planning with Non-Deterministic Actions
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29181.

https://fau.tv/clip/id/29181

19.3. SEARCHING/PLANNING WITH NON-DETERMINISTIC ACTIONS 83

Conditional Plans

� Definition 19.3.1. Conditional plans extend the possible actions in plans by condi-
tional steps that execute sub plans conditionally whether K+P ⊨ C, where K+P
is the current knowledge base + the percepts.

� Definition 19.3.2. Conditional plans can contain

� conditional step: [. . . , if C then PlanA else PlanB fi, . . .],

� while step: [. . . ,while C do Plan done, . . .], and

� the empty plan ∅ to make modeling easier.

� Definition 19.3.3. If the possible percepts are limited to determining the current
state in a conditional plan, then we speak of a contingency plan.

� Note: Need some plan for every possible percept! Compare to

game playing: some response for every opponent move.

backchaining: some rule such that every premise satisfied.

� Idea: Use an AND–OR tree search (very similar to backward chaining algorithm)

Michael Kohlhase: Artificial Intelligence 1 646 2025-02-06

Contingency Planning: The Erratic Vacuum Cleaner

� Example 19.3.4 (Erratic vacuum world).

A variant suck action:
if square is

� dirty: clean the square,
sometimes remove dirt in
adjacent square.

� clean: sometimes deposits
dirt on the carpet.

LeftSuck

RightSuck

RightSuck

6

GOAL
8

GOAL
7

1

2 5

1

LOOP
5

LOOP

5

LOOP

Left Suck

1

LOOP GOAL
8 4

Solution: [suck, if State = 5 then [right, suck] else [] fi]

Michael Kohlhase: Artificial Intelligence 1 647 2025-02-06

Conditional AND-OR Search (Data Structure)

84 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

� Idea: Use AND-OR trees as data structures for representing problems (or goals)
that can be reduced to to conjunctions and disjunctions of subproblems (or sub-
goals).

� Definition 19.3.5. An AND-OR graph is a is a graph whose non-terminal nodes
are partitioned into AND nodes and OR nodes. A valuation of an AND-OR graph
T is an assignment of T or F to the nodes of T . A valuation of the terminal nodes
of T can be extended by all nodes recursively: Assign T to an

� OR node, iff at least one of its children is T.

� AND node, iff all of its children are T.

A solution for T is a valuation that assigns T to the initial nodes of T .

� Idea: A planning task with non deterministic actions generates a AND-OR graph
T . A solution that assigns T to a terminal node, iff it is a goal node. Corresponds
to a conditional plan.

Michael Kohlhase: Artificial Intelligence 1 648 2025-02-06

Conditional AND-OR Search (Example)

� Definition 19.3.6. An AND-OR tree is a AND-OR graph that is also a tree.
Notation: AND nodes are written with arcs connecting the child edges.

� Example 19.3.7 (An AND-OR-tree).

Michael Kohlhase: Artificial Intelligence 1 649 2025-02-06

Conditional AND-OR Search (Algorithm)

� Definition 19.3.8. AND-OR search is an algorithm for searching AND–OR graphs
generated by nondeterministic environments.

function AND/OR−GRAPH−SEARCH(prob) returns a conditional plan, or fail
OR−SEARCH(prob.INITIAL−STATE, prob, [])

function OR−SEARCH(state,prob,path) returns a conditional plan, or fail

19.4. AGENT ARCHITECTURES BASED ON BELIEF STATES 85

if prob.GOAL−TEST(state) then return the empty plan
if state is on path then return fail
for each action in prob.ACTIONS(state) do
plan := AND−SEARCH(RESULTS(state,action),prob,[state | path])
if plan ̸= fail then return [action | plan]

return fail
function AND−SEARCH(states,prob,path) returns a conditional plan, or fail

for each si in states do
pi := OR−SEARCH(si,prob,path)
if pi = fail then return fail
return [if s1 then p1 else if s2 then p2 else . . . if sn−1 then pn−1 else pn]

� Cycle Handling: If a state has been seen before ; fail

� fail does not mean there is no solution, but

� if there is a non-cyclic solution, then it is reachable by an earlier incarnation!

Michael Kohlhase: Artificial Intelligence 1 650 2025-02-06

The Slippery Vacuum Cleaner (try, try, try, . . . try again)

� Example 19.3.9 (Slippery Vacuum World).

Moving sometimes fails
; AND-OR graph

Suck Right

6

1

2 5

Right

Two possible solutions (depending on what our plan language allows)

� [L1 : left, if AtR then L1 else [if CleanL then ∅ else suck fi] fi] or

� [while AtR do [left] done, if CleanL then ∅ else suck fi]

� We have an infinite loop but plan eventually works unless action always fails.

Michael Kohlhase: Artificial Intelligence 1 651 2025-02-06

19.4 Agent Architectures based on Belief States
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29182.
We are now ready to proceed to environments which can only partially observed and where actions
are non deterministic. Both sources of uncertainty conspire to allow us only partial knowledge
about the world, so that we can only optimize “expected utility” instead of “actual utility” of our
actions.

https://fau.tv/clip/id/29182

86 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

World Models for Uncertainty

� Problem: We do not know with certainty what state the world is in!

� Idea: Just keep track of all the possible states it could be in.

� Definition 19.4.1. A model-based agent has a world model consisting of

� a belief state that has information about the possible states the world may be
in, and

� a sensor model that updates the belief state based on sensor information

� a transition model that updates the belief state based on actions.

� Idea: The agent environment determines what the world model can be.

� In a fully observable, deterministic environment,

� we can observe the initial state and subsequent states are given by the actions
alone.

� thus the belief state is a singleton (we call its member the world state) and the
transition model is a function from states and actions to states: a transition
function.

Michael Kohlhase: Artificial Intelligence 1 652 2025-02-06

That is exactly what we have been doing until now: we have been studying methods that
build on descriptions of the “actual” world, and have been concentrating on the progression from
atomic to factored and ultimately structured representations. Tellingly, we spoke of “world states”
instead of “belief states”; we have now justified this practice in the brave new belief-based world
models by the (re-) definition of “world states” above. To fortify our intuitions, let us recap from
a belief-state-model perspective.

World Models by Agent Type in AI-1

� Search-based Agents: In a fully observable, deterministic environment

� goal-based agent with world state =̂ “current state”

� no inference. (goal =̂ goal state from search problem)

� CSP-based Agents: In a fully observable, deterministic environment

� goal-based agent withworld state =̂ constraint network,

� inference =̂ constraint propagation. (goal =̂ satisfying assignment)

� Logic-based Agents: In a fully observable, deterministic environment

� model-based agent with world state =̂ logical formula

� inference =̂ e.g. DPLL or resolution.

� Planning Agents: In a fully observable, deterministic, environment

� goal-based agent with world state =̂ PL0, transition model =̂ STRIPS,

� inference =̂ state/plan space search. (goal: complete plan/execution)

19.5. SEARCHING/PLANNING WITHOUT OBSERVATIONS 87

Michael Kohlhase: Artificial Intelligence 1 653 2025-02-06

Let us now see what happens when we lift the restrictions of total observability and determin-
ism.

World Models for Complex Environments

� In a fully observable, but stochastic environment,

� the belief state must deal with a set of possible states.

� ; generalize the transition function to a transition relation.

� Note: This even applies to online problem solving, where we can just perceive the
state. (e.g. when we want to optimize utility)

� In a deterministic, but partially observable environment,

� the belief state must deal with a set of possible states.

� we can use transition functions.

� We need a sensor model, which predicts the influence of percepts on the belief
state – during update.

� In a stochastic, partially observable environment,

� mix the ideas from the last two. (sensor model + transition relation)

Michael Kohlhase: Artificial Intelligence 1 654 2025-02-06

Preview: New World Models (Belief) ; new Agent Types

� Probabilistic Agents: In a partially observable environment

� belief state =̂ Bayesian networks,

� inference =̂ probabilistic inference.

� Decision-Theoretic Agents: In a partially observable, stochastic environment

� belief state + transition model =̂ decision networks,

� inference =̂ maximizing expected utility.

� We will study them in detail in the coming semester.

Michael Kohlhase: Artificial Intelligence 1 655 2025-02-06

19.5 Searching/Planning without Observations
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29183.

Conformant/Sensorless Planning

� Definition 19.5.1. Conformant or sensorless planning tries to find plans that work

https://fau.tv/clip/id/29183

88 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

without any sensing. (not even the initial state)

� Example 19.5.2 (Sensorless Vacuum Cleaner World).
States integer dirt and robot locations
Actions left, right, suck, noOp
Goal states notdirty?

� Observation 19.5.3. In a sensorless world we do not know the initial state. (or
any state after)

� Observation 19.5.4. Sensorless planning must search in the space of belief states
(sets of possible actual states).

� Example 19.5.5 (Searching the Belief State Space).

� Start in {1, 2, 3, 4, 5, 6, 7, 8}
� Solution: [right, suck, left, suck] right → {2, 4, 6, 8}

suck → {4, 8}
left → {3, 7}
suck → {7}

Michael Kohlhase: Artificial Intelligence 1 656 2025-02-06

Search in the Belief State Space: Let’s Do the Math

� Recap: We describe an search problem Π := ⟨S ,A, T , I ,G⟩ via its states S,
actions A, and transition model T : A×S → P(A), goal states G, and initial state
I.

� Problem: What is the corresponding sensorless problem?

� Let’ think: Let Π := ⟨S ,A, T , I ,G⟩ be a (physical) problem

� States Sb: The belief states are the 2|S| subsets of S.

� The initial state Ib is just S (no information)

� Goal states Gb := {S ∈ Sb |S ⊆ G} (all possible states must be physical goal
states)

� Actions Ab: we just take A. (that’s the point!)

� Transition model T b : Ab×Sb → P(Ab): i.e. what is T b(a, S) for a ∈ A and
S ⊆ S? This is slightly tricky as a need not be applicable to all s ∈ S.

1. if actions are harmless to the environment, take T b(a, S) :=
⋃

s∈ST (a, s).
2. if not, better take T b(a, S) :=

⋂
s∈ST (a, s). (the safe bet)

� Observation 19.5.6. In belief-state space the problem is always fully observable!

Michael Kohlhase: Artificial Intelligence 1 657 2025-02-06

Let us see if we can understand the options for T b(a, S) a bit better. The first question is when we
want an action a to be applicable to a belief state S ⊆ S, i.e. when should T b(a, S) be non-empty.

19.5. SEARCHING/PLANNING WITHOUT OBSERVATIONS 89

In the first case, ab would be applicable iff a is applicable to some s ∈ S, in the second case if a
is applicable to all s ∈ S. So we only want to choose the first case if actions are harmless.

The second question we ask ourselves is what should be the results of applying a to S ⊆ S?,
again, if actions are harmless, we can just collect the results, otherwise, we need to make sure that
all members of the result ab are reached for all possible states in S.

State Space vs. Belief State Space

� Example 19.5.7 (State/Belief State Space in the Vacuum World). In the
vacuum world all actions are always applicable (1./2. equal)70 Chapter 3. Solving Problems by Searching

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:Michael Kohlhase: Artificial Intelligence 1 658 2025-02-06

Evaluating Conformant Planning

� Upshot: We can build belief-space problem formulations automatically,

� but they are exponentially bigger in theory, in practice they are often similar;

� e.g. 12 reachable belief states out of 28 = 256 for vacuum example.

� Problem: Belief states are HUGE; e.g. initial belief state for the 10× 10 vacuum

90 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

world contains 100 · 2100 ≈ 1032 physical states

� Idea: Use planning techniques: compact descriptions for

� belief states; e.g. all for initial state or not leftmost column after left.

� actions as belief state to belief state operations.

� This actually works: Therefore we talk about conformant planning!

Michael Kohlhase: Artificial Intelligence 1 659 2025-02-06

19.6 Searching/Planning with Observation
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29184.

Conditional planning (Motivation)

� Note: So far, we have never used the agent’s sensors.

� In ??, since the environment was observable and deterministic we could just use
offline planning.

� In ?? because we chose to.

� Note: If the world is nondeterministic or partially observable then percepts usually
provide information, i.e., split up the belief state

� Idea: This can systematically be used in search/planning via belief-state search,
but we need to rethink/specialize the Transition model.

Michael Kohlhase: Artificial Intelligence 1 660 2025-02-06

A Transition Model for Belief-State Search

� We extend the ideas from slide 657 to include partial observability.

� Definition 19.6.1. Given a (physical) search problem Π := ⟨S ,A, T , I ,G⟩, we de-
fine the belief state search problem induced by Π to be ⟨P(S),A, T b,S, {S ∈ Sb |S ⊆ G}⟩,
where the transition model T b is constructed in three stages:

� The prediction stage: given a belief state b and an action a we define b̂ :=
PRED(b, a) for some function PRED: P(S)×A→P(S).

� The observation prediction stage determines the set of possible percepts that
could be observed in the predicted belief state: PossPERC(̂b) = {PERC(s) | s ∈

https://fau.tv/clip/id/29184

19.6. SEARCHING/PLANNING WITH OBSERVATION 91

b̂}.
� The update stage determines, for each possible percept, the resulting belief

state: UPDATE(̂b, o) := {s | o = PERC(s) and s ∈ b̂}

The functions PRED and PERC are the main parameters of this model. We define
RESULT(b, a):={UPDATE(PRED(b, a), o) |PossPERC(PRED(b, a))}

� Observation 19.6.2. We always have UPDATE(̂b, o) ⊆ b̂.

� Observation 19.6.3. If sensing is deterministic, belief states for different possible
percepts are disjoint, forming a partition of the original predicted belief state.

Michael Kohlhase: Artificial Intelligence 1 661 2025-02-06

Example: Local Sensing Vacuum Worlds

� Example 19.6.4 (Transitions in the Vacuum World). Deterministic World:

35

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[A,Dirty]

[B,Dirty]

[B,Clean]

Right
[B,Dirty]

[B,Clean]

Figure 4.14 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physi-
cal states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean],
leading to three belief states as shown.

7

5

1

3

4 2

Suck

B,Dirty] B,Clean]

Right

A,Clean]

Figure 4.15 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

The action Right is deterministic, sensing disambiguates to singletons Slippery
World:

35

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[A,Dirty]

[B,Dirty]

[B,Clean]

Right
[B,Dirty]

[B,Clean]

Figure 4.14 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physi-
cal states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean],
leading to three belief states as shown.

7

5

1

3

4 2

Suck

B,Dirty] B,Clean]

Right

A,Clean]

Figure 4.15 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.

92 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

The action Right is non-deterministic, sensing disambiguates somewhat

Michael Kohlhase: Artificial Intelligence 1 662 2025-02-06

Belief-State Search with Percepts

� Observation: The belief-state transition model induces an AND-OR graph.

� Idea: Use AND-OR search in non deterministic environments.

� Example 19.6.5. AND-OR graph for initial percept [A,Dirty].

35

2

4

4

1

2

4

1

3

2

1

3 3

(b)

(a)

4

2

1

3

Right

[A,Dirty]

[B,Dirty]

[B,Clean]

Right
[B,Dirty]

[B,Clean]

Figure 4.14 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physi-
cal states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean],
leading to three belief states as shown.

7

5

1

3

4 2

Suck

B,Dirty] B,Clean]

Right

A,Clean]

Figure 4.15 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.Solution: [Suck,Right, if Bstate = {6} then Suck else [] fi]

� Note: Belief-state-problem ; conditional step tests on belief-state percept (plan
would not be executable in a partially observable environment otherwise)

Michael Kohlhase: Artificial Intelligence 1 663 2025-02-06

Example: Agent Localization

� Example 19.6.6. An agent inhabits a maze of which it has an accurate map. It has
four sensors that can (reliably) detect walls. The Move action is non-deterministic,
moving the agent randomly into one of the adjacent squares.

1. Initial belief state ; b̂1 all possible locations.

2. Initial percept: NWS (walls north, west, and south) ; b̂2 = UPDATE(̂b1, NWS)

36 Chapter 4 Search in Complex Environments

7

5

6

2 1

3

6

4

8

2 [B,Dirty]Right[A,Clean]

7

5

Suck

Figure 4.16 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

(a) Possible locations of robot after E1 = 1011

(b) Possible locations of robot after E1 = 1011, E2 = 1010

Figure 4.17 Possible positions of the robot, !, (a) after one observation, E1 =1011, and
(b) after moving one square and making a second observation, E2 =1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

3. Agent executes Move ; b̂3 = PRED(̂b2,Move) = one step away from these.

4. Next percept: NS ; b̂4 = UPDATE(̂b3, NS)

19.6. SEARCHING/PLANNING WITH OBSERVATION 93

36 Chapter 4 Search in Complex Environments

7

5

6

2 1

3

6

4

8

2 [B,Dirty]Right[A,Clean]

7

5

Suck

Figure 4.16 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

(a) Possible locations of robot after E1 = 1011

(b) Possible locations of robot after E1 = 1011, E2 = 1010

Figure 4.17 Possible positions of the robot, !, (a) after one observation, E1 =1011, and
(b) after moving one square and making a second observation, E2 =1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

All in all, b̂4 = UPDATE(PRED(UPDATE(̂b1, NWS),Move), NS) localizes the
agent.

� Observation: PRED enlarges the belief state, while UPDATE shrinks it again.

Michael Kohlhase: Artificial Intelligence 1 664 2025-02-06

Contingent Planning

� Definition 19.6.7. The generation of plan with conditional branching based on
percepts is called contingent planning, solutions are called contingent plans.

� Appropriate for partially observable or non-deterministic environments.

� Example 19.6.8. Continuing ??.
One of the possible contingent plan is
((lookat table) (lookat chair)

(if (and (color table c) (color chair c)) (noop)
((removelid c1) (lookat c1) (removelid c2) (lookat c2)
(if (and (color table c) (color can c)) ((paint chair can))

(if (and (color chair c) (color can c)) ((paint table can))
((paint chair c1) (paint table c1)))))))

� Note: Variables in this plan are existential; e.g. in

� line 2: If there is come joint color c of the table and chair ; done.

� line 4/5: Condition can be satisfied by [c1/can] or [c2/can] ; instantiate ac-
cordingly.

� Definition 19.6.9. During plan execution the agent maintains the belief state b,
chooses the branch depending on whether b ⊨ c for the condition c.

� Note: The planner must make sure b ⊨ c can always be decided.

Michael Kohlhase: Artificial Intelligence 1 665 2025-02-06

Contingent Planning: Calculating the Belief State

� Problem: How do we compute the belief state?

� Recall: Given a belief state b, the new belief state b̂ is computed based on
prediction with the action a and the refinement with the percept p.

� Here:

Given an action a and percepts p = p1 ∧ . . . ∧ pn, we have

94 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

� b̂ = b\dela ∪ adda (as for the sensorless agent)

� If n = 1 and (:percept p1 :precondition c) is the only percept axiom, also add p

and c to b̂. (add c as otherwise p impossible)

� If n > 1 and (:percept pi :precondition ci) are the percept axioms, also add p

and c1 ∨ . . . ∨ cn to b̂. (belief state no longer conjunction of literals /)

� Idea: Given such a mechanism for generating (exact or approximate) updated belief
states, we can generate contingent plans with an extension of AND-OR search over
belief states.

� Extension: This also works for non-deterministic actions: we extend the represen-
tation of effects to disjunctions.

Michael Kohlhase: Artificial Intelligence 1 666 2025-02-06

AI-1 Survey on ALeA

� Online survey evaluating ALeA until 28.02.25 24:00 (Feb last)

� Works on all common devices (mobile phone, notebook, etc.)

� Is in English; takes about 10 - 20 min
depending on proficiency in english and using ALeA

� Questions about how ALeA is used, what it is like usig ALeA, and questions about
demography

� Token is generated at the end of the survey (SAVE THIS CODE!)

� Completed survey count as a successfull prepquiz in AI1!

� Look for Quiz 15 in the usual place (single question)

� just submit the token to get full points

� The token can also be used to exercise the rights of the GDPR.

� Survey has no timelimit and is free, anonymous, can be paused and continued later
on and can be cancelled.

Michael Kohlhase: Artificial Intelligence 1 667 2025-02-06

Find the Survey Here

19.7. ONLINE SEARCH 95

https:
//ddi-survey.cs.fau.de/limesurvey/index.php/667123?lang=en

This URL will also be posted on the forum tonight.

Michael Kohlhase: Artificial Intelligence 1 668 2025-02-06

19.7 Online Search
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29185.

Online Search and Replanning

� Note: So far we have concentrated on offline problem solving, where the agent
only acts (plan execution) after search/planning terminates.

� Recall: In online problem solving an agent interleaves computation and action: it
computes one action at a time based on incoming perceptions.

� Online problem solving is helpful in

� dynamic or semidynamic environments. (long computation times can be
harmful)

� stochastic environments. (solve contingencies only when they arise)

� Online problem solving is necessary in unknown environments ; exploration prob-
lem.

Michael Kohlhase: Artificial Intelligence 1 669 2025-02-06

Online Search Problems

� Observation: Online problem solving even makes sense in deterministic, fully
observable environments.

� Definition 19.7.1. A online search problem consists of a set S of states, and

https://ddi-survey.cs.fau.de/limesurvey/index.php/667123?lang=en
https://ddi-survey.cs.fau.de/limesurvey/index.php/667123?lang=en
https://fau.tv/clip/id/29185

96 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

� a function Actions(s) that returns a list of actions allowed in state s.

� the step cost function c, where c(s, a, s′) is the cost of executing action a in
state s with outcome s′. (cost unknown before executing a)

� a goal test Goal Test.

� Note: We can only determine RESULT(s, a) by being in s and executing a.

� Definition 19.7.2. The competitive ratio of an online problem solving agent is the
quotient of

� offline performance, i.e. cost of optimal solutions with full information and

� online performance, i.e. the actual cost induced by online problem solving.

Michael Kohlhase: Artificial Intelligence 1 670 2025-02-06

Online Search Problems (Example)

� Example 19.7.3 (A simple maze problem).
The agent starts at S and must reach G but knows nothing
of the environment. In particular not that

� Up(1, 1) results in (1,2) and

� Down(1, 1) results in (1,1) (i.e. back)

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

Michael Kohlhase: Artificial Intelligence 1 671 2025-02-06

Online Search Obstacles (Dead Ends)

� Definition 19.7.4. We call a state a dead end, iff no state is reachable from it by
an action. An action that leads to a dead end is called irreversible.

� Note: With irreversible actions the competitive ratio can be infinite.

� Observation 19.7.5. No online algorithm can avoid dead ends in all state spaces.

� Example 19.7.6. Two state spaces that lead an online agent into dead ends:

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

Any agent will fail in at least one of the spaces.

� Definition 19.7.7. We call ?? an adversary argument.

� Example 19.7.8. Forcing an online agent into an arbitrarily inefficient route:

19.7. ONLINE SEARCH 97

Whichever choice the agent makes
the adversary can block with a
long, thin wall

37

G

S1

2

3

1 2 3

Figure 4.18 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.

S

G

S

G

A

A

S G

(a) (b)

Figure 4.19 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

� Observation: Dead ends are a real problem for robots: ramps, stairs, cliffs, . . .

� Definition 19.7.9. A state space is called safely explorable, iff a goal state is
reachable from every reachable state.

� We will always assume this in the following.

Michael Kohlhase: Artificial Intelligence 1 672 2025-02-06

Online Search Agents

� Observation: Online and offline search algorithms differ considerably:

� For an offline agent, the environment is visible a priori.

� An online agent builds a “map” of the environment from percepts in visited
states.

Therefore, e.g. A∗ can expand any node in the fringe, but an online agent must go
there to explore it.

� Intuition: It seems best to expand nodes in “local order” to avoid spurious travel.

� Idea: Depth first search seems a good fit. (must only travel for backtracking)

Michael Kohlhase: Artificial Intelligence 1 673 2025-02-06

Online DFS Search Agent

� Definition 19.7.10. The online depth first search algorithm:

function ONLINE−DFS−AGENT(s′) returns an action
inputs: s′, a percept that identifies the current state
persistent: result, a table mapping (s, a) to s′, initially empty

untried, a table mapping s to a list of untried actions
unbacktracked, a table mapping s to a list backtracks not tried
s, a, the previous state and action, initially null

if Goal Test(s′) then return stop
if s′ ̸∈ untried then untried[s′] := Actions(s′)
if s is not null then

result[s, a] := s′

add s to the front of unbacktracked[s′]
if untried[s′] is empty then

98 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

if unbacktracked[s′] is empty then return stop
else a := an action b such that result[s′, b] = pop(unbacktracked[s′])

else a := pop(untried[s′])
s := s′
return a

� Note: result is the “environment map” constructed as the agent explores.

Michael Kohlhase: Artificial Intelligence 1 674 2025-02-06

19.8 Replanning and Execution Monitoring
A Video Nugget covering this section can be found at https://fau.tv/clip/id/29186.

Replanning (Ideas)

� Idea: We can turn a planner P into an online problem solver by adding an action
RePlan(g) without preconditions that re-starts P in the current state with goal g.

� Observation: Replanning induces a tradeoff between pre-planning and re-planning.

� Example 19.8.1. The plan [RePlan(g)] is a (trivially) complete plan for any goal
g. (not helpful)

� Example 19.8.2. A plan with sub-plans for every contingency (e.g. what to do if
a meteor strikes) may be too costly/large. (wasted effort)

� Example 19.8.3. But when a tire blows while driving into the desert, we want to
have water pre-planned. (due diligence against catastrophies)

� Observation: In stochastic or partially observable environments we also need some
form of execution monitoring to determine the need for replanning (plan repair).

Michael Kohlhase: Artificial Intelligence 1 675 2025-02-06

Replanning for Plan Repair

� Generally: Replanning when the agent’s model of the world is incorrect.

� Example 19.8.4 (Plan Repair by Replanning). Given a plan from S to G.

85

function ANGELIC-SEARCH(problem ,hierarchy , initialPlan) returns solution or fail

frontier← a FIFO queue with initialPlan as the only element
while true do

if EMPTY?(frontier) then return fail
plan← POP(frontier) // chooses the shallowest node in frontier
if REACH+(problem .INITIAL,plan) intersects problem .GOAL then

if plan is primitive then return plan // REACH+ is exact for primitive plans
guaranteed←REACH−(problem .INITIAL,plan) ∩ problem .GOAL
if guaranteed #={ } and MAKING-PROGRESS(plan , initialPlan) then

finalState← any element of guaranteed
return DECOMPOSE(hierarchy ,problem .INITIAL,plan ,finalState)

hla← some HLA in plan
prefix ,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem .INITIAL, prefix)
for each sequence in REFINEMENTS(hla ,outcome ,hierarchy) do

frontier← Insert(APPEND(prefix , sequence, suffix), frontier)

function DECOMPOSE(hierarchy , s0 ,plan , sf) returns a solution

solution← an empty plan
while plan is not empty do

action←REMOVE-LAST(plan)
si← a state in REACH−(s0 , plan) such that sf ∈REACH−(si ,action)
problem← a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem ,hierarchy ,action), solution)
sf ← si

return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t. The predi-
cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan .

S

O

Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.
The agent executes steps of the plan until it expects to be in state E, but observes that it is
actually in O. The agent then replans for the minimal repair plus continuation to reach G.

https://fau.tv/clip/id/29186

19.8. REPLANNING AND EXECUTION MONITORING 99

� The agent executes wholeplan step by step, monitoring the rest (plan).

� After a few steps the agent expects to be in E, but observes state O.

� Replanning: by calling the planner recursively

� find state P in wholeplan and a plan repair from O to P . (P may be G)
� minimize the cost of repair + continuation

Michael Kohlhase: Artificial Intelligence 1 676 2025-02-06

Factors in World Model Failure ; Monitoring

� Generally: The agent’s world model can be incorrect, because

� an action has a missing precondition (need a screwdriver for remove−lid)

� an action misses an effect (painting a table gets paint on the floor)

� it is missing a state variable (amount of paint in a can: no paint ; no color)

� no provisions for exogenous events (someone knocks over a paint can)

� Observation: Without a way for monitoring for these, planning is very brittle.

� Definition 19.8.5. There are three levels of execution monitoring: before executing
an action

� action monitoring checks whether all preconditions still hold.

� plan monitoring checks that the remaining plan will still succeed.

� goal monitoring checks whether there is a better set of goals it could try to
achieve.

� Note: ?? was a case of action monitoring leading to replanning.

Michael Kohlhase: Artificial Intelligence 1 677 2025-02-06

Integrated Execution Monitoring and Planning

� Problem: Need to upgrade planing data structures by bookkeeping for execution
monitoring.

� Observation: With their causal links, partially ordered plans already have most of
the infrastructure for action monitoring:
Preconditions of remaining plan
=̂ all preconditions of remaining steps not achieved by remaining steps
=̂ all causal link “crossing current time point”

� Idea: On failure, resume planning (e.g. by POP) to achieve open conditions from
current state.

� Definition 19.8.6. IPEM (Integrated Planning, Execution, and Monitoring):

� keep updating Start to match current state

� links from actions replaced by links from Start when done

100 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

Michael Kohlhase: Artificial Intelligence 1 678 2025-02-06

Execution Monitoring Example

� Example 19.8.7 (Shopping for a drill, milk, and bananas). Start/end at home,
drill sold by hardware store, milk/bananas by supermarket.

19.8. REPLANNING AND EXECUTION MONITORING 101

102 CHAPTER 19. SEARCHING, PLANNING, AND ACTING IN THE REAL WORLD

Michael Kohlhase: Artificial Intelligence 1 679 2025-02-06

Chapter 20

What did we learn in AI 1?

A Video Nugget covering this chapter can be found at https://fau.tv/clip/id/26916.

Topics of AI-1 (Winter Semester)

� Getting Started

� What is Artificial Intelligence? (situating ourselves)

� Logic programming in Prolog (An influential paradigm)

� Intelligent Agents (a unifying framework)

� Problem Solving

� Problem Solving and search (Black Box World States and Actions)

� Adversarial search (Game playing) (A nice application of search)

� constraint satisfaction problems (Factored World States)

� Knowledge and Reasoning

� Formal Logic as the mathematics of Meaning

� Propositional logic and satisfiability (Atomic Propositions)

� First-order logic and theorem proving (Quantification)

� Logic programming (Logic + Search; Programming)

� Description logics and semantic web

� Planning

� Planning Frameworks

� Planning Algorithms

� Planning and Acting in the real world

Michael Kohlhase: Artificial Intelligence 1 680 2025-02-06

Rational Agents as an Evaluation Framework for AI

� Agents interact with the environment

103

https://fau.tv/clip/id/26916

104 CHAPTER 20. WHAT DID WE LEARN IN AI 1?

General agent schemaSection 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Simple Reflex AgentsSection 2.4. The Structure of Agents 49

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do nowCondition-action rules

Actuators

What the world
is like now

Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

Reflex Agents with State

105Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

Goal-Based Agents52 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

What action I
should do now

State

How the world evolves

What my actions do

Actuators

What the world
is like now

What it will be like
 if I do action A

Goals

Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from

Utility-Based Agent54 Chapter 2. Intelligent Agents

Agent

E
n
v
iro

n
m

en
t

Sensors

How happy I will be
in such a state

State

How the world evolves

What my actions do

Utility

Actuators

What action I
should do now

What it will be like
if I do action A

What the world
is like now

Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.

Learning Agents

106 CHAPTER 20. WHAT DID WE LEARN IN AI 1?Section 2.4. The Structure of Agents 55

Performance standard

Agent

E
n
v
iro

n
m

en
t

Sensors

Performance
element

changes

knowledge

learning
 goals

Problem
generator

feedback

 Learning
element

Critic

Actuators

Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance

Michael Kohlhase: Artificial Intelligence 1 681 2025-02-06

Rational Agent

� Idea: Try to design agents that are successful (do the right thing)

� Definition 20.0.1. An agent is called rational, if it chooses whichever action max-
imizes the expected value of the performance measure given the percept sequence
to date. This is called the MEU principle.

� Note: A rational agent need not be perfect

� only needs to maximize expected value (rational ̸= omniscient)

� need not predict e.g. very unlikely but catastrophic events in the future

� percepts may not supply all relevant information (Rational ̸= clairvoyant)

� if we cannot perceive things we do not need to react to them.
� but we may need to try to find out about hidden dangers (exploration)

� action outcomes may not be as expected (rational ̸= successful)

� but we may need to take action to ensure that they do (more often)
(learning)

� Rational ; exploration, learning, autonomy

Michael Kohlhase: Artificial Intelligence 1 682 2025-02-06

Symbolic AI: Adding Knowledge to Algorithms

� Problem Solving (Black Box States, Transitions, Heuristics)

� Framework: Problem Solving and Search (basic tree/graph walking)

� Variant: Game playing (Adversarial search) (minimax + αβ-Pruning)

� Constraint Satisfaction Problems (heuristic search over partial assignments)

� States as partial variable assignments, transitions as assignment

107

� Heuristics informed by current restrictions, constraint graph

� Inference as constraint propagation (transferring possible values across arcs)

� Describing world states by formal language (and drawing inferences)

� Propositional logic and DPLL (deciding entailment efficiently)

� First-order logic and ATP (reasoning about infinite domains)

� Digression: Logic programming (logic + search)

� Description logics as moderately expressive, but decidable logics

� Planning: Problem Solving using white-box world/action descriptions

� Framework: describing world states in logic as sets of propositions and actions
by preconditions and add/delete lists

� Algorithms: e.g heuristic search by problem relaxations

Michael Kohlhase: Artificial Intelligence 1 683 2025-02-06

Topics of AI-2 (Summer Semester)

� Uncertain Knowledge and Reasoning

� Uncertainty

� Probabilistic reasoning

� Making Decisions in Episodic Environments

� Problem Solving in Sequential Environments

� Foundations of machine learning

� Learning from Observations

� Knowledge in Learning

� Statistical Learning Methods

� Communication (If there is time)

� Natural Language Processing

� Natural Language for Communication

Michael Kohlhase: Artificial Intelligence 1 684 2025-02-06

108 CHAPTER 20. WHAT DID WE LEARN IN AI 1?

Bibliography

[Bac00] Fahiem Bacchus. Subset of PDDL for the AIPS2000 Planning Competition. The AIPS-
00 Planning Competition Comitee. 2000.

[BF95] Avrim L. Blum and Merrick L. Furst. “Fast planning through planning graph analysis”.
In: Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI). Ed. by Chris S. Mellish. Montreal, Canada: Morgan Kaufmann, San Mateo,
CA, 1995, pp. 1636–1642.

[BF97] Avrim L. Blum and Merrick L. Furst. “Fast planning through planning graph analysis”.
In: Artificial Intelligence 90.1-2 (1997), pp. 279–298.

[BG01] Blai Bonet and Héctor Geffner. “Planning as Heuristic Search”. In: Artificial Intelli-
gence 129.1–2 (2001), pp. 5–33.

[BG99] Blai Bonet and Héctor Geffner. “Planning as Heuristic Search: New Results”. In:
Proceedings of the 5th European Conference on Planning (ECP’99). Ed. by S. Biundo
and M. Fox. Springer-Verlag, 1999, pp. 60–72.

[Bon+12] Blai Bonet et al., eds. Proceedings of the 22nd International Conference on Automated
Planning and Scheduling (ICAPS’12). AAAI Press, 2012.

[DHK15] Carmel Domshlak, Jörg Hoffmann, and Michael Katz. “Red-Black Planning: A New
Systematic Approach to Partial Delete Relaxation”. In: Artificial Intelligence 221
(2015), pp. 73–114.

[Ede01] Stefan Edelkamp. “Planning with Pattern Databases”. In: Proceedings of the 6th Eu-
ropean Conference on Planning (ECP’01). Ed. by A. Cesta and D. Borrajo. Springer-
Verlag, 2001, pp. 13–24.

[FL03] Maria Fox and Derek Long. “PDDL2.1: An Extension to PDDL for Expressing Tem-
poral Planning Domains”. In: Journal of Artificial Intelligence Research 20 (2003),
pp. 61–124.

[FN71] Richard E. Fikes and Nils Nilsson. “STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving”. In: Artificial Intelligence 2 (1971), pp. 189–
208.

[Ger+09] Alfonso Gerevini et al. “Deterministic planning in the fifth international planning
competition: PDDL3 and experimental evaluation of the planners”. In: Artificial In-
telligence 173.5-6 (2009), pp. 619–668.

[GNT04] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and
Practice. Morgan Kaufmann, 2004.

[GSS03] Alfonso Gerevini, Alessandro Saetti, and Ivan Serina. “Planning through Stochas-
tic Local Search and Temporal Action Graphs”. In: Journal of Artificial Intelligence
Research 20 (2003), pp. 239–290.

[HD09] Malte Helmert and Carmel Domshlak. “Landmarks, Critical Paths and Abstractions:
What’s the Difference Anyway?” In: Proceedings of the 19th International Conference
on Automated Planning and Scheduling (ICAPS’09). Ed. by Alfonso Gerevini et al.
AAAI Press, 2009, pp. 162–169.

109

110 BIBLIOGRAPHY

[HE05] Jörg Hoffmann and Stefan Edelkamp. “The Deterministic Part of IPC-4: An Overview”.
In: Journal of Artificial Intelligence Research 24 (2005), pp. 519–579.

[Hel06] Malte Helmert. “The Fast Downward Planning System”. In: Journal of Artificial In-
telligence Research 26 (2006), pp. 191–246.

[HG00] Patrik Haslum and Hector Geffner. “Admissible Heuristics for Optimal Planning”. In:
Proceedings of the 5th International Conference on Artificial Intelligence Planning
Systems (AIPS’00). Ed. by S. Chien, R. Kambhampati, and C. Knoblock. Brecken-
ridge, CO: AAAI Press, Menlo Park, 2000, pp. 140–149.

[HG08] Malte Helmert and Hector Geffner. “Unifying the Causal Graph and Additive Heuris-
tics”. In: Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS’08). Ed. by Jussi Rintanen et al. AAAI Press, 2008, pp. 140–147.

[HHH07] Malte Helmert, Patrik Haslum, and Jörg Hoffmann. “Flexible Abstraction Heuristics
for Optimal Sequential Planning”. In: Proceedings of the 17th International Conference
on Automated Planning and Scheduling (ICAPS’07). Ed. by Mark Boddy, Maria
Fox, and Sylvie Thiebaux. Providence, Rhode Island, USA: Morgan Kaufmann, 2007,
pp. 176–183.

[HN01] Jörg Hoffmann and Bernhard Nebel. “The FF Planning System: Fast Plan Generation
Through Heuristic Search”. In: Journal of Artificial Intelligence Research 14 (2001),
pp. 253–302.

[Hof11] Jörg Hoffmann. “Every806thing You Always Wanted to Know about Planning (But
Were Afraid to Ask)”. In: Proceedings of the 34th Annual German Conference on
Artificial Intelligence (KI’11). Ed. by Joscha Bach and Stefan Edelkamp. Vol. 7006.
Lecture Notes in Computer Science. Springer, 2011, pp. 1–13. url: http://fai.cs.
uni-saarland.de/hoffmann/papers/ki11.pdf.

[KD09] Erez Karpas and Carmel Domshlak. “Cost-Optimal Planning with Landmarks”. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJ-
CAI’09). Ed. by C. Boutilier. Pasadena, California, USA: Morgan Kaufmann, July
2009, pp. 1728–1733.

[KHD13] Michael Katz, Jörg Hoffmann, and Carmel Domshlak. “Who Said We Need to Relax
all Variables?” In: Proceedings of the 23rd International Conference on Automated
Planning and Scheduling (ICAPS’13). Ed. by Daniel Borrajo et al. Rome, Italy: AAAI
Press, 2013, pp. 126–134.

[KHH12a] Michael Katz, Jörg Hoffmann, and Malte Helmert. “How to Relax a Bisimulation?”
In: Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12). Ed. by Blai Bonet et al. AAAI Press, 2012, pp. 101–109.

[KHH12b] Emil Keyder, Jörg Hoffmann, and Patrik Haslum. “Semi-Relaxed Plan Heuristics”.
In: Proceedings of the 22nd International Conference on Automated Planning and
Scheduling (ICAPS’12). Ed. by Blai Bonet et al. AAAI Press, 2012, pp. 128–136.

[Koe+97] Jana Koehler et al. “Extending Planning Graphs to an ADL Subset”. In: Proceedings
of the 4th European Conference on Planning (ECP’97). Ed. by S. Steel and R. Alami.
Springer-Verlag, 1997, pp. 273–285. url: ftp://ftp.informatik.uni-freiburg.
de/papers/ki/koehler-etal-ecp-97.ps.gz.

[KS00] Jana Köhler and Kilian Schuster. “Elevator Control as a Planning Problem”. In: AIPS
2000 Proceedings. AAAI, 2000, pp. 331–338. url: https://www.aaai.org/Papers/
AIPS/2000/AIPS00-036.pdf.

[KS92] Henry A. Kautz and Bart Selman. “Planning as Satisfiability”. In: Proceedings of the
10th European Conference on Artificial Intelligence (ECAI’92). Ed. by B. Neumann.
Vienna, Austria: Wiley, Aug. 1992, pp. 359–363.

http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf
http://fai.cs.uni-saarland.de/hoffmann/papers/ki11.pdf
ftp://ftp.informatik.uni-freiburg.de/papers/ki/koehler-etal-ecp-97.ps.gz
ftp://ftp.informatik.uni-freiburg.de/papers/ki/koehler-etal-ecp-97.ps.gz
https://www.aaai.org/Papers/AIPS/2000/AIPS00-036.pdf
https://www.aaai.org/Papers/AIPS/2000/AIPS00-036.pdf

BIBLIOGRAPHY 111

[KS98] Henry A. Kautz and Bart Selman. “Pushing the Envelope: Planning, Propositional
Logic, and Stochastic Search”. In: Proceedings of the Thirteenth National Conference
on Artificial Intelligence AAAI-96. MIT Press, 1998, pp. 1194–1201.

[McD+98] Drew McDermott et al. The PDDL Planning Domain Definition Language. The AIPS-
98 Planning Competition Comitee. 1998.

[NHH11] Raz Nissim, Jörg Hoffmann, and Malte Helmert. “Computing Perfect Heuristics in
Polynomial Time: On Bisimulation and Merge-and-Shrink Abstraction in Optimal
Planning”. In: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI’11). Ed. by Toby Walsh. AAAI Press/IJCAI, 2011, pp. 1983–
1990.

[NS63] Allen Newell and Herbert Simon. “GPS, a program that simulates human thought”.
In: Computers and Thought. Ed. by E. Feigenbaum and J. Feldman. McGraw-Hill,
1963, pp. 279–293.

[PW92] J. Scott Penberthy and Daniel S. Weld. “UCPOP: A Sound, Complete, Partial Order
Planner for ADL”. In: Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the 3rd International Conference (KR-92). Ed. by B. Nebel, W. Swartout,
and C. Rich. Cambridge, MA: Morgan Kaufmann, Oct. 1992, pp. 103–114. url: ftp:
//ftp.cs.washington.edu/pub/ai/ucpop-kr92.ps.Z.

[RHN06] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. “Planning as satisfiability: parallel
plans and algorithms for plan search”. In: Artificial Intelligence 170.12-13 (2006),
pp. 1031–1080.

[Rin10] Jussi Rintanen. “Heuristics for Planning with SAT”. In: Proceeedings of the 16th In-
ternational Conference on Principles and Practice of Constraint Programming. 2010,
pp. 414–428.

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
Prentice Hall Press, 2009. isbn: 0136042597, 9780136042594.

[RW10] Silvia Richter and Matthias Westphal. “The LAMA Planner: Guiding Cost-Based
Anytime Planning with Landmarks”. In: Journal of Artificial Intelligence Research
39 (2010), pp. 127–177.

ftp://ftp.cs.washington.edu/pub/ai/ucpop-kr92.ps.Z
ftp://ftp.cs.washington.edu/pub/ai/ucpop-kr92.ps.Z

112 BIBLIOGRAPHY

	17 Planning I: Framework
	17.1 Logic-Based Planning
	17.2 Planning: Introduction
	17.3 Planning History
	17.4 STRIPS Planning
	17.5 Partial Order Planning
	17.6 PDDL Language
	17.7 Conclusion

	18 Planning II: Algorithms
	18.1 Introduction
	18.2 How to Relax
	18.3 Delete Relaxation
	18.4 The h+Heuristic
	18.5 Conclusion

	19 Searching, Planning, and Acting in the Real World
	19.1 Introduction
	19.2 The Furniture Coloring Example
	19.3 Searching/Planning with Non-Deterministic Actions
	19.4 Agent Architectures based on Belief States
	19.5 Searching/Planning without Observations
	19.6 Searching/Planning with Observation
	19.7 Online Search
	19.8 Replanning and Execution Monitoring

	20 What did we learn in AI 1?

