
1

Artificial Intelligence 1
Winter Semester 2024/25

– Lecture Notes –
Part III: Knowledge and Inference

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2025-02-06

Michael.Kohlhase@FAU.de

2

This document contains Part III of the course notes for the course “Artificial Intelligence 1” held
at FAU Erlangen-Nürnberg in the Winter Semesters 2016/17 ff. A Video Nugget covering this
document can be found at https://fau.tv/clip/id/22466.
This part of the course introduces representation languages and inference methods for structured
state representations for agents: In contrast to the atomic and factored state representations from
??, we look at state representations where the relations between objects are not determined by
the problem statement, but can be determined by inference-based methods, where the knowledge
about the environment is represented in a formal langauge and new knowledge is derived by
transforming expressions of this language.

We look at propositional logic – a rather weak representation langauge – and first-order logic
– a much stronger one – and study the respective inference procedures. In the end we show that
computation in Prolog is just an inference process as well. Other parts of the lecture notes can
be found at http://kwarc.info/teaching/AI/notes-*.pdf.

https://fau.tv/clip/id/22466
http://kwarc.info/teaching/AI/notes-*.pdf

Contents

10 Propositional Logic & Reasoning, Part I: Principles 5
10.1 Introduction: Inference with Structured State Representations 5

10.1.1 A Running Example: The Wumpus World 5
10.1.2 Propositional Logic: Preview . 8
10.1.3 Propositional Logic: Agenda . 10

10.2 Propositional Logic (Syntax/Semantics) . 10
10.3 Inference in Propositional Logics . 16
10.4 Propositional Natural Deduction Calculus . 19
10.5 Predicate Logic Without Quantifiers . 24
10.6 Conclusion . 27

11 Formal Systems 29

12 Machine-Oriented Calculi for Propositional Logic 33
12.1 Test Calculi . 33

12.1.1 Normal Forms . 34
12.2 Analytical Tableaux . 35

12.2.1 Analytical Tableaux . 35
12.2.2 Practical Enhancements for Tableaux . 39
12.2.3 Soundness and Termination of Tableaux . 40

12.3 Resolution for Propositional Logic . 42
12.3.1 Resolution for Propositional Logic . 42
12.3.2 Killing a Wumpus with Propositional Inference 45

12.4 Conclusion . 47

13 Propositional Reasoning: SAT Solvers 49
13.1 Introduction . 49
13.2 Davis-Putnam . 51
13.3 DPLL =̂ (A Restricted Form of) Resolution . 53
13.4 Conclusion . 56

14 First-Order Predicate Logic 59
14.1 Motivation: A more Expressive Language . 59
14.2 First-Order Logic . 63

14.2.1 First-Order Logic: Syntax and Semantics 63
14.2.2 First-Order Substitutions . 67

14.3 First-Order Natural Deduction . 70
14.4 Conclusion . 74

3

4 CONTENTS

15 Automated Theorem Proving in First-Order Logic 77
15.1 First-Order Inference with Tableaux . 77

15.1.1 First-Order Tableau Calculi . 77
15.1.2 First-Order Unification . 81
15.1.3 Efficient Unification . 86
15.1.4 Implementing First-Order Tableaux . 89

15.2 First-Order Resolution . 91
15.2.1 Resolution Examples . 92

15.3 Logic Programming as Resolution Theorem Proving 94
15.4 Summary: ATP in First-Order Logic . 97

16 Knowledge Representation and the Semantic Web 99
16.1 Introduction to Knowledge Representation . 99

16.1.1 Knowledge & Representation . 99
16.1.2 Semantic Networks . 101
16.1.3 The Semantic Web . 106
16.1.4 Other Knowledge Representation Approaches 111

16.2 Logic-Based Knowledge Representation . 112
16.2.1 Propositional Logic as a Set Description Language 113
16.2.2 Ontologies and Description Logics . 116
16.2.3 Description Logics and Inference . 118

16.3 A simple Description Logic: ALC . 120
16.3.1 Basic ALC: Concepts, Roles, and Quantification 121
16.3.2 Inference for ALC . 125
16.3.3 ABoxes, Instance Testing, and ALC . 132

16.4 Description Logics and the Semantic Web . 134

A Excursions 145
A.1 Completeness of Calculi for Propositional Logic . 145

A.1.1 Abstract Consistency and Model Existence 145
A.1.2 A Completeness Proof for Propositional Tableaux 151

A.2 Conflict Driven Clause Learning . 152
A.2.1 UP Conflict Analysis . 152
A.2.2 Clause Learning . 157
A.2.3 Phase Transitions . 161

A.3 Completeness of Calculi for First-Order Logic . 164
A.3.1 Abstract Consistency and Model Existence 164
A.3.2 A Completeness Proof for First-Order ND 170
A.3.3 Soundness and Completeness of First-Order Tableaux 172
A.3.4 Soundness and Completeness of First-Order Resolution 173

Chapter 10

Propositional Logic & Reasoning,
Part I: Principles

10.1 Introduction: Inference with Structured State Repre-
sentations

A Video Nugget covering this section can be found at https://fau.tv/clip/id/22455.

State Representations in Agents and Algorithms

� Recall: We call a state representation

� atomic, iff it has no internal structure (black box)

� factored, iff each state is characterized by attribute and their values.

� structured, iff the state includes representations of objects, their properties and
relationships.

� Recall: We have used atomic representations in search problems and tree search
algorithms.

� But: We already allowed peeking into state in

� informed search to compute heuristics

� adversarial search ⇝too many state!

� Recall: We have used factored representations in

� backtracking search for CSPs ; universally useful heuristics

� constraint propagation: inference ; lifting search to the CSP description level.

� Up Next: Inference for structured state representations.

Michael Kohlhase: Artificial Intelligence 1 314 2025-02-06

10.1.1 A Running Example: The Wumpus World

To clarify the concepts and methods for inference with structured state representations, we now
introduce an extended example (the Wumpus world) and the agent model (logic-based agents)
that use them. We will refer back to both from time to time below.

5

https://fau.tv/clip/id/22455

6 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

The Wumpus world is a very simple game modeled after the early text adventure games of the
1960 and 70ies, where the player entered a world and was provided with textual information about
percepts and could explore the world via actions. The main difference is that we use it as an agent
environment in this course.

The Wumpus World

Definition 10.1.1. The Wumpus world is a
simple game where an agent explores a cave
with 16 cells that can contain pits, gold, and
the Wumpus with the goal of getting back
out alive with the gold.
The agent cannot observe the locations of
pits, gold, and the Wumpus, but some of
their effects in the cell it currently visits.

� Definition 10.1.2 (Actions). The agent can perform the following actions: goForward,
turnRight (by 90◦), turnLeft (by 90◦), shoot arrow in direction you’re facing (you
got exactly one arrow), grab an object in current cell, leave cave if you’re in cell
[1, 1].

� Definition 10.1.3 (Initial and Terminal States). Initially, the agent is in cell
[1, 1] facing east. If the agent falls down a pit or meets live Wumpus it dies.

� Definition 10.1.4 (Percepts). The agent can experience the following percepts:
stench, breeze, glitter, bump, scream, none.

� Cell adjacent (i.e. north, south, west, east) to Wumpus: stench (else: none).

� Cell adjacent to pit: breeze (else: none).

� Cell that contains gold: glitter (else: none).

� You walk into a wall: bump (else: none).

� Wumpus shot by arrow: scream (else: none).

Michael Kohlhase: Artificial Intelligence 1 315 2025-02-06

The game is complex enough to warrant structured state representations and can easily be extended
to include uncertainty and non-determinism later.
As our focus is on inference processes here, let us see how a human player would reason when
entering the Wumpus world. This can serve as a model for designing our artificial agents.

Reasoning in the Wumpus World

� Example 10.1.5 (Reasoning in the Wumpus World).
As humans we mark cells with the knowledge inferred so far: A: agent, V: visited,
OK: safe, P: pit, W: Wumpus, B: breeze, S: stench, G: gold.

10.1. INTRODUCTION: INFERENCE WITH STRUCTURED STATE REPRESENTATIONS7

(1) Initial state (2) One step to right (3) Back, and up to [1,2]

� The Wumpus is in [1,3]! How do we know?

� No stench in [2,1], so the stench in [1,2] can only come from [1,3].

� There’s a pit in [3,1]! How do we know?

� No breeze in [1,2], so the breeze in [2,1] can only come from [3,1].

� Note: The agent has more knowledge than just the percepts ⇝inference!

Michael Kohlhase: Artificial Intelligence 1 316 2025-02-06

Let us now look into what kind of agent we would need to be successful in the Wumpus world:
it seems reasonable that we should build on a model-based agent and specialize it to structured
state representations and inference.

Agents that Think Rationally

� Problem: But how can we build an agent that can do the necessary inferences?

� Idea: Think Before You Act!
“Thinking” = Inference about knowledge represented using logic.

� Definition 10.1.6. A logic-based agent is a model-based agent that represents the
world state as a logical formula and uses inference to think about the state of the
environment and its own actions. Agent schema:Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

The formal language of the logical system acts as a world description language.
Agent function:

function KB−AGENT (percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time
TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))
action := ASK(KB, MAKE−ACTION−QUERY(t))

8 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+1

return action

Its agent function maintains a knowledge base about the environment, which is
updated with percept descriptions (formalizations of the percepts) and action de-
scriptions. The next action is the result of a suitable inference-based query to the
knowledge base.

Michael Kohlhase: Artificial Intelligence 1 317 2025-02-06

10.1.2 Propositional Logic: Preview

We will now give a preview of the concepts and methods in propositional logic based on the
Wumpus world before we formally define them below. The focus here is on the use of PL0 as a
world description language and understanding how inference might work.
We will start off with our preview by looking into the use of PL0 as a world description language
for the Wumpus world. For that we need to fix the language itself (its syntax) and the meaning
of expressions in PL0 (its semantics).

Logic: Basic Concepts (Representing Knowledge)

� We now preview some of the concepts involved in logic so that you have an intuition
for the formal definitions below.

� Definition 10.1.7. Syntax: What are legal formulae A in the logic?

� Example 10.1.8. “W ” and “W ⇒ S”.
(W =̂ Wumpus is here, S=̂ it stinks, W ⇒ S =̂ If W , then S)

� Definition 10.1.9. Semantics: Which formulae A are true?

� Observation: Whether W ⇒ S is true depends on whether W and S are!

� Idea: Capture the state of W and S. . . in a variable assignment.

� Definition 10.1.10. For a variable assignment φ, write φ|=A if φ is true in the
Wumpus world described by φ.

� Example 10.1.11. If φ := {W 7→ T, S 7→ F}, then φ|=W but φ̸|=(W ⇒ S).

� Intuition: Knowledge about the state of the world is described by formulae,
interpretations evaluate them in the current world (they should turn out true!)

� Definition 10.1.12. The process of representing a natural language text in the
formal language of a logical system is called formalization.

� Observation: Formalizing a NL text or utterance makes it machine-actionable.
(the ultimate purpose of AI)

� Observation: Formalization is an art/skill, not a science!

Michael Kohlhase: Artificial Intelligence 1 318 2025-02-06

It is critical to understand that while PL0 as a logical system is given once and for all, the agent
designer still has to formalize the situation (here the Wumpus world) in the world description

10.1. INTRODUCTION: INFERENCE WITH STRUCTURED STATE REPRESENTATIONS9

language (here PL0; but we will look at more expressive logical systems below). This formalization
is the seed of the knowledge base, the logic-based agent can then add to via its percepts and action
descriptions, and that also forms the basis of its inferences. We will look at this aspect now.

Logic: Basic Concepts (Reasoning about Knowledge)

� Definition 10.1.13. Entailment: Which B follow from A, written A ⊨ B, meaning
that, for all φ with φ|=A, we have φ|=B? E.g., P ∧ (P ⇒Q) ⊨ Q.

� Intuition: Entailment =̂ ideal outcome of reasoning, everything that we can
possibly conclude. e.g. determine Wumpus position as soon as we have enough
information

� Definition 10.1.14. Deduction: Which formulas B can be derived from A using
a set C of inference rules (a calculus), written A⊢CB?

� Example 10.1.15. If C contains
A A⇒B

B
then P, P ⇒Q⊢CQ

� Intuition: Deduction =̂ process in an actual computer trying to reason about
entailment. E.g. a mechanical process attempting to determine Wumpus position.

� Critical Insight: Entailment is purely semantical and gives a mathematical founda-
tion of reasoning in PL0, while Deduction is purely syntactic and can be implemented
well. (but this only helps if they are related)

� Definition 10.1.16. Soundness: whenever A⊢CB, we also have A ⊨ B.

� Definition 10.1.17. Completeness: whenever A ⊨ B, we also have A⊢CB.

Michael Kohlhase: Artificial Intelligence 1 319 2025-02-06

General Problem Solving using Logic

� Idea: Any problem that can be formulated as reasoning about logic. ; use
off-the-shelf reasoning tool.

� Very successful using propositional logic and modern SAT solvers! (Propositional
satisfiability testing; ??)

Michael Kohlhase: Artificial Intelligence 1 320 2025-02-06

Propositional Logic and Its Applications

� Propositional logic = canonical form of knowledge + reasoning.

� Syntax: Atomic propositions that can be either true or false, connected by “and,
or, and not”.

� Semantics: Assign value to every proposition, evaluate connectives.

� Applications: Despite its simplicity, widely applied!

10 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

� Product configuration (e.g., Mercedes). Check consistency of customized
combinations of components.

� Hardware verification (e.g., Intel, AMD, IBM, Infineon). Check whether a
circuit has a desired property p.

� Software verification: Similar.

� CSP applications: Propositional logic can be (successfully!) used to formulate
and solve constraint satisfaction problems. (see ??)

� ?? gives an example for verification.

Michael Kohlhase: Artificial Intelligence 1 321 2025-02-06

10.1.3 Propositional Logic: Agenda

Our Agenda for This Topic

� This subsection: Basic definitions and concepts; tableaux, resolution.

� Sets up the framework. Resolution is the quintessential reasoning procedure
underlying most successful SAT solvers.

� Next Section (??): The Davis Putnam procedure and clause learning; practical
problem structure.

� State-of-the-art algorithms for reasoning about propositional logic, and an im-
portant observation about how they behave.

Michael Kohlhase: Artificial Intelligence 1 322 2025-02-06

Our Agenda for This Chapter

� Propositional logic: What’s the syntax and semantics? How can we capture de-
duction?

� We study this logic formally.

� Tableaux, Resolution: How can we make deduction mechanizable? What are its
properties?

� Formally introduces the most basic machine-oriented reasoning algorithm.

� Killing a Wumpus: How can we use all this to figure out where the Wumpus is?

� Coming back to our introductory example.

Michael Kohlhase: Artificial Intelligence 1 323 2025-02-06

10.2 Propositional Logic (Syntax/Semantics)

Video Nuggets covering this section can be found at https://fau.tv/clip/id/22457 and
https://fau.tv/clip/id/22458.

https://fau.tv/clip/id/22457
https://fau.tv/clip/id/22458

10.2. PROPOSITIONAL LOGIC (SYNTAX/SEMANTICS) 11

We will now develop the formal theory behind the ideas previewed in the last section and use
that as a prototype for the theory of the more expressive logical systems still to come in AI-1. As
PL0 is a very simple logical system, we could cut some corners in the exposition but we will stick
closer to a generalizable theory.

Propositional Logic (Syntax)

� Definition 10.2.1 (Syntax). The formulae of propositional logic (write PL0) are
made up from

� propositional variables: V0 := {P ,Q,R, P 1, P 2, . . .} (countably infinite)

� A propositional signature: constants/constructors called connectives: Σ0 :=
{T , F ,¬,∨,∧,⇒,⇔, . . .}

We define the set wff0(V0) of well-formed propositional formula (wffs) as

� propositional variables,

� the logical constants T and F ,

� negations ¬A,

� conjunctions A ∧B(A and B are called conjuncts),

� disjunctions A ∨B (A and B are called disjuncts),

� implications A⇒B, and

� equivalences (or biimplication). A⇔B,

where A,B ∈ wff0(V0) themselves.

� Example 10.2.2. P ∧Q,P ∨Q,¬P ∨Q⇔ P ⇒Q ∈ wff0(V0)

� Definition 10.2.3. Propositional formulae without connectives are called atomic
(or an atom) and complex otherwise.

Michael Kohlhase: Artificial Intelligence 1 324 2025-02-06

We can also express the formal language introduced by ?? as a context-free grammar.

Propositional Logic Grammar Overview

� Grammar for Propositional Logic:

propositional variables X ::= V0 = {P ,Q,R, . . . , . . .} variables
propositional formulae A ::= X variable

| T |F truth values
| ¬A negation
| A1 ∧A2 conjunction
| A1 ∨A2 disjunction
| A1 ⇒A2 implication
| A1 ⇔A2 equivalence

Michael Kohlhase: Artificial Intelligence 1 325 2025-02-06

Propositional logic is a very old and widely used logical system. So it should not be surprising
that there are other notations for the connectives than the ones we are using in AI-1. We list the

12 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

most important ones here for completeness.

Alternative Notations for Connectives

Here Elsewhere
¬A ∼A A

A ∧B A&B A •B A,B

A ∨B A+B A |B A ;B

A⇒B A→B A⊃B

A⇔B A↔B A≡B

F ⊥ 0

T ⊤ 1

Michael Kohlhase: Artificial Intelligence 1 326 2025-02-06

These notations will not be used in AI-1, but sometimes appear in the literature.
The semantics of PL0 is defined relative to a model, which consists of a universe of discourse and
an interpretation function that we specify now.

Semantics of PL0 (Models)

� Warning: For the official semantics of PL0 we will separate the tasks of giving
meaning to connectives and propositional variables to different mappings.

� This will generalize better to other logical systems. (and thus applications)

� Definition 10.2.4. A model M := ⟨Do, I⟩ for propositional logic consists of

� the universe Do = {T,F}
� the interpretation I that assigns values to essential connectives.

� I(¬) : Do →Do;T 7→ F,F 7→ T

� I(∧) : Do ×Do →Do; ⟨α, β⟩ 7→ T, iff α = β = T

We call a constant a logical constant, iff its value is fixed by the interpretation.

� Treat the other connectives as abbreviations, e.g. A ∨ B=̂ ¬(¬A ∧ ¬B) and
A⇒B=̂ ¬A ∨B, and T =̂ P ∨ ¬P (only need to treat ¬,∧ directly)

� Note: PL0 is a single-model logical system with canonical model ⟨Do, I⟩.

Michael Kohlhase: Artificial Intelligence 1 327 2025-02-06

We have a problem in the exposition of the theory here: As PL0 semantics only has a single,
canonical model, we could simplify the exposition by just not mentioning the universe and inter-
pretation function. But we choose to expose both of them in the construction, since other versions
of propositional logic – in particular the system PLnq below – that have a choice of models as they
use a different distribution of the representation among constants and variables.

Semantics of PL0 (Evaluation)

10.2. PROPOSITIONAL LOGIC (SYNTAX/SEMANTICS) 13

� Problem: The interpretation function I only assigns meaning to connectives.

� Definition 10.2.5. A variable assignment φ : V0 →Do assigns values to proposi-
tional variables.

� Definition 10.2.6. The value function Iφ : wff0(V0) → Do assigns values to PL0

formulae. It is recursively defined,

� Iφ(P) = φ(P) (base case)

� Iφ(¬A) = I(¬)(Iφ(A)).

� Iφ(A ∧B) = I(∧)(Iφ(A), Iφ(B)).

� Note: Iφ(A∨B) = Iφ(¬(¬A∧¬B)) is only determined by Iφ(A) and Iφ(B),
so we think of the defined connectives as logical constants as well.

� Alternative Notation: Write [[A]]φ for Iφ(A). (and [[A]], if A is ground)

� Definition 10.2.7. Two formulae A and B are called equivalent, iff Iφ(A) =
Iφ(B) for all variable assignments φ.

Michael Kohlhase: Artificial Intelligence 1 328 2025-02-06

In particular in a interpretation-less exposition of propositional logic would have elided the homo-
morphic construction of the value function and could have simplified the recursive cases in ?? to
Iφ(A ∧B) = T, iff Iφ(A) = T = Iφ(B).

But the homomorphic construction via I(∧) is standard to definitions in other logical systems
and thus generalizes better.

Computing Semantics

� Example 10.2.8. Let φ := [T/P 1], [F/P 2], [T/P 3], [F/P 4], . . . then

Iφ(P 1 ∨ P 2 ∨ ¬(¬P 1 ∧ P 2) ∨ P 3 ∧ P 4)

= I(∨)(Iφ(P 1 ∨ P 2), Iφ(¬(¬P 1 ∧ P 2) ∨ P 3 ∧ P 4))

= I(∨)(I(∨)(Iφ(P 1), Iφ(P 2)), I(∨)(Iφ(¬(¬P 1 ∧ P 2)), Iφ(P 3 ∧ P 4)))

= I(∨)(I(∨)(φ(P 1), φ(P 2)), I(∨)(I(¬)(Iφ(¬P 1 ∧ P 2)), I(∧)(Iφ(P 3), Iφ(P 4))))

= I(∨)(I(∨)(T,F), I(∨)(I(¬)(I(∧)(Iφ(¬P 1), Iφ(P 2))), I(∧)(φ(P 3), φ(P 4))))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(Iφ(P 1)), φ(P 2))), I(∧)(T,F)))
= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(φ(P 1)),F)),F))

= I(∨)(T, I(∨)(I(¬)(I(∧)(I(¬)(T),F)),F))
= I(∨)(T, I(∨)(I(¬)(I(∧)(F,F)),F))
= I(∨)(T, I(∨)(I(¬)(F),F))
= I(∨)(T, I(∨)(T,F))
= I(∨)(T,T)
= T

� What a mess!

Michael Kohlhase: Artificial Intelligence 1 329 2025-02-06

Now we will also review some propositional identities that will be useful later on. Some of them we
have already seen, and some are new. All of them can be proven by simple truth table arguments.

14 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

Propositional Identities

� Definition 10.2.9. We have the following identities in propositional logic:

Name for ∧ for ∨
Idempotence φ ∧ φ = φ φ ∨ φ = φ
Identity φ ∧ T = φ φ ∨ F = φ
Absorption 1 φ ∧ F = F φ ∨ T = T
Commutativity φ ∧ ψ = ψ ∧ φ φ ∨ ψ = ψ ∨ φ
Associativity φ ∧ (ψ ∧ θ) = (φ ∧ ψ) ∧ θ φ ∨ (ψ ∨ θ) = (φ ∨ ψ) ∨ θ
Distributivity φ ∧ (ψ ∨ θ) = φ ∧ ψ ∨ φ ∧ θ φ ∨ ψ ∧ θ = (φ ∨ ψ) ∧ (φ ∨ θ)
Absorption 2 φ ∧ (φ ∨ θ) = φ φ ∨ φ ∧ θ = φ
De Morgan rule ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ
double negation ¬¬φ = φ
Definitions φ⇒ ψ = ¬φ ∨ ψ φ⇔ ψ = (φ⇒ ψ) ∧ (ψ⇒ φ)

� Idea: How about using these as inference component (simplification) to simplify
calculations like the one in ??. (see below)

Michael Kohlhase: Artificial Intelligence 1 330 2025-02-06

We will now use the distribution of values of a propositional formula under all variable assignments
to characterize them semantically. The intuition here is that we want to understand theorems,
examples, counterexamples, and inconsistencies in mathematics and everyday reasoning1.

The idea is to use the formal language of propositional formulae as a model for mathematical
language. Of course, we cannot express all of mathematics as propositional formulae, but we can
at least study the interplay of mathematical statements (which can be true or false) with the
copula “and”, “or” and “not”.

Semantic Properties of Propositional Formulae

� Definition 10.2.10. Let M := ⟨U , I⟩ be our model, then we call A

� true under φ (φ satisfies A) in M, iff Iφ(A) = T, (write M|=φA)

� false under φ (φ falsifies A) in M, iff Iφ(A) = F, (write M̸|=φA)

� satisfiable in M, iff Iφ(A) = T for some assignment φ,

� valid in M, iff M|=φA for all variable assignments φ,

� falsifiable in M, iff Iφ(A) = F for some assignments φ, and

� unsatisfiable in M, iff Iφ(A) = F for all assignments φ.

� Example 10.2.11. x ∨ x is satisfiable and falsifiable.

� Example 10.2.12. x ∨ ¬x is valid and x ∧ ¬x is unsatisfiable.

� Note: As PL0 is a single-model logical system, we can elide the reference to the
model and regain the notation φ|=A from the preview for M|=φA.

� Definition 10.2.13 (Entailment). (aka. logical consequence)
We say that A entails B (write A ⊨ B), iff Iφ(B) = T for all φ with Iφ(A) = T
(i.e. all assignments that make A true also make B true)

1Here (and elsewhere) we will use mathematics (and the language of mathematics) as a test tube for under-
standing reasoning, since mathematics has a long history of studying its own reasoning processes and assumptions.

10.2. PROPOSITIONAL LOGIC (SYNTAX/SEMANTICS) 15

Michael Kohlhase: Artificial Intelligence 1 331 2025-02-06

Let us now see how these semantic properties model mathematical practice.
In mathematics we are interested in assertions that are true in all circumstances. In our model

of mathematics, we use variable assignments to stand for “circumstances”. So we are interested
in propositional formulae which are true under all variable assignments; we call them valid. We
often give examples (or show situations) which make a conjectured formula false; we call such
examples counterexamples, and such assertions falsifiable. We also often give examples for certain
formulae to show that they can indeed be made true (which is not the same as being valid yet);
such assertions we call satisfiable. Finally, if a formula cannot be made true in any circumstances
we call it unsatisfiable; such assertions naturally arise in mathematical practice in the form of
refutation proofs, where we show that an assertion (usually the negation of the theorem we want
to prove) leads to an obviously unsatisfiable conclusion, showing that the negation of the theorem
is unsatisfiable, and thus the theorem valid.

A better mouse-trap: Truth Tables

� Truth tables visualize truth functions:

¬
⊤ F
⊥ T

∧ ⊤ ⊥
⊤ T F
⊥ F F

∨ ⊤ ⊥
⊤ T T
⊥ T F

� If we are interested in values for all assignments (e.g z ∧ x ∨ ¬(z ∧ y))

assignments intermediate results full
x y z e1 := z ∧ y e2 := ¬e1 e3 := z ∧ x e3 ∨ e2
F F F F T F T
F F T F T F T
F T F F T F T
F T T T F F F
T F F F T F T
T F T F T T T
T T F F T F T
T T T T F T T

Michael Kohlhase: Artificial Intelligence 1 332 2025-02-06

Let us finally test our intuitions about propositional logic with a “real-world example”: a logic
puzzle, as you could find it in a Sunday edition of the local newspaper.

Hair Color in Propositional Logic

� There are three persons, Stefan, Nicole, and Jochen.

1. Their hair colors are black, red, or green.

2. Their study subjects are AI, Physics, or Chinese at least one studies AI.

(a) Persons with red or green hair do not study AI.
(b) Neither the Physics nor the Chinese students have black hair.
(c) Of the two male persons, one studies Physics, and the other studies Chinese.

� Question: Who studies AI?
(A) Stefan (B) Nicole (C) Jochen (D) Nobody

16 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

� Answer: You can solve this using PL0, if we accept bla(S), etc. as propositional variables.

We first express what we know: For every x ∈ {S,N, J} (Stefan, Nicole, Jochen) we have

1. bla(x) ∨ red(x) ∨ gre(x); (note: three formulae)

2. ai(x) ∨ phy(x) ∨ chi(x) and ai(S) ∨ ai(N) ∨ ai(J)
(a) ai(x)⇒¬red(x) ∧ ¬gre(x).
(b) phy(x)⇒¬bla(x) and chi(x)⇒¬bla(x).
(c) phy(S) ∧ chi(J) ∨ phy(J) ∧ chi(S).

Now, we obtain new knowledge via entailment steps:

3. 1. together with 2.2a entails that ai(x)⇒ bla(x) for every x ∈ {S,N, J},
4. thus ¬bla(S) ∧ ¬bla(J) by 2.2c and 2.2b and

5. so ¬ai(S) ∧ ¬ai(J) by 3. and 4.

6. With 2. the latter entails ai(N).

Michael Kohlhase: Artificial Intelligence 1 333 2025-02-06

The example shows that puzzles like that are a bit difficult to solve without writing things down.
But if we formalize the situation in PL0, then we can solve the puzzle quite handily with inference.
Note that we have been a bit generous with the names of propositional variables; e.g. bla(x),
where x ∈ {S,N, J}, to keep the representation small enough to fit on the slide. This does not
hinder the method in any way.

10.3 Inference in Propositional Logics
We have now defined syntax (the language agents can use to represent knowledge) and its

semantics (how expressions of this language relate to agent’s environment). Theoretically, an
agent could use the entailment relation to derive new knowledge from percepts and the existing
state representation – in the MAKE−PERCEPT−SENTENCE and MAKE−ACTION−SENTENCE
subroutines below. But as we have seen in above, this is very tedious. A much better way would
be to have a set of rules that directly act on the state representations.
Let us now look into what kind of agent we would need to be successful in the Wumpus world:
it seems reasonable that we should build on a model-based agent and specialize it to structured
state representations and inference.

Agents that Think Rationally

� Problem: But how can we build an agent that can do the necessary inferences?

� Idea: Think Before You Act!
“Thinking” = Inference about knowledge represented using logic.

� Definition 10.3.1. A logic-based agent is a model-based agent that represents the
world state as a logical formula and uses inference to think about the state of the
environment and its own actions. Agent schema:

10.3. INFERENCE IN PROPOSITIONAL LOGICS 17Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For

The formal language of the logical system acts as a world description language.
Agent function:

function KB−AGENT (percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time
TELL(KB, MAKE−PERCEPT−SENTENCE(percept,t))
action := ASK(KB, MAKE−ACTION−QUERY(t))
TELL(KB, MAKE−ACTION−SENTENCE(action,t))
t := t+1

return action

Its agent function maintains a knowledge base about the environment, which is
updated with percept descriptions (formalizations of the percepts) and action de-
scriptions. The next action is the result of a suitable inference-based query to the
knowledge base.

Michael Kohlhase: Artificial Intelligence 1 334 2025-02-06

A Simple Formal System: Prop. Logic with Hilbert-Calculus

� Formulae: Built from propositional variables: P ,Q,R. . . and implication: ⇒

� Semantics: Iφ(P) = φ(P) and Iφ(A⇒B) = T, iff Iφ(A) = F or Iφ(B) = T.

� Definition 10.3.2. The Hilbert calculus H0 consists of the inference rules:

P ⇒Q⇒ P
K

(P ⇒Q⇒R)⇒ (P ⇒Q)⇒ P ⇒R
S

A⇒B A

B
MP

A

[B/X](A)
Subst

� Example 10.3.3. A H0 theorem C⇒C and its proof

Proof: We show that ∅⊢H0C⇒C

1. (C⇒ (C⇒C)⇒C)⇒ (C⇒C⇒C)⇒C⇒C (S with
[C/P], [C⇒C/Q], [C/R])

2. C⇒ (C⇒C)⇒C (K with [C/P], [C⇒C/Q])
3. (C⇒C⇒C)⇒C⇒C (MP on P.1 and P.2)
4. C⇒C⇒C (K with [C/P], [C/Q])
5. C⇒C (MP on P.3 and P.4)

18 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

Michael Kohlhase: Artificial Intelligence 1 335 2025-02-06

This is indeed a very simple formal system, but it has all the required parts:

• A formal language: expressions built up from variables and implications.

• A semantics: given by the obvious interpretation function

• A calculus: given by the two axioms and the two inference rules.

The calculus gives us a set of rules with which we can derive new formulae from old ones. The
axioms are very simple rules, they allow us to derive these two formulae in any situation. The
proper inference rules are slightly more complicated: we read the formulae above the horizontal
line as assumptions and the (single) formula below as the conclusion. An inference rule allows us
to derive the conclusion, if we have already derived the assumptions.
Now, we can use these inference rules to perform a proof – a sequence of formulae that can be
derived from each other. The representation of the proof in the slide is slightly compactified to fit
onto the slide: We will make it more explicit here. We first start out by deriving the formula

(P ⇒Q⇒R)⇒ (P ⇒Q)⇒ P ⇒R (10.1)

which we can always do, since we have an axiom for this formula, then we apply the rule Subst,
where A is this result, B is C, and X is the variable P to obtain

(C⇒Q⇒R)⇒ (C⇒Q)⇒C⇒R (10.2)

Next we apply the rule Subst to this where B is C⇒C and X is the variable Q this time to obtain

(C⇒ (C⇒C)⇒R)⇒ (C⇒C⇒C)⇒C⇒R (10.3)

And again, we apply the rule Subst this time, B is C and X is the variable R yielding the first
formula in our proof on the slide. To conserve space, we have combined these three steps into one
in the slide. The next steps are done in exactly the same way.
In general, formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the derivation
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?

Soundness and Completeness

� Definition 10.3.4. Let L := ⟨L,K,⊨⟩ be a logical system, then we call a calculus
C for L,

� sound (or correct), iff H ⊨ A, whenever H⊢CA, and

� complete, iff H⊢CA, whenever H ⊨ A.

� Goal: Find calculi C, such that ⊢CA iff ⊨A (provability and validity coincide)

� To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

�

10.4. PROPOSITIONAL NATURAL DEDUCTION CALCULUS 19

Michael Kohlhase: Artificial Intelligence 1 336 2025-02-06

Ideally, both relations would be the same, then the calculus would allow us to infer all facts that
can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and we
will find all possible ones. Of course, the logics we have studied so far are very simple, and not
able to express interesting facts about the world, but we will study them as a simple example of
the fundamental problem of computer science: How do the formal representations correlate with
the real world.
Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human). Such
derivations are proofs.
In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The Miracle of Logic

� Purely formal derivations are true in the real world!

Michael Kohlhase: Artificial Intelligence 1 337 2025-02-06

If a formal system is correct, the conclusions one can prove are true (= hold in the real world)
whenever the premises are true. This is a miraculous fact (think about it!)

10.4 Propositional Natural Deduction Calculus
Video Nuggets covering this section can be found at https://fau.tv/clip/id/22520 and
https://fau.tv/clip/id/22525.

https://fau.tv/clip/id/22520
https://fau.tv/clip/id/22525

20 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

We will now introduce the “natural deduction” calculus for propositional logic. The calculus
was created to model the natural mode of reasoning e.g. in everyday mathematical practice. In
particular, it was intended as a counter-approach to the well-known Hilbert style calculi, which
were mainly used as theoretical devices for studying reasoning in principle, not for modeling
particular reasoning styles. We will introduce natural deduction in two styles/notations,
both were invented by Gerhard Gentzen in the 1930’s and are very much related. The Natural
Deduction style (ND) uses local hypotheses in proofs for hypothetical reasoning, while the “sequent
style” is a rationalized version and extension of the ND calculus that makes certain meta-proofs
simpler to push through by making the context of local hypotheses explicit in the notation. The
sequent notation also constitutes a more adequate data struture for implementations, and user
interfaces.
Rather than using a minimal set of inference rules, we introduce a natural deduction calculus that
provides two/three inference rules for every logical constant, one “introduction rule” (an inference
rule that derives a formula with that logical constant at the head) and one “elimination rule” (an
inference rule that acts on a formula with this head and derives a set of subformulae).

Calculi: Natural Deduction (ND0; Gentzen [Gen34])

� Idea: ND0 tries to mimic human argumentation for theorem proving.

� Definition 10.4.1. The propositional natural deduction calculus ND0 has inference
rules for the introduction and elimination of connectives:

Introduction Elimination Axiom
A B

A ∧B
ND0∧I

A ∧B

A
ND0∧El

A ∧B

B
ND0∧Er

A ∨ ¬A ND0TND

[A]1

B

A⇒B
ND0 ⇒I1 A⇒B A

B
ND0 ⇒E

ND0 ⇒Ia proves A⇒B by exhibiting a ND0 derivation D (depicted by the double
horizontal lines) of B from the local hypothesis A; ND0 ⇒Ia then discharges (get
rid of A, which can only be used in D) the local hypothesis and concludes A⇒B.
This mode of reasoning is called hypothetical reasoning.

� Definition 10.4.2. Given a set H ⊆ wff0(V0) of assumptions and a conclusion C,
we write H⊢ND0

C, iff there is a ND0 derivation tree whose leaves are in H.

� Note: ND0TND is used only in classical logic. (otherwise
constructive/intuitionistic)

Michael Kohlhase: Artificial Intelligence 1 338 2025-02-06

The most characteristic rule in the natural deduction calculus is the ND0 ⇒Ia rule and the hy-
pothetical reasoning it introduce. ND0 ⇒Ia corresponds to the mathematical way of proving an
implication A⇒B: We assume that A is true and show B from this local hypothesis. When we
can do this we discharge the assumption and conclude A⇒B.

Note that the local hypothesis is discharged by the rule ND0 ⇒Ia, i.e. it cannot be used in any
other part of the proof. As the ND0 ⇒Ia rules may be nested, we decorate both the rule and the
corresponding local hypothesis with a marker (here the number 1).
Let us now consider an example of hypothetical reasoning in action.

10.4. PROPOSITIONAL NATURAL DEDUCTION CALCULUS 21

Natural Deduction: Examples

� Example 10.4.3 (Inference with Local Hypotheses).

[A ∧B]1

ND0∧Er
B

[A ∧B]1

ND0∧El
A

ND0∧I
B ∧A

ND0 ⇒I1
A ∧B⇒B ∧A

[A]
1

[B]
2

A ND0 ⇒I2
B⇒A

ND0 ⇒I1
A⇒B⇒A

Michael Kohlhase: Artificial Intelligence 1 339 2025-02-06

Here we see hypothetical reasoning with local local hypotheses at work. In the left example, we
assume the formula A∧B and can use it in the proof until it is discharged by the rule ND0∧El on
the bottom – therefore we decorate the hypothesis and the rule by corresponding numbers (here
the label “1”). Note the local assumption A ∧ B is local to the proof fragment delineated by the
corresponding (local) hypothesis and the discharging rule, i.e. even if this derivation is only a
fragment of a larger proof, then we cannot use its (local) hypothesis anywhere else.

Note also that we can use as many copies of the local hypothesis as we need; they are all
discharged at the same time.
In the right example we see that local hypotheses can be nested as long as they are kept local.
In particular, we may not use the hypothesis B after the ND0 ⇒I2, e.g. to continue with a
ND0 ⇒E.
One of the nice things about the natural deduction calculus is that the deduction theorem is
almost trivial to prove. In a sense, the triviality of the deduction theorem is the central idea of
the calculus and the feature that makes it so natural.

A Deduction Theorem for ND0

� Theorem 10.4.4. H,A⊢ND0
B, iff H⊢ND0

A⇒B.

� Proof: We show the two directions separately

1. If H,A⊢ND0B, then H⊢ND0A⇒B by ND0 ⇒I , and
2. If H⊢ND0

A ⇒ B, then H,A⊢ND0
A ⇒ B by weakening and H,A⊢ND0

B by
ND0 ⇒E.

Michael Kohlhase: Artificial Intelligence 1 340 2025-02-06

Another characteristic of the natural deduction calculus is that it has inference rules (introduction
and elimination rules) for all connectives. So we extend the set of rules from ?? for disjunction,
negation and falsity.

More Rules for Natural Deduction

� Note: ND0 does not try to be minimal, but comfortable to work in!

� Definition 10.4.5. ND0 has the following additional inference rules for the remain-

22 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

ing connectives.

A

A ∨B
ND0∨Il

B

A ∨B
ND0∨Ir

A ∨B

[A]
1

...
C

[B]
1

...
C

C
ND0∨E1

[A]
1

...
C

[A]
1

...
¬C

¬A ND0¬I1
¬¬A
A

ND0¬E

¬A A

F
ND0FI

F

A
ND0FE

� Again: ND0¬E is used only in classical logic (otherwise
constructive/intuitionistic)

Michael Kohlhase: Artificial Intelligence 1 341 2025-02-06

Natural Deduction in Sequent Calculus Formulation

� Idea: Represent hypotheses explicitly. (lift calculus to judgments)

� Definition 10.4.6. A judgment is a meta-statement about the provability of propo-
sitions.

� Definition 10.4.7. A sequent is a judgment of the form H⊢A about the provability
of the formula A from the set H of hypotheses. We write ⊢A for ∅⊢A.

� Idea: Reformulate ND0 inference rules so that they act on sequents.

� Example 10.4.8.We give the sequent style version of ??:

ND0
⊢Ax

A ∧B⊢A ∧B
ND0

⊢ ∧ Er
A ∧B⊢B

ND0
⊢Ax

A ∧B⊢A ∧B
ND0

⊢ ∧ El
A ∧B⊢A

ND0
⊢ ∧ I

A ∧B⊢B ∧A
ND0

⊢ ⇒I
⊢A ∧B⇒B ∧A

ND0
⊢Ax

A,B⊢A
ND0

⊢ ⇒I
A⊢B⇒A

ND0
⊢ ⇒I

⊢A⇒B⇒A

� Note: Even though the antecedent of a sequent is written like a sequences, it is
actually a set. In particular, we can permute and duplicate members at will.

Michael Kohlhase: Artificial Intelligence 1 342 2025-02-06

Sequent-Style Rules for Natural Deduction

10.4. PROPOSITIONAL NATURAL DEDUCTION CALCULUS 23

� Definition 10.4.9. The following inference rules make up the propositional sequent
style natural deduction calculus ND0

⊢:

Γ,A⊢A ND0
⊢Ax

Γ⊢B
Γ,A⊢B ND0

⊢weaken
Γ⊢A ∨ ¬A ND0

⊢TND

Γ⊢A Γ⊢B
Γ⊢A ∧B

ND0
⊢ ∧ I Γ⊢A ∧B

Γ⊢A ND0
⊢ ∧ El

Γ⊢A ∧B

Γ⊢B ND0
⊢ ∧ Er

Γ⊢A
Γ⊢A ∨B

ND0
⊢ ∨Il

Γ⊢B
Γ⊢A ∨B

ND0
⊢ ∨Ir

Γ⊢A ∨B Γ,A⊢C Γ,B⊢C
Γ⊢C ND0

⊢ ∨E

Γ,A⊢B
Γ⊢A⇒B

ND0
⊢ ⇒I Γ⊢A⇒B Γ⊢A

Γ⊢B ND0
⊢ ⇒E

Γ,A⊢F
Γ⊢¬A ND0

⊢¬I
Γ⊢¬¬A
Γ⊢A ND0

⊢¬E

ND0
⊢FI

Γ⊢¬A Γ⊢A
Γ⊢F ND0

⊢FE
Γ⊢F
Γ⊢A

Michael Kohlhase: Artificial Intelligence 1 343 2025-02-06

Linearized Notation for (Sequent-Style) ND Proofs

� Definition 10.4.10. Linearized notation for sequent-style ND proofs
1. H1 ⊢ A1 (J 1)
2. H2 ⊢ A2 (J 2)
3. H3 ⊢ A3 (J 31, 2)

corresponds to
H1⊢A1 H2⊢A2

H3⊢A3
R

� Example 10.4.11. We show a linearized version of the ND0 examples ??

ND0
⊢Ax

A ∧B⊢A ∧B
ND0

⊢ ∧ Er
A ∧B⊢B

ND0
⊢Ax

A ∧B⊢A ∧B
ND0

⊢ ∧ El
A ∧B⊢A

ND0
⊢ ∧ I

A ∧B⊢B ∧A
ND0

⊢ ⇒I
⊢A ∧B⇒B ∧A

ND0
⊢Ax

A,B⊢A
ND0

⊢ ⇒I
A⊢B⇒A

ND0
⊢ ⇒I

⊢A⇒B⇒A

hyp ⊢ formula NDjust
1. 1 ⊢ A ∧B ND0

⊢Ax
2. 1 ⊢ B ND0

⊢ ∧ Er 1
3. 1 ⊢ A ND0

⊢ ∧ El 1
4. 1 ⊢ B ∧A ND0

⊢ ∧ I 2, 3
5. ⊢ A ∧B⇒B ∧A ND0

⊢ ⇒I 4

hyp ⊢ formula NDjust
1. 1 ⊢ A ND0

⊢Ax
2. 2 ⊢ B ND0

⊢Ax
3. 1, 2 ⊢ A ND0

⊢weaken 1, 2
4. 1 ⊢ B⇒A ND0

⊢ ⇒I 3
5. ⊢ A⇒B⇒A ND0

⊢ ⇒I 4

Michael Kohlhase: Artificial Intelligence 1 344 2025-02-06

Each row in the table represents one inference step in the proof. It consists of line number (for
referencing), a formula for the statement, a justification via a ND inference rule (and the rows this
one is derived from), and finally a sequence of row numbers of proof steps that are local hypotheses
in effect for the current row.

24 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

10.5 Predicate Logic Without Quantifiers
In the hair-color example we have seen that we are able to model complex situations in PL0.

The trick of using variables with fancy names like bla(N) is a bit dubious, and we can already
imagine that it will be difficult to support programmatically unless we make names like bla(N)
into first-class citizens i.e. expressions of the logic language themselves.

Issues with Propositional Logic

� Awkward to write for humans: E.g., to model the Wumpus world we had to
make a copy of the rules for every cell . . .

R1 := ¬S1,1 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,1

R2 := ¬S2,1 ⇒¬W 1,1 ∧ ¬W 2,1 ∧ ¬W 2,2 ∧ ¬W 3,1

R3 := ¬S1,2 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,2 ∧ ¬W 1,3

Compared to

Cell adjacent to Wumpus: Stench (else: None)

that is not a very nice description language . . .

� Can we design a more human-like logic?: Yep!

� Idea: Introduce explict representations for

� individuals, e.g. the wumpus, the gold, numbers, . . .

� functions on individuals, e.g. the cell at i, j, . . .

� relations between them, e.g. being in a cell, being adjacent, . . .

This is essentially the same as PL0, so we can reuse the calculi. (up next)

Michael Kohlhase: Artificial Intelligence 1 345 2025-02-06

Individuals and their Properties/Relationships

� Observation: We want to talk about individuals like Stefan, Nicole, and Jochen
and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

� Idea: Re-use PL0, but replace propositional variables with something more expres-
sive! (instead of fancy variable name
trick)

� Definition 10.5.1. A first-order signature ⟨Σf ,Σp⟩ consists of

� Σf :=
⋃
k∈NΣ

f
k of function constants, where members of Σfk denote k-ary

functions on individuals,

� Σp :=
⋃
k∈NΣ

p
k of predicate constants, where members of Σpk denote k-ary

relations among individuals,

where Σfk and Σpk are pairwise disjoint, countable sets of symbols for each k ∈ N.

A 0-ary function constant refers to a single individual, therefore we call it a individual
constant.

10.5. PREDICATE LOGIC WITHOUT QUANTIFIERS 25

Michael Kohlhase: Artificial Intelligence 1 346 2025-02-06

A Grammar for PLnq

� Definition 10.5.2. The formulae of PLnq are given by the following grammar

function constants fk ∈ Σfk
predicate constants pk ∈ Σpk
terms t ::= f0 individualconstant

| fk(t1, . . ., tk) application
formulae A ::= pk(t1, . . ., tk) atomic

| ¬A negation
| A1 ∧A2 conjunction

Michael Kohlhase: Artificial Intelligence 1 347 2025-02-06

PLnq Semantics

� Definition 10.5.3. Domains D0 = {T,F} of truth values and Dι ̸= ∅ of individuals.

� Definition 10.5.4. Interpretation I assigns values to constants, e.g.

� I(¬) : D0 →D0;T 7→ F;F 7→ T and I(∧) = . . . (as in PL0)

� I : Σf0 →Dι (interpret individual constants as individuals)

� I : Σfk →Dιk →Dι (interpret function constants as functions)

� I : Σpk →P(Dιk) (interpret predicate constants as relations)

� Definition 10.5.5. The value function I assigns values to formulae: (recursively)

� I(f(A1, . . .,Ak)) := I(f)(I(A1), . . . , I(Ak))

� I(p(A1, . . .,Ak)) := T, iff ⟨I(A1), . . . , I(Ak)⟩ ∈ I(p)
� I(¬A) = I(¬)(I(A)) and I(A ∧B) = I(∧)(I(A), I(G)) (just as in PL0)

� Definition 10.5.6. Model: M = ⟨Dι, I⟩ varies in Dι and I.

� Theorem 10.5.7. PLnq is isomorphic to PL0 (interpret atoms as prop. variables)

Michael Kohlhase: Artificial Intelligence 1 348 2025-02-06

All of the definitions above are quite abstract, we now look at them again using a very concrete –
if somewhat contrived – example: The relevant parts are a universe D with four elements, and an
interpretation that maps the signature into individuals, functions, and predicates over D, which
are given as concrete sets.

A Model for PLnq

� Example 10.5.8. Let L := {a, b, c, d, e, P ,Q,R, S}, we set the universe D :=
{♣,♠,♡,♢}, and specify the interpretation function I by setting

� a 7→ ♣, b 7→ ♠, c 7→ ♡, d 7→ ♢, and e 7→ ♢ for constants,

26 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

� P 7→ {♣,♠} and Q 7→ {♠,♢}, for unary predicate constants.

� R 7→{⟨♡,♢⟩, ⟨♢,♡⟩}, and S 7→{⟨♢,♠⟩, ⟨♠,♣⟩} for binary predicate constants.

� Example 10.5.9 (Computing Meaning in this Model).

� I(R(a, b) ∧ P (c)) = T, iff

� I(R(a, b)) = T and I(P (c)) = T, iff

� ⟨I(a), I(b)⟩ ∈ I(R) and I(c) ∈ I(P), iff

� ⟨♣,♠⟩ ∈ {⟨♡,♢⟩, ⟨♢,♡⟩} and ♡ ∈ {♣,♠}

So, I(R(a, b) ∧ P (c)) = F.

Michael Kohlhase: Artificial Intelligence 1 349 2025-02-06

The example above also shows how we can compute of meaning by in a concrete model: we just
follow the evaluation rules to the letter.
We now come to the central technical result about PLnq: it is essentially the same as propositional
logic (PL0). We say that the two logic are isomorphic. Technically, this means that the formulae
of PLnq can be translated to PL0 and there is a corresponding model translation from the models
of PL0 to those of PLnq such that the respective notions of evaluation are assignped to each other.

PLnq and PL0 are Isomorphic

� Observation: For every choice of Σ of signature, the set AΣ of atomic PLnq

formulae is countable, so there is a VΣ ⊆ V0 and a bijection θΣ : AΣ →VΣ.

θΣ can be extended to formulae as PLnq and PL0 share connectives.

� Lemma 10.5.10. For every model M = ⟨Dι, I⟩, there is a variable assignment
φM, such that IφM(A) = I(A).

� Proof sketch: We just define φM(X) := I(θ−1
Σ (X))

� Lemma 10.5.11. For every variable assignment ψ : VΣ →{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

� Proof sketch: see next slide

� Corollary 10.5.12. PLnq is isomorphic to PL0, i.e. the following diagram commutes:

PLnq(Σ) PL0(AΣ)
θΣ

⟨Dψ, Iψ⟩ VΣ →{T,F}
ψ 7→ Mψ

Iψ() IφM()

� Note: This constellation with a language isomorphism and a corresponding model
isomorphism (in converse direction) is typical for a logic isomorphism.

Michael Kohlhase: Artificial Intelligence 1 350 2025-02-06

The practical upshot of the commutative diagram from ?? is that if we have a way of computing
evaluation (or entailment for that matter) in PL0, then we can “borrow” it for PLnq by composing
it with the language and model translations. In other words, we can reuse calculi and automated

10.6. CONCLUSION 27

theorem provers from PL0 for PLnq.
But we still have to provide the proof for ??, which we do now.

Valuation and Satisfiability

� Lemma 10.5.13. For every variable assignment ψ : VΣ →{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

� Proof: We construct Mψ = ⟨Dψ, Iψ⟩ and show that it works as desired.

1. Let Dψ be the set of PLnq terms over Σ, and
� Iψ(f) : Dιk →Dψk ; ⟨A1, . . .,Ak⟩ 7→ f(A1, . . .,Ak) for f ∈ Σfk
� Iψ(p) := {⟨A1, . . .,Ak⟩ |ψ(θ−1

ψ p(A1, . . .,Ak)) = T} for p ∈ Σp.
2. We show Iψ(A) = A for terms A by induction on A

2.1. If A = c, then Iψ(A) = Iψ(c) = c = A

2.2. If A = f(A1, . . . ,An) then
Iψ(A) = Iψ(f)(I(A1), . . . , I(An)) = Iψ(f)(A1, . . .,Ak) = A.

3. For a PLnq formula A we show that Iψ(A) = Iψ(A) by induction on A.
3.1. If A = p(A1, . . .,Ak), then Iψ(A) = Iψ(p)(I(A1), . . . , I(An)) = T, iff

⟨A1, . . .,Ak⟩ ∈ Iψ(p), iff ψ(θ−1
ψ A) = T, so Iψ(A) = Iψ(A) as desired.

3.2. If A = ¬B, then Iψ(A) = T, iff Iψ(B) = F, iff Iψ(B) = Iψ(B), iff
Iψ(A) = Iψ(A).

3.3. If A = B ∧C then we argue similarly
4. Hence Iψ(A) = Iψ(A) for all PLnq formulae and we have concluded the proof.

Michael Kohlhase: Artificial Intelligence 1 351 2025-02-06

10.6 Conclusion
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25027.

Summary

� Sometimes, it pays off to think before acting.

� In AI, “thinking” is implemented in terms of reasoning to deduce new knowledge
from a knowledge base represented in a suitable logic.

� Logic prescribes a syntax for formulas, as well as a semantics prescribing which
interpretations satisfy them. A entails B if all interpretations that satisfy A also
satisfy B. Deduction is the process of deriving new entailed formulae.

� Propositional logic formulae are built from atomic propositions, with the connectives
and, or, not.

Michael Kohlhase: Artificial Intelligence 1 352 2025-02-06

Issues with Propositional Logic

� Time: For things that change (e.g., Wumpus moving according to certain rules),

https://fau.tv/clip/id/25027

28 CHAPTER 10. PROPOSITIONAL LOGIC & REASONING, PART I: PRINCIPLES

we need time-indexed propositions (like, St=7
2,1) to represent validity over time ;

further expansion of the rules.

� Can we design a more human-like logic?: Yep

� Predicate logic: quantification of variables ranging over individuals. (cf. ??
and ??)

� . . . and a whole zoo of logics much more powerful still.

� Note: In applications, propositional CNF encodings are generated by computer
programs. This mitigates (but does not remove!) the inconveniences of propo-
sitional modeling.

Michael Kohlhase: Artificial Intelligence 1 353 2025-02-06

Suggested Reading:

• Chapter 7: Logical Agents, Sections 7.1 – 7.5 [RN09].

– Sections 7.1 and 7.2 roughly correspond to my “Introduction”, Section 7.3 roughly corresponds
to my “Logic (in AI)”, Section 7.4 roughly corresponds to my “Propositional Logic”, Section
7.5 roughly corresponds to my “Resolution” and “Killing a Wumpus”.

– Overall, the content is quite similar. I have tried to add some additional clarifying illustra-
tions. RN gives many complementary explanations, nice as additional background reading.

– I would note that RN’s presentation of resolution seems a bit awkward, and Section 7.5 con-
tains some additional material that is imho not interesting (alternate inference rules, forward
and backward chaining). Horn clauses and unit resolution (also in Section 7.5), on the other
hand, are quite relevant.

Chapter 11

Formal Systems: Syntax, Semantics,
Entailment, and Derivation in
General

We will now take a more abstract view and introduce the necessary prerequisites of abstract rule
systems. We will also take the opportunity to discuss the quality criteria for calculi.

Recap: General Aspects of Propositional Logic

� There are many ways to define Propositional Logic:

� We chose ∧ and ¬ as primitive, and many others as defined.

� We could have used ∨ and ¬ just as well.

� We could even have used only one connective e.g. negated conjunction ↑ or
disjunction ↓ and defined ∧, ∨, and ¬ via ↑ and ↓ respectively.

↑ ⊤ ⊥
⊤ F T
⊥ T T

↓ ⊤ ⊥
⊤ F F
⊥ F T

¬a a ↑ a a ↓ a
ab a ↑ b ↑ a ↑ b a ↓ ab ↓ b
ab a ↑ a ↑ b ↑ b a ↓ b ↓ a ↓ b

� Observation: The set wff0(V0) of well-formed propositional formulae is a formal
language over the alphabet given by V0, the connectives, and brackets.

� Recall: We are mostly interested in

� satisfiability i.e. whether M ⊨ A, and

� entailment i.e whether A ⊨ B.

� Observation: In particular, the inductive/compositional nature of wff0(V0) and
Iφ : wff0(V0)→D0 are secondary.

� Idea: Concentrate on language, models (M, φ), and satisfiability.

Michael Kohlhase: Artificial Intelligence 1 354 2025-02-06

The notion of a logical system is at the basis of the field of logic. In its most abstract form, a logical
system consists of a formal language, a class of models, and a satisfaction relation between models
and expressions of the formal language. The satisfaction relation tells us when an expression is
deemed true in this model.

29

30 CHAPTER 11. FORMAL SYSTEMS

Logical Systems

� Definition 11.0.1. A logical system (or simply a logic) is a triple L := ⟨L,K,⊨⟩,
where the language L is a formal language, the model class K is a set, and ⊨ ⊆ K×L.
Members of L are called formulae of L, members of K models for L, and ⊨ the
satisfaction relation.

� Example 11.0.2 (Propositional Logic). ⟨wff(ΣPL0 ,VPL0),Ko, |=⟩ is a logical
system, if we define Ko := V0 ⇀ D0 (the set of variable assignments) and φ |= A
iff Iφ(A) = T.

� Definition 11.0.3. Let ⟨L,K,⊨⟩ be a logical system, M ∈ K a model and A ∈ L
a formula. Then we say that A is

� satisfied by M iff M ⊨ A.

� satisfiable iff A is satisfied by some model.

� unsatisfiable iff A is not satisfiable.

� falsified by M iff M ̸⊨ A.

� valid or unfalsifiable (write ⊨A) iff A is satisfied by every model.

� invalid or falsifiable (write ̸⊨A) iff A is not valid.

Michael Kohlhase: Artificial Intelligence 1 355 2025-02-06

Let us now turn to the syntactical counterpart of the entailment relation: derivability in a cal-
culus. Again, we take care to define the concepts at the general level of logical systems.
The intuition of a calculus is that it provides a set of syntactic rules that allow to reason by
considering the form of propositions alone. Such rules are called inference rules, and they can be
strung together to derivations — which can alternatively be viewed either as sequences of formulae
where all formulae are justified by prior formulae or as trees of inference rule applications. But we
can also define a calculus in the more general setting of logical systems as an arbitrary relation on
formulae with some general properties. That allows us to abstract away from the homomorphic
setup of logics and calculi and concentrate on the basics.

Derivation Relations and Inference Rules

� Definition 11.0.4. Let L be a formal language, then we call a relation ⊢ ⊆
P(L)× L a derivation relation for L, if

� H ⊢ A, if A ∈ H (⊢ is proof reflexive),

� H ⊢ A and (H′ ∪ {A}) ⊢ B imply (H ∪H′) ⊢ B (⊢ is proof transitive),

� H ⊢ A and H ⊆ H′ imply H′ ⊢ A (⊢ is monotonic or admits weakening).

� Definition 11.0.5. Let L be a formal language, then an inference rule over L is a
decidable n+ 1 ary relation on L. Inference rules are traditionally written as

A1 . . . An

C
N

where A1, . . .,An and C are schemata for words in L and N is a name. The Ai

are called assumptions of N , and C is called its conclusion.

31

Any n+ 1-tuple
a1 . . . an

c

in N is called an application of N and we say that we apply N to a set M of words
with a1, . . .,an ∈M to obtain c.

� Definition 11.0.6. An inference rule without assumptions is called an axiom.

� Definition 11.0.7. A calculus (or inference system) is a formal language L equipped
with a set C of inference rules over L.

Michael Kohlhase: Artificial Intelligence 1 356 2025-02-06

With formula schemata we mean representations of sets of formulae, we use boldface uppercase
letters as (meta)-variables for formulae, for instance the formula schema A⇒B represents the set
of formulae whose head is ⇒.

Derivations

� Definition 11.0.8.Let L := ⟨L,K,⊨⟩ be a logical system and C a calculus for L,
then a C-derivation of a formula C ∈ L from a set H ⊆ L of hypotheses (write
H⊢CC) is a sequence A1, . . .,Am of L-formulae, such that

� Am = C, (derivation culminates in C)

� for all 1 ≤ i ≤ m, either Ai ∈ H, or (hypothesis)

� there is an inference rule
Al1 . . . Alk

Ai
in C with lj < i for all j ≤ k. (rule

application)

We can also see a derivation as a derivation tree, where the Alj are the children of
the node Ai.

� Example 11.0.9.

In the propositional Hilbert calculus H0 we have the
derivation P⊢H0Q ⇒ P : the sequence is P ⇒ Q ⇒
P , P ,Q⇒ P and the corresponding tree on the right.

K
P ⇒Q⇒ P P

MP
Q⇒ P

Michael Kohlhase: Artificial Intelligence 1 357 2025-02-06

Inference rules are relations on formulae represented by formula schemata (where boldface, up-
percase letters are used as metavariables for formulae). For instance, in ?? the inference rule
A⇒B A

B
was applied in a situation, where the metavariables A and B were instantiated by the

formulae P and Q⇒ P .
As axioms do not have assumptions, they can be added to a derivation at any time. This is just
what we did with the axioms in ??.

Formal Systems

� Let ⟨L,K,⊨⟩ be a logical system and C a calculus, then ⊢C is a derivation relation
and thus ⟨L,K,⊨,⊢C⟩ a derivation system.

� Therefore we will sometimes also call ⟨L, C ,K,⊨⟩ a formal system, iff L :=

32 CHAPTER 11. FORMAL SYSTEMS

⟨L,K,⊨⟩ is a logical system, and C a calculus for L.

� Definition 11.0.10. Let C be a calculus, then a C-derivation ∅⊢CA is called a
proof of A and if one exists (write ⊢CA) then A is called a C-theorem.

Definition 11.0.11. The act of finding a proof for A is called proving A.

� Definition 11.0.12. An inference rule I is called admissible in a calculus C, if the
extension of C by I does not yield new theorems.

� Definition 11.0.13. An inference rule

A1 . . . An

C

is called derivable (or a derived rule) in a calculus C, if there is a C-derivation
A1, . . .,An⊢CC.

� Observation 11.0.14. Derivable inference rules are admissible, but not the other
way around.

Michael Kohlhase: Artificial Intelligence 1 358 2025-02-06

The notion of a formal system encapsulates the most general way we can conceptualize a logical
system with a calculus, i.e. a system in which we can do “formal reasoning”.

Chapter 12

Machine-Oriented Calculi for
Propositional Logic

A Video Nugget covering this chapter can be found at https://fau.tv/clip/id/22531.

12.1 Test Calculi

Automated Deduction as an Agent Inference Procedure

� Recall: Our knowledge of the cave entails a definite Wumpus position!(slide 316)

� Problem: That was human reasoning, can we build an agent function that does
this?

� Answer: As for constraint networks, we use inference, here resolution/tableaux.

Michael Kohlhase: Artificial Intelligence 1 359 2025-02-06

The following theorem is simple, but will be crucial later on.

Unsatisfiability Theorem

� Theorem 12.1.1 (Unsatisfiability Theorem). H ⊨ A iff H ∪ {¬A} is unsatisfi-
able.

� Proof: We prove both directions separately

1. “⇒”: Say H ⊨ A
1.1. For any φ with φ|=H we have φ|=A and thus φ̸|=(¬A).

2. “⇐”: Say H ∪ {¬A} is unsatisfiable.
2.1. For any φ with φ|=H we have φ̸|=(¬A) and thus φ|=A.

� Observation 12.1.2. Entailment can be tested via satisfiability.

Michael Kohlhase: Artificial Intelligence 1 360 2025-02-06

33

https://fau.tv/clip/id/22531

34 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

Test Calculi: A Paradigm for Automating Inference

� Definition 12.1.3. Given a formal system ⟨L, C ,K,⊨⟩, the task of theorem proving
consists in determining whether H⊢CC for a conjecture C ∈ L and hypotheses
H ⊆ L.

� Definition 12.1.4. Automated theorem proving (ATP) is the automation of theo-
rem proving

� Idea: A set H of hypotheses and a conjecture A induce a search problem Π
H|=A
C :=

⟨S ,A, T , I ,G⟩, where the states S are sets of formulae, the actions A are the
inference rules from C, the initial state I = H, and the goal states are those with
A ∈ S.

� Problem: ATP as a search problem does not admit good heuristics, since these
need to take the conjecture A into account.

� Idea: Turn the search around – using the unsatisfiability theorem (??).

� Definition 12.1.5. For a given conjecture A and hypotheses H a test calculus T
tries to derive a refutation H, A⊢T ⊥ instead of H⊢A, where A is unsatisfiable iff
A is valid and ⊥, an “obviously” unsatisfiable formula.

� Observation: A test calculus C induces a search problem where the initial state is
H∪{¬A} and S ∈ S is a goal state iff ⊥ ∈ S.(proximity of ⊥ easier for heuristics)

� Searching for ⊥ admits simple heuristics, e.g. size reduction. (⊥ minimal)

Michael Kohlhase: Artificial Intelligence 1 361 2025-02-06

12.1.1 Normal Forms
Before we can start, we will need to recap some nomenclature on formulae.

Recap: Atoms and Literals

� Definition 12.1.6. A formula is called atomic (or an atom) if it does not contain
logical constants, else it is called complex.

� Definition 12.1.7. Let ⟨L,K,⊨⟩ be a logical system and A ∈ L, then we call a
pair Aα of a formula and a truth value α ∈ {T,F} a labeled formula. For a set Φ
of formulae we use Φα:={Aα |A ∈ Φ}.
We call a labeled formula AT positive and AF negative.

Definition 12.1.8. Let ⟨L,K,⊨⟩ be a logical system and Aα a labeled formula.
Then we say that M ∈ K satisfies Aα (written M|=A), iff α = T and M ⊨ A or
α = F and M ⊭ A.

� Definition 12.1.9. Let ⟨L,K,⊨⟩ be a logical system, A ∈ L atomic, and α ∈
{T,F}, then we call a Aα a literal.

� Intuition: To satisfy a formula, we make it “true”. To satisfy a labeled formula
Aα, it must have the truth value α.

12.2. ANALYTICAL TABLEAUX 35

� Definition 12.1.10. For a literal Aα, we call the literal Aβ with α ̸= β the
opposite literal (or partner literal).

Michael Kohlhase: Artificial Intelligence 1 362 2025-02-06

The idea about literals is that they are atoms (the simplest formulae) that carry around their
intended truth value.

Alternative Definition: Literals

� Note: Literals are often defined without recurring to labeled formulae:

� Definition 12.1.11. A literal is an atom A (positive literal) or negated atom ¬A
(negative literal). A and ¬A are opposite literals.

� Note: This notion of literal is equivalent to the labeled formulae-notion of literal,
but does not generalize as well to logics with more than two truth values.

Michael Kohlhase: Artificial Intelligence 1 363 2025-02-06

Normal Forms

� There are two quintessential normal forms for propositional formulae: (there are
others as well)

� Definition 12.1.12. A formula is in conjunctive normal form (CNF) if it is T or a
conjunction of disjunctions of literals: i.e. if it is of the form

∧
n
i=1

∨
mi
j=1lij

� Definition 12.1.13. A formula is in disjunctive normal form (DNF) if it is F or a
disjunction of conjunctions of literals: i.e. if it is of the form

∨
n
i=1

∧
mi
j=1lij

� Observation 12.1.14. Every formula has equivalent formulae in CNF and DNF.

Michael Kohlhase: Artificial Intelligence 1 364 2025-02-06

Video Nuggets covering this chapter can be found at https://fau.tv/clip/id/23705 and
https://fau.tv/clip/id/23708.

12.2 Analytical Tableaux
Video Nuggets covering this section can be found at https://fau.tv/clip/id/23705 and
https://fau.tv/clip/id/23708.

12.2.1 Analytical Tableaux

Test Calculi: Tableaux and Model Generation

� Idea: A tableau calculus is a test calculus that

� analyzes a labeled formulae in a tree to determine satisfiability,

� its branches correspond to valuations (; models).

https://fau.tv/clip/id/23705
https://fau.tv/clip/id/23708
https://fau.tv/clip/id/23705
https://fau.tv/clip/id/23708

36 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

� Example 12.2.1.Tableau calculi try to construct models for labeled formulae:

Tableau refutation (Validity) Model generation (Satisfiability)
⊨P ∧Q⇒Q ∧ P ⊨P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧Q⇒Q ∧ P)F

(P ∧Q)T

(Q ∧ P)F

PT

QT

P F

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand model {PT, QF, RF}
φ := {P 7→ T, Q 7→ F, R 7→ F}

� Idea: Open branches in saturated tableaux yield models.

� Algorithm: Fully expand all possible tableaux, (no rule can be applied)

� Satisfiable, iff there are open branches (correspond to models)

Michael Kohlhase: Artificial Intelligence 1 365 2025-02-06

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis
on when a formula can be made true (or false). Therefore the formulae are decorated with upper
indices that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T). This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one. The latter corresponds a model.

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� Idea: A test calculus where

� A labeled formula is analyzed in a tree to determine satisfiability,

� branches correspond to valuations (models)

� Definition 12.2.2. The propositional tableau calculus T0 has two inference rules
per connective (one for each possible label)

(A ∧B)
T

AT

BT

T0∧
(A ∧B)

F

AF
∣∣∣ BF

T0∨
¬AT

AF
T0¬T ¬AF

AT
T0¬F

Aα

Aβ α ̸= β

⊥ T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

� Definition 12.2.3. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.

12.2. ANALYTICAL TABLEAUX 37

� Definition 12.2.4. Call a tableau saturated, iff no rule adds new material and a
branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its branches
are.

In analogy to the ⊥ at the end of closed branches, we sometimes decorate open
branches with a 2 symbol.

Michael Kohlhase: Artificial Intelligence 1 366 2025-02-06

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new

material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).
Definition 12.2.5. We will call a closed tableau with the labeled formula Aα at the root a
tableau refutation for Aα.
The saturated tableau represents a full case analysis of what is necessary to give A the truth

value α; since all branches are closed (contain contradictions) this is impossible.

Analytical Tableaux (T0 continued)

� Definition 12.2.6 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0
A), iff

there is a closed tableau with AF at the root.

Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0A), iff there is a closed tableau starting with AF

and ΦT. The tableau with only a branch of AF and ΦT is called initial for Φ⊢T0A.

Michael Kohlhase: Artificial Intelligence 1 367 2025-02-06

Definition 12.2.7. We will call a tableau refutation for AF a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.
Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the

propositional Hilbert calculus it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒B as ¬A ∨B,. . . .)
We now look at a formulation of propositional logic with fancy variable names. Note that
loves(mary,bill) is just a variable name like P or X, which we have used earlier.

A Valid Real-World Example

38 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

� Example 12.2.8. If Mary loves Bill and John loves Mary, then John loves Mary

(loves(mary,bill) ∧ loves(john,mary)⇒ loves(john,mary))
F

¬(¬¬(loves(mary,bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))
F

(¬¬(loves(mary,bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))
T

¬¬(loves(mary,bill) ∧ loves(john,mary))
T

¬(loves(mary,bill) ∧ loves(john,mary))
F

(loves(mary,bill) ∧ loves(john,mary))
T

¬loves(john,mary)
T

loves(mary,bill)
T

loves(john,mary)
T

loves(john,mary)
F

⊥

This is a closed tableau, so the loves(mary,bill)∧loves(john,mary)⇒loves(john,mary)
is a T0-theorem.

As we will see, T0 is sound and complete, so

loves(mary,bill) ∧ loves(john,mary)⇒ loves(john,mary)

is valid.

Michael Kohlhase: Artificial Intelligence 1 368 2025-02-06

We could have used the unsatisfiability theorem (??) here to show that If Mary loves Bill and John
loves Mary entails John loves Mary. But there is a better way to show entailment: we directly
use derivability in T0.

Deriving Entailment in T0
� Example 12.2.9. Mary loves Bill and John loves Mary together entail that John

loves Mary
loves(mary,bill)

T

loves(john,mary)
T

loves(john,mary)
F

⊥
This is a closed tableau, so {loves(mary,bill), loves(john,mary)}⊢T0

loves(john,mary).

Again, as T0 is sound and complete we have

{loves(mary,bill), loves(john,mary)} ⊨ loves(john,mary)

Michael Kohlhase: Artificial Intelligence 1 369 2025-02-06

Note: We can also use the tableau calculus to try and show entailment (and fail). The nice thing
is that the failed proof, we can see what went wrong.

A Falsifiable Real-World Example

� Example 12.2.10. * If Mary loves Bill or John loves Mary, then John loves
Mary

12.2. ANALYTICAL TABLEAUX 39

Try proving the implication (this fails)

((loves(mary,bill) ∨ loves(john,mary))⇒ loves(john,mary))
F

¬(¬¬(loves(mary,bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))
F

(¬¬(loves(mary,bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))
T

¬loves(john,mary)
T

loves(john,mary)
F

¬¬(loves(mary,bill) ∨ loves(john,mary))
T

¬(loves(mary,bill) ∨ loves(john,mary))
F

(loves(mary,bill) ∨ loves(john,mary))
T

loves(mary,bill)
T

loves(john,mary)
T

⊥

Indeed we can make Iφ(loves(mary,bill)) = T but Iφ(loves(john,mary)) = F.

Michael Kohlhase: Artificial Intelligence 1 370 2025-02-06

Obviously, the tableau above is saturated, but not closed, so it is not a tableau proof for our initial
entailment conjecture. We have marked the literal on the open branch green, since they allow us
to read of the conditions of the situation, in which the entailment fails to hold. As we intuitively
argued above, this is the situation, where Mary loves Bill. In particular, the open branch gives us
a variable assignment (marked in green) that satisfies the initial formula. In this case, Mary loves
Bill, which is a situation, where the entailment fails.
Again, the derivability version is much simpler:

Testing for Entailment in T0
� Example 12.2.11. Does Mary loves Bill or John loves Mary entail that John

loves Mary?
(loves(mary,bill) ∨ loves(john,mary))

T

loves(john,mary)
F

loves(mary,bill)
T

loves(john,mary)
T

⊥
This saturated tableau has an open branch that shows that the interpretation with
Iφ(loves(mary,bill)) = T but Iφ(loves(john,mary)) = F falsifies the derivability/en-
tailment conjecture.

Michael Kohlhase: Artificial Intelligence 1 371 2025-02-06

We have seen in the examples above that while it is possible to get by with only the connectives
∨ and ¬, it is a bit unnatural and tedious, since we need to eliminate the other connectives first.
In this section, we will make the calculus less frugal by adding rules for the other connectives,
without losing the advantage of dealing with a small calculus, which is good making statements
about the calculus itself.

12.2.2 Practical Enhancements for Tableaux
The main idea here is to add the new rules as derivable inference rules, i.e. rules that only
abbreviate derivations in the original calculus. Generally, adding derivable inference rules does
not change the derivation relation of the calculus, and is therefore a safe thing to do. In particular,
we will add the following rules to our tableau calculus.
We will convince ourselves that the first rule is derivable, and leave the other ones as an exercise.

40 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

Derived Rules of Inference

� Definition 12.2.12. An inference rule

A1 . . . An

C

is called derivable (or a derived rule) in a calculus C, if there is a C-derivation
A1, . . .,An⊢CC.

� Definition 12.2.13. We have the following derivable inference rules in T0:

(A⇒B)
T

AF
∣∣∣ BT

(A⇒B)
F

AT

BF

AT

(A⇒B)
T

BT

(A ∨B)
T

AT
∣∣∣ BT

(A ∨B)
F

AF

BF

(A⇔B)
T

AT

BT

∣∣∣∣ AF

BF

(A⇔B)
F

AT

BF

∣∣∣∣ AF

BT

AT

(A⇒B)
T

(¬A ∨B)
T

¬(¬¬A ∧ ¬B)
T

(¬¬A ∧ ¬B)
F

¬¬AF

¬AT

AF

⊥

¬BF

BT

Michael Kohlhase: Artificial Intelligence 1 372 2025-02-06

With these derived rules, theorem proving becomes quite efficient. With these rules, the tableau
(??) would have the following simpler form:

Tableaux with derived Rules (example)
Example 12.2.14.

(loves(mary,bill) ∧ loves(john,mary)⇒ loves(john,mary))
F

(loves(mary,bill) ∧ loves(john,mary))
T

loves(john,mary)
F

loves(mary,bill)
T

loves(john,mary)
T

⊥

Michael Kohlhase: Artificial Intelligence 1 373 2025-02-06

12.2.3 Soundness and Termination of Tableaux
As always we need to convince ourselves that the calculus is sound, otherwise, tableau proofs do
not guarantee validity, which we are after. Since we are now in a refutation setting we cannot just
show that the inference rules preserve validity: we care about unsatisfiability (which is the dual
notion to validity), as we want to show the initial labeled formula to be unsatisfiable. Before we
can do this, we have to ask ourselves, what it means to be (un)-satisfiable for a labeled formula
or a tableau.

Soundness (Tableau)

12.2. ANALYTICAL TABLEAUX 41

� Idea: A test calculus is refutation sound, iff its inference rules preserve satisfiability
and the goal formulae are unsatisfiable.

� Definition 12.2.15. A labeled formula Aα is valid under φ, iff Iφ(A) = α.

� Definition 12.2.16. A tableau T is satisfiable, iff there is a satisfiable branch P
in T , i.e. if the set of formulae on P is satisfiable.

� Lemma 12.2.17. T0 rules transform satisfiable tableaux into satisfiable ones.

� Theorem 12.2.18 (Soundness). T0 is sound, i.e. Φ ⊆ wff0(V0) valid, if there is
a closed tableau T for ΦF.

� Proof: by contradiction

1. Suppose Φ isfalsifiable =̂ not valid.
2. Then the initial tableau is satisfiable, (ΦF satisfiable)
3. so T is satisfiable, by ??.
4. Thus there is a satisfiable branch (by definition)
5. but all branches are closed (T closed)

� Theorem 12.2.19 (Completeness). T0 is complete, i.e. if Φ ⊆ wff0(V0) is valid,
then there is a closed tableau T for ΦF.

Proof sketch: Proof difficult/interesting; see ??

Michael Kohlhase: Artificial Intelligence 1 374 2025-02-06

Thus we only have to prove ??, this is relatively easy to do. For instance for the first rule: if we
have a tableau that contains (A ∧B)

T and is satisfiable, then it must have a satisfiable branch.
If (A ∧B)

T is not on this branch, the tableau extension will not change satisfiability, so we can
assume that it is on the satisfiable branch and thus Iφ(A ∧B) = T for some variable assignment
φ. Thus Iφ(A) = T and Iφ(B) = T, so after the extension (which adds the formulae AT and BT

to the branch), the branch is still satisfiable. The cases for the other rules are similar.
The next result is a very important one, it shows that there is a procedure (the tableau procedure)
that will always terminate and answer the question whether a given propositional formula is valid
or not. This is very important, since other logics (like the often-studied first-order logic) does not
enjoy this property.

� Termination for Tableaux

� Lemma 12.2.20. T0 terminates, i.e. every T0 tableau becomes saturated after
finitely many rule applications.

� Proof: By examining the rules wrt. a measure µ

1. Let us call a labeled formulae Aα worked off in a tableau T , if a T0 rule has already
been applied to it.

2. It is easy to see that applying rules to worked off formulae will only add formulae that
are already present in its branch.

3. Let µ(T) be the number of connectives in labeled formulae in T that are not worked
off.

4. Then each rule application to a labeled formula in T that is not worked off reduces
µ(T) by at least one. (inspect the rules)

5. At some point the tableau only contains worked off formulae and literals.
6. Since there are only finitely many literals in T , so we can only apply T0⊥ a finite

number of times.

42 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

� Corollary 12.2.21. T0 induces a decision procedure for validity in PL0.

Proof: We combine the results so far

� 1. By ?? it is decidable whether ⊢T0A

2. By soundness (??) and completeness (??), ⊢T0A iff A is valid.

Michael Kohlhase: Artificial Intelligence 1 375 2025-02-06

Note: The proof above only works for the “base T0” because (only) there the rules do not “copy”.
A rule like

(A⇔B)
T

AT

BT

∣∣∣∣ AF

BF

does, and in particular the number of non-worked-off variables below the line is larger than above
the line. For such rules, we would have a more intricate version of µ which – instead of returning
a natural number – returns a more complex object; a multiset of numbers. would work here. In
our proof we are just assuming that the defined connectives have already eliminated. The
tableau calculus basically computes the disjunctive normal form: every branch is a disjunct that
is a conjunction of literals. The method relies on the fact that a DNF is unsatisfiable, iff each
literal is, i.e. iff each branch contains a contradiction in form of a pair of opposite literals.

12.3 Resolution for Propositional Logic

12.3.1 Resolution for Propositional Logic
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/23712.
The next calculus is a test calculus based on the conjunctive normal form: the resolution calculus.
In contrast to the tableau method, it does not compute the normal form as it goes along, but has
a pre-processing step that does this and a single inference rule that maintains the normal form.
The goal of this calculus is to derive the empty clause, which is unsatisfiable.

Another Test Calculus: Resolution

� Definition 12.3.1. A clause is a disjunction lα1
1 ∨ . . .∨ lαn

n of literals. We will use
2 for the “empty” disjunction (no disjuncts) and call it the empty clause. A clause
with exactly one literal is called a unit clause.

� Definition 12.3.2 (Resolution Calculus). The resolution calculus R0 operates a
clause sets via a single inference rule:

PT ∨A P F ∨B

A ∨B
R

This rule allows to add the resolvent (the clause below the line) to a clause set which
contains the two clauses above. The literals PT and P F are called cut literals.

� Definition 12.3.3 (Resolution Refutation). Let S be a clause set, then we call
an R0-derivation of 2 from S R0-refutation and write D : S⊢R02.

Michael Kohlhase: Artificial Intelligence 1 376 2025-02-06

https://fau.tv/clip/id/23712

12.3. RESOLUTION FOR PROPOSITIONAL LOGIC 43

Clause Normal Form Transformation (A calculus)

� Definition 12.3.4. We will often write a clause set {C1, . . ., Cn} as C1 ; . . . ;Cn,
use S ; T for the union of the clause sets S and T , and S ;C for the extension by a
clause C.

� Definition 12.3.5 (Transformation into Clause Normal Form). The CNF trans-
formation calculus CNF0 consists of the following four inference rules on sets of
labeled formulae.

C ∨ (A ∨B)
T

C ∨AT ∨BT

C ∨ (A ∨B)
F

C ∨AF ;C ∨BF

C ∨ ¬AT

C ∨AF

C ∨ ¬AF

C ∨AT

� Definition 12.3.6. We write CNF0(Aα) for the set of all clauses derivable from
Aα via the rules above.

Michael Kohlhase: Artificial Intelligence 1 377 2025-02-06

that the C-terms in the definition of the inference rules are necessary, since we assumed that
the assumptions of the inference rule must match full clauses. The C terms are used with the
convention that they are optional. So that we can also simplify (A ∨B)

T to AT ∨BT.
Background: The background behind this notation is that A and T ∨A are equivalent for any
A. That allows us to interpret the C-terms in the assumptions as T and thus leave them out.
The clause normal form translation as we have formulated it here is quite frugal; we have left
out rules for the connectives ∨, ⇒, and ⇔, relying on the fact that formulae containing these
connectives can be translated into ones without before CNF transformation. The advantage of
having a calculus with few inference rules is that we can prove meta properties like soundness and
completeness with less effort (these proofs usually require one case per inference rule). On the
other hand, adding specialized inference rules makes proofs shorter and more readable.
Fortunately, there is a way to have your cake and eat it. Derivable inference rules have the property
that they are formally redundant, since they do not change the expressive power of the calculus.
Therefore we can leave them out when proving meta-properties, but include them when actually
using the calculus.

Derived Rules of Inference

� Definition 12.3.7. An inference rule

A1 . . . An

C

is called derivable (or a derived rule) in a calculus C, if there is a C-derivation
A1, . . .,An⊢CC.

� Idea: Derived rules make derivations shorter.

� Example 12.3.8.

C ∨ (A⇒B)
T

C ∨ (¬A ∨B)
T

C ∨ ¬AT ∨BT

C ∨AF ∨BT

;
C ∨ (A⇒B)

T

C ∨AF ∨BT

44 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

� Other Derived CNF Rules:

C ∨ (A⇒B)
T

C ∨AF ∨BT

C ∨ (A⇒B)
F

C ∨AT ;C ∨BF

C ∨ (A ∧B)
T

C ∨AT ;C ∨BT

C ∨ (A ∧B)
F

C ∨AF ∨BF

Michael Kohlhase: Artificial Intelligence 1 378 2025-02-06

With these derivable rules, theorem proving becomes quite efficient. To get a better understanding
of the calculus, we look at an example: we prove an axiom of the Hilbert Calculus we have studied
above.

Example: Proving Axiom S with Resolution

� Example 12.3.9. Clause Normal Form transformation

((P ⇒Q⇒R)⇒ (P ⇒Q)⇒ P ⇒R)
F

(P ⇒Q⇒R)
T
; ((P ⇒Q)⇒ P ⇒R)

F

P F ∨ (Q⇒R)
T
; (P ⇒Q)

T
; (P ⇒R)

F

P F ∨QF ∨RT ; P F ∨QT ; PT ;RF

Result {P F ∨QF ∨RT , P F ∨QT , PT , RF}

� Example 12.3.10. Resolution Proof

1 P F ∨QF ∨RT initial
2 P F ∨QT initial
3 PT initial
4 RF initial
5 P F ∨QF resolve 1.3 with 4.1
6 QF resolve 5.1 with 3.1
7 P F resolve 2.2 with 6.1
8 2 resolve 7.1 with 3.1

Michael Kohlhase: Artificial Intelligence 1 379 2025-02-06

Clause Set Simplification

� Observation: Let ∆ be a clause set, l a literal with l ∈ ∆ (unit clause), and ∆′

be ∆ where

� all clauses l ∨ C have been removed and

� and all clauses l ∨ C have been shortened to C.

Then ∆ is satisfiable, iff ∆′ is. We call ∆′ the clause set simplification of ∆ wrt. l.

� Corollary 12.3.11. Adding clause set simplification wrt. unit clauses to R0 does
not affect soundness and completeness.

� This is almost always a good idea! (clause set simplification is cheap)

Michael Kohlhase: Artificial Intelligence 1 380 2025-02-06

12.3. RESOLUTION FOR PROPOSITIONAL LOGIC 45

12.3.2 Killing a Wumpus with Propositional Inference
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/23713.

Let us now consider an extended example, where we also address the question how inference
in PL0 – here resolution is embedded into the rational agent metaphor we use in AI-1: we come
back to the Wumpus world.

Applying Propositional Inference: Where is the Wumpus?

� Example 12.3.12 (Finding the Wumpus). The situation and what the agent
knows

� What should the agent do next and why?

� One possibility: Convince yourself that the Wumpus is in [1, 3] and shoot it.

� What is the general mechanism here? (for the agent function)

Michael Kohlhase: Artificial Intelligence 1 381 2025-02-06

Before we come to the general mechanism, we will go into how we would “convince ourselves that
the Wumpus is in [1, 3].

Where is the Wumpus? Our Knowledge

� Idea: We formalize the knowledge about the Wumpus world in PL0 and use a test
calculus to check for entailment.

� Simplification: We worry only about the Wumpus and stench:
Si,j =̂ stench in [i, j], W i,j =̂ Wumpus in [i, j].

https://fau.tv/clip/id/23713

46 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

� Propositions whose value we know: ¬S1,1, ¬W 1,1, ¬S2,1, ¬W 2,1, S1,2, ¬W 1,2.

� Knowledge about the Wumpus and smell:
From Cell adjacent to Wumpus: Stench (else: None), we get

R1 := ¬S1,1 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,1

R2 := ¬S2,1 ⇒¬W 1,1 ∧ ¬W 2,1 ∧ ¬W 2,2 ∧ ¬W 3,1

R3 := ¬S1,2 ⇒¬W 1,1 ∧ ¬W 1,2 ∧ ¬W 2,2 ∧ ¬W 1,3

R4 := S1,2 ⇒ (W 1,3 ∨W 2,2 ∨W 1,1)
...

� To show:

R1, R2, R3, R4 ⊨W 1,3 (we will use resolution)

Michael Kohlhase: Artificial Intelligence 1 382 2025-02-06

The first in is to compute the clause normal form of the relevant knowledge.

And Now Using Resolution Conventions

� We obtain the clause set ∆ composed of the following clauses:

� Propositions whose value we know: S1,1
F, W 1,1

F, S2,1
F, W 2,1

F, S1,2
T,

W 1,2
F

� Knowledge about the Wumpus and smell:

from clauses
R1 S1,1

T ∨W 1,1
F, S1,1

T ∨W 1,2
F, S1,1

T ∨W 2,1
F

R2 S2,1
T ∨W 1,1

F, S2,1
T ∨W 2,1

F, S2,1
T ∨W 2,2

F, S2,1
T ∨W 3,1

F

R3 S1,2
T ∨W 1,1

F, S1,2
T ∨W 1,2

F, S1,2
T ∨W 2,2

F, S1,2
T ∨W 1,3

F

R4 S1,2
F ∨W 1,3

T ∨W 2,2
T ∨W 1,1

T

� Negated goal formula: W 1,3
F

Michael Kohlhase: Artificial Intelligence 1 383 2025-02-06

Given this clause normal form, we only need to find generate empty clause via repeated applications
of the resolution rule.

Resolution Proof Killing the Wumpus!

� Example 12.3.13 (Where is the Wumpus). We show a derivation that proves
that he is in (1, 3).

� Assume the Wumpus is not in (1, 3). Then either there’s no stench in (1, 2),
or the Wumpus is in some other neigbor cell of (1, 2).

� Parents: W 1,3
F and S1,2

F ∨W 1,3
T ∨W 2,2

T ∨W 1,1
T.

� Resolvent: S1,2
F ∨W 2,2

T ∨W 1,1
T.

� There’s a stench in (1, 2), so it must be another neighbor.

� Parents: S1,2
T and S1,2

F ∨W 2,2
T ∨W 1,1

T.
� Resolvent: W 2,2

T ∨W 1,1
T.

12.4. CONCLUSION 47

� We’ve been to (1, 1), and there’s no Wumpus there, so it can’t be (1, 1).

� Parents: W 1,1
F and W 2,2

T ∨W 1,1
T.

� Resolvent: W 2,2
T.

� There is no stench in (2, 1) so it can’t be (2, 2) either, in contradiction.

� Parents: S2,1
F and S2,1

T ∨W 2,2
F.

� Resolvent: W 2,2
F.

� Parents: W 2,2
F and W 2,2

T.
� Resolvent: 2.

As resolution is sound, we have shown that indeed R1, R2, R3, R4 ⊨W 1,3.

Michael Kohlhase: Artificial Intelligence 1 384 2025-02-06

Now that we have seen how we can use propositional inference to derive consequences of the
percepts and world knowledge, let us come back to the question of a general mechanism for agent
functions with propositional inference.

Where does the Conjecture W 1,3
F come from?

� Question: Where did the W 1,3
F come from?

� Observation 12.3.14. We need a general mechanism for making conjectures.

� Idea: Interpret the Wumpus world as a search problem P := ⟨S ,A, T , I ,G⟩ where

� the states S are given by the cells (and agent orientation) and

� the actions A by the possible actions of the agent.

Use tree search as the main agent function and a test calculus for testing all dangers
(pits), opportunities (gold) and the Wumpus.

� Example 12.3.15 (Back to the Wumpus). In ??, the agent is in [1, 2], it has
perceived stench, and the possible actions include shoot, and goForward. Evalu-
ating either of these leads to the conjecture W 1,3. And since W 1,3 is entailed, the
action shoot probably comes out best, heuristically.

� Remark: Analogous to the backtracking with inference algorithm from CSP.

Michael Kohlhase: Artificial Intelligence 1 385 2025-02-06

Admittedly, the search framework from ?? does not quite cover the agent function we have here,
since that assumes that the world is fully observable, which the Wumpus world is emphatically not.
But it already gives us a good impression of what would be needed for the “general mechanism”.

12.4 Conclusion

Summary

� Every propositional formula can be brought into conjunctive normal form (CNF),
which can be identified with a set of clauses.

48 CHAPTER 12. MACHINE-ORIENTED CALCULI FOR PROPOSITIONAL LOGIC

� The tableau and resolution calculi are deduction procedures based on trying to
derive a contradiction from the negated theorem (a closed tableau or the empty
clause). They are refutation complete, and can be used to prove KB ⊨ A by
showing that KB ∪ {¬A} is unsatisfiable.

Michael Kohlhase: Artificial Intelligence 1 386 2025-02-06

Excursion: A full analysis of any calculus needs a completeness proof. We will not cover this in
AI-1, but provide one for the calculi introduced so far in??.

Chapter 13

Propositional Reasoning: SAT
Solvers

13.1 Introduction
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25019.

Reminder: Our Agenda for Propositional Logic

� ??: Basic definitions and concepts; machine-oriented calculi

� Sets up the framework. Tableaux and resolution are the quintessential reasoning
procedures underlying most successful SAT solvers.

� This chapter: The Davis Putnam procedure and clause learning.

� State-of-the-art algorithms for reasoning about propositional logic, and an im-
portant observation about how they behave.

Michael Kohlhase: Artificial Intelligence 1 387 2025-02-06

SAT: The Propositional Satisfiability Problem

� Definition 13.1.1. The SAT problem (SAT): Given a propositional formula A,
decide whether or not A is satisfiable. We denote the class of all SAT problems
with SAT

� The SAT problem was the first problem proved to be NP-complete!

� A is commonly assumed to be in CNF. This is without loss of generality, because
any A can be transformed into a satisfiability-equivalent CNF formula (cf. ??) in
polynomial time.

� Active research area, annual SAT conference, lots of tools etc. available: http:
//www.satlive.org/

� Definition 13.1.2. Tools addressing SAT are commonly referred to as SAT solvers.

49

https://fau.tv/clip/id/25019
http://www.satlive.org/
http://www.satlive.org/

50 CHAPTER 13. PROPOSITIONAL REASONING: SAT SOLVERS

� Recall: To decide whether KB ⊨ A, decide satisfiability of θ := KB ∪ {¬A}: θ
is unsatisfiable iff KB ⊨ A.

� Consequence: Deduction can be performed using SAT solvers.

Michael Kohlhase: Artificial Intelligence 1 388 2025-02-06

SAT vs. CSP

� Recall: Constraint network ⟨V ,D,C ⟩ has variables v ∈ V with finite domains
Dv ∈ D, and binary constraints Cuv ∈ C which are relations over u, and v speci-
fying the permissible combined assignments to u and v. One extension is to allow
constraints of higher arity.

� Observation 13.1.3 (SAT: A kind of CSP). SAT can be viewed as a CSP problem
in which all variable domains are Boolean, and the constraints have unbounded arity.

� Theorem 13.1.4 (Encoding CSP as SAT). Given any constraint network C, we
can in low order polynomial time construct a CNF formula A(C) that is satisfiable
iff C is solvable.

� Proof: We design a formula, relying on known transformation to CNF

1. encode multi-XOR for each variable
2. encode each constraint by DNF over relation
3. Running time: O(nd2+md2) where n is the number of variables, d the domain

size, and m the number of constraints.

� Upshot: Anything we can do with CSP, we can (in principle) do with SAT.

Michael Kohlhase: Artificial Intelligence 1 389 2025-02-06

Example Application: Hardware Verification

� Example 13.1.5 (Hardware Verification).

� Counter, repeatedly from c = 0 to c = 2.

� 2 bits x1 and x0; c = 2 ∗ x1 + x0.

� (FF=̂ Flip-Flop, D =̂ Data IN, CLK =̂ Clock)

� To Verify: If c < 3 in current clock cycle,
then c < 3 in next clock cycle.

� Step 1: Encode into propositional logic.

� Propositions: x1, x0; and y1, y0 (value in next cycle).

� Transition relation: y1 ⇔ y0; y0 ⇔¬(x1 ∨ x0).
� Initial state: ¬(x1 ∧ x0).
� Error property: x1 ∧ y0.

� Step 2: Transform to CNF, encode as a clause set ∆.

13.2. DAVIS-PUTNAM 51

� Clauses: y1F∨x0T, y1T∨x0F, y0T∨x1T∨x0T, y0F∨x1F, y0F∨x0F, x1F∨x0F,
y1

T, y0T.

� Step 3: Call a SAT solver (up next).

Michael Kohlhase: Artificial Intelligence 1 390 2025-02-06

Our Agenda for This Chapter

� The Davis-Putnam (Logemann-Loveland) Procedure: How to systematically
test satisfiability?

� The quintessential SAT solving procedure, DPLL.

� DPLL is (A Restricted Form of) Resolution: How does this relate to what we
did in the last chapter?

� mathematical understanding of DPLL.

� Why Did Unit Propagation Yield a Conflict?: How can we analyze which
mistakes were made in “dead” search branches?

� Knowledge is power, see next.

� Clause Learning: How can we learn from our mistakes?

� One of the key concepts, perhaps the key concept, underlying the success of
SAT.

� Phase Transitions – Where the Really Hard Problems Are: Are all formulas
“hard” to solve?

� The answer is “no”. And in some cases we can figure out exactly when they
are/aren’t hard to solve.

Michael Kohlhase: Artificial Intelligence 1 391 2025-02-06

13.2 The Davis-Putnam (Logemann-Loveland) Procedure
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25026.

The DPLL Procedure

� Definition 13.2.1. The Davis Putnam procedure (DPLL) is a SAT solver called
on a clause set ∆ and the empty assignment ϵ. It interleaves unit propagation (UP)
and splitting:

function DPLL(∆,I) returns a partial assignment I, or ‘‘unsatisfiable’’
/∗ Unit Propagation (UP) Rule: ∗/
∆′ := a copy of ∆; I ′ := I
while ∆′ contains a unit clause C = Pα do

extend I ′ with [α/P], clause−set simplify ∆′

/∗ Termination Test: ∗/
if 2 ∈ ∆′ then return ‘‘unsatisfiable’’

https://fau.tv/clip/id/25026

52 CHAPTER 13. PROPOSITIONAL REASONING: SAT SOLVERS

if ∆′ = {} then return I ′
/∗ Splitting Rule: ∗/

select some proposition P for which I ′ is not defined
I ′′ := I ′ extended with one truth value for P ; ∆′′ := a copy of ∆′; simplify ∆′′

if I ′′′ := DPLL(∆′′,I ′′) ̸= ‘‘unsatisfiable’’ then return I ′′′
I ′′ := I ′ extended with the other truth value for P ; ∆′′ := ∆′; simplify ∆′′

return DPLL(∆′′,I ′′)

� In practice, of course one uses flags etc. instead of “copy”.

Michael Kohlhase: Artificial Intelligence 1 392 2025-02-06

DPLL: Example (Vanilla1)

� Example 13.2.2 (UP and Splitting). Let ∆ := PT∨QT∨RF;P F∨QF;RT;PT∨QF

1. UP Rule: R 7→ T
PT ∨QT ; P F ∨QF ; PT ∨QF

2. Splitting Rule:
2a. P 7→ F
QT ;QF

3a. UP Rule: Q 7→ T
2
returning “unsatisfiable”

2b. P 7→ T
QF

3b. UP Rule: Q 7→ F
clause set empty
returning “R 7→ T, P 7→ T, Q 7→ F

Michael Kohlhase: Artificial Intelligence 1 393 2025-02-06

DPLL: Example (Vanilla2)

� Observation: Sometimes UP is all we need.

� Example 13.2.3. Let ∆ := QF ∨P F ;PT ∨QF ∨RF ∨SF ;QT ∨SF ;RT ∨SF ;ST

1. UP Rule: S 7→ T
QF ∨ P F ; PT ∨QF ∨RF ;QT ;RT

2. UP Rule: Q 7→ T
P F ; PT ∨RF ;RT

3. UP Rule: R 7→ T
P F ; PT

4. UP Rule: P 7→ T
2

Michael Kohlhase: Artificial Intelligence 1 394 2025-02-06

DPLL: Example (Redundance1)

13.3. DPLL =̂ (A RESTRICTED FORM OF) RESOLUTION 53

� Example 13.2.4. We introduce some nasty redundance to make DPLL slow.
∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

DPLL on ∆ ; Θ with Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2

Q Q Q Q

T F T F T F T F

Xn Xn

T F T F

X1
T F

P

T

F

Michael Kohlhase: Artificial Intelligence 1 395 2025-02-06

Properties of DPLL

� Unsatisfiable case: What can we say if “unsatisfiable” is returned?

� In this case, we know that ∆ is unsatisfiable: Unit propagation is sound, in the
sense that it does not reduce the set of solutions.

� Satisfiable case: What can we say when a partial interpretation I is returned?

� Any extension of I to a complete interpretation satisfies ∆. (By construction,
I suffices to satisfy all clauses.)

� Déjà Vu, Anybody?

� DPLL =̂ backtracking with inference, where inference =̂ unit propagation.

� Unit propagation is sound: It does not reduce the set of solutions.

� Running time is exponential in worst case, good variable/value selection strate-
gies required.

Michael Kohlhase: Artificial Intelligence 1 396 2025-02-06

13.3 DPLL =̂ (A Restricted Form of) Resolution

A Video Nugget covering this section can be found at https://fau.tv/clip/id/27022.
In the last slide we have discussed the semantic properties of the DPLL procedure: DPLL

is (refutation) sound and complete. Note that this is a theoretical resultin the sense that the
algorithm is, but that does not mean that a particular implementation of DPLL might not contain
bugs that affect sounds and completeness.

In the satisfiable case, DPLL returns a satisfying variable assignment, which we can check (in
low-order polynomial time) but in the unsatisfiable case, it just reports on the fact that it has tried
all branches and found nothing. This is clearly unsatisfactory, and we will address this situation
now by presenting a way that DPLL can output a resolution proof in the unsatisfiable case.

https://fau.tv/clip/id/27022

54 CHAPTER 13. PROPOSITIONAL REASONING: SAT SOLVERS

UP =̂ Unit Resolution

� Observation: The unit propagation (UP) rule corresponds to a calculus:

while ∆′ contains a unit clause {l} do
extend I ′ with the respective truth value for the proposition underlying l
simplify ∆′ /∗ remove false literals ∗/

� Definition 13.3.1 (Unit Resolution). Unit resolution (UR) is the test calculus
consisting of the following inference rule:

C ∨ Pα P β α ̸= β

C
UR

� Unit propagation =̂ resolution restricted to cases where one parent is unit clause.

� Observation 13.3.2 (Soundness). UR is refutation sound. (since resolution is)

� Observation 13.3.3 (Completeness). UR is not refutation complete (alone).

� Example 13.3.4. PT ∨QT ; PT ∨QF ; P F ∨QT ; P F ∨QF is unsatisfiable but UR
cannot derive the empty clause 2.

� UR makes only limited inferences, as long as there are unit clauses. It does not
guarantee to infer everything that can be inferred.

Michael Kohlhase: Artificial Intelligence 1 397 2025-02-06

DPLL vs. Resolution

� Definition 13.3.5. We define the number of decisions of a DPLL run as the total
number of times a truth value was set by either unit propagation or splitting.

� Theorem 13.3.6. If DPLL returns “unsatisfiable” on ∆, then ∆⊢R02 with a
resolution proof whose length is at most the number of decisions.

� Proof: Consider first DPLL without UP

1. Consider any leaf nodeN , for propositionX, both of whose truth values directly
result in a clause C that has become empty.

2. Then for X = F the respective clause C must contain XT; and for X = T the
respective clause C must contain XF. Thus we can resolve these two clauses
to a clause C(N) that does not contain X.

3. C(N) can contain only the negations of the decision literals l1, . . ., lk above N .
Remove N from the tree, then iterate the argument. Once the tree is empty,
we have derived the empty clause.

4. Unit propagation can be simulated via applications of the splitting rule, choos-
ing a proposition that is constrained by a unit clause: One of the two truth
values then immediately yields an empty clause.

Michael Kohlhase: Artificial Intelligence 1 398 2025-02-06

13.3. DPLL =̂ (A RESTRICTED FORM OF) RESOLUTION 55

DPLL vs. Resolution: Example (Vanilla2)

� Observation: The proof of ?? is constructive, so we can use it as a method to
read of a resolution proof from a DPLL trace.

� Example 13.3.7. We follow the steps in the proof of ?? for ∆ := QF ∨ P F ; PT ∨
QF ∨RF ∨ SF ;QT ∨ SF ;RT ∨ SF ; ST

DPLL: (Without UP; leaves an-
notated with clauses that became
empty)

Resolution proof from that DPLL tree:

QF ∨ P F PT ∨QF ∨RF ∨ SF

RT ∨ SF

QT ∨ SF

ST

S

Q

R

P

T
F

T

F

T
F

T
F

QF ∨ P F PT ∨QF ∨RF ∨ SF

RT ∨ SF

QT ∨ SF

ST

2

SF

QF ∨ SF

QF ∨RF ∨ SF

� Intuition: From a (top-down) DPLL tree, we generate a (bottom-up) resolution
proof.

Michael Kohlhase: Artificial Intelligence 1 399 2025-02-06

For reference, we give the full proof here.
Theorem 13.3.8. If DPLL returns “unsatisfiable” on a clause set ∆, then ∆⊢R02 with a R0-
derivation whose length is at most the number of decisions.

Proof: Consider first DPLL with no unit propagation.
1. If the search tree is not empty, then there exists a leaf node N , i.e., a node associated to

proposition X so that, for each value of X, the partial assignment directly results in an empty
clause.

2. Denote the parent decisions of N by L1, . . ., Lk, where Li is a literal for proposition Xi and
the search node containing Xi is N i.

3. Denote the empty clause forX by C(N,X), and denote the empty clause forXF by C(N,XF).
4. For each x ∈ {XT, XF} we have the following properties:

1. xF ∈ C(N, x); and
2. C(N, x) ⊆ {xF, L1, . . . , Lk}.
Due to , we can resolve C(N,X) with C(N,XF); denote the outcome clause by C(N).

5. We obviously have that (1) C(N) ⊆ {L1, . . . , Lk}.
6. The proof now proceeds by removing N from the search tree and attaching C(N) at the Lk

branch of Nk, in the role of C(Nk, Lk) as above. Then we select the next leaf node N ′ and
iterate the argument; once the tree is empty, by (1) we have derived the empty clause. What
we need to show is that, in each step of this iteration, we preserve the properties (a) and (b)
for all leaf nodes. Since we did not change anything in other parts of the tree, the only node
we need to show this for is N ′ := Nk.

7. Due to (1), we have (b) for Nk. But we do not necessarily have (a): C(N) ⊆ {L1, . . . , Lk},
but there are cases where Lk ̸∈ C(N) (e.g., if Xk is not contained in any clause and thus

56 CHAPTER 13. PROPOSITIONAL REASONING: SAT SOLVERS

branching over it was completely unnecessary). If so, however, we can simply remove Nk and
all its descendants from the tree as well. We attach C(N) at the L(k−1) branch of N (k−1)|,
in the role of C(N (k−1), L(k−1)). If L(k−1) ∈ C(N) then we have (a) for N ′ := N (k−1) and
can stop. If L(k−1)

F ̸∈ C(N), then we remove N (k−1) and so forth, until either we stop
with (a), or have removed N1 and thus must already have derived the empty clause (because
C(N) ⊆ {L1, . . . , Lk}\{L1, . . . , Lk}).

8. Unit propagation can be simulated via applications of the splitting rule, choosing a proposi-
tion that is constrained by a unit clause: One of the two truth values then immediately yields
an empty clause.

DPLL vs. Resolution: Discussion

� So What?: The theorem we just proved helps to understand DPLL:
DPLL is an efficient practical method for conducting resolution proofs.

� In fact: DPLL =̂ tree resolution.

� Definition 13.3.9. In a tree resolution, each derived clause C is used only once
(at its parent).

� Problem: The same C must be derived anew every time it is used!

� This is a fundamental weakness: There are inputs ∆ whose shortest tree reso-
lution proof is exponentially longer than their shortest (general) resolution proof.

� Intuitively: DPLL makes the same mistakes over and over again.

� Idea: DPLL should learn from its mistakes on one search branch, and apply the
learned knowledge to other branches.

� To the rescue: clause learning (up next)

Michael Kohlhase: Artificial Intelligence 1 400 2025-02-06

Excursion: Practical SAT solvers use a technique called CDCL that analyzes failure and learns
from that in terms of inferred clauses. Unfortunately, we cannot cover this in AI-1.??.

13.4 Conclusion
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25090.

Summary

� SAT solvers decide satisfiability of CNF formulas. This can be used for deduction,
and is highly successful as a general problem solving technique (e.g., in verification).

� DPLL =̂ backtracking with inference performed by unit propagation (UP), which
iteratively instantiates unit clauses and simplifies the formula.

� DPLL proofs of unsatisfiability correspond to a restricted form of resolution. The
restriction forces DPLL to “makes the same mistakes over again”.

� Implication graphs capture how UP derives conflicts. Their analysis enables us to
do clause learning. DPLL with clause learning is called CDCL. It corresponds to full

https://fau.tv/clip/id/25090

13.4. CONCLUSION 57

resolution, not “making the same mistakes over again”.

� CDCL is state of the art in applications, routinely solving formulas with millions of
propositions.

� In particular random formula distributions, typical problem hardness is characterized
by phase transitions.

Michael Kohlhase: Artificial Intelligence 1 401 2025-02-06

State of the Art in SAT

� SAT competitions:

� Since beginning of the 90s http://www.satcompetition.org/

� random vs. industrial vs. handcrafted benchmarks.

� Largest industrial instances: > 1.000.000 propositions.

� State of the art is CDCL:

� Vastly superior on handcrafted and industrial benchmarks.

� Key techniques: clause learning! Also: Efficient implementation (UP!), good
branching heuristics, random restarts, portfolios.

� What about local search?:

� Better on random instances.

� No “dramatic” progress in last decade.

� Parameters are difficult to adjust.

Michael Kohlhase: Artificial Intelligence 1 402 2025-02-06

But – What About Local Search for SAT?

� There’s a wealth of research on local search for SAT, e.g.:

� Definition 13.4.1. The GSAT algorithm OUTPUT: a satisfying truth assignment
of ∆, if found

function GSAT (∆, MaxFlips MaxTries
for i :=1 to MaxTries
I := a randomly−generated truth assignment
for j :=1 to MaxFlips
if I satisfies ∆ then return I

X:= a proposition reversing whose truth assignment gives
the largest increase in the number of satisfied clauses
I := I with the truth assignment of X reversed

end for
end for
return ‘‘no satisfying assignment found’’

http://www.satcompetition.org/

58 CHAPTER 13. PROPOSITIONAL REASONING: SAT SOLVERS

� local search is not as successful in SAT applications, and the underlying ideas are
very similar to those presented in ?? (Not covered here)

Michael Kohlhase: Artificial Intelligence 1 403 2025-02-06

Topics We Didn’t Cover Here

� Variable/value selection heuristics: A whole zoo is out there.

� Implementation techniques: One of the most intensely researched subjects. Fa-
mous “watched literals” technique for UP had huge practical impact.

� Local search: In space of all truth value assignments. GSAT (slide 403) had huge
impact at the time (1992), caused huge amount of follow-up work. Less intensely
researched since clause learning hit the scene in the late 90s.

� Portfolios: How to combine several SAT solvers efficiently?

� Random restarts: Tackling heavy-tailed runtime distributions.

� Tractable SAT: Polynomial-time sub-classes (most prominent: 2-SAT, Horn for-
mulas).

� MaxSAT: Assign weight to each clause, maximize weight of satisfied clauses (=
optimization version of SAT).

� Resolution special cases: There’s a universe in between unit resolution and full
resolution: trade off inference vs. search.

� Proof complexity: Can one resolution special case X simulate another one Y
polynomially? Or is there an exponential separation (example families where X is
exponentially less efficient than Y)?

Michael Kohlhase: Artificial Intelligence 1 404 2025-02-06

Suggested Reading:

• Chapter 7: Logical Agents, Section 7.6.1 [RN09].

– Here, RN describe DPLL, i.e., basically what I cover under “The Davis-Putnam (Logemann-
Loveland) Procedure”.

– That’s the only thing they cover of this Chapter’s material. (And they even mark it as “can
be skimmed on first reading”.)

– This does not do the state of the art in SAT any justice.

• Chapter 7: Logical Agents, Sections 7.6.2, 7.6.3, and 7.7 [RN09].

– Sections 7.6.2 and 7.6.3 say a few words on local search for SAT, which I recommend as
additional background reading. Section 7.7 describes in quite some detail how to build an
agent using propositional logic to take decisions; nice background reading as well.

Chapter 14

First-Order Predicate Logic

14.1 Motivation: A more Expressive Language
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25091.

Let’s Talk About Blocks, Baby . . .

� Question: What do you see here?

Let’s Talk About Blocks, Baby . . .

I Question: What do you see here?

A D B E C

I You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.

I And now: Say it in propositional logic!

I Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

I Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

I Problem: Could we conclude that A is red? (No)
These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

I Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

I How?: Variables ranging over objects, predicates describing object properties, . . .
I Example 1.1. “8x block(x)) red(x)”; “block(A)”

Kohlhase: Künstliche Intelligenz 1 416 July 5, 2018

� You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.

� And now: Say it in propositional logic!

� Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

� Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

� Problem: Could we conclude that A is red? (No)

These statements are atomic (just strings); their inner structure (“all blocks”, “is a
block”) is not captured.

� Idea: Predicate Logic (PL1) extends propositional logic with the ability to explicitly
speak about objects and their properties.

� How?: Variables ranging over objects, predicates describing object properties, . . .

� Example 14.1.1. “∀x.block(x)⇒ red(x)”; “block(A)”

Michael Kohlhase: Artificial Intelligence 1 405 2025-02-06

Let’s Talk About the Wumpus Instead?

59

https://fau.tv/clip/id/25091

60 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

�

Percepts: [Stench,Breeze,Glitter ,Bump,Scream]

� Cell adjacent to Wumpus: Stench (else: None).

� Cell adjacent to Pit: Breeze (else: None).

� Cell that contains gold: Glitter (else: None).

� You walk into a wall: Bump (else: None).

� Wumpus shot by arrow: Scream (else: None).

� Say, in propositional logic: “Cell adjacent to Wumpus: Stench.”

� W 1,1 ⇒ S1,2 ∧ S2,1

� W 1,2 ⇒ S2,2 ∧ S1,1 ∧ S1,3

� W 1,3 ⇒ S2,3 ∧ S1,2 ∧ S1,4

� . . .

� Note: Even when we can describe the problem suitably, for the desired reasoning,
the propositional formulation typically is way too large to write (by hand).

� PL1 solution: “∀x.Wumpus(x)⇒ (∀y.adj(x, y)⇒ stench(y))”

Michael Kohlhase: Artificial Intelligence 1 406 2025-02-06

Blocks/Wumpus, Who Cares? Let’s Talk About Numbers!

� Even worse!

� Example 14.1.2 (Integers). A limited vocabulary to talk about these

� The objects: {1, 2, 3, . . . }.
� Predicate 1: “even(x)” should be true iff x is even.

� Predicate 2: “eq(x, y)” should be true iff x = y.

� Function: succ(x) maps x to x+ 1.

� Old problem: Say, in propositional logic, that “1 + 1 = 2”.

� Inner structure of vocabulary is ignored (cf. “AllBlocksAreRed”).

� PL1 solution: “eq(succ(1), 2)”.

� New Problem: Say, in propositional logic, “if x is even, so is x+ 2”.

� It is impossible to speak about infinite sets of objects!

� PL1 solution: “∀x.even(x)⇒ even(succ(succ(x)))”.

Michael Kohlhase: Artificial Intelligence 1 407 2025-02-06

Now We’re Talking

14.1. MOTIVATION: A MORE EXPRESSIVE LANGUAGE 61

� Example 14.1.3.

∀n.gt(n, 2)⇒¬(∃a, b, c.eq(plus(pow(a, n),pow(b, n)),pow(c, n)))

Read: Forall n > 2, there are no a, b, c, such that an + bn = cn (Fermat’s last
theorem)

� Theorem proving in PL1: Arbitrary theorems, in principle.

� Fermat’s last theorem is of course infeasible, but interesting theorems can and
have been proved automatically.

� See http://en.wikipedia.org/wiki/Automated_theorem_proving.

� Note: Need to axiomatize “Plus”, “PowerOf”, “Equals”. See http://en.wikipedia.
org/wiki/Peano_axioms

Michael Kohlhase: Artificial Intelligence 1 408 2025-02-06

What Are the Practical Relevance/Applications?

� . . . even asking this question is a sacrilege:

� (Quotes from Wikipedia)

� “In Europe, logic was first developed by Aristotle. Aristotelian logic became
widely accepted in science and mathematics.”

� “The development of logic since Frege, Russell, and Wittgenstein had a profound
influence on the practice of philosophy and the perceived nature of philosophical
problems, and Philosophy of mathematics.”

� “During the later medieval period, major efforts were made to show that Aris-
totle’s ideas were compatible with Christian faith.”

� (In other words: the church issued for a long time that Aristotle’s ideas were
incompatible with Christian faith.)

Michael Kohlhase: Artificial Intelligence 1 409 2025-02-06

What Are the Practical Relevance/Applications?

� You’re asking it anyhow:

� Logic programming. Prolog et al.

� Databases. Deductive databases where elements of logic allow to conclude
additional facts. Logic is tied deeply with database theory.

� Semantic technology. Mega-trend since > a decade. Use PL1 fragments to
annotate data sets, facilitating their use and analysis.

� Prominent PL1 fragment: Web Ontology Language OWL.

� Prominent data set: The WWW. (semantic web)

� Assorted quotes on Semantic Web and OWL:

http://en.wikipedia.org/wiki/Automated_theorem_proving
http://en.wikipedia.org/wiki/Peano_axioms
http://en.wikipedia.org/wiki/Peano_axioms

62 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

� The brain of humanity.

� The Semantic Web will never work.

� A TRULY meaningful way of interacting with the Web may finally be here:
the Semantic Web. The idea was proposed 10 years ago. A triumvirate of
internet heavyweights – Google, Twitter, and Facebook – are making it real.

Michael Kohlhase: Artificial Intelligence 1 410 2025-02-06

(A Few) Semantic Technology Applications

Web Queries Jeopardy (IBM Watson)

Context-Aware Apps Healthcare

Michael Kohlhase: Artificial Intelligence 1 411 2025-02-06

Our Agenda for This Topic

� This Chapter: Basic definitions and concepts; normal forms.

� Sets up the framework and basic operations.

� Syntax: How to write PL1 formulas? (Obviously required)

� Semantics: What is the meaning of PL1 formulas? (Obviously required.)

� Normal Forms: What are the basic normal forms, and how to obtain them?
(Needed for algorithms, which are defined on these normal forms.)

� Next Chapter: Compilation to propositional reasoning; unification; lifted resolu-
tion/tableau.

� Algorithmic principles for reasoning about predicate logic.

Michael Kohlhase: Artificial Intelligence 1 412 2025-02-06

14.2. FIRST-ORDER LOGIC 63

14.2 First-Order Logic
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25093.
First-order logic is the most widely used formal systems for modelling knowledge and inference

processes. It strikes a very good bargain in the trade-off between expressivity and conceptual
and computational complexity. To many people first-order logic is “the logic”, i.e. the only logic
worth considering, its applications range from the foundations of mathematics to natural language
semantics.

First-Order Predicate Logic (PL1)

� Coverage: We can talk about (All humans are mortal)

� individual things and denote them by variables or constants

� properties of individuals, (e.g. being human or mortal)

� relations of individuals, (e.g. sibling_of relationship)

� functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

� But we cannot state assertions like

� There is a surjective function from the natural numbers into the reals.

� First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . .)

� But too weak for formalizing: (at least directly)

� natural numbers, torsion groups, calculus, . . .

� generalized quantifiers (most, few,. . .)

Michael Kohlhase: Artificial Intelligence 1 413 2025-02-06

14.2.1 First-Order Logic: Syntax and Semantics
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/25094.
The syntax and semantics of first-order logic is systematically organized in two distinct layers: one
for truth values (like in propositional logic) and one for individuals (the new, distinctive feature
of first-order logic).
The first step of defining a formal language is to specify the alphabet, here the first-order signatures
and their components.

PL1 Syntax (Signature and Variables)

� Definition 14.2.1. First-order logic (PL1), is a formal system extensively used in
mathematics, philosophy, linguistics, and computer science. It combines proposi-
tional logic with the ability to quantify over individuals.

� PL1 talks about two kinds of objects: (so we have two kinds of symbols)

� truth values by reusing PL0

https://fau.tv/clip/id/25093
https://fau.tv/clip/id/25094

64 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

� individuals, e.g. numbers, foxes, Pokémon,. . .

� Definition 14.2.2. A first-order signature consists of (all disjoint; k ∈ N)

� connectives: Σ0 = {T , F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)

� function constants: Σfk = {f, g, h, . . .} (k-ary functions on individuals)

� predicate constants: Σpk = {p, q, r, . . .} (k-ary relations among individuals.)

� (Skolem constants: Σskk = {f1k , f2k , . . .}) (witness constructors; countably ∞)

� We take Σ1 to be all of these together: Σ1 := Σf ∪ Σp ∪ Σsk and define
Σ := Σ1 ∪ Σ0.

� Definition 14.2.3. We assume a set of individual variables: Vι := {X,Y , Z, . . .}.
(countably ∞)

Michael Kohlhase: Artificial Intelligence 1 414 2025-02-06

We make the deliberate, but non-standard design choice here to include Skolem constants into
the signature from the start. These are used in inference systems to give names to objects and
construct witnesses. Other than the fact that they are usually introduced by need, they work
exactly like regular constants, which makes the inclusion rather painless. As we can never predict
how many Skolem constants we are going to need, we give ourselves countably infinitely many for
every arity. Our supply of individual variables is countably infinite for the same reason.
The formulae of first-order logic are built up from the signature and variables as terms (to represent
individuals) and proposition (to represent proposition). The latter include the connectives from
PL0, but also quantifiers.

PL1 Syntax (Formulae)

� Definition 14.2.4. Terms: A ∈ wff ι(Σ1,Vι) (denote individuals)

� Vι ⊆ wff ι(Σ1,Vι),
� if f ∈ Σfk and Ai ∈ wff ι(Σ1,Vι) for i ≤ k, then f(A1, . . .,Ak) ∈ wff ι(Σ1,Vι).

� Definition 14.2.5. First-order propositions: A ∈ wff o(Σ1,Vι): (denote truth
values)

� if p ∈ Σpk and Ai ∈ wff ι(Σ1,Vι) for i ≤ k, then p(A1, . . .,Ak) ∈ wff o(Σ1,Vι),
� if A,B ∈ wff o(Σ1,Vι) and X ∈ Vι, then T ,A ∧B,¬A,∀X.A ∈ wff o(Σ1,Vι).
∀ is a binding operator called the universal quantifier.

� Definition 14.2.6. We define the connectives F ,∨,⇒,⇔ via the abbreviations
A ∨ B:=¬(¬A ∧ ¬B), A ⇒ B:=¬A ∨ B, A ⇔ B:=(A ⇒ B) ∧ (B ⇒ A), and
F := ¬T . We will use them like the primary connectives ∧ and ¬

� Definition 14.2.7. We use ∃X.A as an abbreviation for ¬(∀X.¬A). ∃ is a binding
operator called the existential quantifier.

� Definition 14.2.8. Call formulae without connectives or quantifiers atomic else
complex.

Michael Kohlhase: Artificial Intelligence 1 415 2025-02-06

Note: We only need e.g. conjunction, negation, and universal quantifier, all other logi-

14.2. FIRST-ORDER LOGIC 65

cal constants can be defined from them (as we will see when we have fixed their interpreta-
tions).

Alternative Notations for Quantifiers

Here Elsewhere
∀x.A ∧

x.A (x)A

∃x.A ∨
x.A

Michael Kohlhase: Artificial Intelligence 1 416 2025-02-06

The introduction of quantifiers to first-order logic brings a new phenomenon: variables that are
under the scope of a quantifiers will behave very differently from the ones that are not. Therefore
we build up a vocabulary that distinguishes the two.

Free and Bound Variables

� Definition 14.2.9. We call an occurrence of a variable X bound in a formula A
(otherwise free), iff it occurs in a sub-formula ∀X.B of A.

For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

� Definition 14.2.10. We define the set free(A) of free variables of a formula A:

free(X) := {X}
free(f(A1, . . .,An)) :=

⋃
1≤i≤nfree(Ai)

free(p(A1, . . .,An)) :=
⋃

1≤i≤nfree(Ai)
free(¬A) := free(A)
free(A ∧B) := free(A) ∪ free(B)
free(∀X.A) := free(A)\{X}

� Definition 14.2.11. We call a formula A closed or ground, iff free(A) = ∅. We
call a closed proposition a sentence, and denote the set of all ground term with
cwff ι(Σι) and the set of sentences with cwff o(Σι).

� Axiom 14.2.12. Bound variables can be renamed, i.e. any subterm ∀X.B of a
formula A can be replaced by A′ := (∀Y .B′), where B′ arises from B by replacing
all X ∈ free(B) with a new variable Y that does not occur in A. We call A′ an
alphabetical variant of A – and the other way around too.

Michael Kohlhase: Artificial Intelligence 1 417 2025-02-06

We will be mainly interested in (sets of) sentences – i.e. closed propositions – as the representations
of meaningful statements about individuals. Indeed, we will see below that free variables do
not gives us expressivity, since they behave like constants and could be replaced by them in all
situations, except the recursive definition of quantified formulae. Indeed in all situations where
variables occur freely, they have the character of metavariables, i.e. syntactic placeholders that
can be instantiated with terms when needed in a calculus.
The semantics of first-order logic is a Tarski-style set-theoretic semantics where the atomic syn-
tactic entities are interpreted by mapping them into a well-understood structure, a first-order
universe that is just an arbitrary set.

66 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

Semantics of PL1 (Models)

� Definition 14.2.13. We inherit the domain D0 = {T,F} of truth values from PL0

and assume an arbitrary domain Dι ̸= ∅ of individuals. (this choice is a parameter
to the semantics)

� Definition 14.2.14. An interpretation I assigns values to constants, e.g.

� I(¬) : D0 →D0 with T 7→ F, F 7→ T, and I(∧) = . . . (as in PL0)

� I : Σfk →Dιk →Dι (interpret function symbols as arbitrary functions)

� I : Σpk →P(Dιk) (interpret predicates as arbitrary relations)

� Definition 14.2.15. A variable assignment φ : Vι → Dι maps variables into the
domain.

� Definition 14.2.16. A model M = ⟨Dι, I⟩ of PL1 consists of a domain Dι and
an interpretation I.

Michael Kohlhase: Artificial Intelligence 1 418 2025-02-06

We do not have to make the domain of truth values part of the model, since it is always the same;
we determine the model by choosing a domain and an interpretation functiong.
Given a first-order model, we can define the evaluation function as a homomorphism over the
construction of formulae.

Semantics of PL1 (Evaluation)

� Definition 14.2.17. Given a model ⟨D, I⟩, the value function Iφ is recursively
defined: (two parts: terms & propositions)

� Iφ : wff ι(Σ1,Vι)→Dι assigns values to terms.

� Iφ(X) := φ(X) and
� Iφ(f(A1, . . .,Ak)) := I(f)(Iφ(A1), . . ., Iφ(Ak))

� Iφ : wff o(Σ1,Vι)→D0 assigns values to formulae:

� Iφ(T) = I(T) = T,
� Iφ(¬A) = I(¬)(Iφ(A))

� Iφ(A ∧B) = I(∧)(Iφ(A), Iφ(B)) (just as in PL0)
� Iφ(p(A1, . . .,Ak)) := T, iff ⟨Iφ(A1), . . ., Iφ(Ak)⟩ ∈ I(p)
� Iφ(∀X.A) := T, iff Iφ,[a/X](A) = T for all a ∈ Dι.

� Definition 14.2.18 (Assignment Extension). Let φ be a variable assignment
into D and a ∈ D, then φ,[a/X] is called the extension of φ with [a/X] and is
defined as {(Y ,a) ∈ φ |Y ̸= X} ∪ {(X,a)}: φ,[a/X] coincides with φ off X, and
gives the result a there.

Michael Kohlhase: Artificial Intelligence 1 419 2025-02-06

The only new (and interesting) case in this definition is the quantifier case, there we define the
value of a quantified formula by the value of its scope – but with an extension of the incoming
variable assignment. Note that by passing to the scope A of ∀x.A, the occurrences of the variable
x in A that were bound in ∀x.A become free and are amenable to evaluation by the variable

14.2. FIRST-ORDER LOGIC 67

assignment ψ := φ,[a/X]. Note that as an extension of φ, the assignment ψ supplies exactly the
right value for x in A. This variability of the variable assignment in the definition of the value
function justifies the somewhat complex setup of first-order evaluation, where we have the (static)
interpretation function for the symbols from the signature and the (dynamic) variable assignment
for the variables.
Note furthermore, that the value Iφ(∃x.A) of ∃x.A, which we have defined to be ¬(∀x.¬A) is
true, iff it is not the case that Iφ(∀x.¬A) = Iψ(¬A) = F for all a ∈ Dι and ψ := φ,[a/X]. This is
the case, iff Iψ(A) = T for some a ∈ Dι. So our definition of the existential quantifier yields the
appropriate semantics.

Semantics Computation: Example

� Example 14.2.19. We define an instance of first-order logic:

� Signature: Let Σf0 := {j,m}, Σf1 := {f}, and Σp2 := {o}
� Universe: Dι := {J,M}
� Interpretation: I(j) := J , I(m) := M , I(f)(J) := M , I(f)(M) := M , and
I(o) := {(M,J)}.

Then ∀X.o(f(X), X) is a sentence and with ψ := φ,[a/X] for a ∈ Dι we have

Iφ(∀X.o(f(X), X)) = T iff Iψ(o(f(X), X)) = T for all a ∈ Dι
iff (Iψ(f(X)),Iψ(X)) ∈ I(o) for all a ∈ {J,M}
iff (I(f)(Iψ(X)),ψ(X)) ∈ {(M,J)} for all a ∈ {J,M}
iff (I(f)(ψ(X)),a) = (M,J) for all a ∈ {J,M}
iff I(f)(a) =M and a = J for all a ∈ {J,M}

But a ̸= J for a =M , so Iφ(∀X.o(f(X), X)) = F in the model ⟨Dι, I⟩.

Michael Kohlhase: Artificial Intelligence 1 420 2025-02-06

14.2.2 First-Order Substitutions
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/25156.

We will now turn our attention to substitutions, special formula-to-formula mappings that
operationalize the intuition that (individual) variables stand for arbitrary terms.

Substitutions on Terms

� Intuition: If B is a term and X is a variable, then we denote the result of
systematically replacing all occurrences of X in a term A by B with [B/X](A).

� Problem: What about [Z/Y], [Y /X](X), is that Y or Z?

� Folklore: [Z/Y], [Y /X](X) = Y , but [Z/Y]([Y /X](X)) = Z of course.
(Parallel application)

� Definition 14.2.20. Let wfe(Σ,V) be an expression language, then we call σ : V→
wfe(Σ,V) a substitution, iff the support supp(σ):={X | (X,A) ∈ σ,X ̸= A} of σ
is finite. We denote the empty substitution with ϵ.

https://fau.tv/clip/id/25156

68 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

� Definition 14.2.21 (Substitution Application). We define substitution applica-
tion by

� σ(c) = c for c ∈ Σ

� σ(X) = A, iff X ∈ V and (X,A) ∈ σ.

� σ(f(A1, . . .,An)) = f(σ(A1), . . ., σ(An)),

� σ(∀X.A) = ∀X.σ−X(A). (∃ analogous)

� Example 14.2.22. [a/x], [f(b)/y], [a/z] instantiates g(x, y, h(z)) to g(a, f(b), h(a)).

Michael Kohlhase: Artificial Intelligence 1 421 2025-02-06

The extension of a substitution is an important operation, which you will run into from time
to time. Given a substitution σ, a variable x, and an expression A, σ,[A/x] extends σ with a
new value for x. The intuition is that the values right of the comma overwrite the pairs in the
substitution on the left, which already has a value for x, even though the representation of σ may
not show it.

Substitution Extension

� Definition 14.2.23 (Substitution Extension). Let σ be a substitution, then we
denote the extension of σ with [A/X] by σ,[A/X] and define it as {(Y ,B) ∈
σ |Y ̸= X} ∪ {(X,A)}: σ,[A/X] coincides with σ off X, and gives the result A
there.

� Note: If σ is a substitution, then σ,[A/X] is also a substitution.

� We also need the dual operation: removing a variable from the support:

� Definition 14.2.24. We can discharge a variable X from a substitution σ by
setting σ−X :=σ,[X/X].

Michael Kohlhase: Artificial Intelligence 1 422 2025-02-06

Note that the use of the comma notation for substitutions defined in ?? is consistent with sub-
stitution extension. We can view a substitution [a/x], [f(b)/y] as the extension of the empty
substitution (the identity function on variables) by [f(b)/y] and then by [a/x]. Note furthermore,
that substitution extension is not commutative in general.
For first-order substitutions we need to extend the substitutions defined on terms to act on propo-
sitions. This is technically more involved, since we have to take care of bound variables.

Substitutions on Propositions

� Problem: We want to extend substitutions to propositions, in particular to quan-
tified formulae: What is σ(∀X.A)?

� Idea: σ should not instantiate bound variables. ([A/X](∀X.B) = ∀A.B′

ill-formed)

� Definition 14.2.25. σ(∀X.A) := (∀X.σ−X(A)).

� Problem: This can lead to variable capture: [f(X)/Y](∀X.p(X,Y)) would eval-
uate to ∀X.p(X, f(X)), where the second occurrence of X is bound after instanti-

14.2. FIRST-ORDER LOGIC 69

ation, whereas it was free before. Solution: Rename away the bound variable X
in ∀X.p(X,Y) before applying the substitution.

� Definition 14.2.26 (Capture-Avoiding Substitution Application). Let σ be a
substitution, A a formula, and A′ an alphabetic variant of A, such that intro(σ)∩
BVar(A) = ∅. Then we define capture-avoiding substitution application via
σ(A) := σ(A′).

Michael Kohlhase: Artificial Intelligence 1 423 2025-02-06

We now introduce a central tool for reasoning about the semantics of substitutions: the “sub-
stitution value Lemma”, which relates the process of instantiation to (semantic) evaluation. This
result will be the motor of all soundness proofs on axioms and inference rules acting on variables
via substitutions. In fact, any logic with variables and substitutions will have (to have) some form
of a substitution value Lemma to get the meta-theory going, so it is usually the first target in any
development of such a logic. We establish the substitution-value Lemma for first-order logic in
two steps, first on terms, where it is very simple, and then on propositions.

Substitution Value Lemma for Terms

� Lemma 14.2.27. Let A and B be terms, then Iφ([B/X]A) = Iψ(A), where
ψ = φ, [Iφ(B)/X].

� Proof: by induction on the depth of A:

1. depth=0 Then A is a variable (say Y), or constant, so we have three cases
1.1. A = Y = X

1.1.1. then Iφ([B/X](A)) = Iφ([B/X](X)) = Iφ(B) = ψ(X) = Iψ(X) =
Iψ(A).

1.2. A = Y ̸= X
1.2.1. then Iφ([B/X](A)) = Iφ([B/X](Y)) = Iφ(Y) = φ(Y) = ψ(Y) =

Iψ(Y) = Iψ(A).
1.3. A is a constant

1.3.1. Analogous to the preceding case (Y ̸= X).
1.4. This completes the base case (depth = 0).

2. depth> 0
2.1. then A = f(A1, . . .,An) and we have

Iφ([B/X](A)) = I(f)(Iφ([B/X](A1)), . . ., Iφ([B/X](An)))

= I(f)(Iψ(A1), . . ., Iψ(An))

= Iψ(A).

by induction hypothesis
2.2. This completes the induction step, and we have proven the assertion.

Michael Kohlhase: Artificial Intelligence 1 424 2025-02-06

Substitution Value Lemma for Propositions

� Lemma 14.2.28. Iφ([B/X](A)) = Iψ(A), where ψ = φ,[Iφ(B)/X].

� Proof: by induction on the number n of connectives and quantifiers in A:

70 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

1. n = 0
1.1. then A is an atomic proposition, and we can argue like in the induction

step of the substitution value lemma for terms.
2. n > 0 and A = ¬B or A = C ◦D

2.1. Here we argue like in the induction step of the term lemma as well.
3. n > 0 and A = ∀Y .C where (WLOG) X ̸= Y (otherwise rename)

3.1. then Iψ(A) = Iψ(∀Y .C) = T, iff Iψ,[a/Y](C) = T for all a ∈ Dι.
3.2. But Iψ,[a/Y](C) = Iφ,[a/Y]([B/X](C)) = T, by induction hypothesis.
3.3. So Iψ(A) = Iφ(∀Y .[B/X](C)) = Iφ([B/X](∀Y .C)) = Iφ([B/X](A))

Michael Kohlhase: Artificial Intelligence 1 425 2025-02-06

To understand the proof fully, you should think about where the WLOG – it stands for without
loss of generality comes from.

14.3 First-Order Natural Deduction
A Video Nugget covering this section can be found at https://fau.tv/clip/id/25157.
In this section, we will introduce the first-order natural deduction calculus. Recall from ??

that natural deduction calculus have introduction and elimination for every logical constant (the
connectives in PL0). Recall furthermore that we had two styles/notations for the calculus, the
classical ND calculus and the sequent-style notation. These principles will be carried over to
natural deduction in PL1.

This allows us to introduce the calculi in two stages, first for the (propositional) connectives
and then extend this to a calculus for first-order logic by adding rules for the quantifiers. In
particular, we can define the first-order calculi simply by adding (introduction and elimination)
rules for the (universal and existential) quantifiers to the calculus ND0 defined in ??.
To obtain a first-order calculus, we have to extend ND0 with (introduction and elimination) rules
for the quantifiers.

First-Order Natural Deduction (ND1; Gentzen [Gen34])

� Rules for connectives just as always

� Definition 14.3.1 (New Quantifier Rules). The first-order natural deduction
calculus ND1 extends ND0 by the following four rules:

A

∀X.A ND1∀I∗ ∀X.A
[B/X](A)

ND1∀E

[B/X](A)

∃X.A ND1∃I
∃X.A

[[c/X](A)]
1

...
C

c ∈ Σsk0 new

C
ND1∃E1

∗ means that A does not depend on any hypothesis in which X is free.

Michael Kohlhase: Artificial Intelligence 1 426 2025-02-06

The intuition behind the rule ND1∀I is that a formula A with a (free) variableX can be generalized
to ∀X.A, if X stands for an arbitrary object, i.e. there are no restricting assumptions about X.
The ND1∀E rule is just a substitution rule that allows to instantiate arbitrary terms B for X

https://fau.tv/clip/id/25157

14.3. FIRST-ORDER NATURAL DEDUCTION 71

in A. The ND1∃I rule says if we have a witness B for X in A (i.e. a concrete term B that
makes A true), then we can existentially close A. The ND1∃E rule corresponds to the common
mathematical practice, where we give objects we know exist a new name c and continue the proof
by reasoning about this concrete object c. Anything we can prove from the assumption [c/X](A)
we can prove outright if ∃X.A is known.

Now we reformulate the classical formulation of the calculus of natural deduction as a
sequent calculus by lifting it to the “judgments level” as we did for propositional logic. We only
need provide new quantifier rules.

First-Order Natural Deduction in Sequent Formulation

� Rules for connectives from ND0
⊢

� Definition 14.3.2 (New Quantifier Rules). The inference rules of the first-order
sequent calculus ND1

⊢ consist of those from ND0
⊢ plus the following quantifier rules:

Γ⊢A X ̸∈ free(Γ)

Γ⊢∀X.A ND1
⊢∀I

Γ⊢∀X.A
Γ⊢[B/X](A)

ND1
⊢∀E

Γ⊢[B/X](A)

Γ⊢∃X.A ND1
⊢∃I

Γ⊢∃X.A Γ, [c/X](A)⊢C c ∈ Σsk0 new
Γ⊢C ND1

⊢∃E

Michael Kohlhase: Artificial Intelligence 1 427 2025-02-06

Natural Deduction with Equality

� Definition 14.3.3 (First-Order Logic with Equality). We extend PL1 with a
new logical constant for equality =∈ Σp2 and fix its interpretation to I(=) :=
{(x,x) |x ∈ Dι}. We call the extended logic first-order logic with equality (PL1

=)

� We now extend natural deduction as well.

� Definition 14.3.4. For the calculus of natural deduction with equality (ND1
=) we

add the following two rules to ND1 to deal with equality:

A = A
=I

A = B C [A]p
[B/p]C

=E

where C [A]p if the formula C has a subterm A at position p and [B/p]C is the
result of replacing that subterm with B.

� In many ways equivalence behaves like equality, we will use the following rules in
ND1

� Definition 14.3.5. ⇔I is derivable and ⇔E is admissible in ND1:

A⇔A
⇔I

A⇔B C [A]p
[B/p]C

⇔E

Michael Kohlhase: Artificial Intelligence 1 428 2025-02-06

Again, we have two rules that follow the introduction/elimination pattern of natural deduction

72 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

calculi.
Definition 14.3.6. We have the canonical sequent rules that correspond to them: =I, =E, ⇔I,
and ⇔E
To make sure that we understand the constructions here, let us get back to the “replacement at

position” operation used in the equality rules.

Positions in Formulae

� Idea: Formulae are (naturally) trees, so we can use tree positions to talk about
subformulae

� Definition 14.3.7. A position p is a tuple of natural numbers that in each node
of an expression (tree) specifies into which child to descend. For an expression A
we denote the subexpression at p with A|p.
We will sometimes write an expression C as C [A]p to indicate that C the subex-
pression A at position p.

If C [A]p and A is atomic, then we speak of an occurrence of A in C.

� Definition 14.3.8. Let p be a position, then [A/p]C is the expression obtained
from C by replacing the subexpression at p by A.

� Example 14.3.9 (Schematically).

A = C|p

p

C

B

p

[B/p]C

Michael Kohlhase: Artificial Intelligence 1 429 2025-02-06

The operation of replacing a subformula at position p is quite different from e.g. (first-order)
substitutions:

• We are replacing subformulae with subformulae instead of instantiating variables with terms.

• Substitutions replace all occurrences of a variable in a formula, whereas formula replacement
only affects the (one) subformula at position p.

We conclude this section with an extended example: the proof of a classical mathematical result
in the natural deduction calculus with equality. This shows us that we can derive strong properties
about complex situations (here the real numbers; an uncountably infinite set of numbers).

ND1
= Example:

√
2 is Irrational

� We can do real mathematics with ND1
=:

� Theorem 14.3.10.
√
2 is irrational

Proof: We prove the assertion by contradiction

1. Assume that
√
2 is rational.

2. Then there are numbers p and q such that
√
2 = p/q.

14.3. FIRST-ORDER NATURAL DEDUCTION 73

3. So we know 2q2 = p2.
4. But 2q2 has an odd number of prime factors while p2 an even number.
5. This is a contradiction (since they are equal), so we have proven the assertion

Michael Kohlhase: Artificial Intelligence 1 430 2025-02-06

If we want to formalize this into ND1, we have to write down all the assertions in the proof steps
in PL1 syntax and come up with justifications for them in terms of ND1 inference rules. The next
two slides show such a proof, where we write ′n to denote that n is prime, use #(n) for the number
of prime factors of a number n, and write irr(r) if r is irrational.

ND1
= Example:

√
2 is Irrational (the Proof)

hyp formula NDjust
1 ∀n,m.¬(2n+ 1) = (2m) lemma
2 ∀n,m.#(nm) = m#(n) lemma
3 ∀n, p.prime(p)⇒#(pn) = (#(n) + 1) lemma
4 ∀x.irr(x)⇔¬(∃p, q.x = p/q) definition
5 irr(

√
2)⇔¬(∃p, q.

√
2 = p/q) ND1

⊢∀E(4)

6 6 ¬irr(
√
2) ND0

⊢Ax

7 6 ¬¬(∃p, q.
√
2 = p/q) ⇔E(6, 5)

8 6 ∃p, q.
√
2 = p/q ND0

⊢¬E(7)

9 6,9
√
2 = p/q ND0

⊢Ax
10 6,9 2q2 = p2 arith(9)
11 6,9 #(p2) = 2#(p) ND1

⊢∀E2(2)
12 6,9 prime(2)⇒#(2q2) = (#(q2) + 1) ND1

⊢∀E2(1)

Michael Kohlhase: Artificial Intelligence 1 431 2025-02-06

Lines 6 and 9 are local hypotheses for the proof (they only have an implicit counterpart in the
inference rules as defined above). Finally we have abbreviated the arithmetic simplification of line
9 with the justification “arith” to avoid having to formalize elementary arithmetic.

ND1
= Example:

√
2 is Irrational (the Proof continued)

13 prime(2) lemma
14 6,9 #(2q2) = #(q2) + 1 ND0 ⇒E(13, 12)
15 6,9 #(q2) = 2#(q) ND1∀E2(2)
16 6,9 #(2q2) = 2#(q) + 1 =E(14, 15)
17 #(p2) = #(p2) =I
18 6,9 #(2q2) = #(q2) =E(17, 10)
19 6.9 2#(q) + 1 = #(p2) =E(18, 16)
20 6.9 2#(q) + 1 = 2#(p) =E(19, 11)
21 6.9 ¬(2#(q) + 1) = (2#(p)) ND1∀E2(1)
22 6,9 F ND0FI(20, 21)
23 6 F ND1∃E6(22)

24 ¬¬irr(
√
2) ND0¬I6(23)

25 irr(
√
2) ND0¬E2(23)

74 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

Michael Kohlhase: Artificial Intelligence 1 432 2025-02-06

We observe that the ND1 proof is much more detailed, and needs quite a few Lemmata about
to go through. Furthermore, we have added a definition of irrationality (and treat definitional
equality via the equality rules). Apart from these artefacts of formalization, the two representations
of proofs correspond to each other very directly.

14.4 Conclusion

Summary (Predicate Logic)

� First-order logic allows to explicitly speak about objects and their properties. It is
thus a more natural and compact representation language than propositional logic;
it also enables us to speak about infinite sets of objects.

� Logic has thousands of years of history. A major current application in AI is semantic
technology. (up soon)

� First-order logic (PL1) allows universal and existential quantifier quantification over
individuals.

� A PL1 model consists of a universe Dι and a function I mapping individual con-
stants/predicate constants/function constants to elements/relations/functions on
Dι.

� First-order natural deduction is a sound and complete calculus for PL1 intended
and optimized for human understanding.

Michael Kohlhase: Artificial Intelligence 1 433 2025-02-06

Applications for ND1 (and extensions)

� Recap: We can express mathematical theorems in PL1 and prove them in ND1.

� Problem: These proofs can be huge (giga-steps), how can we trust them?

� Definition 14.4.1. A proof checker for a calculus C is a program that reads (a
formal representation) of a C-proof P and performs proof-checking, i.e. it checks
whether all rule applications in P are (syntactically) correct.

� Remark: Proof-checking goes step-by-step ; proof checkers run in linear time.

� Idea: If the logic can express (safety)-properties of programs, we can use proof
checkers for formal program verification. (there are extensions of PL1 that can)

� Problem: These proofs can be humongous, how can humans write them?

� Idea: Automate proof construction via

� lemma/theorem libraries that collect useful intermediate results

� tactics =̂ subroutines that construct recurring sub-proofs

� calls to automated theorem prover (ATP) (next chapter)

14.4. CONCLUSION 75

Proof checkers that do any/all of these are called proof assistants.

� Definition 14.4.2. Formal methods are logic-based techniques for the specification,
development, analysis, and verification of software and hardware.

� Formal methods is a major (industrial) application of AI/logic technology.

Michael Kohlhase: Artificial Intelligence 1 434 2025-02-06

Suggested Reading:

• Chapter 8: First-Order Logic, Sections 8.1 and 8.2 in [RN09]

– A less formal account of what I cover in “Syntax” and “Semantics”. Contains different exam-
ples, and complementary explanations. Nice as additional background reading.

• Sections 8.3 and 8.4 provide additional material on using PL1, and on modeling in PL1, that I
don’t cover in this lecture. Nice reading, not required for exam.

• Chapter 9: Inference in First-Order Logic, Section 9.5.1 in [RN09]

– A very brief (2 pages) description of what I cover in “Normal Forms”. Much less formal; I
couldn’t find where (if at all) RN cover transformation into prenex normal form. Can serve
as additional reading, can’t replace the lecture.

• Excursion: A full analysis of any calculus needs a completeness proof. We will not cover this
in AI-1, but provide one for the calculi introduced so far in??.

76 CHAPTER 14. FIRST-ORDER PREDICATE LOGIC

Chapter 15

Automated Theorem Proving in
First-Order Logic

In this chapter, we take up the machine-oriented calculi for propositional logic from ?? and extend
them to the first-order case. While this has been relatively easy for the natural deduction calculus
– we only had to introduce the notion of substitutions for the elimination rule for the universal
quantifier we have to work much more here to make the calculi effective for implementation.

15.1 First-Order Inference with Tableaux

15.1.1 First-Order Tableau Calculi
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/25156.

Test Calculi: Tableaux and Model Generation

� Idea: A tableau calculus is a test calculus that

� analyzes a labeled formulae in a tree to determine satisfiability,

� its branches correspond to valuations (; models).

� Example 15.1.1.Tableau calculi try to construct models for labeled formulae:

Tableau refutation (Validity) Model generation (Satisfiability)
⊨P ∧Q⇒Q ∧ P ⊨P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧Q⇒Q ∧ P)F

(P ∧Q)T

(Q ∧ P)F

PT

QT

P F

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand model {PT, QF, RF}
φ := {P 7→ T, Q 7→ F, R 7→ F}

� Idea: Open branches in saturated tableaux yield models.

� Algorithm: Fully expand all possible tableaux, (no rule can be applied)

77

https://fau.tv/clip/id/25156

78 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

� Satisfiable, iff there are open branches (correspond to models)

Michael Kohlhase: Artificial Intelligence 1 435 2025-02-06

Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis
on when a formula can be made true (or false). Therefore the formulae are decorated with upper
indices that hold the intended truth value.
On the left we have a refutation tableau that analyzes a negated formula (it is decorated with the
intended truth value F). Both branches contain an elementary contradiction ⊥.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T). This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one. The latter corresponds a model.

Now that we have seen the examples, we can write down the tableau rules formally.

Analytical Tableaux (Formal Treatment of T0)

� Idea: A test calculus where

� A labeled formula is analyzed in a tree to determine satisfiability,

� branches correspond to valuations (models)

� Definition 15.1.2. The propositional tableau calculus T0 has two inference rules
per connective (one for each possible label)

(A ∧B)
T

AT

BT

T0∧
(A ∧B)

F

AF
∣∣∣ BF

T0∨
¬AT

AF
T0¬T ¬AF

AT
T0¬F

Aα

Aβ α ̸= β

⊥ T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

� Definition 15.1.3. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.

� Definition 15.1.4. Call a tableau saturated, iff no rule adds new material and a
branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its branches
are.

In analogy to the ⊥ at the end of closed branches, we sometimes decorate open
branches with a 2 symbol.

Michael Kohlhase: Artificial Intelligence 1 436 2025-02-06

These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol ⊥ (for unsatisfiability) to a branch.
We use the tableau rules with the convention that they are only applied, if they contribute new

material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).
Definition 15.1.5. We will call a closed tableau with the labeled formula Aα at the root a
tableau refutation for Aα.

15.1. FIRST-ORDER INFERENCE WITH TABLEAUX 79

The saturated tableau represents a full case analysis of what is necessary to give A the truth
value α; since all branches are closed (contain contradictions) this is impossible.

Analytical Tableaux (T0 continued)

� Definition 15.1.6 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0
A), iff

there is a closed tableau with AF at the root.

Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0
A), iff there is a closed tableau starting with AF

and ΦT. The tableau with only a branch of AF and ΦT is called initial for Φ⊢T0A.

Michael Kohlhase: Artificial Intelligence 1 437 2025-02-06

Definition 15.1.7. We will call a tableau refutation for AF a tableau proof for A, since it refutes
the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.
Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the

propositional Hilbert calculus it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation. Such calculi are called negative or test calculi. Generally
negative calculi have computational advantages over positive ones, since they have a built-in sense
of direction.
We have rules for all the necessary connectives (we restrict ourselves to ∧ and ¬, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write A ∨B as ¬(¬A ∧ ¬B), and A⇒B as ¬A ∨B,. . . .)
We will now extend the propositional tableau techniques to first-order logic. We only have to add
two new rules for the universal quantifier (in positive and negative polarity).

First-Order Standard Tableaux (T1)

� Definition 15.1.8. The standard tableau calculus (T1) extends T0 (propositional
tableau calculus) with the following quantifier rules:

(∀X.A)
T

C ∈ cwff ι(Σι)

([C/X](A))
T

T1 ∀
(∀X.A)

F
c ∈ Σsk0 new

([c/X](A))
F

T1 ∃

� Problem: The rule T1 ∀ displays a case of “don’t know indeterminism”: to find a
refutation we have to guess a formula C from the (usually infinite) set cwff ι(Σι).

For proof search, this means that we have to systematically try all, so T1 ∀ is infinitely
branching in general.

Michael Kohlhase: Artificial Intelligence 1 438 2025-02-06

The rule T1 ∀ operationalizes the intuition that a universally quantified formula is true, iff all
of the instances of the scope are. To understand the T1 ∃ rule, we have to keep in mind that
∃X.A abbreviates ¬(∀X.¬A), so that we have to read (∀X.A)

F existentially — i.e. as (∃X.¬A)
T,

stating that there is an object with property ¬A. In this situation, we can simply give this
object a name: c, which we take from our (infinite) set of witness constants Σsk0 , which we have
given ourselves expressly for this purpose when we defined first-order syntax. In other words
([c/X](¬A))

T
= ([c/X](A))

F holds, and this is just the conclusion of the T1 ∃ rule.
Note that the T1 ∀ rule is computationally extremely inefficient: we have to guess an (i.e. in a
search setting to systematically consider all) instance C ∈ wff ι(Σι,Vι) for X. This makes the rule
infinitely branching.

80 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

In the next calculus we will try to remedy the computational inefficiency of the T1 ∀ rule. We do
this by delaying the choice in the universal rule.

Free variable Tableaux (T f
1)

� Definition 15.1.9. The free variable tableau calculus (T f1) extends T0 (proposi-
tional tableau calculus) with the quantifier rules:

(∀X.A)T Y new
([Y /X](A))T

T f
1 ∀ (∀X.A)F free(∀X.A) = {X1, . . ., Xk} f ∈ Σsk

k new
([f(X1, . . . , Xk)/X](A))F

T f
1 ∃

and generalizes its cut rule T0⊥ to:

Aα

Bβ α ̸= β σ(A) = σ(B)

⊥ : σ
T f1 ⊥

T f1 ⊥ instantiates the whole tableau by σ.

� Advantage: No guessing necessary in T f1 ∀-rule!

� New Problem: find suitable substitution (most general unifier) (later)

Michael Kohlhase: Artificial Intelligence 1 439 2025-02-06

Metavariables: Instead of guessing a concrete instance for the universally quantified variable
as in the T1 ∀ rule, T f1 ∀ instantiates it with a new metavariable Y , which will be instantiated by
need in the course of the derivation.
Skolem terms as witnesses: The introduction of metavariables makes is necessary to extend
the treatment of witnesses in the existential rule. Intuitively, we cannot simply invent a new name,
since the meaning of the body A may contain metavariables introduced by the T f1 ∀ rule. As we
do not know their values yet, the witness for the existential statement in the antecedent of the
T f1 ∃ rule needs to depend on that. So witness it using a witness term, concretely by applying a
Skolem function to the metavariables in A.
Instantiating Metavariables: Finally, the T f1 ⊥ rule completes the treatment of metavariables,
it allows to instantiate the whole tableau in a way that the current branch closes. This leaves us
with the problem of finding substitutions that make two terms equal.

Free variable Tableaux (T f
1): Derivable Rules

� Definition 15.1.10. Derivable quantifier rules in T f1 :

(∃X.A)
T

free(∀X.A) = {X1, . . ., Xk} f ∈ Σskk new

([f(X1, . . . , Xk)/X](A))
T

(∃X.A)
F
Y new

([Y /X](A))
F

Michael Kohlhase: Artificial Intelligence 1 440 2025-02-06

15.1. FIRST-ORDER INFERENCE WITH TABLEAUX 81

Tableau Reasons about Blocks

� Example 15.1.11 (Reasoning about Blocks). Returing to slide 405

Let’s Talk About Blocks, Baby . . .

I Question: What do you see here?

A D B E C

I You say: “All blocks are red”; “All blocks are on the table”; “A is a block”.

I And now: Say it in propositional logic!

I Answer: “isRedA”,“isRedB”, . . . , “onTableA”, “onTableB”, . . . , “isBlockA”, . . .

I Wait a sec!: Why don’t we just say, e.g., “AllBlocksAreRed” and “isBlockA”?

I Problem: Could we conclude that A is red? (No)
These statements are atomic (just strings); their inner structure (“all blocks”, “is
a block”) is not captured.

I Idea: Predicate Logic (PL1) extends propositional logic with the ability to
explicitly speak about objects and their properties.

I How?: Variables ranging over objects, predicates describing object properties, . . .
I Example 1.1. “8x block(x)) red(x)”; “block(A)”

Kohlhase: Künstliche Intelligenz 1 416 July 5, 2018

Can we prove red(A) from ∀x.block(x)⇒ red(x) and block(A)?

(∀X.block(X)⇒ red(X))
T

block(A)
T

red(A)
F

(block(Y)⇒ red(Y))
T

block(Y)
F

⊥ : [A/Y]
red(A)

T

⊥

Michael Kohlhase: Artificial Intelligence 1 441 2025-02-06

15.1.2 First-Order Unification
Video Nuggets covering this subsection can be found at https://fau.tv/clip/id/26810 and
https://fau.tv/clip/id/26811.
We will now look into the problem of finding a substitution σ that make two terms equal (we

say it unifies them) in more detail. The presentation of the unification algorithm we give here
“transformation-based” this has been a very influential way to treat certain algorithms in theoret-
ical computer science.
A transformation-based view of algorithms: The “transformation-based” view of algorithms
divides two concerns in presenting and reasoning about algorithms according to Kowalski’s slogan
[Kow97]

algorithm = logic + control

The computational paradigm highlighted by this quote is that (many) algorithms can be thought
of as manipulating representations of the problem at hand and transforming them into a form
that makes it simple to read off solutions. Given this, we can simplify thinking and reasoning
about such algorithms by separating out their “logical” part, which deals with is concerned with
how the problem representations can be manipulated in principle from the “control” part, which
is concerned with questions about when to apply which transformations.

It turns out that many questions about the algorithms can already be answered on the “logic”
level, and that the “logical” analysis of the algorithm can already give strong hints as to how to
optimize control.
In fact we will only concern ourselves with the “logical” analysis of unification here.

The first step towards a theory of unification is to take a closer look at the problem itself. A first
set of examples show that we have multiple solutions to the problem of finding substitutions that
make two terms equal. But we also see that these are related in a systematic way.

Unification (Definitions)

� Definition 15.1.12. For given terms A and B, unification is the problem of finding
a substitution σ, such that σ(A) = σ(B).

� Notation: We write term pairs as A=?B e.g. f(X)=?f(g(Y)).

https://fau.tv/clip/id/26810
https://fau.tv/clip/id/26811

82 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

� Definition 15.1.13. Solutions (e.g. [g(a)/X], [a/Y], [g(g(a))/X], [g(a)/Y], or
[g(Z)/X], [Z/Y]) are called unifiers, U(A=?B) := {σ |σ(A) = σ(B)}.

� Idea: Find representatives in U(A=?B), that generate the set of solutions.

� Definition 15.1.14. Let σ and θ be substitutions and W ⊆ Vι, we say that
a substitution σ is more general than θ (on W ; write σ≤θ[W]), iff there is a
substitution ρ, such that θ=ρ ◦ σ[W], where σ=ρ[W], iff σ(X) = ρ(X) for all
X ∈W .

� Definition 15.1.15. σ is called a most general unifier (mgu) of A and B, iff it is
minimal in U(A=?B) wrt. ≤[(free(A) ∪ free(B))].

Michael Kohlhase: Artificial Intelligence 1 442 2025-02-06

The idea behind a most general unifier is that all other unifiers can be obtained from it by (further)
instantiation. In an automated theorem proving setting, this means that using most general
unifiers is the least committed choice — any other choice of unifiers (that would be necessary for
completeness) can later be obtained by other substitutions.
Note that there is a subtlety in the definition of the ordering on substitutions: we only compare
on a subset of the variables. The reason for this is that we have defined substitutions to be total
on (the infinite set of) variables for flexibility, but in the applications (see the definition of most
general unifiers), we are only interested in a subset of variables: the ones that occur in the initial
problem formulation. Intuitively, we do not care what the unifiers do off that set. If we did not
have the restriction to the set W of variables, the ordering relation on substitutions would become
much too fine-grained to be useful (i.e. to guarantee unique most general unifiers in our case).

Now that we have defined the problem, we can turn to the unification algorithm itself. We
will define it in a way that is very similar to logic programming: we first define a calculus that
generates “solved forms” (formulae from which we can read off the solution) and reason about
control later. In this case we will reason that control does not matter.

Unification Problems (=̂ Equational Systems)

� Idea: Unification is equation solving.

� Definition 15.1.16. We call a formula A1=?B1 ∧ . . . ∧ An=?Bn an unification
problem iff Ai,Bi ∈ wff ι(Σι,Vι).

� Note: We consider unification problems as sets of equations (∧ is ACI), and
equations as two-element multisets (=? is C).

� Definition 15.1.17. A substitution is called a unifier for a unification problem E
(and thus D unifiable), iff it is a (simultaneous) unifier for all pairs in E .

Michael Kohlhase: Artificial Intelligence 1 443 2025-02-06

In principle, unification problems are sets of equations, which we write as conjunctions, since all of
them have to be solved for finding a unifier. Note that it is not a problem for the “logical view” that
the representation as conjunctions induces an order, since we know that conjunction is associative,
commutative and idempotent, i.e. that conjuncts do not have an intrinsic order or multiplicity,
if we consider two equational problems as equal, if they are equivalent as propositional formulae.
In the same way, we will abstract from the order in equations, since we know that the equality
relation is symmetric. Of course we would have to deal with this somehow in the implementation
(typically, we would implement equational problems as lists of pairs), but that belongs into the
“control” aspect of the algorithm, which we are abstracting from at the moment.

15.1. FIRST-ORDER INFERENCE WITH TABLEAUX 83

Solved forms and Most General Unifiers

� Definition 15.1.18. We call a pair A=?B solved in a unification problem E , iff
A = X, E = X=?A ∧ E ′, and X ̸∈ (free(A) ∪ free(E ′)). We call an unification
problem E a solved form, iff all its pairs are solved.

� Lemma 15.1.19. Solved forms are of the form X1=?B1 ∧ . . . ∧ Xn=?Bn where
the Xi are distinct and Xi ̸∈ free(Bj).

� Definition 15.1.20. Any substitution σ = [B1/X1], . . . ,[Bn/Xn] induces a solved
unification problem Eσ:=(X1=?B1 ∧ . . . ∧Xn=?Bn).

� Lemma 15.1.21. If E = X1=?B1 ∧ . . . ∧ Xn=?Bn is a solved form, then E has
the unique most general unifier σE :=[B1/X1], . . . ,[Bn/Xn].

� Proof: Let θ ∈ U(E)
1. then θ(Xi) = θ(Bi) = θ ◦ σE(X

i)

2. and thus θ=θ ◦ σE [supp(σ)].

� Note: We can rename the introduced variables in most general unifiers!

Michael Kohlhase: Artificial Intelligence 1 444 2025-02-06

It is essential to our “logical” analysis of the unification algorithm that we arrive at unification
problems whose unifiers we can read off easily. Solved forms serve that need perfectly as ??
shows.
Given the idea that unification problems can be expressed as formulae, we can express the algo-
rithm in three simple rules that transform unification problems into solved forms (or unsolvable
ones).

Unification Algorithm

� Definition 15.1.22. The inference system U consists of the following rules:

E ∧ f(A1, . . .,An)=?f(B1, . . .,Bn)

E ∧A1=?B1 ∧ . . . ∧An=?Bn
Udec E ∧A=?A

E Utriv

E ∧X=?A X ̸∈ free(A) X ∈ free(E)
[A/X](E) ∧X=?A

Uelim

� Lemma 15.1.23. U is correct: E⊢UF implies U(F) ⊆ U(E).

� Lemma 15.1.24. U is complete: E⊢UF implies U(E) ⊆ U(F).

� Lemma 15.1.25. U is confluent: the order of derivations does not matter.

� Corollary 15.1.26. First-order unification is unitary: i.e. most general unifiers are
unique up to renaming of introduced variables.

� Proof sketch: U is trivially branching.

Michael Kohlhase: Artificial Intelligence 1 445 2025-02-06

The decomposition rule Udec is completely straightforward, but note that it transforms one unifi-
cation pair into multiple argument pairs; this is the reason, why we have to directly use unification

84 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

problems with multiple pairs in U .
Note furthermore, that we could have restricted the Utriv rule to variable-variable pairs, since

for any other pair, we can decompose until only variables are left. Here we observe, that constant-
constant pairs can be decomposed with the Udec rule in the somewhat degenerate case without
arguments.

Finally, we observe that the first of the two variable conditions in Uelim (the “occurs-in-check”)
makes sure that we only apply the transformation to unifiable unification problems, whereas the
second one is a termination condition that prevents the rule to be applied twice.
The notion of completeness and correctness is a bit different than that for calculi that we compare
to the entailment relation. We can think of the “logical system of unifiability” with the model class
of sets of substitutions, where a set satisfies an equational problem E , iff all of its members are
unifiers. This view induces the soundness and completeness notions presented above.
The three meta-properties above are relatively trivial, but somewhat tedious to prove, so we leave
the proofs as an exercise to the reader.
We now fortify our intuition about the unification calculus by two examples. Note that we only
need to pursue one possible U derivation since we have confluence.

Unification Examples

� Example 15.1.27. Two similar unification problems:

f(g(X,X), h(a))=?f(g(a, Z), h(Z))
Udec

g(X,X)=?g(a, Z) ∧ h(a)=?h(Z)
Udec

X=?a ∧X=?Z ∧ h(a)=?h(Z)
Udec

X=?a ∧X=?Z ∧ a=?Z
Uelim

X=?a ∧ a=?Z ∧ a=?Z
Uelim

X=?a ∧ Z=?a ∧ a=?a
Utriv

X=?a ∧ Z=?a

f(g(X,X), h(a))=?f(g(b, Z), h(Z))
Udec

g(X,X)=?g(b, Z) ∧ h(a)=?h(Z)
Udec

X=?b ∧X=?Z ∧ h(a)=?h(Z)
Udec

X=?b ∧X=?Z ∧ a=?Z
Uelim

X=?b ∧ b=?Z ∧ a=?Z
Uelim

X=?b ∧ Z=?b ∧ a=?b

MGU: [a/X], [a/Z] a=?b not unifiable

Michael Kohlhase: Artificial Intelligence 1 446 2025-02-06

We will now convince ourselves that there cannot be any infinite sequences of transformations in
U . Termination is an important property for an algorithm.

The proof we present here is very typical for termination proofs. We map unification problems
into a partially ordered set ⟨S,≺⟩ where we know that there cannot be any infinitely descending
sequences (we think of this as measuring the unification problems). Then we show that all trans-
formations in U strictly decrease the measure of the unification problems and argue that if there
were an infinite transformation in U , then there would be an infinite descending chain in S, which
contradicts our choice of ⟨S,≺⟩.

The crucial step in coming up with such proofs is finding the right partially ordered set.
Fortunately, there are some tools we can make use of. We know that ⟨N, <⟩ is terminating, and
there are some ways of lifting component orderings to complex structures. For instance it is well-
known that the lexicographic ordering lifts a terminating ordering to a terminating ordering on
finite dimensional Cartesian spaces. We show a similar, but less known construction with multisets
for our proof.

15.1. FIRST-ORDER INFERENCE WITH TABLEAUX 85

Unification (Termination)

� Definition 15.1.28. Let S and T be multisets and ≤ a partial ordering on S ∪ T .
Then we define S ≺m S, iff S = C ⊎T ′ and T = C ⊎{t}, where s≤t for all s ∈ S′.
We call ≤m the multiset ordering induced by ≤.

� Definition 15.1.29. We call a variable X solved in an unification problem E , iff E
contains a solved pair X=?A.

� Lemma 15.1.30. If ≺ is linear/terminating On S, then ≺m is linear/terminating
on P(S).

� Lemma 15.1.31. U is terminating. (any U-derivation is finite)

� Proof: We prove termination by mapping U transformation into a Noetherian space.

1. Let µ(E):=⟨n,N⟩, where
� n is the number of unsolved variables in E
� N is the multiset of term depths in E

2. The lexicographic order ≺ on pairs µ(E) is decreased by all inference rules.
2.1. Udec and Utriv decrease the multiset of term depths without increasing

the unsolved variables.
2.2. Uelim decreases the number of unsolved variables (by one), but may in-

crease term depths.

Michael Kohlhase: Artificial Intelligence 1 447 2025-02-06

But it is very simple to create terminating calculi, e.g. by having no inference rules. So there
is one more step to go to turn the termination result into a decidability result: we must make sure
that we have enough inference rules so that any unification problem is transformed into solved
form if it is unifiable.

First-Order Unification is Decidable

� Definition 15.1.32. We call an equational problem E U-reducible, iff there is a
U-step E⊢UF from E .

� Lemma 15.1.33. If E is unifiable but not solved, then it is U-reducible.

� Proof: We assume that E is unifiable but unsolved and show the U rule that applies.

1. There is an unsolved pair A=?B in E = E ∧A=?B′.
we have two cases
2. A,B ̸∈ Vι

2.1. then A = f(A1 . . .An) and B = f(B1 . . .Bn), and thus Udec is appli-
cable

3. A = X ∈ free(E)
3.1. then Uelim (if B ̸= X) or Utriv (if B = X) is applicable.

� Corollary 15.1.34. First-order unification is decidable in PL1.

Proof:

� 1. U-irreducible unification problems can be reached in finite time by ??.
2. They are either solved or unsolvable by ??, so they provide the answer.

86 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

Michael Kohlhase: Artificial Intelligence 1 448 2025-02-06

15.1.3 Efficient Unification
Now that we have seen the basic ingredients of an unification algorithm, let us as always consider
complexity and efficiency issues.
We start with a look at the complexity of unification and – somewhat surprisingly – find expo-
nential time/space complexity based simply on the fact that the results – the unifiers – can be
exponentially large.

Complexity of Unification

� Observation: Naive implementations of unification are exponential in time and
space.

� Example 15.1.35. Consider the terms

sn = f(f(x0, x0), f(f(x1, x1), f(. . . , f(xn−1, xn−1)) . . .))

tn = f(x1, f(x2, f(x3, f(· · · , xn) · · ·)))

� The most general unifier of sn and tn is

σn := [f(x0, x0)/x1], [f(f(x0, x0), f(x0, x0))/x2], [f(f(f(x0, x0), f(x0, x0)), f(f(x0, x0), f(x0, x0)))/x3], . . .

� It contains
∑n
i=1 2

i = 2n+1 − 2 occurrences of the variable x0. (exponential)

� Problem: The variable x0 has been copied too often.

� Idea: Find a term representation that re-uses subterms.

Michael Kohlhase: Artificial Intelligence 1 449 2025-02-06

Indeed, the only way to escape this combinatorial explosion is to find representations of substitu-
tions that are more space efficient.

Directed Acyclic Graphs (DAGs) for Terms

� Recall: Terms in first-order logic are essentially trees.

� Concrete Idea: Use directed acyclic graphs for representing terms:

� variables my only occur once in the DAG.

� subterms can be referenced multiply. (subterm sharing)

� we can even represent multiple terms in a common DAG

� Observation 15.1.36. Terms can be transformed into DAGs in linear time.

� Example 15.1.37. Continuing from ?? . . . s3, t3, and σ3(s3) as DAGs:

15.1. FIRST-ORDER INFERENCE WITH TABLEAUX 87

x1 x2 x3

x0 f f

ff

f f

f

s3 t3

x0

f

f

f

f

f

σ3(t3)

In general: sn, tn, and σn(sn) only need space in O(n). (just count)

Michael Kohlhase: Artificial Intelligence 1 450 2025-02-06

If we look at the unification algorithm from ?? and the considerations in the termination proof
(??) with a particular focus on the role of copying, we easily find the culprit for the exponential
blowup: Uelim, which applies solved pairs as substitutions.

DAG Unification Algorithm

� Observation: In U , the Uelim rule applies solved pairs ; subterm duplication.

� Idea: Replace Uelim the notion of solved forms by something better.

� Definition 15.1.38. We say that X1=?B1 ∧ . . .∧Xn=?Bn is a DAG solved form,
iff the Xi are distinct and Xi ̸∈ free(Bj) for i ≤ j.

� Definition 15.1.39. The inference system DU contains rules Udec and Utriv from
U plus the following:

E ∧X=?A ∧X=?B A,B ̸∈ Vι |A| ≤ |B|
E ∧X=?A ∧A=?B

DUmerge

E ∧X=?Y X ̸= Y X, Y ∈ free(E)
[Y /X](E) ∧X=?Y

DUevar

where |A| is the number of symbols in A.

� The analysis for U applies mutatis mutandis.

Michael Kohlhase: Artificial Intelligence 1 451 2025-02-06

We will now turn the ideas we have developed in the last couple of slides into a usable func-
tional algorithm. The starting point is treating terms as DAGs. Then we try to conduct the
transformation into solved form without adding new nodes.

Unification by DAG-chase

� Idea: Extend the Input-DAGs by edges that represent unifiers.

� Definition 15.1.40. Write n.a, if a is the symbol of node n.

� (standard) auxiliary procedures: (all constant or linear time in DAGs)

� find(n) follows the path from n and returns the end node.

88 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

� union(n,m) adds an edge between n and m.

� occur(n,m) determines whether n.x occurs in the DAG with root m.

Michael Kohlhase: Artificial Intelligence 1 452 2025-02-06

Algorithm dag−unify

� Input: symmetric pairs of nodes in DAGs

fun dag−unify(n,n) = true
| dag−unify(n.x,m) = if occur(n,m) then true else union(n,m)
| dag−unify(n.f ,m.g) =

if g!=f then false
else

forall (i,j) => dag−unify(find(i),find(j)) (chld m,chld n)
end

� Observation 15.1.41. dag−unify uses linear space, since no new nodes are created,
and at most one link per variable.

� Problem: dag−unify still uses exponential time.

� Example 15.1.42. Consider terms f(sn, f(t′n, xn)), f(tn, f(s′n, yn))), where s′n =
[yi/xi](sn) und t′n = [yi/xi](tn).

dag−unify needs exponentially many recursive calls to unify the nodes xn and yn.
(they are unified after n calls, but checking needs the time)

Michael Kohlhase: Artificial Intelligence 1 453 2025-02-06

Algorithm uf−unify

� Recall: dag−unify still uses exponential time.

� Idea: Also bind the function nodes, if the arguments are unified.

uf−unify(n.f ,m.g) =
if g!=f then false
else union(n,m);

forall (i,j) => uf−unify(find(i),find(j)) (chld m,chld n)
end

� This only needs linearly many recursive calls as it directly returns with true or makes
a node inaccessible for find.

� Linearly many calls to linear procedures give quadratic running time.

� Remark: There are versions of uf−unify that are linear in time and space, but for
most purposes, our algorithm suffices.

Michael Kohlhase: Artificial Intelligence 1 454 2025-02-06

15.1. FIRST-ORDER INFERENCE WITH TABLEAUX 89

15.1.4 Implementing First-Order Tableaux

A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/26797.
We now come to some issues (and clarifications) pertaining to implementing proof search for free
variable tableaux. They all have to do with the – often overlooked – fact that T f1 ⊥ instantiates
the whole tableau.
The first question one may ask for implementation is whether we expect a terminating proof
search; after all, T0 terminated. We will see that the situation for T f1 is different.

Termination and Multiplicity in Tableaux

� Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

� Observation 15.1.43. All T f1 rules except T f1 ∀ only need to be applied once.

� Example 15.1.44. A tableau proof for (p(a) ∨ p(b))⇒ (∃.p()).

Start, close left branch use T f1 ∀ again (right branch)

((p(a) ∨ p(b))⇒ (∃.p()))F
(p(a) ∨ p(b))T
(∃x.p(x))F
(∀x.¬p(x))T

¬p(y)T
p(y)

F

p(a)
T

⊥ : [a/y]
p(b)

T

((p(a) ∨ p(b))⇒ (∃.p()))F
(p(a) ∨ p(b))T
(∃x.p(x))F
(∀x.¬p(x))T

¬p(a)T
p(a)

F

p(a)
T

⊥ : [a/y]
p(b)

T

¬p(z)T
p(z)

F

⊥ : [b/z]

After we have used up p(y)F by applying [a/y] in T f1 ⊥, we have to get a new instance
p(z)

F via T f1 ∀.

� Definition 15.1.45. Let T be a tableau for A, and a positive occurrence of ∀x.B
in A, then we call the number of applications of T f1 ∀ to ∀x.B its multiplicity.

� Observation 15.1.46. Given a prescribed multiplicity for each positive ∀, satura-
tion with T f1 terminates.

� Proof sketch: All T f1 rules reduce the number of connectives and negative ∀ or the
multiplicity of positive ∀.

� Theorem 15.1.47. T f1 is only complete with unbounded multiplicities.

� Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in ??.

� Remark: Otherwise validity in PL1 would be decidable.

� Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: Artificial Intelligence 1 455 2025-02-06

The other thing we need to realize is that there may be multiple ways we can use T f1 ⊥ to close a
branch in a tableau, and – as T f1 ⊥ instantiates the whole tableau and not just the branch itself –

https://fau.tv/clip/id/26797

90 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

this choice matters.

Treating T f
1 ⊥

� Recall: The T f1 ⊥ rule instantiates the whole tableau.

� Problem: There may be more than one T f1 ⊥ opportunity on a branch.

� Example 15.1.48. Choosing which matters – this tableau does not close!

(∃x.(p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(x)))
F

((p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(y)))
F

(p(a) ∧ p(b)⇒ p())
F

p(a)
T

p(b)
T

p(y)
F

⊥ : [a/y]

(q(b)⇒ q(y))
F

q(b)
T

q(y)
F

choosing the other T f1 ⊥ in the left branch allows closure.

� Idea: Two ways of systematic proof search in T f1 :

� backtracking search over T f1 ⊥ opportunities

� saturate without T f1 ⊥ and find spanning matings (next slide)

Michael Kohlhase: Artificial Intelligence 1 456 2025-02-06

The method of spanning matings follows the intuition that if we do not have good information
on how to decide for a pair of opposite literals on a branch to use in T f1 ⊥, we delay the choice by
initially disregarding the rule altogether during saturation and then – in a later phase– looking
for a configuration of cuts that have a joint overall unifier. The big advantage of this is that we
only need to know that one exists, we do not need to compute or apply it, which would lead to
exponential blow-up as we have seen above.

Spanning Matings for T f
1 ⊥

� Observation 15.1.49. T f1 without T f1 ⊥ is terminating and confluent for given
multiplicities.

� Idea: Saturate without T f1 ⊥ and treat all cuts at the same time (later).

� Definition 15.1.50.

Let T be a T f1 tableau, then we call a unification problem E := A1=
?B1 ∧ . . . ∧

An=
?Bn a mating for T , iff Ai

T and Bi
F occur in the same branch in T .

We say that E is a spanning mating, if E is unifiable and every branch B of T
contains Ai

T and Bi
F for some i.

� Theorem 15.1.51. A T f1 -tableau with a spanning mating induces a closed T1
tableau.

� Proof sketch: Just apply the unifier of the spanning mating.

15.2. FIRST-ORDER RESOLUTION 91

� Idea: Existence is sufficient, we do not need to compute the unifier.

� Implementation: Saturate without T f1 ⊥, backtracking search for spanning mat-
ings with DU , adding pairs incrementally.

Michael Kohlhase: Artificial Intelligence 1 457 2025-02-06

Excursion: Now that we understand basic unification theory, we can come to the meta-theoretical
properties of the tableau calculus. We delegate this discussion to??.

15.2 First-Order Resolution

A Video Nugget covering this section can be found at https://fau.tv/clip/id/26817.

First-Order Resolution (and CNF)

� Definition 15.2.1. The first-order CNF calculus CNF1 is given by the inference
rules of CNF0 extended by the following quantifier rules:

(∀X.A)
T ∨C Z ̸∈ (free(A) ∪ free(C))

([Z/X](A))
T ∨C

(∀X.A)
F ∨C {X1, . . ., Xk} = free(∀X.A) f ∈ Σskk new

([f(X1, . . ., Xk)/X](A))
F ∨C

the first-order CNF CNF1(Φ) of Φ is the set of all clauses that can be derived from
Φ.

� Definition 15.2.2 (First-Order Resolution Calculus). The First-order resolution
calculus (R1) is a test calculus that manipulates formulae in conjunctive normal
form. R1 has two inference rules:

AT ∨C BF ∨D σ = mgu(A,B)

(σ(C)) ∨ (σ(D))

Aα ∨Bα ∨C σ = mgu(A,B)

(σ(A)) ∨ (σ(C))

Michael Kohlhase: Artificial Intelligence 1 458 2025-02-06

First-Order CNF – Derived Rules

� Definition 15.2.3. The following inference rules are derivable from the ones above
via (∃X.A) = ¬(∀X.¬A):

(∃X.A)
T ∨C {X1, . . ., Xk} = free(∀X.A) f ∈ Σskk new

([f(X1, . . ., Xk)/X](A))
T ∨C

(∃X.A)
F ∨C Z ̸∈ (free(A) ∪ free(C))

([Z/X](A))
F ∨C

Michael Kohlhase: Artificial Intelligence 1 459 2025-02-06

https://fau.tv/clip/id/26817

92 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

Excursion: Again, we relegate the meta-theoretical properties of the first-order resolution calculus
to??.

15.2.1 Resolution Examples

Col. West, a Criminal?

� Example 15.2.4. From [RN09]

The law says it is a crime for an American to sell weapons to hostile nations.
The country Nono, an enemy of America, has some missiles, and all of its
missiles were sold to it by Colonel West, who is American.

Prove that Col. West is a criminal.

� Remark: Modern resolution theorem provers prove this in less than 50ms.

� Problem: That is only true, if we only give the theorem prover exactly the right
laws and background knowledge. If we give it all of them, it drowns in the combi-
natorial explosion.

� Let us build a resolution proof for the claim above.

� But first we must translate the situation into first-order logic clauses.

� Convention: In what follows, for better readability we will sometimes write impli-
cations P ∧Q ∧R⇒ S instead of clauses P F ∨QF ∨RF ∨ ST.

Michael Kohlhase: Artificial Intelligence 1 460 2025-02-06

Col. West, a Criminal?

� It is a crime for an American to sell weapons to hostile nations:
Clause: ami(X1) ∧ weap(Y1) ∧ sell(X1, Y1, Z1) ∧ host(Z1)⇒ crook(X1)

� Nono has some missiles: ∃X.own(NN, X) ∧mle(X)

Clauses: own(NN, c)
T and mle(c) (c is Skolem constant)

� All of Nono’s missiles were sold to it by Colonel West.
Clause: mle(X2) ∧ own(NN, X2)⇒ sell(West, X2,NN)

� Missiles are weapons:
Clause: mle(X3)⇒ weap(X3)

� An enemy of America counts as “hostile” :
Clause: enmy(X4,USA)⇒ host(X4)

� West is an American:
Clause: ami(West)

� The country Nono is an enemy of America:
enmy(NN,USA)

Michael Kohlhase: Artificial Intelligence 1 461 2025-02-06

15.2. FIRST-ORDER RESOLUTION 93

Col. West, a Criminal! PL1 Resolution Proof

ami(X1)
F ∨ weapon(Y1)

F ∨ sell(X1, Y1, Z1)
F ∨ hostile(Z1)

F ∨ crook(X1)
T crook(West)F

ami(West)T ami(West)F ∨ weapon(Y1)
F ∨ sell(West, Y1, Z1)

F ∨ hostile(Z1)
F

missile(X3)
F ∨ weapon(X3)

T weapon(Y1)
F ∨ sell(West, Y1, Z1)

F ∨ hostile(Z1)
F

missile(c)Tmissile(Y1)
F ∨ sell(West, Y1, Z1)

F ∨ hostile(Z1)
F

missile(X2)
F ∨ own(NoNo, X2)

F ∨ sell(West, X2,NoNo)T

sell(West, c, Z1)
F ∨ hostile(Z1)

F

missile(c)T missile(c)F ∨ own(NoNo, c)F ∨ hostile(NoNo)F

own(NoNo, c)T own(NoNo, c)F ∨ hostile(NoNo)F

enemy(X4, USA)
F ∨ hostile(X4)

T hostile(NoNo)F

enemy(NoNo, USA)T enemy(NoNo, USA)F

2

[West/X1]

[Y1/X3]

[c/Y1]

[c/X2]

[NoNo/Z1]

[NoNo/X4]

Michael Kohlhase: Artificial Intelligence 1 462 2025-02-06

Curiosity Killed the Cat?

� Example 15.2.5. From [RN09]

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by noone.
Jack loves all animals.
Cats are animals.
Either Jack or curiosity killed the cat (whose name is “Garfield”).

Prove that curiosity killed the cat.

Michael Kohlhase: Artificial Intelligence 1 463 2025-02-06

Curiosity Killed the Cat? Clauses

� Everyone who loves all animals is loved by someone:
∀X.(∀Y .animal(Y)⇒ love(X,Y))⇒ (∃.love(Z,X))

Clauses: animal(g(X1))
T∨love(g(X1), X1)

T and love(X2, f(X2))
F∨love(g(X2), X2)

T

� Anyone who kills an animal is loved by noone:
∀X.∃Y .animal(Y) ∧ kill(X,Y)⇒ (∀.¬love(Z,X))

Clause: animal(Y3)
F ∨ kill(X3, Y3)

F ∨ love(Z3, X3)
F

� Jack loves all animals:

94 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

Clause: animal(X4)
F ∨ love(jack, X4)

T

� Cats are animals:
Clause: cat(X5)

F ∨ animal(X5)
T

� Either Jack or curiosity killed the cat (whose name is “Garfield”):
Clauses: kill(jack, garf)

T ∨ kill(curiosity, garf)
T and cat(garf)

T

Michael Kohlhase: Artificial Intelligence 1 464 2025-02-06

Curiosity Killed the Cat! PL1 Resolution Proof

cat(garf)T cat(X5)
F ∨ anl(X5)

T

anl(garf)T anl(Y3)
F ∨ kill(X3, Y3)

F ∨ love(Z3, X3)
F

kill(X3, garf)
F ∨ love(Z3, X3)

F kill(jack, garf)T ∨ kill(curty, garf)T kill(curty, garf)F

kill(jack, garf)T

love(Z3, jack)
F love(X2, f(X2))

F ∨ love(g(X2), X2)
T anl(X4)

F ∨ love(jack, X4)
T

love(g(jack), jack)T ∨ anl(f(jack))F anl(f(X1))
T ∨ love(g(X1), X1)

T

love(g(jack), jack)T

2

[garf/X5]

[garf/Y3]

[jack/X3]

[jack/X2], [f(jack)/X4]

[jack/X1]
[g(jack)/Z3]

Michael Kohlhase: Artificial Intelligence 1 465 2025-02-06

Excursion: A full analysis of any calculus needs a completeness proof. We will not cover this in
the course, but provide one for the calculi introduced so far in??.

15.3 Logic Programming as Resolution Theorem Proving
A Video Nugget covering this section can be found at https://fau.tv/clip/id/26820.
To understand Prolog better, we can interpret the language of Prolog as resolution in PL1.

We know all this already

� Goals, goal sets, rules, and facts are just clauses. (called Horn clauses)

� Observation 15.3.1 (Rule). H:−B1,. . .,Bn. corresponds to HT∨B1
F∨ . . .∨BnF

(head the only positive literal)

� Observation 15.3.2 (Goal set). ?− G1,. . .,Gn. corresponds to G1
F ∨ . . . ∨GnF

� Observation 15.3.3 (Fact). F . corresponds to the unit clause FT.

https://fau.tv/clip/id/26820

15.3. LOGIC PROGRAMMING AS RESOLUTION THEOREM PROVING 95

� Definition 15.3.4. A Horn clause is a clause with at most one positive literal.

� Recall: Backchaining as search:

� state = tuple of goals; goal state = empty list (of goals).

� next(⟨G,R1, . . ., Rl⟩) := ⟨σ(B1), . . ., σ(Bm), σ(R1), . . ., σ(Rl)⟩ if there is a
rule H:−B1,. . ., Bm. and a substitution σ with σ(H) = σ(G).

� Note: Backchaining becomes resolution

PT ∨A P F ∨B

A ∨B

positive, unit-resulting hyperresolution (PURR)

Michael Kohlhase: Artificial Intelligence 1 466 2025-02-06

This observation helps us understand Prolog better, and use implementation techniques from
automated theorem proving.

PROLOG (Horn Logic)

� Definition 15.3.5. A clause is called a Horn clause, iff contains at most one
positive literal, i.e. if it is of the form B1

F ∨ . . . ∨BnF ∨ AT – i.e. A:−B1,. . .,Bn.
in Prolog notation.

� Rule clause: general case, e.g. fallible(X) : human(X).

� Fact clause: no negative literals, e.g. human(sokrates).

� Program: set of rule and fact clauses.

� Query: no positive literals: e.g. ?− fallible(X),greek(X).

� Definition 15.3.6. Horn logic is the formal system whose language is the set of
Horn clauses together with the calculus H given by MP, ∧I, and Subst.

� Definition 15.3.7. A logic program P entails a query Q with answer substitution
σ, iff there is a H derivation D of Q from P and σ is the combined substitution of
the Subst instances in D.

Michael Kohlhase: Artificial Intelligence 1 467 2025-02-06

PROLOG: Our Example

� Program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

� Example 15.3.8 (Query). ?− fallible(X),greek(X).

� Answer substitution: [sokrates/X]

96 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

Michael Kohlhase: Artificial Intelligence 1 468 2025-02-06

To gain an intuition for this quite abstract definition let us consider a concrete knowledge base
about cars. Instead of writing down everything we know about cars, we only write down that cars
are motor vehicles with four wheels and that a particular object c has a motor and four wheels. We
can see that the fact that c is a car can be derived from this. Given our definition of a knowledge
base as the deductive closure of the facts and rule explicitly written down, the assertion that c is
a car is in the induced knowledge base, which is what we are after.

Knowledge Base (Example)

� Example 15.3.9. car(c). is in the knowlege base generated by

has_motor(c).
has_wheels(c,4).
car(X):− has_motor(X),has_wheels(X,4).

m(c) w(c, 4)
∧I

m(c) ∧ w(c, 4)
m(x) ∧ w(x, 4)⇒ car()

Subst
m(c) ∧ w(c, 4)⇒ car()

MP
car(c)

Michael Kohlhase: Artificial Intelligence 1 469 2025-02-06

In this very simple example car(c) is about the only fact we can derive, but in general, knowledge
bases can be infinite (we will see examples below).

Why Only Horn Clauses?

� General clauses of the form A1,. . .,An : B1,. . .,Bn.

� e.g. greek(sokrates),greek(perikles)

� Question: Are there fallible greeks?

� Indefinite answer: Yes, Perikles or Sokrates

� Warning: how about Sokrates and Perikles?

� e.g. greek(sokrates),roman(sokrates):−.

� Query: Are there fallible greeks?

� Answer: Yes, Sokrates, if he is not a roman

� Is this abduction?????

Michael Kohlhase: Artificial Intelligence 1 470 2025-02-06

Three Principal Modes of Inference

� Definition 15.3.10. Deduction =̂ knowledge extension

15.4. SUMMARY: ATP IN FIRST-ORDER LOGIC 97

� Example 15.3.11.
rains⇒ wet_street rains

wet_street
D

� Definition 15.3.12. Abduction =̂ explanation

� Example 15.3.13.
rains⇒ wet_street wet_street

rains
A

� Definition 15.3.14. Induction =̂ learning general rules from examples

� Example 15.3.15.
wet_street rains
rains⇒ wet_street

I

Michael Kohlhase: Artificial Intelligence 1 471 2025-02-06

15.4 Summary: ATP in First-Order Logic

Summary: ATP in First-Order Logic

� The propositional calculi for ATP can be extended to first-order logic by adding
quantifier rules.

� The rule for the universal quantifier can be made efficient by introducing metavari-
ables that postpone the decision for instances.

� We have to extend the witness constants in the rules for existential quantifiers
to Skolem functions.

� The cut rules can used to instantiate the metavariables by unification.

These ideas are enough to build a tableau calculus for first-order logic.

� Unification is an efficient decision procdure for finding substitutions that make first-
order terms (syntactically) equal.

� In prenex normal form, all quantifiers are up front. In Skolem normal form, addi-
tionally there are no existential quantifiers. In claus normal form, additionally the
formula is in CNF.

� Any PL1 formula can efficiently be brought into a satisfiability-equivalent clause
normal form.

� This allows first-order resolution.

Michael Kohlhase: Artificial Intelligence 1 472 2025-02-06

98 CHAPTER 15. AUTOMATED THEOREM PROVING IN FIRST-ORDER LOGIC

Chapter 16

Knowledge Representation and the
Semantic Web

The field of “Knowledge Representation” is usually taken to be an area in Artificial Intelligence
that studies the representation of knowledge in formal systems and how to leverage inference
techniques to generate new knowledge items from existing ones. Note that this definition
coincides with with what we know as logical systems in this course. This is the view taken by
the subfield of “description logics”, but restricted to the case, where the logical systems have an
entailment relation to ensure applicability. This chapter is organized as follows. We will first
give a general introduction to the concepts of knowledge representation using semantic networks
– an early and very intuitive approach to knowledge representation – as an object-to-think-with.
In ?? we introduce the principles and services of logic-based knowledge-representation using a
non-standard interpretation of propositional logic as the basis, this gives us a formal account of
the taxonomic part of semantic networks. In ?? we introduce the logic ALC that adds relations
(called “roles”) and restricted quantification and thus gives us the full expressive power of semantic
networks. Thus ALC can be seen as a prototype description logic. In ?? we show how description
logics are applied as the basis of the “semantic web”.

16.1 Introduction to Knowledge Representation
A Video Nugget covering the introduction to knowledge representation can be found at https:
//fau.tv/clip/id/27279.
Before we start into the development of description logics, we set the stage by looking into

alternatives for knowledge representation.

16.1.1 Knowledge & Representation
To approach the question of knowledge representation, we first have to ask ourselves, what

knowledge might be. This is a difficult question that has kept philosophers occupied for millennia.
We will not answer this question in this course, but only allude to and discuss some aspects that
are relevant to our cause of knowledge representation.

What is knowledge? Why Representation?

� Lots/all of (academic) disciplines deal with knowledge!

� According to Probst/Raub/Romhardt [PRR97]

99

https://fau.tv/clip/id/27279
https://fau.tv/clip/id/27279

100 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

� For the purposes of this course: Knowledge is the information necessary to
support intelligent reasoning!

representation can be used to determine
set of words whether a word is admissible
list of words the rank of a word
a lexicon translation and/or grammatical function
structure function

Michael Kohlhase: Artificial Intelligence 1 473 2025-02-06

According to an influential view of [PRR97], knowledge appears in layers. Staring with a character
set that defines a set of glyphs, we can add syntax that turns mere strings into data. Adding context
information gives information, and finally, by relating the information to other information allows
to draw conclusions, turning information into knowledge.
Note that we already have aspects of representation and function in the diagram at the top of the
slide. In this, the additional functionaltiy added in the successive layers gives the representations
more and more functions, until we reach the knowledge level, where the function is given by infer-
encing. In the second example, we can see that representations determine possible functions.
Let us now strengthen our intuition about knowledge by contrasting knowledge representations
from “regular” data structures in computation.

Knowledge Representation vs. Data Structures

� Idea: Representation as structure and function.

� the representation determines the content theory (what is the data?)

� the function determines the process model (what do we do with the data?)

� Question: Why do we use the term “knowledge representation” rather than

� data structures? (sets, lists, ... above)

� information representation? (it is information)

� Answer: No good reason other than AI practice, with the intuition that

� data is simple and general (supports many algorithms)

� knowledge is complex (has distinguished process model)

Michael Kohlhase: Artificial Intelligence 1 474 2025-02-06

As knowledge is such a central notion in artificial intelligence, it is not surprising that there are
multiple approaches to dealing with it. We will only deal with the first one and leave the others
to self-study.

16.1. INTRODUCTION TO KNOWLEDGE REPRESENTATION 101

Some Paradigms for Knowledge Representation in AI/NLP

� GOFAI (good old-fashioned AI)

� symbolic knowledge representation, process model based on heuristic search

� Statistical, corpus-based approaches.

� symbolic representation, process model based on machine learning

� knowledge is divided into symbolic- and statistical (search) knowledge

� The connectionist approach

� sub-symbolic representation, process model based on primitive processing ele-
ments (nodes) and weighted links

� knowledge is only present in activation patters, etc.

Michael Kohlhase: Artificial Intelligence 1 475 2025-02-06

When assessing the relative strengths of the respective approaches, we should evaluate them with
respect to a pre-determined set of criteria.

KR Approaches/Evaluation Criteria

� Definition 16.1.1. The evaluation criteria for knowledge representation approaches
are:

� Expressive adequacy: What can be represented, what distinctions are supported.

� Reasoning efficiency: Can the representation support processing that generates
results in acceptable speed?

� Primitives: What are the primitive elements of representation, are they intuitive,
cognitively adequate?

� Meta representation: Knowledge about knowledge

� Completeness: The problems of reasoning with knowledge that is known to be
incomplete.

Michael Kohlhase: Artificial Intelligence 1 476 2025-02-06

16.1.2 Semantic Networks
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27280.
To get a feeling for early knowledge representation approaches from which description logics

developed, we take a look at “semantic networks” and contrast them to logical approaches.
Semantic networks are a very simple way of arranging knowledge about objects and concepts and
their relationships in a graph.

Semantic Networks [CQ69]

� Definition 16.1.2. A semantic network is a directed graph for representing knowl-
edge:

https://fau.tv/clip/id/27280

102 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

� nodes represent objects and concepts (classes of objects)
(e.g. John (object) and bird (concept))

� edges (called links) represent relations between these (isa, father_of,
belongs_to)

� Example 16.1.3. A semantic network for birds and persons:

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

� Problem: How do we derive new information from such a network?

� Idea: Encode taxonomic information about objects and concepts in special links
(“isa” and “inst”) and specify property inheritance along them in the process model.

Michael Kohlhase: Artificial Intelligence 1 477 2025-02-06

Even though the network in ?? is very intuitive (we immediately understand the concepts de-
picted), it is unclear how we (and more importantly a machine that does not associate meaning
with the labels of the nodes and edges) can draw inferences from the “knowledge” represented.

Deriving Knowledge Implicit in Semantic Networks

� Observation 16.1.4. There is more knowledge in a semantic network than is
explicitly written down.

� Example 16.1.5. In the network below, we “know” that robins have wings and in
particular, Jack has wings.

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

� Idea: Links labeled with “isa” and “inst” are special: they propagate properties
encoded by other links.

� Definition 16.1.6. We call links labeled by

� “isa” an inclusion or isa link (inclusion of concepts)

� “inst” instance or inst link (concept membership)

Michael Kohlhase: Artificial Intelligence 1 478 2025-02-06

We now make the idea of “propagating properties” rigorous by defining the notion of derived
relations, i.e. the relations that are left implicit in the network, but can be added without changing
its meaning.

16.1. INTRODUCTION TO KNOWLEDGE REPRESENTATION 103

Deriving Knowledge Semantic Networks

� Definition 16.1.7 (Inference in Semantic Networks). We call all link labels
except “inst” and “isa” in a semantic network relations.

Let N be a semantic network and R a relation in N such that A isa−→ B
R−→ C or

A
inst−→ B

R−→ C, then we can derive a relation A R−→ C in N .

The process of deriving new concepts and relations from existing ones is called
inference and concepts/relations that are only available via inference implicit (in a
semantic network).

� Intuition: Derived relations represent knowledge that is implicit in the network;
they could be added, but usually are not to avoid clutter.

� Example 16.1.8. Derived relations in ??

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

has_part
has_part

isa/

� Slogan: Get out more knowledge from a semantic networks than you put in.

Michael Kohlhase: Artificial Intelligence 1 479 2025-02-06

Note that ?? does not quite allow to derive that Jack is a bird (did you spot that “isa” is not a
relation that can be inferred?), even though we know it is true in the world. This shows us that
inference in semantic networks has be to very carefully defined and may not be “complete”, i.e.
there are things that are true in the real world that our inference procedure does not capture.

Dually, if we are not careful, then the inference procedure might derive properties that are not
true in the real world even if all the properties explicitly put into the network are. We call such
an inference procedure unsound or incorrect.

These are two general phenomena we have to keep an eye on.
Another problem is that semantic networks (e.g. in ??) confuse two kinds of concepts: individuals
(represented by proper names like John and Jack) and concepts (nouns like robin and bird). Even
though the isa and inst link already acknowledge this distinction, the “has_part” and “loves”
relations are at different levels entirely, but not distinguished in the networks.

Terminologies and Assertions

� Remark 16.1.9. We should distinguish concepts from objects.

� Definition 16.1.10. We call the subgraph of a semantic network N spanned by the
isa links and relations between concepts the terminology (or TBox, or the famous
Isa Hierarchy) and the subgraph spanned by the inst links and relations between
objects, the assertions (together the ABox) of N .

� Example 16.1.11. In this semantic network we keep objects concept apart nota-
tionally:

104 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

In particular we have objects “Rex”, “Roy”, and “Clyde”, which have (derived) rela-
tions (e.g. Clyde is gray).

Michael Kohlhase: Artificial Intelligence 1 480 2025-02-06

But there are severe shortcomings of semantic networks: the suggestive shape and node names
give (humans) a false sense of meaning, and the inference rules are only given in the process model
(the implementation of the semantic network processing system).

This makes it very difficult to assess the strength of the inference system and make assertions
e.g. about completeness.

Limitations of Semantic Networks

� What is the meaning of a link?

� link labels are very suggestive (misleading for humans)

� meaning of link types defined in the process model (no denotational semantics)

� Problem: No distinction of optional and defining traits!

� Example 16.1.12. Consider a robin that has lost its wings in an accident:

wings

robin

bird

jack

has_part

isa

inst

wings

robin

joe

bird
has_part

inst

isa
cancel

“Cancel-links” have been proposed, but their status and process model are debatable.

Michael Kohlhase: Artificial Intelligence 1 481 2025-02-06

To alleviate the perceived drawbacks of semantic networks, we can contemplate another notation
that is more linear and thus more easily implemented: function/argument notation.

Another Notation for Semantic Networks

� Definition 16.1.13. Function/argument notation for semantic networks

� interprets nodes as arguments (reification to individuals)

� interprets links as functions (predicates actually)

� Example 16.1.14.

16.1. INTRODUCTION TO KNOWLEDGE REPRESENTATION 105

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

isa(robin,bird)
haspart(bird,wings)
inst(Jack,robin)
owner_of(John, robin)
loves(John,Mary)

� Evaluation:

+ linear notation (equivalent, but better to implement on a computer)

+ easy to give process model by deduction (e.g. in Prolog)

– worse locality properties (networks are associative)

Michael Kohlhase: Artificial Intelligence 1 482 2025-02-06

Indeed the function/argument notation is the immediate idea how one would naturally represent
semantic networks for implementation.

This notation has been also characterized as subject/predicate/object triples, alluding to simple
(English) sentences. This will play a role in the “semantic web” later.
Building on the function/argument notation from above, we can now give a formal semantics for
semantic network: we translate them into first-order logic and use the semantics of that.

A Denotational Semantics for Semantic Networks

� Observation: If we handle isa and inst links specially in function/argument nota-
tion

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

robin ⊆ bird
haspart(bird,wings)
Jack ∈ robin
owner_of(John, Jack)
loves(John,Mary)

it looks like first-order logic, if we take

� a ∈ S to mean S(a) for an object a and a concept S.

� A ⊆ B to mean ∀X.A(X)⇒B(X) and concepts A and B

� R(A,B) to mean ∀X.A(X)⇒ (∃Y .B(Y) ∧R(X,Y)) for a relation R.

� Idea: Take first-order deduction as process model (gives inheritance for free)

Michael Kohlhase: Artificial Intelligence 1 483 2025-02-06

Indeed, the semantics induced by the translation to first-order logic, gives the intuitive meaning to
the semantic networks. Note that this only holds only for the features of semantic networks that
are representable in this way, e.g. the “cancel links” shown above are not (and that is a feature,
not a bug).
But even more importantly, the translation to first-order logic gives a first process model: we
can use first-order inference to compute the set of inferences that can be drawn from a semantic
network.

Before we go on, let us have a look at an important application of knowledge representation
technologies: the semantic web.

106 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

16.1.3 The Semantic Web
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27281.
We will now define the term semantic web and discuss the pertinent ideas involved. There are two
central ones, we will cover here:

• Information and data come in different levels of explicitness; this is usually visualized by a
“ladder” of information.

• if information is sufficiently machine-understandable, then we can automate drawing conclu-
sions.

The Semantic Web

� Definition 16.1.15. The semantic web is the result including of semantic content
in web pages with the aim of converting the WWW into a machine-understandable
“web of data”, where inference based services can add value to the ecosystem.

� Idea: Move web content up the ladder, use inference to make connections.

� Example 16.1.16. Information not explicitly represented (in one place)

Query: Who was US president when Barak Obama was born?

Google: . . . BIRTH DATE: August 04, 1961. . .

Query: Who was US president in 1961?

Google: President: Dwight D. Eisenhower [. . .] John F. Kennedy (starting Jan. 20.)

Humans understand the text and combine the information to get the answer. Ma-
chines need more than just text ; semantic web technology.

Michael Kohlhase: Artificial Intelligence 1 484 2025-02-06

The term “semantic web” was coined by Tim Berners Lee in analogy to semantic networks, only
applied to the world wide web. And as for semantic networks, where we have inference processes
that allow us the recover information that is not explicitly represented from the network (here the
world-wide-web).

To see that problems have to be solved, to arrive at the semantic web, we will now look at a
concrete example about the “semantics” in web pages. Here is one that looks typical enough.

What is the Information a User sees?

� Example 16.1.17. Take the following web-site with a conference announcement

WWW2002
The eleventh International World Wide Web Conference
Sheraton Waikiki Hotel
Honolulu, Hawaii, USA

https://fau.tv/clip/id/27281

16.1. INTRODUCTION TO KNOWLEDGE REPRESENTATION 107

7-11 May 2002

Registered participants coming from
Australia, Canada, Chile Denmark, France, Germany, Ghana, Hong Kong, In-
dia,
Ireland, Italy, Japan, Malta, New Zealand, The Netherlands, Norway,
Singapore, Switzerland, the United Kingdom, the United States, Vietnam, Zaire

On the 7th May Honolulu will provide the backdrop of the eleventh
International World Wide Web Conference.

Speakers confirmed
Tim Berners-Lee: Tim is the well known inventor of the Web,
Ian Foster: Ian is the pioneer of the Grid, the next generation internet.

Michael Kohlhase: Artificial Intelligence 1 485 2025-02-06

But as for semantic networks, what you as a human can see (“understand” really) is deceptive, so
let us obfuscate the document to confuse your “semantic processor”. This gives an impression of
what the computer “sees”.

What the machine sees

� Example 16.1.18. Here is what the machine “sees” from the conference announce-
ment:

WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉
S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕
H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA
7↖∞∞M⊣†∈′′∈

R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕
A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔
S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨
I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙

S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈
T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊⇔
I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔↙

Michael Kohlhase: Artificial Intelligence 1 486 2025-02-06

Obviously, there is not much the computer understands, and as a consequence, there is not a lot
the computer can support the reader with. So we have to “help” the computer by providing some
meaning. Conventional wisdom is that we add some semantic/functional markup. Here we pick
XML without loss of generality, and characterize some fragments of text e.g. as dates.

108 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

Solution: XML markup with “meaningful” Tags

� Example 16.1.19. Let’s annotate (parts of) the meaning via XML markup

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</title>
<place>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</place>
<date>7↖∞∞M⊣†∈′′∈</date>
<participants>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕
A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔
S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉

</participants>
<introduction>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇↖

\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</introduction>
<program>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈

<speaker>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</speaker>
<speaker>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔<speaker>

</program>

Michael Kohlhase: Artificial Intelligence 1 487 2025-02-06

But does this really help? Is conventional wisdom correct?

What can we do with this?

� Example 16.1.20. Consider the following fragments:

ℜ⊔⟩⊔↕⌉⊤WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉ℜ∝⊔⟩⊔↕⌉⊤
ℜ√↕⊣⌋⌉⊤S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USAℜ∝√↕⊣⌋⌉⊤
ℜ⌈⊣⊔⌉⊤7↖∞∞M⊣†∈′′∈ℜ∝⌈⊣⊔⌉⊤

Given the markup above, a machine agent can

� parse 7∞∞M⊣†∈′′∈ as the date May 7 11 2002 and add this to the user’s calendar,

� parse S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA as a destination and find flights.

� But: do not be deceived by your ability to understand English!

Michael Kohlhase: Artificial Intelligence 1 488 2025-02-06

To understand what a machine can understand we have to obfuscate the markup as well, since it
does not carry any intrinsic meaning to the machine either.

What the machine sees of the XML

� Example 16.1.21. Here is what the machine sees of the XML

<title>WWW∈′′∈
T⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉</⊔⟩⊔↕⌉>

16.1. INTRODUCTION TO KNOWLEDGE REPRESENTATION 109

<√↕⊣⌋⌉>S⟨⌉∇⊣⊔≀\W⊣⟩∥⟩∥⟩H≀⊔⌉↕H≀\≀↕⊓↕⊓⇔H⊣⊒⊣⟩⟩⇔USA</√↕⊣⌋⌉>
<⌈⊣⊔⌉>7↖∞∞M⊣†∈′′∈</⌈⊣⊔⌉>
<√⊣∇⊔⟩⌋⟩√⊣\⊔∫>R⌉}⟩∫⊔⌉∇⌉⌈√⊣∇⊔⟩⌋⟩√⊣\⊔∫⌋≀⇕⟩\}{∇≀⇕
A⊓∫⊔∇⊣↕⟩⊣⇔C⊣\⊣⌈⊣⇔C⟨⟩↕⌉D⌉\⇕⊣∇∥⇔F∇⊣\⌋⌉⇔G⌉∇⇕⊣\†⇔G⟨⊣\⊣⇔H≀\}K≀\}⇔I\⌈⟩⊣⇔
I∇⌉↕⊣\⌈⇔I⊔⊣↕†⇔J⊣√⊣\⇔M⊣↕⊔⊣⇔N⌉⊒Z⌉⊣↕⊣\⌈⇔T⟨⌉N⌉⊔⟨⌉∇↕⊣\⌈∫⇔N≀∇⊒⊣†⇔
S⟩\}⊣√≀∇⌉⇔S⊒⟩⊔‡⌉∇↕⊣\⌈⇔⊔⟨⌉U\⟩⊔⌉⌈K⟩\}⌈≀⇕⇔⊔⟨⌉U\⟩⊔⌉⌈S⊔⊣⊔⌉∫⇔V⟩⌉⊔\⊣⇕⇔Z⊣⟩∇⌉
</√⊣∇⊔⟩⌋⟩√⊣\⊔∫>
<⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>O\⊔⟨⌉7⊔⟨M⊣†H≀\≀↕⊓↕⊓⊒⟩↕↕√∇≀⊑⟩⌈⌉⊔⟨⌉⌊⊣⌋∥⌈∇≀√≀{⊔⟨⌉⌉↕⌉⊑⌉\⊔⟨I\⊔⌉∇\⊣↖
⊔⟩≀\⊣↕W≀∇↕⌈W⟩⌈⌉W⌉⌊C≀\{⌉∇⌉\⌋⌉↙</⟩\⊔∇≀⌈⊓⌋⊔⟩≀\>
<√∇≀}∇⊣⇕>S√⌉⊣∥⌉∇∫⌋≀\{⟩∇⇕⌉⌈
<∫√⌉⊣∥⌉∇>T⟩⇕B⌉∇\⌉∇∫↖L⌉⌉¬T⟩⇕⟩∫⊔⟨⌉⊒⌉↕↕∥\≀⊒\⟩\⊑⌉\⊔≀∇≀{⊔⟨⌉W⌉⌊</∫√⌉⊣∥⌉∇>
<∫√⌉⊣∥⌉∇>I⊣\F≀∫⊔⌉∇¬I⊣\⟩∫⊔⟨⌉√⟩≀\⌉⌉∇≀{⊔⟨⌉G∇⟩⌈⇔⊔⟨⌉\⌉§⊔}⌉\⌉∇⊣⊔⟩≀\⟩\⊔⌉∇\⌉⊔<∫√⌉⊣∥⌉∇>
</√∇≀}∇⊣⇕>

Michael Kohlhase: Artificial Intelligence 1 489 2025-02-06

So we have not really gained much either with the markup, we really have to give meaning to the
markup as well, this is where techniques from semenatic web come into play.
To understand how we can make the web more semantic, let us first take stock of the current status
of (markup on) the web. It is well-known that world-wide-web is a hypertext, where multimedia
documents (text, images, videos, etc. and their fragments) are connected by hyperlinks. As we
have seen, all of these are largely opaque (non-understandable), so we end up with the following
situation (from the viewpoint of a machine).

The Current Web
� Resources: identified by

URIs, untyped

� Links: href, src, . . . limited,
non-descriptive

� User: Exciting world - se-
mantics of the resource, how-
ever, gleaned from content

� Machine: Very little infor-
mation available - significance
of the links only evident from
the context around the anchor.

Michael Kohlhase: Artificial Intelligence 1 490 2025-02-06

Let us now contrast this with the envisioned semantic web.

The Semantic Web

110 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

� Resources: Globally iden-
tified by URIs or Locally
scoped (Blank), Extensible,
Relational.

� Links: Identified by URIs, Ex-
tensible, Relational.

� User: Even more exciting
world, richer user experience.

� Machine: More processable
information is available (Data
Web).

� Computers and peo-
ple: Work, learn and
exchange knowledge effec-
tively.

Michael Kohlhase: Artificial Intelligence 1 491 2025-02-06

Essentially, to make the web more machine-processable, we need to classify the resources by the
concepts they represent and give the links a meaning in a way, that we can do inference with that.
The ideas presented here gave rise to a set of technologies jointly called the “semantic web”, which
we will now summarize before we return to our logical investigations of knowledge representation
techniques.

Towards a “Machine-Actionable Web”

� Recall: We need external agreement on meaning of annotation tags.

� Idea: standardize them in a community process (e.g. DIN or ISO)

� Problem: Inflexible, Limited number of things can be expressed

� Better: Use ontologies to specify meaning of annotations

� Ontologies provide a vocabulary of terms

� New terms can be formed by combining existing ones

� Meaning (semantics) of such terms is formally specified

� Can also specify relationships between terms in multiple ontologies

� Inference with annotations and ontologies (get out more than you put in!)

� Standardize annotations in RDF [KC04] or RDFa [Her+13b] and ontologies on
OWL [OWL09]

� Harvest RDF and RDFa in to a triplestore or OWL reasoner.

� Query that for implied knowledge(e.g. chaining multiple facts from Wikipedia)

SPARQL: Who was US President when Barack Obama was Born?
DBPedia: John F. Kennedy (was president in August 1961)

Michael Kohlhase: Artificial Intelligence 1 492 2025-02-06

16.1. INTRODUCTION TO KNOWLEDGE REPRESENTATION 111

16.1.4 Other Knowledge Representation Approaches
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27282.
Now that we know what semantic networks mean, let us look at a couple of other approaches

that were influential for the development of knowledge representation. We will just mention them
for reference here, but not cover them in any depth.

Frame Notation as Logic with Locality

� Predicate Logic: (where is the locality?)
catch_22 ∈ catch_object There is an instance of catching
catcher(catch_22, jack_2) Jack did the catching
caught(catch_22, ball_5) He caught a certain ball

� Definition 16.1.22. Frames (group everything around the object)
(catch_object catch_22

(catcher jack_2)
(caught ball_5))

+ Once you have decided on a frame, all the information is local

+ easy to define schemes for concept (aka. types in feature structures)

– how to determine frame, when to choose frame (log/chair)

Michael Kohlhase: Artificial Intelligence 1 493 2025-02-06

KR involving Time (Scripts [Shank ’77])

� Idea: Organize typical event sequences, actors and props into representation.

� Definition 16.1.23. A script is a struc-
tured representation describing a stereotyped
sequence of events in a particular con-
text. Structurally, scripts are very much like
frames, except the values that fill the slots
must be ordered.

� Example 16.1.24. getting your hair cut (at
a beauty parlor)

� props, actors as “script variables”

� events in a (generalized) sequence

� use script material for

� anaphora, bridging references

� default common ground

� to fill in missing material into situations

big tip small tip

happy unhappy

pay

Beautician cuts hair

tell receptionist you’re here

go into beauty parlor

make appointment

Michael Kohlhase: Artificial Intelligence 1 494 2025-02-06

https://fau.tv/clip/id/27282

112 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

Other Representation Formats (not covered)

� Procedural Representations (production systems)

� Analogical representations (interesting but not here)

� Iconic representations (interesting but very difficult to formalize)

� If you are interested, come see me off-line

Michael Kohlhase: Artificial Intelligence 1 495 2025-02-06

16.2 Logic-Based Knowledge Representation

A Video Nugget covering this section can be found at https://fau.tv/clip/id/27297.
We now turn to knowledge representation approaches that are based on some kind of logical
system. These have the advantage that we know exactly what we are doing: as they are based
on symbolic representations and declaratively given inference calculi as process models, we can
inspect them thoroughly and even prove facts about them.

Logic-Based Knowledge Representation

� Logic (and related formalisms) have a well-defined semantics

� explicitly (gives more understanding than statistical/neural methods)

� transparently (symbolic methods are monotonic)

� systematically (we can prove theorems about our systems)

� Problems with logic-based approaches

� Where does the world knowledge come from? (Ontology problem)

� How to guide search induced by logical calculi (combinatorial explosion)

� One possible answer: description logics. (next couple of times)

Michael Kohlhase: Artificial Intelligence 1 496 2025-02-06

But of course logic-based approaches have big drawbacks as well. The first is that we have to obtain
the symbolic representations of knowledge to do anything – a non-trivial challenge, since most
knowledge does not exist in this form in the wild, to obtain it, some agent has to experience the
word, pass it through its cognitive apparatus, conceptualize the phenomena involved, systematize
them sufficiently to form symbols, and then represent those in the respective formalism at hand.

The second drawback is that the process models induced by logic-based approaches (inference
with calculi) are quite intractable. We will see that all inferences can be played back to satisfiability
tests in the underlying logical system, which are exponential at best, and undecidable or even
incomplete at worst.

Therefore a major thrust in logic-based knowledge representation is to investigate logical sys-
tems that are expressive enough to be able to represent most knowledge, but still have a decidable
– and maybe even tractable in practice – satisfiability problem. Such logics are called “description
logics”. We will study the basics of such logical systems and their inference procedures in the
following.

https://fau.tv/clip/id/27297

16.2. LOGIC-BASED KNOWLEDGE REPRESENTATION 113

16.2.1 Propositional Logic as a Set Description Language
Before we look at “real” description logics in ??, we will make a “dry run” with a logic we

already understand: propositional logic, which we will re-interpret the system as a set description
language by giving a new, non-standard semantics. This allows us to already preview most of
the inference procedures and knowledge services of knowledge representation systems in the next
subsection.
To establish propositional logic as a set description language, we use a different interpretation than
usual. We interpret propositional variables as names of sets and the connectives as set operations,
which is why we give them a different – more suggestive – syntax.

Propositional Logic as Set Description Language

� Idea: Use propositional logic as a set description language: (variant
syntax/semantics)

� Definition 16.2.1. Let PL0
DL be given by the following grammar for the PL0

DL

concepts. (formulae)

L::=C | ⊤ | ⊥ | L | L ⊓ L | L ⊔ L | L ⊑ L | L ≡ L

i.e. PL0
DL formed from

� atomic formulae (=̂ propositional variables)

� concept intersection (⊓) (=̂ conjunction ∧)

� concept complement (·) (=̂ negation ¬)

� concept union (⊔), subsumption (⊑), and equivalence (≡) defined from these.
(=̂ ∨, ⇒, and ⇔)

� Definition 16.2.2 (Formal Semantics). Let D be a given set (called the domain
of discourse) and φ : V0 →P(D), then we define

� [[P]] :=φ(P), (remember φ(P) ⊆ D).

� [[A ⊓B]] := [[A]] ∩ [[B]] and
[[
A
]]
:=D\ [[A]] . . .

We call this construction the set description semantics of PL0.

� Note: ⟨PL0
DL,S, [[·]]⟩, where S is the class of possible domains forms a logical

system.

Michael Kohlhase: Artificial Intelligence 1 497 2025-02-06

The main use of the set-theoretic semantics for PL0 is that we can use it to give meaning to concept
axioms, which we use to describe the “world”.

Concept Axioms

� Observation: Set-theoretic semantics of ‘true’ and ‘false’ (⊤ := φ ⊔ φ
⊥ := φ ⊓ φ)

[[⊤]] = [[p]] ∪ [[p]] = [[p]] ∪ D\ [[p]] = D Analogously: [[⊥]] = ∅

� Idea: Use logical axioms to describe the world (Axioms restrict the class of

114 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

admissible domain structures)

� Definition 16.2.3. A concept axiom is a PL0
DL formula A that is assumed to be

true in the world.

� Definition 16.2.4 (Set-Theoretic Semantics of Axioms). A is true in domain
of discourse D iff [[A]] = D.

� Example 16.2.5. A world with three concepts and no concept axioms

concepts Set Semantics

child
daughter
son

daughterssons

children

Michael Kohlhase: Artificial Intelligence 1 498 2025-02-06

Concept axioms are used to restrict the set of admissible domains to the intended ones. In our
situation, we require them to be true – as usual – which here means that they denote the whole
domain D.
Let us fortify our intuition about concept axioms with a simple example about the sibling relation.
We give four concept axioms and study their effect on the admissible models by looking at the
respective Venn diagrams. In the end we see that in all admissible models, the denotations of the
concepts son and daughter are disjointq, and child is the union of the two – just as intended.

Effects of Axioms to Siblings

� Example 16.2.6. We can use concept axioms to describe the world from ??.

Axioms Semantics

son⊑ child
iff [[son]] ∪ [[child]] = D
iff [[son]] ⊆ [[child]]

daughter ⊑ child
iff

[[
daughter

]]
∪ [[child]] = D

iff [[daughter]] ⊆ [[child]]

daughterssons

children

son ⊓ daughter
child⊑ son ⊔ daughter

daughterssons

Michael Kohlhase: Artificial Intelligence 1 499 2025-02-06

The set-theoretic semantics introduced above is compatible with the regular semantics of proposi-
tional logic, therefore we have the same propositional identities. Their validity can be established

16.2. LOGIC-BASED KNOWLEDGE REPRESENTATION 115

directly from the settings in ??.

Propositional Identities

Name for ⊓ for ⊔
Idempot. φ ⊓ φ = φ φ ⊔ φ = φ
Identity φ ⊓ ⊤ = φ φ ⊔ ⊥ = φ
Absorpt. φ ⊔ ⊤ = ⊤ φ ⊓ ⊥ = ⊥
Commut. φ ⊓ ψ = ψ ⊓ φ φ ⊔ ψ = ψ ⊔ φ
Assoc. φ ⊓ (ψ ⊓ θ) = (φ ⊓ ψ) ⊓ θ φ ⊔ (ψ ⊔ θ) = (φ ⊔ ψ) ⊔ θ
Distrib. φ ⊓ (ψ ⊔ θ) = (φ ⊓ ψ) ⊔ (φ ⊓ θ) φ ⊔ (ψ ⊓ θ) = (φ ⊔ ψ) ⊓ (φ ⊔ θ)
Absorpt. φ ⊓ (φ ⊔ θ) = φ φ ⊔ φ ⊓ θ = φ ⊓ θ
Morgan φ ⊓ ψ = φ ⊔ ψ φ ⊔ ψ = φ ⊓ ψ
dneg φ = φ

Michael Kohlhase: Artificial Intelligence 1 500 2025-02-06

There is another way we can approach the set description interpretation of propositional logic: by
translation into a logic that can express knowledge about sets – first-order logic.

Set-Theoretic Semantics and Predicate Logic

� Definition 16.2.7. Translation into PL1 (borrow semantics from that)

� recursively add argument variable x

� change back ⊓,⊔,⊑,≡ to ∧,∨,⇒,⇔
� universal closure for x at formula level.

Definition Comment
pfo(x) := p(x)

A
fo(x)

:= ¬Afo(x)

A ⊓B
fo(x)

:= A
fo(x) ∧B

fo(x) ∧ vs. ⊓
A ⊔B

fo(x)
:= A

fo(x) ∨B
fo(x) ∨ vs. ⊔

A⊑B
fo(x)

:= A
fo(x) ⇒B

fo(x) ⇒ vs. ⊑
A = B

fo(x)
:= A

fo(x) ⇔B
fo(x) ⇔ vs. =

A
fo

:= (∀x.Afo(x)
) for formulae

Michael Kohlhase: Artificial Intelligence 1 501 2025-02-06

Normally, we embed PL0 into PL1 by mapping propositional
variables to atomic first-order propositions and the connec-
tives to themselves. The purpose of this embedding is to “talk
about truth/falsity of assertions”. For “talking about sets” we
use a non-standard embedding: propositional variables in PL0

are mapped to first-order predicates, and the connectives to
corresponding set operations. This uses the convention that a
set S is represented by a unary predicate pS (its characteristic
predicate), and set membership a ∈ S as pS(a).

PL0

PL1

φ

undecideable

decideable

φ :=

 Xo 7→ pα→o

∧ 7→ ⊓
¬ 7→ ·

116 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

Translation Examples

� Example 16.2.8. We translate the concept axioms from ?? to fortify our intuition:

son⊑ child
fo

= ∀x.son(x)⇒ child(x)

daughter ⊑ child
fo

= ∀x.daughter(x)⇒ child(x)

son ⊓ daughter
fo

= ∀x.son(x) ∧ daughter(x)

child⊑ son ⊔ daughter
fo

= ∀x.child(x)⇒ (son(x) ∨ daughter(x))

� What are the advantages of translation to PL1?

� theoretically: A better understanding of the semantics

� computationally: Description Logic Framework, but NOTHING for PL0

� we can follow this pattern for richer description logics.
� many tests are decidable for PL0, but not for PL1. (Description Logics?)

Michael Kohlhase: Artificial Intelligence 1 502 2025-02-06

16.2.2 Ontologies and Description Logics
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27298.
We have seen how sets of concept axioms can be used to describe the “world” by restricting the set
of admissible models. We want to call such concept descriptions “ontologies” – formal descriptions
of (classes of) objects and their relations.

Ontologies aka. “World Descriptions”

� Definition 16.2.9 (Classical). An ontology is a representation of the types, prop-
erties, and interrelationships of the entities that really or fundamentally exist for a
particular domain of discourse.

� Remark: ?? is very general, and depends on what we mean by “representation”,
“entities”, “types”, and “interrelationships”.

This may be a feature, and not a bug, since we can use the same intuitions across
a variety of representations.

� Definition 16.2.10. An ontology consists of a formal system ⟨L, C ,K,⊨⟩ with
concept axiom (expressed in L) about

� individuals: concrete entities in a domain of discourse,

� concepts: particular collections of individuals that share properties and aspects
– the instances of the concept, and

� relations: ways in which individuals can be related to one another.

� Example 16.2.11. Semantic networks are ontologies. (relatively informal)

� Example 16.2.12. PL0
DL is an ontology format. (formal, but relatively weak)

� Example 16.2.13. PL1 is an ontology format as well. (formal, expressive)

https://fau.tv/clip/id/27298

16.2. LOGIC-BASED KNOWLEDGE REPRESENTATION 117

Michael Kohlhase: Artificial Intelligence 1 503 2025-02-06

As we will see, the situation for PL0
DL is typical for formal ontologies (even though it only offers

concepts), so we state the general description logic paradigm for ontologies. The important idea
is that having a formal system as an ontology format allows us to capture, study, and implement
ontological inference.

The Description Logic Paradigm

� Idea: Build a whole family of logics for describing sets and their relations. (tailor
their expressivity and computational properties)

� Definition 16.2.14. A description logic is a formal system for talking about col-
lections of objects and their relations that is at least as expressive as PL0 with
set-theoretic semantics and offers individuals and relations.

A description logic has the following four components:
� a formal language L with logical con-

stants ⊓, ·, ⊔, ⊑, and ≡,

� a set-theoretic semantics ⟨D, [[·]]⟩,

� a translation into first-order logic that is
compatible with ⟨D, [[·]]⟩, and

� a calculus for L that induces a decision
procedure for L-satisfiability. PL0

DL

PL1

φ

ψ

undecideable

decideable

ψ :=

{
C 7→ p ∈ Σp

1

⊓ 7→ ∩
· 7→ D\·

}
φ :=

{
X ∈ V0 7→ C
∧ 7→ ⊓
¬ 7→ ·

}

� Definition 16.2.15. Given a description logic D, a D ontology consists of

� a terminology (or TBox): concepts and roles and a set of concept axioms that
describe them, and

� assertions (or ABox): a set of individuals and statements about concept mem-
bership and role relationships for them.

Michael Kohlhase: Artificial Intelligence 1 504 2025-02-06

For convenience we add concept definitions as a mechanism for defining new concepts from old
ones. The so-defined concepts inherit the properties from the concepts they are defined from.

TBoxes in Description Logics

� Let D be a description logic with concepts C.

� Definition 16.2.16. A concept definition is a pair c=C, where c is a new concept
name and C ∈ C is a D-formula.

� Example 16.2.17. We can define mother=woman ⊓ has_child.

� Definition 16.2.18. A concept definition c=C is called recursive, iff c occurs in
C.

� Definition 16.2.19. An TBox is a finite set of concept definitions and concept
axioms. It is called acyclic, iff it does not contain recursive definitions.

118 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

� Definition 16.2.20. A formula A is called normalized wrt. an TBox T , iff it does
not contain concepts defined in T . (convenient)

� Definition 16.2.21 (Algorithm). (for arbitrary DLs)
Input: A formula A and a TBox T .

� While [A contains concept c and T a concept definition c=C]

� substitute c by C in A.

� Lemma 16.2.22. This algorithm terminates for acyclic TBoxes, but results can be
exponentially large.

Michael Kohlhase: Artificial Intelligence 1 505 2025-02-06

As PL0
DL does not offer any guidance on this, we will leave the discussion of ABoxes to ?? when

we have introduced our first proper description logic ALC.

16.2.3 Description Logics and Inference
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27299.

Now that we have established the description logic paradigm, we will have a look at the
inference services that can be offered on this basis.
Before we go into details of particular description logics, we must ask ourselves what kind of
inference support we would want for building systems that support knowledge workers in building,
maintaining and using ontologies. An example of such a system is the Protégé system [Pro], which
can serve for guiding our intuition.

Kinds of Inference in Description Logics

� Definition 16.2.23. Ontology systems employ three main reasoning services:

� Consistency test: is a concept definition satisfiable?

� Subsumption test: does a concept subsume another?

� Instance test: is an individual an example of a concept?

� Problem: decidability, complexity, algorithm

Michael Kohlhase: Artificial Intelligence 1 506 2025-02-06

We will now through these inference-based tests separately.
The consistency test checks for concepts that do not/cannot have instances. We want to avoid such
concepts in our ontologies, since they clutter the namespace and do not contribute any meaningful
contribution.

Consistency Test

� Definition 16.2.24. We call a concept C consistent, iff there is no concept A,
with both C ⊑A and C ⊑A.

� Or equivalently:

� Definition 16.2.25. A concept C is called inconsistent, iff [[C]] = ∅ for all D.

� Example 16.2.26 (T-Box in PL0
DL).

https://fau.tv/clip/id/27299

16.2. LOGIC-BASED KNOWLEDGE REPRESENTATION 119

man = person ⊓ has_Y person with y-chromosome
woman = person ⊓ has_Y person without y-chromosome

hermaphrodite = man ⊓ woman man and woman

This specification is inconsistent, i.e. [[hermaphrodite]] = ∅ for all D.

� Algorithm: Satisfiability test (usually NP complete)
we know how to do this, e.g. tableaux, resolution, DPLL in PL0

DL.

Michael Kohlhase: Artificial Intelligence 1 507 2025-02-06

Even though consistency in our example seems trivial, large ontologies can make machine support
necessary. This is even more true for ontologies that change over time. Say that an ontology
initially has the concept definitions woman=person⊓long_hair and man=person⊓bearded, and then
is modernized to a more biologically correct state. In the initial version the concept hermaphrodite
is consistent, but becomes inconsistent after the renovation; the authors of the renovation should
be made aware of this by the system.
The subsumption test determines whether the sets denoted by two concepts are in a subset relation.
The main justification for this is that humans tend to be aware of concept subsumption, and tend
to think in taxonomic hierarchies. To cater to this, the subsumption test is useful.

Subsumption Test

� Example 16.2.27. In this case trivial

axiom entailed subsumption relation
man = person ⊓ has_Y man⊑ person
woman = person ⊓ has_Y woman⊑ person

� Definition 16.2.28. A subsumes B (modulo a set A of concept axioms), iff
[[B]] ⊆ [[A]] for all interpretations D that satisfy A.

� Observation: Or equivalently, iff A⊑B⊑A = ⊤

� Reduction to consistency test: (need to implement only one)
In PL0, A⇒ (A⇒B) is valid iff A ∧A ∧ ¬B is inconsistent.

� In our example: The concept person subsumes woman and man.

Michael Kohlhase: Artificial Intelligence 1 508 2025-02-06

The good news is that we can reduce the subsumption test to the consistency test, so we can
re-use our existing implementation.
The main user-visible service of the subsumption test is to compute the actual taxonomy induced
by an ontology.

Classification

� The subsumption relation among all concepts (subsumption graph)

� Visualization of the subsumption graph for inspection (plausibility)

� Definition 16.2.29. Classification is the computation of the subsumption graph.

120 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

� Example 16.2.30. (not always so trivial)

male_student female_student boy girl

man woman student professor child

person

object

Michael Kohlhase: Artificial Intelligence 1 509 2025-02-06

Instance Test: Inferring Concept Membership

� Definition 16.2.31. An instance test computes whether given an ontology an
individual is a member of a given concept.

� Remark: This is not something we can do in PL0
DL, which is a TBox-only system.

PL1 (where concepts are predicate constants an assertions are atoms) suffices.

� Example 16.2.32. If we define a concept “mother” as “woman who has a child”,
and have the assertions “Mary is a woman” and “Jesus is a child of Mary”, then we
can infer that “Mary” is a “Mother”, e.g. in the ND1:

∀x.m(x)⇔ w(x) ∧ (∃y.hc(x, y)), w(M), hc(M,J)⊢ND1m(M)

� Remark: This only works in the presence of concept definitions, not in a purely
descriptive framework like semantic networks:

ABox ClydeRexRoy

TBox

elephant graytigerstriped

higher animal
headlegs

amoeba

moveanimal

instinstinst

color

isaisa

pattern

has_parthas_part

isaisa

can

eat

eat
eat

color

Michael Kohlhase: Artificial Intelligence 1 510 2025-02-06

If we take stock of what we have developed so far, then we can see PL0
DL as a rational reconstruction

of semantic networks restricted to the “isa” relation. We relegate the “instance” relation to ??.
This reconstruction can now be used as a basis on which we can extend the expressivity and

inference procedures without running into problems.

16.3 A simple Description Logic: ALC

In this section, we instantiate the description-logic paradigm further with the prototypical logic
ALC, which we will introduce now.

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 121

16.3.1 Basic ALC: Concepts, Roles, and Quantification
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27300.

In this subsection, we instantiate the description-logic paradigm with the prototypical logic
ALC, which we will develop now.

Motivation for ALC (Prototype Description Logic)

� Propositional logic (PL0) is not expressive enough!

� Example 16.3.1. “mothers are women that have a child”

� Reason: There are no quantifiers in PL0 (existential (∃) and universal (∀))

� Idea: Use first-order predicate logic (PL1)

∀x.mother(x)⇔ woman(x) ∧ (∃y.has_child(x, y))

� Problem: Complex algorithms, non-termination (PL1 is too expressive)

� Idea: Try to travel the middle ground
More expressive than PL0 (quantifiers) but weaker than PL1. (still tractable)

� Technique: Allow only “restricted quantification”, where quantified variables only
range over values that can be reached via a binary relation like has_child.

Michael Kohlhase: Artificial Intelligence 1 511 2025-02-06

ALC extends the concept operators of PL0
DL with binary relations (called “roles” in ALC). This

gives ALC the expressive power we had for the basic semantic networks from ??.

Syntax of ALC

� Definition 16.3.2 (Concepts). (aka. “predicates” in PL1 or “propositional
variables” in PL0

DL)

Concepts in DLs represent collections of objects.

� . . . like classes in OOP.

� Definition 16.3.3 (Special Concepts). The top concept ⊤ (for “true” or “all”)
and the bottom concept ⊥ (for “false” or “none”).

� Example 16.3.4. person, woman, man, mother, professor, student, car, BMW,
computer, computer program, heart attack risk, furniture, table, leg of a chair, . . .

� Definition 16.3.5. Roles represent binary relations (like in PL1)

� Example 16.3.6. has_child, has_son, has_daughter, loves, hates, gives_course,
executes_computer_program, has_leg_of_table, has_wheel, has_motor, . . .

� Definition 16.3.7 (Grammar). The formulae of ALC are given by the following
grammar: FALC ::=C | ⊤ | ⊥ | FALC | FALC ⊓ FALC | FALC ⊔ FALC | ∃R.FALC | ∀R.FALC

Michael Kohlhase: Artificial Intelligence 1 512 2025-02-06

ALC restricts the quantification to range all individuals reachable as role successor. The distinction

https://fau.tv/clip/id/27300

122 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

between universal and existential quantifiers clarifies an implicit ambiguity in semantic networks.

Syntax of ALC: Examples

� Example 16.3.8. person ⊓ ∃has_child.student

=̂ The set of persons that have a child which is a student

=̂ parents of students

� Example 16.3.9. person ⊓ ∃has_child.∃has_child.student

=̂ grandparents of students

� Example 16.3.10. person ⊓ ∃has_child.∃has_child.(student ⊔ teacher)

=̂ grandparents of students or teachers

� Example 16.3.11. person ⊓ ∀has_child.student

=̂ parents whose children are all students

� Example 16.3.12. person ⊓ ∀haschild.∃has_child.student

=̂ grandparents, whose children all have at least one child that is a student

Michael Kohlhase: Artificial Intelligence 1 513 2025-02-06

More ALC Examples

� Example 16.3.13. car ⊓ ∃has_part.∃made_in.EU

=̂ cars that have at least one part that has not been made in the EU

� Example 16.3.14. student ⊓ ∀audits_course.graduatelevelcourse

=̂ students, that only audit graduate level courses

� Example 16.3.15. house⊓∀has_parking.off_street =̂ houses with off-street park-
ing

� Note: p⊑ q can still be used as an abbreviation for p ⊔ q.

� Example 16.3.16. student⊓ ∀audits_course.(∃hastutorial.⊤⊑∀has_TA.woman)

=̂ students that only audit courses that either have no tutorial or tutorials that are
TAed by women

Michael Kohlhase: Artificial Intelligence 1 514 2025-02-06

As before we allow concept definitions so that we can express new concepts from old ones, and
obtain more concise descriptions.

ALC Concept Definitions

� Idea: Define new concepts from known ones.

� Definition 16.3.17. A concept definition is a pair consisting of a new concept
name (the definiendum) and an ALC formula (the definiens). Concepts that are not

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 123

definienda are called primitive.

� We extend the ALC grammar from ?? by the production

CDALC ::=C = FALC

� Example 16.3.18.

Definition rec?
man = person ⊓ ∃has_chrom.Y_chrom -
woman = person ⊓ ∀has_chrom.Y_chrom -
mother = woman ⊓ ∃has_child.person -
father = man ⊓ ∃has_child.person -
grandparent = person ⊓ ∃has_child.(mother ⊔ father) -
german = person ⊓ ∃has_parents.german +
number_list = empty_list ⊔ ∃is_first.number ⊓ ∃is_rest.number_list +

Michael Kohlhase: Artificial Intelligence 1 515 2025-02-06

As before, we can normalize a TBox by definition expansion if it is acyclic. With the introduction
of roles and quantification, concept definitions in ALC have a more “interesting” way to be cyclic
as ?? shows.

TBox Normalization in ALC
� Definition 16.3.19. We call an ALC formula φ normalized wrt. a set of concept

definitions, iff all concepts occurring in φ are primitive.

� Definition 16.3.20. Given a set D of concept definitions, normalization is the
process of replacing in an ALC formula φ all occurrences of definienda in D with
their definientia.

� Example 16.3.21 (Normalizing grandparent).

grandparent

7→ person ⊓ ∃has_child.(mother ⊔ father)

7→ person ⊓ ∃has_child.(woman ⊓ ∃has_child.person ⊓ man ⊓ ∃has_child.person)

7→ person ⊓ ∃has_child.(person ⊓ ∃has_chrom.Y_chrom ⊓ ∃has_child.person ⊓ person ⊓ ∃has_chrom.Y_chrom ⊓ ∃has_child.person)

� Observation 16.3.22. Normalization results can be exponential. (contain
redundancies)

� Observation 16.3.23. Normalization need not terminate on cyclic TBoxes.

� Example 16.3.24.

german 7→ person ⊓ ∃has_parents.german

7→ person ⊓ ∃has_parents.(person ⊓ ∃has_parents.german)

7→ . . .

Michael Kohlhase: Artificial Intelligence 1 516 2025-02-06

Now that we have motivated and fixed the syntax of ALC, we will give it a formal semantics.
The semantics of ALC is an extension of the set-theoretic semantics for PL0, thus the interpretation
[[·]] assigns subsets of the domain of discourse to concepts and binary relations over the domain

124 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

of discourse to roles.

Semantics of ALC
� ALC semantics is an extension of the set-semantics of propositional logic.

� Definition 16.3.25. A model for ALC is a pair ⟨D, [[·]]⟩, where D is a non-empty
set called the domain of discourse and [[·]] a mapping called the interpretation, such
that

Op. formula semantics
[[c]] ⊆ D = [[⊤]] [[⊥]] = ∅ [[r]] ⊆ D ×D

· [[φ]] = [[φ]] = D\ [[φ]]
⊓ [[φ ⊓ ψ]] = [[φ]] ∩ [[ψ]]
⊔ [[φ ⊔ ψ]] = [[φ]] ∪ [[ψ]]
∃R. [[∃R.φ]] = {x ∈ D | ∃y.⟨x, y⟩ ∈ [[R]] and y ∈ [[φ]]}
∀R. [[∀R.φ]] = {x ∈ D | ∀y.if ⟨x, y⟩ ∈ [[R]] then y ∈ [[φ]]}

� Alternatively we can define the semantics of ALC by translation into PL1.

� Definition 16.3.26. The translation of ALC into PL1 extends the one from ?? by
the following quantifier rules:

∀R.φ
fo(x)

:= (∀y.R(x, y)⇒ φfo(y)) ∃R.φ
fo(x)

:= (∃y.R(x, y) ∧ φfo(y))

� Observation 16.3.27. The set-theoretic semantics from ?? and the “semantics-
by-translation” from ?? induce the same notion of satisfiability.

Michael Kohlhase: Artificial Intelligence 1 517 2025-02-06

We can now use the ALC identities above to establish a useful normal form for ALC. This will
play a role in the inference procedures we study next.
The following identitieswill be useful later on. They can be proven directly with the settings from
??; we carry this out for one of them below.

ALC Identities

� 1 ∃R.φ = ∀R.φ 3 ∀R.φ = ∃R.φ
2 ∀R.(φ ⊓ ψ) = ∀R.φ ⊓ ∀R.ψ 4 ∃R.(φ ⊔ ψ) = ∃R.φ ⊔ ∃R.ψ

� Proof of 1[[
∃R.φ

]]
= D\ [[∃R.φ]] = D\{x ∈ D | ∃y.(⟨x, y⟩ ∈ [[R]]) and (y ∈ [[φ]])}

= {x ∈ D | not ∃y.(⟨x, y⟩ ∈ [[R]]) and (y ∈ [[φ]])}
= {x ∈ D | ∀y.if (⟨x, y⟩ ∈ [[R]]) then (y ̸∈ [[φ]])}
= {x ∈ D | ∀y.if (⟨x, y⟩ ∈ [[R]]) then (y ∈ (D\ [[φ]]))}
= {x ∈ D | ∀y.if (⟨x, y⟩ ∈ [[R]]) then (y ∈ [[φ]])}
= [[∀R.φ]]

Michael Kohlhase: Artificial Intelligence 1 518 2025-02-06

The form of the identities (interchanging quantification with connectives) is reminiscient of iden-

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 125

tities in PL1; this is no coincidence as the “semantics by translation” of ?? shows.

Negation Normal Form

� Definition 16.3.28 (NNF). An ALC formula is in negation normal form (NNF),
iff complement (·) is only applied to primitive concept.

� Use the ALC identities as rules to compute it. (in linear time)

� Example 16.3.29.

example by rule

∃R.(∀S.e ⊓ ∀S.d)
7→ ∀R.∀S.e ⊓ ∀S.d ∃R.φ 7→ ∀R.φ
7→ ∀R.(∀S.e ⊔ ∀S.d) φ ⊓ ψ 7→ φ ⊔ ψ
7→ ∀R.(∃S.e ⊔ ∀S.d) ∀R.φ 7→ ∃R.φ
7→ ∀R.(∃S.e ⊔ ∀S.d) φ 7→ φ

Michael Kohlhase: Artificial Intelligence 1 519 2025-02-06

Finally, we extend ALC with an ABox component. This mainly means that we define two new
assertions in ALC and specify their semantics and PL1 translation.

ALC with Assertions about Individuals

� Definition 16.3.30. We define the ABox assertions for ALC:

� Role assertionsa:φ (a is a φ)

� a R b (a stands in relation R to b)

assertions make up the ABox in ALC.

� Definition 16.3.31. Let ⟨D, [[·]]⟩ be a model for ALC, then we define

� [[a:φ]] = T, iff [[a]] ∈ [[φ]], and

� [[a R b]] = T, iff ([[a]] , [[b]]) ∈ [[R]].

� Definition 16.3.32. We extend the PL1 translation of ALC to ALC assertions:

� a:φfo := φfo(a), and

� a R b
fo

:= R(a, b).

Michael Kohlhase: Artificial Intelligence 1 520 2025-02-06

If we take stock of what we have developed so far, then we see that ALC as a rational recon-
struction of semantic networks restricted to the “isa” and “instance” relations – which are the only
ones that can really be given a denotational and operational semantics.

16.3.2 Inference for ALC

Video Nuggets covering this subsection can be found at https://fau.tv/clip/id/27301 and
https://fau.tv/clip/id/27302.

https://fau.tv/clip/id/27301
https://fau.tv/clip/id/27302

126 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

In this subsection we make good on the motivation from ?? that description logics enjoy tractable
inference procedures: We present a tableau calculus for ALC, show that it is a decision procedure,
and study its complexity.

TALC: A Tableau-Calculus for ALC
� Recap Tableaux: A tableau calculus develops an initial tableau in a tree-formed

scheme using tableau extension rules.

A saturated tableau (no rules applicable) constitutes a refutation, if all branches are
closed (end in ⊥).

� Definition 16.3.33. The ALC tableau calculus TALC acts on assertions:

� x:φ (x inhabits concept φ)

� x R y (x and y are in relation R)

where φ is a normalized ALC concept in negation normal form with the following
rules:

x:c
x:c

⊥ T⊥
x:φ ⊓ ψ
x:φ
x:ψ

T⊓
x:φ ⊔ ψ
x:φ

∣∣∣ x:ψ T⊔

x:∀R.φ
x R y

y:φ
T∀

x:∃R.φ
x R y
y:φ

T∃

� To test consistency of a concept φ, normalize φ to ψ, initialize the tableau with
x:ψ, saturate. Open branches ; consistent. (x arbitrary)

Michael Kohlhase: Artificial Intelligence 1 521 2025-02-06

In contrast to the tableau tableau calculi for theorem proving we have studied earlier, TALC is run
in “model generation mode”. Instead of initializing the tableau with the axioms and the negated
conjecture and hope that all branches will close, we initialize the TALC tableau with axioms and
the “membership-conjecture” that a given concept φ is satisfiable – i.e. φ h as a member x, and
hope for branches that are open, i.e. that make the conjecture true (and at the same time give a
model).
Let us now work through two very simple examples; one unsatisfiable, and a satisfiable one.

TALC Examples

� Example 16.3.34 (Tableau Proofs). We have two similar conjectures about
children.

� x:∀has_child.man ⊓ ∃has_child.man (all sons, but a daughter)

x:∀has_child.man ⊓ ∃has_child.man initial
x:∀has_child.man T⊓
x:∃has_child.man T⊓
x has_child y T∃

y:man T∃
⊥ T⊥

inconsistent

� x:∀has_child.man ⊓ ∃has_child.man (only sons, and at least one)

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 127

x:∀has_child.man ⊓ ∃has_child.man initial
x:∀has_child.man T⊓
x:∃has_child.man T⊓
x has_child y T∃

y:man T∃
open

This tableau shows a model: there are two persons, x and y. y is the only child
of x, y is a man.

Michael Kohlhase: Artificial Intelligence 1 522 2025-02-06

Another example: this one is more complex, but the concept is satisfiable.

Another TALC Example

� Example 16.3.35. ∀has_child.(ugrad ⊔ grad) ⊓ ∃has_child.ugrad is satisfiable.

� Let’s try it on the board

� Tableau proof for the notes

1 x:∀has_child.(ugrad ⊔ grad) ⊓ ∃has_child.ugrad initial
2 x:∀has_child.(ugrad ⊔ grad) T⊓
3 x:∃has_child.ugrad T⊓
4 x has_child y T∃
5 y:ugrad T∃
6 y:ugrad ⊔ grad T∀

7 y:ugrad y:grad T⊔
8 ⊥ open

The left branch is closed, the right one represents a model: y is a child of x, y
is a graduate student, x hat exactly one child: y.

Michael Kohlhase: Artificial Intelligence 1 523 2025-02-06

After we got an intuition about TALC , we can now study the properties of the calculus to determine
that it is a decision procedure for ALC.

Properties of Tableau Calculi

� We study the following properties of a tableau calculus C:

� Termination: there are no infinite sequences of inference rule applications.

� Soundness: If φ is satisfiable, then C terminates with an open branch.

� Completeness: If φ is in unsatisfiable, then C terminates and all branches are
closed.

� complexity of the algorithm (time and space complexity).

� Additionally, we are interested in the complexity of satisfiability itself (as a
benchmark)

128 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

Michael Kohlhase: Artificial Intelligence 1 524 2025-02-06

The soundness result for TALC is as usual: we start with a model of x:φ and show that an TALC
tableau must have an open branch.

Correctness

� Lemma 16.3.36. If φ satisfiable, then TALC terminates on x:φ with open branch.

� Proof: Let M := ⟨D, [[·]]⟩ be a model for φ and w ∈ [[φ]].

1. We define [[x]] := w and
M|=(x:ψ) iff [[x]] ∈ [[ψ]]
M|=x R y iff ⟨x, y⟩ ∈ [[R]]
M|=S iff I|=c for all c ∈ S

2. This gives us M|=(x:φ) (base case)
3. If the branch is satisfiable, then either

� no rule applicable to leaf, (open branch)
� or rule applicable and one new branch satisfiable. (inductive case: next)

4. There must be an open branch. (by termination)

Michael Kohlhase: Artificial Intelligence 1 525 2025-02-06

We complete the proof by looking at all the TALC inference rules in turn.

Case analysis on the rules

T⊓ applies then M|=(x:φ ⊓ ψ), i.e. [[x]] ∈ [[φ ⊓ ψ]]
so [[x]] ∈ [[φ]] and [[x]] ∈ [[ψ]], thus M|=(x:φ) and M|=(x:ψ).

T⊔ applies then M|=(x:φ ⊔ ψ), i.e [[x]] ∈ [[φ ⊔ ψ]]
so [[x]] ∈ [[φ]] or [[x]] ∈ [[ψ]], thus M|=(x:φ) or M|=(x:ψ),
wlog. M|=(x:φ).

T∀ applies then M|=(x:∀R.φ) and M|=x R y, i.e. [[x]] ∈ [[∀R.φ]] and ⟨x, y⟩ ∈ [[R]], so
[[y]] ∈ [[φ]]

T∃ applies then M|=(x:∃R.φ), i.e [[x]] ∈ [[∃R.φ]],
so there is a v ∈ D with ⟨ [[x]] , v⟩ ∈ [[R]] and v ∈ [[φ]].
We define [[y]] := v, then M|=x R y and M|=(y:φ)

Michael Kohlhase: Artificial Intelligence 1 526 2025-02-06

For the completeness result for TALC we have to start with an open tableau branch and construct a
model that satisfies all judgments in the branch. We proceed by building a Herbrand model, whose
domain consists of all the individuals mentioned in the branch and which interprets all concepts
and roles as specified in the branch. Not surprisingly, the model thus constructed satisfies (all
judgments on) the branch.

Completeness of the Tableau Calculus

� Lemma 16.3.37. Open saturated tableau branches for φ induce models for φ.

� Proof: construct a model for the branch and verify for φ

1. Let B be an open, saturated branch

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 129

� we define

D : = {x |x:ψ ∈ B or z R x ∈ B}
[[c]] : = {x |x:c ∈ B}
[[R]] : = {⟨x, y⟩ |x R y ∈ B}

� well-defined since never x:c, x:c ∈ B (otherwise T⊥ applies)
� M satisfies all assertions x:c, x:c and x R y, (by construction)

2. M|=(y:ψ), for all y:ψ ∈ B (on k = size(ψ) next slide)
3. M|=(x:φ).

Michael Kohlhase: Artificial Intelligence 1 527 2025-02-06

We complete the proof by looking at all the TALC inference rules in turn.

Case Analysis for Induction

case y:ψ = y:ψ1 ⊓ ψ2 Then {y:ψ1, y:ψ2} ⊆ B (T⊓-rule, saturation)

so M|=(y:ψ1) and M|=(y:ψ2) and M|=(y:ψ1 ⊓ ψ2) (IH, Definition)

case y:ψ = y:ψ1 ⊔ ψ2 Then y:ψ1 ∈ B or y:ψ2 ∈ B (T⊔, saturation)

so M|=(y:ψ1) or M|=(y:ψ2) and M|=(y:ψ1 ⊔ ψ2) (IH, Definition)

case y:ψ = y:∃R.θ then {y R z, z:θ} ⊆ B (z new variable) (T∃-rules, saturation)

so M|=(z:θ) and M|=y R z, thus M|=(y:∃R.θ). (IH, Definition)

case y:ψ = y:∀R.θ Let ⟨ [[y]] , v⟩ ∈ [[R]] for some r ∈ D
then v = z for some variable z with y R z ∈ B (construction of [[R]])

So z:θ ∈ B and M|=(z:θ). (T∀-rule, saturation, Def)

As v was arbitrary we have M|=(y:∀R.θ).

Michael Kohlhase: Artificial Intelligence 1 528 2025-02-06

Termination

� Theorem 16.3.38. TALC terminates.

� To prove termination of a tableau algorithm, find a well-founded measure (function)
that is decreased by all rules

x:c
x:c

⊥ T⊥
x:φ ⊓ ψ
x:φ
x:ψ

T⊓
x:φ ⊔ ψ
x:φ

∣∣∣ x:ψ T⊔

x:∀R.φ
x R y

y:φ
T∀

x:∃R.φ
x R y
y:φ

T∃

� Proof: Sketch (full proof very technical)

1. Any rule except T∀ can only be applied once to x:ψ.
2. Rule T∀ applicable to x:∀R.ψ at most as the number of R-successors of x.

(those y with x R y above)

130 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

3. The R-successors are generated by x:∃R.θ above, (number bounded by size of
input formula)

4. Every rule application to x:ψ generates constraints z:ψ′, where ψ′ a proper
sub-formula of ψ.

Michael Kohlhase: Artificial Intelligence 1 529 2025-02-06

We can turn the termination result into a worst-case complexity result by examining the sizes of
branches.

Complexity of TALC
� Idea: Work off tableau branches one after the other. (Branch size =̂ space

complexity)

� Observation 16.3.39. The size of the branches is polynomial in the size of the
input formula:

branchsize = #(input formulae) + #(∃-formulae) ·#(∀-formulae)

� Proof sketch: Re-examine the termination proof and count: the first summand
comes from ??, the second one from ?? and ??

� Theorem 16.3.40. The satisfiability problem for ALC is in PSPACE.

� Theorem 16.3.41. The satisfiability problem for ALC is PSPACE-Complete.

� Proof sketch: Reduce a PSPACE-complete problem to ALC-satisfiability

� Theorem 16.3.42 (Time Complexity). The ALC satisfiability problem is in
EXPTIME.

� Proof sketch: There can be exponentially many branches (already for PL0)

Michael Kohlhase: Artificial Intelligence 1 530 2025-02-06

In summary, the theoretical complexity of ALC is the same as that for PL0, but in practice ALC is
much more expressive. So this is a clear win.
But the description of the tableau algorithm TALC is still quite abstract, so we look at an exemplary
implementation in a functional programming language.

The functional Algorithm for ALC

� Observation: (leads to a better treatment for ∃)

� the T∃-rule generates the constraints x R y and y:ψ from x:∃R.ψ

� this triggers the T∀-rule for x:∀R.θi, which generate y:θ1, . . . , y:θn
� for y we have y:ψ and y:θ1, . . . , y:θn. (do all of this in a single step)

� we are only interested in non-emptiness, not in particular witnesses (leave them
out)

� Definition 16.3.43. The functional algorithm for TALC is

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 131

consistent(S) =
if {c, c} ⊆ S then false
elif ‘φ ⊓ ψ′ ∈ S and (‘φ′ ̸∈ S or ‘ψ′ ̸∈ S)

then consistent(S ∪ {φ,ψ})
elif ‘φ ⊔ ψ′ ∈ S and {φ,ψ} ̸∈ S

then consistent(S ∪ {φ}) or consistent(S ∪ {ψ})
elif forall ‘∃R.ψ′ ∈ S
consistent({ψ} ∪ {θ ∈ θ | ‘∀R.θ′ ∈ S})

else true

� Relatively simple to implement. (good implementations optimized)

� But: This is restricted to ALC. (extension to other DL difficult)

Michael Kohlhase: Artificial Intelligence 1 531 2025-02-06

Note that we have (so far) only considered an empty TBox: we have initialized the tableau
with a normalized concept; so we did not need to include the concept definitions. To cover “real”
ontologies, we need to consider the case of concept axioms as well.
We now extend TALC with concept axioms. The key idea here is to realize that the concept axioms
apply to all individuals. As the individuals are generated by the T∃ rule, we can simply extend
that rule to apply all the concept axioms to the newly introduced individual.

Extending the Tableau Algorithm by Concept Axioms

� concept axioms, e.g. child⊑ son ⊔ daughter cannot be handled in TALC yet.

� Idea: Whenever a new variable y is introduced (by T∃-rule) add the information
that axioms hold for y.

� Initialize tableau with {x:φ} ∪ CA (CA : = set of concept axioms)

� New rule for ∃:
x:∃R.φ CA = {α1, . . ., αn}

y:φ
x R y
y:α1

...
y:αn

T ∃
CA (instead of T∃)

� Problem: CA := {∃R.c} and start tableau with x:d (non-termination)

Michael Kohlhase: Artificial Intelligence 1 532 2025-02-06

The problem of this approach is that it spoils termination, since we cannot control the number of
rule applications by (fixed) properties of the input formulae. The example shows this very nicely.
We only sketch a path towards a solution.

Non-Termination of TALC with Concept Axioms

� Problem: CA := {∃R.c} and start tableau with x:d. (non-termination)

132 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

x:d start
x:∃R.c in CA
x R y1 T∃
y1:c T∃
y1:∃R.c T ∃

CA
y1 R y2 T∃
y2:c T∃
y2:∃R.c T ∃

CA
. . .

Solution: Loop-Check:

� Instead of a new variable y take an old
variable z, if we can guarantee that what-
ever holds for y already holds for z.

� We can only do this, iff the T∀-rule has
been exhaustively applied.

� Theorem 16.3.44. The consistency problem of ALC with concept axioms is decid-
able.

Proof sketch: TALC with a suitable loop check terminates.

Michael Kohlhase: Artificial Intelligence 1 533 2025-02-06

16.3.3 ABoxes, Instance Testing, and ALC
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27303.
Now that we have a decision problem for ALC with concept axioms, we can go the final step to

the general case of inference in description logics: we add an ABox with assertional axioms that
describe the individuals.
We will now extend the description logic ALC with assertions that can express concept member-
ship.

� Instance Test: Concept Membership

� Definition 16.3.45. An instance test computes whether given an ALC ontology an
individual is a member of a given concept.

� Example 16.3.46 (An Ontology).

TBox (terminological Box) ABox (assertional Box, data base)

woman = person ⊓ has_Y tony:person Tony is a person
man = person ⊓ has_Y tony:has_Y Tony has a y-chrom

This entails: tony:man (Tony is a man).

� Problem: Can we compute this?

Michael Kohlhase: Artificial Intelligence 1 534 2025-02-06

If we combine classification with the instance test, then we get the full picture of how concepts
and individuals relate to each other. We see that we get the full expressivity of semantic networks
in ALC.

Realization

� Definition 16.3.47. Realization is the computation of all instance relations be-
tween ABox objects and TBox concepts.

� Observation: It is sufficient to remember the lowest concepts in the subsumption

https://fau.tv/clip/id/27303

16.3. A SIMPLE DESCRIPTION LOGIC: ALC 133

graph. (rest by subsumption)

male_student female_student girl boy

man woman student professor child

person

object

Tony TimmyTerry

� Example 16.3.48. If tony:male_student is known, we do not need tony:man.

Michael Kohlhase: Artificial Intelligence 1 535 2025-02-06

Let us now get an intuition on what kinds of interactions between the various parts of an ontology.

ABox Inference in ALC: Phenomena

� There are different kinds of interactions between TBox and ABox in ALC and in
description logics in general.

� Example 16.3.49.

property example

internally inconsistent tony:student, tony:student

inconsistent with a TBox TBox: student ⊓ prof
ABox: tony:student, tony:prof

implicit info that is not explicit
ABox: tony:∀has_grad.genius

tony has_grad mary
|= mary:genius

information that can be com-
bined with TBox info

TBox: happy_prof = prof ⊓ ∀has_grad.genius
ABox: tony:happy_prof,

tony has_grad mary
|= mary:genius

Michael Kohlhase: Artificial Intelligence 1 536 2025-02-06

Again, we ask ourselves whether all of these are computable.
Fortunately, it is very simple to add assertions to TALC . In fact, we do not have to change anything,
as the judgments used in the tableau are already of the form of ABox assertion.

Tableau-based Instance Test and Realization

� Query: Do the ABox and TBox together entail a:φ? (a ∈ φ?)

� Algorithm: Test a:φ for consistency with ABox and TBox. (use our tableau
algorithm)

� Necessary changes: (no big deal)

� Normalize ABox wrt. TBox. (definition expansion)

� Initialize the tableau with ABox in NNF. (so it can be used)

134 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

� Example 16.3.50.

Example: add mary:genius to determine ABox, TBox |= mary:genius

TBox happy_prof = prof ⊓
∀has_grad.genius tony:prof ⊓ ∀has_grad.genius TBox

tony has_grad mary ABox
mary:genius Query
tony:prof T⊓

tony:∀has_grad.genius T⊓
mary:genius T∀

⊥ T⊥
ABox

tony:happy_prof
tony has_grad mary

� Note: The instance test is the base for realization. (remember?)

� Idea: Extend to more complex ABox queries. (e.g. give me all instances of φ)

Michael Kohlhase: Artificial Intelligence 1 537 2025-02-06

This completes our investigation of inference for ALC. We summarize that ALC is a logic-based on-
tology language where the inference problems are all decidable/computable via TALC . But of course,
while we have reached the expressivity of basic semantic networks, there are still things that we
cannot express in ALC, so we will try to extend ALC without losing decidability/computability.

16.4 Description Logics and the Semantic Web
A Video Nugget covering this section can be found at https://fau.tv/clip/id/27289.
In this section we discuss how we can apply description logics in the real world, in particular,

as a conceptual and algorithmic basis of the semantic web. That tries to transform the World
Wide Web from a human-understandable web of multimedia documents into a “web of machine-
understandable data”. In this context, “machine-understandable” means that machines can draw
inferences from data they have access to. Note that the discussion in this digression is not a
full-blown introduction to RDF and OWL, we leave that to [SR14; Her+13a; Hit+12] and the
respective W3C recommendations. Instead we introduce the ideas behind the mappings from a
perspective of the description logics we have discussed above.
The most important component of the semantic web is a standardized language that can represent
“data” about information on the Web in a machine-oriented way.

Resource Description Framework

� Definition 16.4.1. The Resource Description Framework (RDF) is a framework for
describing resources on the web. It is an XML vocabulary developed by the W3C.

� Note: RDF is designed to be read and understood by computers, not to be
displayed to people. (it shows)

� Example 16.4.2. RDF can be used for describing (all “objects on the WWW”)

� properties for shopping items, such as price and availability

� time schedules for web events

� information about web pages (content, author, created and modified date)

� content and rating for web pictures

� content for search engines

� electronic libraries

https://fau.tv/clip/id/27289

16.4. DESCRIPTION LOGICS AND THE SEMANTIC WEB 135

Michael Kohlhase: Artificial Intelligence 1 538 2025-02-06

Note that all these examples have in common that they are about “objects on the Web”, which is
an aspect we will come to now.
“Objects on the Web” are traditionally called “resources”, rather than defining them by their
intrinsic properties – which would be ambitious and prone to change – we take an external property
to define them: everything that has a URI is a web resource. This has repercussions on the design
of RDF.

Resources and URIs

� RDF describes resources with properties and property values.

� RDF uses Web identifiers (URIs) to identify resources.

� Definition 16.4.3. A resource is anything that can have a URI, such as http:
//www.fau.de.

� Definition 16.4.4. A property is a resource that has a name, such as author
or homepage, and a property value is the value of a property, such as Michael
Kohlhase or http://kwarc.info/kohlhase. (a property value can be another
resource)

� Definition 16.4.5. A RDF statement s (also known as a triple) consists of a
resource (the subject of s), a property (the predicate of s), and a property value
(the object of s). A set of RDF triples is called an RDF graph.

� Example 16.4.6. Statements: [This slide]subj has been [author]preded by [Michael
Kohlhase]obj

Michael Kohlhase: Artificial Intelligence 1 539 2025-02-06

The crucial observation here is that if we map “subjects” and “objects” to “individuals”, and
“predicates” to “relations”, the RDF triples are just relational ABox statements of description
logics. As a consequence, the techniques we developed apply.
Note: Actually, a RDF graph is technically a labeled multigraph, which allows multiple edges
between any two nodes (the resources) and where nodes and edges are labeled by URIs.
We now come to the concrete syntax of RDF. This is a relatively conventional XML syntax that
combines RDF statements with a common subject into a single “description” of that resource.

XML Syntax for RDF

� RDF is a concrete XML vocabulary for writing statements

� Example 16.4.7. The following RDF document could describe the slides as a
resource
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22−rdf−syntax−ns#"

xmlns:dc= "http://purl.org/dc/elements/1.1/">
<rdf:Description about="https://.../CompLog/kr/en/rdf.tex">

<dc:creator>Michael Kohlhase</dc:creator>
<dc:source>http://www.w3schools.com/rdf</dc:source>

</rdf:Description>
</rdf:RDF>

http://www.fau.de
http://www.fau.de
http://kwarc.info/kohlhase

136 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

This RDF document makes two statements:

� The subject of both is given in the about attribute of the rdf:Description element

� The predicates are given by the element names of its children

� The objects are given in the elements as URIs or literal content.

� Intuitively: RDF is a web-scalable way to write down ABox information.

Michael Kohlhase: Artificial Intelligence 1 540 2025-02-06

Note that XML namespaces play a crucial role in using element to encode the predicate URIs.
Recall that an element name is a qualified name that consists of a namespace URI and a proper
element name (without a colon character). Concatenating them gives a URI in our example the
predicate URI induced by the dc:creator element is http://purl.org/dc/elements/1.1/creator.
Note that as URIs go RDF URIs do not have to be URLs, but this one is and it references (is
redirected to) the relevant part of the Dublin Core elements specification [DCM12].
RDF was deliberately designed as a standoff markup format, where URIs are used to annotate
web resources by pointing to them, so that it can be used to give information about web resources
without having to change them. But this also creates maintenance problems, since web resources
may change or be deleted without warning.

RDFa gives authors a way to embed RDF triples into web resources and make keeping RDF
statements about them more in sync.

RDFa as an Inline RDF Markup Format

� Problem: RDF is a standoff markup format (annotate by URIs pointing into
other files)

Definition 16.4.8. RDFa (RDF annotations) is a markup scheme for inline anno-
tation (as XML attributes) of RDF triples.

� Example 16.4.9.
<div xmlns:dc="http://purl.org/dc/elements/1.1/" id="address">

<h2 about="#address" property="dc:title">RDF as an Inline RDF Markup Format</h2>
<h3 about="#address" property="dc:creator">Michael Kohlhase</h3>
<em about="#address" property="dc:date" datatype="xsd:date"

content="2009−11−11">November 11., 2009
</div>

https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex

RDFa as an Inline RDF Markup Format

2009−11−11 (xsd:date)

Michael Kohlhase

http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date

http://purl.org/dc/elements/1.1/creator

Michael Kohlhase: Artificial Intelligence 1 541 2025-02-06

In the example above, the about and property attributes are reserved by RDFa and specify the
subject and predicate of the RDF statement. The object consists of the body of the element,
unless otherwise specified e.g. by the content and datatype attributes for literals content.
Let us now come back to the fact that RDF is just an XML syntax for ABox statements.

http://purl.org/dc/elements/1.1/creator
https://svn.kwarc.info/.../CompLog/kr/slides/rdfa.tex
http://purl.org/dc/elements/1.1/title
http://purl.org/dc/elements/1.1/date
http://purl.org/dc/elements/1.1/creator

16.4. DESCRIPTION LOGICS AND THE SEMANTIC WEB 137

RDF as an ABox Language for the Semantic Web

� Idea: RDF triples are ABox entries h R s or h:φ.

� Example 16.4.10. h is the resource for Ian Horrocks, s is the resource for Ulrike
Sattler, R is the relation “hasColleague”, and φ is the class foaf:Person

<rdf:Description about="some.uri/person/ian_horrocks">
<rdf:type rdf:resource="http://xmlns.com/foaf/0.1/Person"/>
<hasColleague resource="some.uri/person/uli_sattler"/>

</rdf:Description>

� Idea: Now, we need an similar language for TBoxes (based on ALC)

Michael Kohlhase: Artificial Intelligence 1 542 2025-02-06

In this situation, we want a standardized representation language for TBox information; OWL
does just that: it standardizes a set of knowledge representation primitives and specifies a variety
of concrete syntaxes for them. OWL is designed to be compatible with RDF, so that the two
together can form an ontology language for the web.

OWL as an Ontology Language for the Semantic Web

� Task: Complement RDF (ABox) with a TBox language.

� Idea: Make use of resources that are values in rdf:type. (called Classes)

� Definition 16.4.11. OWL (the ontology web language) is a language for encoding
TBox information about RDF classes.

� Example 16.4.12 (A concept definition for “Mother”). Mother=Woman ⊓
Parent is represented as

XML Syntax Functional Syntax

<EquivalentClasses>
<Class IRI="Mother"/>
<ObjectIntersectionOf>

<Class IRI="Woman"/>
<Class IRI="Parent"/>

</ObjectIntersectionOf>
</EquivalentClasses>

EquivalentClasses(
:Mother
ObjectIntersectionOf(

:Woman
:Parent

)
)

Michael Kohlhase: Artificial Intelligence 1 543 2025-02-06

But there are also other syntaxes in regular use. We show the functional syntax which is inspired
by the mathematical notation of relations.

Extended OWL Example in Functional Syntax

� Example 16.4.13. The semantic network from ?? can be expressed in OWL (in
functional syntax)

138 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

wings

Mary

John

robin

bird Jack Person

has_part

loves

owner_of

instisa
instinst

ClassAssertion (:Jack :robin)
ClassAssertion(:John :person)
ClassAssertion (:Mary :person)
ObjectPropertyAssertion(:loves :John :Mary)
ObjectPropertyAssertion(:owner :John :Jack)
SubClassOf(:robin :bird)
SubClassOf (:bird ObjectSomeValuesFrom(:hasPart :wing))

� ClassAssertion formalizes the “inst” relation,

� ObjectPropertyAssertion formalizes relations,

� SubClassOf formalizes the “isa” relation,

� for the “has_part” relation, we have to specify that all birds have a part that
is a wing or equivalently the class of birds is a subclass of all objects that
have some wing.

Michael Kohlhase: Artificial Intelligence 1 544 2025-02-06

We have introduced the ideas behind using description logics as the basis of a “machine-oriented
web of data”. While the first OWL specification (2004) had three sublanguages “OWL Lite”, “OWL
DL” and “OWL Full”, of which only the middle was based on description logics, with the OWL2
Recommendation from 2009, the foundation in description logics was nearly universally accepted.

The semantic web hype is by now nearly over, the technology has reached the “plateau of
productivity” with many applications being pursued in academia and industry. We will not go
into these, but briefly instroduce one of the tools that make this work.

SPARQL an RDF Query language

� Definition 16.4.14. SPARQL, the “SPARQL Protocol and RDF Query Language”
is an RDF query language, able to retrieve and manipulate data stored in RDF.
The SPARQL language was standardized by the World Wide Web Consortium in
2008 [PS08].

� SPARQL is pronounced like the word “sparkle”.

� Definition 16.4.15. A system is called a SPARQL endpoint, iff it answers SPARQL
queries.

� Example 16.4.16. Query for person names and their e-mails from a triplestore
with FOAF data.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name ?email
WHERE {

?person a foaf:Person.
?person foaf:name ?name.
?person foaf:mbox ?email.

}

16.4. DESCRIPTION LOGICS AND THE SEMANTIC WEB 139

Michael Kohlhase: Artificial Intelligence 1 545 2025-02-06

SPARQL end-points can be used to build interesting applications, if fed with the appropriate data.
An interesting – and by now paradigmatic – example is the DBPedia project, which builds a large
ontology by analyzing Wikipedia fact boxes. These are in a standard HTML form which can be
analyzed e.g. by regular expressions, and their entries are essentially already in triple form: The
subject is the Wikipedia page they are on, the predicate is the key, and the object is either the
URI on the object value (if it carries a link) or the value itself.

SPARQL Applications: DBPedia

� Typical Application: DBPedia screen-scrapes
Wikipedia fact boxes for RDF triples and uses SPARQL
for querying the induced triplestore.

� Example 16.4.17 (DBPedia Query). People who
were born in Erlangen before 1900
(http://dbpedia.org/snorql)

SELECT ?name ?birth ?death ?person WHERE {
?person dbo:birthPlace :Erlangen .
?person dbo:birthDate ?birth .
?person foaf:name ?name .
?person dbo:deathDate ?death .
FILTER (?birth < "1900−01−01"^^xsd:date) .

}
ORDER BY ?name

� The answers include Emmy Noether and Georg Simon
Ohm.

Michael Kohlhase: Artificial Intelligence 1 546 2025-02-06

A more complex DBPedia Query

� Demo: DBPedia http://dbpedia.org/snorql/
Query: Soccer players born in a country with more than 10 M inhabitants, who play
as goalie in a club that has a stadium with more than 30.000 seats.
Answer: computed by DBPedia from a SPARQL query

http://dbpedia.org/snorql
http://dbpedia.org/snorql/
https://goo.gl/2i3ng1

140 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

Michael Kohlhase: Artificial Intelligence 1 547 2025-02-06

We conclude our survey of the semantic web technology stack with the notion of a triplestore,
which refers to the database component, which stores vast collections of ABox triples.

Triple Stores: the Semantic Web Databases

� Definition 16.4.18. A triplestore or RDF store is a purpose-built database for
the storage RDF graphs and retrieval of RDF triples usually through variants of
SPARQL.

� Common triplestores include

� Virtuoso: https://virtuoso.openlinksw.com/ (used in DBpedia)

� GraphDB: http://graphdb.ontotext.com/ (often used in WissKI)

� blazegraph: https://blazegraph.com/ (open source; used in WikiData)

� Definition 16.4.19. A description logic reasoner implements of reaonsing services
based on a satisfiabiltiy test for description logics.

� Common description logic reasoners include

� FACT++: http://owl.man.ac.uk/factplusplus/

� HermiT: http://www.hermit-reasoner.com/

� Intuition: Triplestores concentrate on querying very large ABoxes with partial
consideration of the TBox, while DL reasoners concentrate on the full set of ontology
inference services, but fail on large ABoxes.

https://virtuoso.openlinksw.com/
http://graphdb.ontotext.com/
https://blazegraph.com/
http://owl.man.ac.uk/factplusplus/
http://www.hermit-reasoner.com/

16.4. DESCRIPTION LOGICS AND THE SEMANTIC WEB 141

Michael Kohlhase: Artificial Intelligence 1 548 2025-02-06

142 CHAPTER 16. KNOWLEDGE REPRESENTATION AND THE SEMANTIC WEB

Bibliography

[BKS04] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. “Towards Understanding and
Harnessing the Potential of Clause Learning”. In: Journal of Artificial Intelligence
Research 22 (2004), pp. 319–351.

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. “Where the Really Hard
Problems Are”. In: Proceedings of the 12th International Joint Conference on Artificial
Intelligence (IJCAI). Ed. by John Mylopoulos and Ray Reiter. Sydney, Australia:
Morgan Kaufmann, San Mateo, CA, 1991, pp. 331–337.

[CQ69] Allan M. Collins and M. Ross Quillian. “Retrieval time from semantic memory”. In:
Journal of verbal learning and verbal behavior 8.2 (1969), pp. 240–247. doi: 10.1016/
S0022-5371(69)80069-1.

[DCM12] DCMI Usage Board. DCMI Metadata Terms. DCMI Recommendation. Dublin Core
Metadata Initiative, June 14, 2012. url: http://dublincore.org/documents/2012/
06/14/dcmi-terms/.

[Gen34] Gerhard Gentzen. “Untersuchungen über das logische Schließen I”. In: Mathematische
Zeitschrift 39.2 (1934), pp. 176–210.

[GS05] Carla Gomes and Bart Selman. “Can get satisfaction”. In: Nature 435 (2005), pp. 751–
752.

[Her+13a] Ivan Herman et al. RDF 1.1 Primer (Second Edition). Rich Structured Data Markup
for Web Documents. W3C Working Group Note. World Wide Web Consortium (W3C),
2013. url: http://www.w3.org/TR/rdfa-primer.

[Her+13b] Ivan Herman et al. RDFa 1.1 Primer – Second Edition. Rich Structured Data Markup
for Web Documents. W3C Working Goup Note. World Wide Web Consortium (W3C),
Apr. 19, 2013. url: http://www.w3.org/TR/xhtml-rdfa-primer/.

[Hit+12] Pascal Hitzler et al. OWL 2 Web Ontology Language Primer (Second Edition). W3C
Recommendation. World Wide Web Consortium (W3C), 2012. url: http://www.
w3.org/TR/owl-primer.

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF): Con-
cepts and Abstract Syntax. W3C Recommendation. World Wide Web Consortium
(W3C), Feb. 10, 2004. url: http://www.w3.org/TR/2004/REC-rdf-concepts-
20040210/.

[Kow97] Robert Kowalski. “Algorithm = Logic + Control”. In: Communications of the Asso-
ciation for Computing Machinery 22 (1997), pp. 424–436.

[MSL92] David Mitchell, Bart Selman, and Hector J. Levesque. “Hard and Easy Distributions
of SAT Problems”. In: Proceedings of the 10th National Conference of the American
Association for Artificial Intelligence (AAAI’92). San Jose, CA: MIT Press, 1992,
pp. 459–465.

[OWL09] OWL Working Group. OWL 2 Web Ontology Language: Document Overview. W3C
Recommendation. World Wide Web Consortium (W3C), Oct. 27, 2009. url: http:
//www.w3.org/TR/2009/REC-owl2-overview-20091027/.

143

https://doi.org/10.1016/S0022-5371(69)80069-1
https://doi.org/10.1016/S0022-5371(69)80069-1
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://dublincore.org/documents/2012/06/14/dcmi-terms/
http://www.w3.org/TR/rdfa-primer
http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/owl-primer
http://www.w3.org/TR/owl-primer
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

144 BIBLIOGRAPHY

[PD09] Knot Pipatsrisawat and Adnan Darwiche. “On the Power of Clause-Learning SAT
Solvers with Restarts”. In: Proceedings of the 15th International Conference on Prin-
ciples and Practice of Constraint Programming (CP’09). Ed. by Ian P. Gent. Vol. 5732.
Lecture Notes in Computer Science. Springer, 2009, pp. 654–668.

[Pro] Protégé. Project Home page at http://protege.stanford.edu. url: http://
protege.stanford.edu.

[PRR97] G. Probst, St. Raub, and Kai Romhardt. Wissen managen. 4 (2003). Gabler Verlag,
1997.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF. W3C
Recommendation. World Wide Web Consortium (W3C), Jan. 15, 2008. url: http:
//www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/.

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd.
Prentice Hall Press, 2009. isbn: 0136042597, 9780136042594.

[Smu63] Raymond M. Smullyan. “A Unifying Principle for Quantification Theory”. In: Proc.
Nat. Acad Sciences 49 (1963), pp. 828–832.

[SR14] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Working Group Note.
World Wide Web Consortium (W3C), 2014. url: http://www.w3.org/TR/rdf-
primer.

http://protege.stanford.edu
http://protege.stanford.edu
http://protege.stanford.edu
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
http://www.w3.org/TR/rdf-primer
http://www.w3.org/TR/rdf-primer

Appendix A

Excursions

As this course is predominantly an overview over the topics of Artificial Intelligence, and not
about the theoretical underpinnings, we give the discussion about these as a “suggested readings”
chapter here.

A.1 Completeness of Calculi for Propositional Logic
The next step is to analyze the two calculi for completeness. For that we will first give ourselves
a very powerful tool: the “model existence theorem” (??), which encapsulates the model-theoretic
part of completeness theorems. With that, completeness proofs – which are quite tedious otherwise
– become a breeze.

A.1.1 Abstract Consistency and Model Existence
We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyan, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before. The basis for
this method is Smullyan’s Observation [Smu63] that completeness proofs based on Hintikka sets
only certain properties of consistency and that with little effort one can obtain a generalization
“Smullyan’s Unifying Principle”.
The basic intuition for this method is the following: typically, a logical system L := ⟨L,K,⊨⟩ has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

145

146 APPENDIX A. EXCURSIONS

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable.

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract consistent.

� Corollary: C is complete.

Michael Kohlhase: Artificial Intelligence 1 549 2025-02-06

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of
formulae with very strong syntactic closure properties, which allow to read off models. Jaako
Hintikka’s original idea for completeness proofs was that for every complete calculus C and every
C-consistent set one can induce a Hintikka set, from which a model can be constructed. This can
be considered as a first model existence theorem. However, the process of obtaining a Hintikka set
for a C-consistent set Φ of sentences usually involves complicated calculus dependent constructions.

In this situation, Raymond Smullyan was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/“abstract consistency” method, we will first have to look at

the notion of consistency.
Consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus,. . .

� Definition A.1.1. Let C be a calculus, then a formula set Φ is called C-refutable, if
there is a refutation, i.e. a derivation of a contradiction from Φ. The act of finding
a refutation for Φ is called refuting Φ.

� Definition A.1.2. We call a pair of formulae A and ¬A a contradiction.

� So a set Φ is C-refutable, if C canderive a contradiction from it.

� Definition A.1.3. Let C be a calculus, then a formula set Φ is called C-consistent,
iff there is a formula B, that is not derivable from Φ in C.

� Definition A.1.4. We call a calculus C reasonable, iff implication elimination and
conjunction introduction are admissible in C and A ∧ ¬A⇒B is a C-theorem.

� Theorem A.1.5. C-inconsistency and C-refutability coincide for reasonable calculi.

Michael Kohlhase: Artificial Intelligence 1 550 2025-02-06

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former have the
calculus (a syntactic device) as a parameter, while the latter does not. In fact we should actually
say S-satisfiability, where ⟨L,K,⊨⟩ is the current logical system.

A.1. COMPLETENESS OF CALCULI FOR PROPOSITIONAL LOGIC 147

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its Latin root.

Abstract Consistency

� Definition A.1.6. Let ∇ be a collection of sets. We call ∇ closed under subsets,
iff for each Φ ∈ ∇, all subsets Ψ ⊆ Φ are elements of ∇.

� Definition A.1.7 (Notation). We will use Φ∗A for Φ ∪ {A}.

� Definition A.1.8. A collection ∇ of sets of propositional formulae is called an
abstract consistency class, iff it is closed under subsets, and for each Φ ∈ ∇

∇c) P ̸∈ Φ or ¬P ̸∈ Φ for P ∈ V0

∇¬) ¬¬A ∈ Φ implies Φ∗A ∈ ∇
∇∨) A ∨B ∈ Φ implies Φ∗A ∈ ∇ or Φ∗B ∈ ∇
∇∧) ¬(A ∨B) ∈ Φ implies Φ ∪ {¬A,¬B} ∈ ∇

� Example A.1.9. The empty set is an abstract consistency class.

� Example A.1.10. The set {∅, {Q}, {P∨Q}, {P∨Q,Q}} is an abstract consistency
class.

� Example A.1.11. The family of satisfiable sets is an abstract consistency class.

Michael Kohlhase: Artificial Intelligence 1 551 2025-02-06

So a family of sets (we call it a family, so that we do not have to say “set of sets” and we can
distinguish the levels) is an abstract consistency class, iff it fulfills five simple conditions, of which
the last three are closure conditions.

Think of an abstract consistency class as a family of “consistent” sets (e.g. C-consistent for some
calculus C), then the properties make perfect sense: They are naturally closed under subsets — if
we cannot derive a contradiction from a large set, we certainly cannot from a subset, furthermore,

∇c) If both P ∈ Φ and ¬P ∈ Φ, then Φ cannot be “consistent”.

∇¬) If we cannot derive a contradiction from Φ with ¬¬A ∈ Φ then we cannot from Φ∗A, since
they are logically equivalent.

The other two conditions are motivated similarly. We will carry out the proof here, since it
gives us practice in dealing with the abstract consistency properties.
The main result here is that abstract consistency classes can be extended to compact ones. The

proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).
Actually we are after abstract consistency classes that have an even stronger property than just

being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

Compact Collections

� Definition A.1.12. We call a collection ∇ of sets compact, iff for any set Φ we
have

Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma A.1.13. If ∇ is compact, then ∇ is closed under subsets.

148 APPENDIX A. EXCURSIONS

� Proof:

1. Suppose S ⊆ T and T ∈ ∇.
2. Every finite subset A of S is a finite subset of T .
3. As ∇ is compact, we know that A ∈ ∇.
4. Thus S ∈ ∇.

Michael Kohlhase: Artificial Intelligence 1 552 2025-02-06

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a collection ∇ by testing
all their finite subsets (which is much simpler).

Compact Abstract Consistency Classes

� Lemma A.1.14. Any abstract consistency class can be extended to a compact
one.

� Proof:

1. We choose ∇′ := {Φ ⊆ wff0(V0) | every finite subset of Φ is in ∇}.
2. Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset of
Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇ ⊆ ∇′.

3. Next let us show that each ∇ is compact.’
3.1. Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.
3.2. By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
3.3. Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
3.4. On the other hand, suppose all finite subsets of Φ are in ∇′.
3.5. Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.
4. Note that ∇′ is closed under subsets by the Lemma above.
5. Now we show that if ∇ satisfies ∇∗, then ∇ satisfies ∇∗.’

5.1. To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that
{A,¬A} ⊆ Φ. Then {A,¬A} ∈ ∇ contradicting ∇c.

5.2. To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ∗A ∈ ∇′.
5.2.1. Let Ψ be any finite subset of Φ∗A, and Θ := (Ψ\{A})∗¬¬A.
5.2.2. Θ is a finite subset of Φ, so Θ ∈ ∇.
5.2.3. Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get
Θ∗A ∈ ∇ by ∇¬.

5.2.4. We know that Ψ ⊆ Θ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
5.2.5. Thus every finite subset Ψ of Φ∗A is in ∇ and therefore by definition

Φ∗A ∈ ∇′.
5.3. the other cases are analogous to ∇¬.

Michael Kohlhase: Artificial Intelligence 1 554 2025-02-06

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

A.1. COMPLETENESS OF CALCULI FOR PROPOSITIONAL LOGIC 149

∇-Hintikka Set

� Definition A.1.15. Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇ Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A ∈ ∇ we
already have A ∈ H.

� Theorem A.1.16 (Hintikka Properties). Let ∇ be an abstract consistency class
and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff0(V0) we have A ̸∈ H or ¬A ̸∈ H
H¬) If ¬¬A ∈ H then A ∈ H
H∨) If A ∨B ∈ H then A ∈ H or B ∈ H
H∧) If ¬(A ∨B) ∈ H then ¬A,¬B ∈ H

Michael Kohlhase: Artificial Intelligence 1 555 2025-02-06

∇-Hintikka Set

� Proof:

We prove the properties in turn
1. Hc by induction on the structure of A

1.1. A ∈ V0 Then A ̸∈ H or ¬A ̸∈ H by ∇c.
1.2. A = ¬B

1.2.1. Let us assume that ¬B ∈ H and ¬¬B ∈ H,
1.2.2. then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.
1.2.3. So both B and ¬B are in H, which contradicts the induction hy-

pothesis.
1.3. A = B ∨C similar to the previous case

2. We prove H¬ by maximality of H in ∇.
2.1. If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
2.2. The maximality of H now gives us that A ∈ H.

Proof sketch: other H∗ are similar

Michael Kohlhase: Artificial Intelligence 1 556 2025-02-06

The following theorem is one of the main results in the “abstract consistency”/”model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

Extension Theorem

� Theorem A.1.17. If ∇ is an abstract consistency class and Φ ∈ ∇, then there is
a ∇-Hintikka set H with Φ ⊆ H.

� Proof:

1. Wlog. we assume that ∇ is compact (otherwise pass to compact extension)
2. We choose an enumeration A1, . . . of the set wff0(V0)

150 APPENDIX A. EXCURSIONS

3. and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

{
Hn if Hn∗An ̸∈ ∇

Hn∗An if Hn∗An ∈ ∇

4. Note that all Hi ∈ ∇, choose H :=
⋃
i∈NHi

5. Ψ ⊆ H finite implies there is a j ∈ N such that Ψ ⊆ Hj ,
6. so Ψ ∈ ∇ as ∇ is closed under subsets and H ∈ ∇ as ∇ is compact.
7. Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1 and
Hj+1 ⊆ H

8. Thus H is ∇-maximal

Michael Kohlhase: Artificial Intelligence 1 557 2025-02-06

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of wff0(V0). If we pick a
different enumeration, we will end up with a different H. Say if A and ¬A are both ∇-consistent1
with Φ, then depending on which one is first in the enumeration H, will contain that one; with all
the consequences for subsequent choices in the construction process.

Valuation

� Definition A.1.18. A function ν : wff0(V0)→Do is called a (propositional) valua-
tion, iff

� ν(¬A) = T, iff ν(A) = F

� ν(A ∧B) = T, iff ν(A) = T and ν(B) = T

� Lemma A.1.19. If ν : wff0(V0)→Do is a valuation and Φ ⊆ wff0(V0) with ν(Φ) =
{T}, then Φ is satisfiable.

� Proof sketch: ν|V0
: V0 →Do is a satisfying variable assignment.

� Lemma A.1.20. If φ : V0 →Do is a variable assignment, then Iφ : wff0(V0)→Do
is a valuation.

Michael Kohlhase: Artificial Intelligence 1 558 2025-02-06

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

� Lemma A.1.21 (Hintikka-Lemma). If ∇ is an abstract consistency class and H
a ∇-Hintikka set, then H is satisfiable.

� Proof:

1. We define ν(A) := T, iff A ∈ H
2. then ν is a valuation by the Hintikka properties
3. and thus ν|V0

is a satisfying assignment.

1EdNote: introduce this above

A.1. COMPLETENESS OF CALCULI FOR PROPOSITIONAL LOGIC 151

� Theorem A.1.22 (Model Existence). If ∇ is an abstract consistency class and
Φ ∈ ∇, then Φ is satisfiable.

Proof:

� 1. There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)
2. We know that H is satisfiable. (Hintikka-Lemma)
3. In particular, Φ ⊆ H is satisfiable.

Michael Kohlhase: Artificial Intelligence 1 559 2025-02-06

A.1.2 A Completeness Proof for Propositional Tableaux

With the model existence proof we have introduced in the last section, the completeness proof for
first-order natural deduction is rather simple, we only have to check that Tableaux-consistency is
an abstract consistency property.
We encapsulate all of the technical difficulties of the problem in a technical Lemma. From that,
the completeness proof is just an application of the high-level theorems we have just proven.

Abstract Completeness for T0
� Lemma A.1.23. {Φ |ΦT has no closed tableau} is an abstract consistency class.

� Proof: Let’s call the set above ∇
We have to convince ourselves of the abstract consistency properties
1. ∇cP ,¬P ∈ Φ implies P F, PT ∈ ΦT.
2. ∇¬Let ¬¬A ∈ Φ.

2.1. For the proof of the contrapositive we assume that Φ∗A has a closed
tableau T and show that already Φ has one:

2.2. applying each of T0¬T and T0¬F once allows to extend any tableau with
¬¬Bα by Bα.

2.3. any path in T that is closed with ¬¬Aα, can be closed by Aα.
3. ∇∨Suppose A ∨B ∈ Φ and both Φ∗A and Φ∗B have closed tableaux

3.1. consider the tableaux:

ΦT

AT

Rest1

ΦT

BT

Rest2

ΨT

(A ∨B)
T

AT

Rest1
BT

Rest2

4. ∇∧suppose, ¬(A ∨B) ∈ Φ and Φ{¬A,¬B} have closed tableau T .
4.1. We consider

ΦT

AF

BF

Rest

ΨT

(A ∨B)
F

AF

BF

Rest

where Φ = Ψ∗¬(A ∨B).

Michael Kohlhase: Artificial Intelligence 1 561 2025-02-06

Observation: If we look at the completeness proof below, we see that the Lemma above is the
only place where we had to deal with specific properties of the T0.

152 APPENDIX A. EXCURSIONS

So if we want to prove completeness of any other calculus with respect to propositional logic,
then we only need to prove an analogon to this lemma and can use the rest of the machinery we
have already established “off the shelf”.

This is one great advantage of the “abstract consistency method”; the other is that the method
can be extended transparently to other logics.

Completeness of T0
� Corollary A.1.24. T0 is complete.

� Proof: by contradiction

1. We assume that A ∈ wff0(V0) is valid, but there is no closed tableau for AF.
2. We have {¬A} ∈ ∇ as ¬AT = AF.
3. so ¬A is satisfiable by the model existence theorem (which is applicable as ∇

is an abstract consistency class by our Lemma above)
4. this contradicts our assumption that A is valid.

Michael Kohlhase: Artificial Intelligence 1 562 2025-02-06

A.2 Conflict Driven Clause Learning

A.2.1 Why Did Unit Propagation Yield a Conflict?
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/27026.

DPLL: Example (Redundance1)

� Example A.2.1. We introduce some nasty redundance to make DPLL slow.
∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

DPLL on ∆ ; Θ with Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2

Q Q Q Q

T F T F T F T F

Xn Xn

T F T F

X1
T F

P

T

F

Michael Kohlhase: Artificial Intelligence 1 563 2025-02-06

How To Not Make the Same Mistakes Over Again?

� It’s not that difficult, really:

https://fau.tv/clip/id/27026

A.2. CONFLICT DRIVEN CLAUSE LEARNING 153

(A) Figure out what went wrong.

(B) Learn to not do that again in the future.

� And now for DPLL:

(A) Why did unit propagation yield a Conflict?

� This Section. We will capture the “what went wrong” in terms of graphs
over literals set during the search, and their dependencies.

� What can we learn from that information?:

� A new clause! Next section.

Michael Kohlhase: Artificial Intelligence 1 564 2025-02-06

Implication Graphs for DPLL

� Definition A.2.2. Let β be a branch in a DPLL derivation and P a variable on β
then we call

� Pα a choice literal if its value is set to α by the splitting rule.

� Pα an implied literal, if the value of P is set to α by the UP rule.

� Pα a conflict literal, if it contributes to a derivation of the empty clause.

� Definition A.2.3 (Implication Graph).

Let ∆ be a clause set, β a DPLL search branch on ∆. The implication graph Gimpl
β

is the directed graph whose vertices are labeled with the choice and implied literals
along β, as well as a separate conflict vertex 2C for every clause C that became
empty on β.

Whereever a clause l1, . . ., lk ∨ l′ ∈ ∆ became unit with implied literal l′, Gimpl
β

includes the edges (li,l
′).

Where C = l1 ∨ . . . ∨ lk ∈ ∆ became empty, Gimpl
β includes the edges (li,2C).

� Question: How do we know that li are vertices in Gimpl
β ?

� Answer: Because l1 ∨ . . . ∨ lk ∨ l′ became unit/empty.

� Observation A.2.4. Gimpl
β is acyclic.

� Proof sketch: UP can’t derive l′ whose value was already set beforehand.

� Intuition: The initial vertices are the choice literals and unit clauses of ∆.

Michael Kohlhase: Artificial Intelligence 1 565 2025-02-06

Implication Graphs: Example (Vanilla1) in Detail

� Example A.2.5. Let ∆ := PT ∨QT ∨RF ; P F ∨QF ;RT ; PT ∨QF.

We look at the left branch of the derivation from ??:

154 APPENDIX A. EXCURSIONS

1. UP Rule: R 7→ T
Implied literal RT.
PT ∨QT ; P F ∨QF ; PT ∨QF

2. Splitting Rule:

2a. P 7→ F
Choice literal P F.
QT ;QF

3a. UP Rule: Q 7→ T
Implied literal QT

edges (RT,QT) and (P F,QT).
2
Conflict vertex 2PT∨QF

edges (P F,2PT∨QF) and (QT,2PT∨QF).

Implication graph:

RT 2PT∨QF

QT

P F

Michael Kohlhase: Artificial Intelligence 1 566 2025-02-06

Implication Graphs: Example (Redundance1)

� Example A.2.6. Continuing from ??: ∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨
QT ∨RT ; P F ∨QT ∨RF

DPLL on ∆ ; Θ with Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

Choice literals: PT, (X1
T), . . ., (Xn

T), QT. Implied literal: RT.

RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2RT ;2

Q Q Q Q

T F T F T F T F

Xn Xn

T F T F

X1
T F

P

T

F

RT 2PT∨QF∨RT

QT

PT

X1
T . . . Xn

T

Michael Kohlhase: Artificial Intelligence 1 567 2025-02-06

A.2. CONFLICT DRIVEN CLAUSE LEARNING 155

Implication Graphs: Example (Redundance2)

� Example A.2.7. Continuing from ??:

∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

DPLL on ∆ ; Θ ; Φ with Φ := QF ∨ ST ;QF ∨ SF

Choice literals: PT, (X1
T), . . ., (Xn

T), QT. Implied literals:

RT 2PT∨QF∨RT

QT

PT

X1
T . . . Xn

T

ST 2

Michael Kohlhase: Artificial Intelligence 1 568 2025-02-06

Implication Graphs: A Remark

� The implication graph is not uniquely determined by the Choice literals.

� It depends on “ordering decisions” during UP: Which unit clause is picked first.

� Example A.2.8. ∆ = P F ∨QF ;QT ; PT

Option 1 Option 2

2P F∨QF P F

QT

2P F∨QF QF

PT

Michael Kohlhase: Artificial Intelligence 1 569 2025-02-06

Conflict Graphs

� A conflict graph captures “what went wrong” in a failed node.

� Definition A.2.9 (Conflict Graph). Let ∆ be a clause set, and let Gimpl
β be the

implication graph for some search branch β of DPLL on ∆. A subgraph C of Gimpl
β

is a conflict graph if:

(i) C contains exactly one conflict vertex 2C .

156 APPENDIX A. EXCURSIONS

(ii) If l′ is a vertex in C, then all parents of l′, i.e. vertices li with a I edge (li,l
′),

are vertices in C as well.

(iii) All vertices in C have a path to 2C .

� Conflict graph =̂ Starting at a conflict vertex, backchain through the implication
graph until reaching choice literals.

Michael Kohlhase: Artificial Intelligence 1 570 2025-02-06

Conflict-Graphs: Example (Redundance1)

� Example A.2.10. Continuing from ??: ∆ := P F ∨QF ∨RT ;P F ∨QF ∨RF ;P F ∨
QT ∨RT ; P F ∨QT ∨RF

DPLL on ∆ ; Θ with Θ := X1
T ∨ . . . ∨X100

T ;X1
F ∨ . . . ∨X100

F

Choice literals: PT, (X1
T), . . ., (X100

T), QT. Implied literals: RT.

RT 2PT∨QF∨RT

QT

PT

X1
T . . . Xn

T

Michael Kohlhase: Artificial Intelligence 1 571 2025-02-06

Conflict Graphs: Example (Redundance2)

� Example A.2.11. Continuing from ?? and ??:

∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

DPLL on ∆ ; Θ ; Φ with Φ := QF ∨ ST ;QF ∨ SF

Choice literals: PT, (X1
T), . . ., (Xn

T), QT. Implied literals: RT.

A.2. CONFLICT DRIVEN CLAUSE LEARNING 157

RT 2PT∨QF∨RT

QT

PT

X1
T . . . Xn

T

ST 2

RT 2PT∨QF∨RT

QT

PT

X1
T . . . Xn

T

ST 2

Michael Kohlhase: Artificial Intelligence 1 572 2025-02-06

A.2.2 Clause Learning

Clause Learning

� Observation: Conflict graphs encode the entailment relation.

� Definition A.2.12. Let ∆ be a clause set, C be a conflict graph at some time
point during a run of DPLL on ∆, and L be the choice literals in C, then we call
c :=

∨
l∈Ll the learned clause for C.

� Theorem A.2.13. Let ∆, C, and c as in ??, then ∆ ⊨ c.

� Idea: We can add learned clauses to DPLL derivations at any time without losing
soundness. (maybe this helps, if we have a good notion of learned clauses)

� Definition A.2.14. Clause learning is the process of adding learned clauses to
DPLL clause sets at specific points. (details coming up)

Michael Kohlhase: Artificial Intelligence 1 573 2025-02-06

Clause Learning: Example (Redundance1)

� Example A.2.15. Continuing from ??:

158 APPENDIX A. EXCURSIONS

∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

DPLL on ∆ ; Θ with Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

Choice literals: PT, (X1
T), . . ., (Xn

T), QT. Implied literals: RT.

RT 2PT∨QF∨RT

QT

PT

X1
T . . . Xn

T

Learned clause: P F ∨QF

Michael Kohlhase: Artificial Intelligence 1 574 2025-02-06

The Effect of Learned Clauses (in Redundance1)

� What happens after we learned a new clause C?

1. We add C into ∆. e.g. C = P F ∨QF.

2. We retract the last choice l′. e.g. the choice l′ = Q.

� Observation: Let C be a learned clause, i.e. C =
∨
l∈Ll, where L is the set of

conflict literals in a conflict graph G.

Before we learn C, G must contain the most recent choice l′: otherwise, the conflict
would have occured earlier on.

So C = l1
T ∨ . . . ∨ lkT ∨ l′ where l1, . . ., lk are earlier choices.

� Example A.2.16. l1 = P , C = P F ∨QF, l′ = Q.

� Observation: Given the earlier choices l1, . . . , lk, after we learned the new clause
C = l1 ∨ . . . ∨ lk ∨ l′, the value of l′ is now set by UP!

� So we can continue:

3. We set the opposite choice l′ as an implied literal.
e.g. QF as an implied literal.

4. We run UP and analyze conflicts.
Learned clause: earlier choices only! e.g. C = P F, see next slide.

Michael Kohlhase: Artificial Intelligence 1 575 2025-02-06

The Effect of Learned Clauses: Example (Redundance1)

A.2. CONFLICT DRIVEN CLAUSE LEARNING 159

� Example A.2.17. Continuing from ??:

∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

Θ := X1
T ∨ . . . ∨X100

T ;X1
F ∨ . . . ∨X100

F

DPLL on ∆ ; Θ ; Φ with Φ := P F ∨QF

Choice literals: PT, (X1
T), . . ., (X100

T), QT. Implied literals: QF, RT.

RT 2

QF

PT

X1
T . . . Xn

T

Learned clause: P F

Michael Kohlhase: Artificial Intelligence 1 576 2025-02-06

NOT the same Mistakes over Again: (Redundance1)

� Example A.2.18. Continuing from ??:

∆ := P F ∨QF ∨RT ; P F ∨QF ∨RF ; P F ∨QT ∨RT ; P F ∨QT ∨RF

DPLL on ∆ ; Θ with Θ := X1
T ∨ . . . ∨Xn

T ;X1
F ∨ . . . ∨Xn

F

learn P F ∨QF learn P F

RT ;2 RT ;2

Q

T F set by UP

Xn

T

X1
T

P

T

F

� Note: Here, the problem could be avoided by splitting over different variables.

� Problem: This is not so in general! (see next slide)

160 APPENDIX A. EXCURSIONS

Michael Kohlhase: Artificial Intelligence 1 577 2025-02-06

Clause Learning vs. Resolution

� Recall: DPLL =̂ tree resolution (from slide 400)

1. in particular: each derived clause C (not in ∆) is derived anew every time it is
used.

2. Problem: there are ∆ whose shortest tree resolution proof is exponentially longer
than their shortest (general) resolution proof.

� Good News: This is no longer the case with clause learning!

1. We add each learned clause C to ∆, can use it as often as we like.

2. Clause learning renders DPLL equivalent to full resolution [BKS04; PD09]. (In-
howfar exactly this is the case was an open question for ca. 10 years, so it’s not
as easy as I made it look here . . .)

� In particular: Selecting different variables/values to split on can provably not
bring DPLL up to the power of DPLL+Clause Learning. (cf. slide 577, and previous
slide)

Michael Kohlhase: Artificial Intelligence 1 578 2025-02-06

“DPLL + Clause Learning”?

� Disclaimer: We have only seen how to learn a clause from a conflict.

� We will not cover how the overall DPLL algorithm changes, given this learning.
Slides 575 – 577 are merely meant to give a rough intuition on “backjumping”.

� Definition A.2.19 (Just for the record). (not exam or exercises relevant)

� One could run “DPLL + Clause Learning” by always backtracking to the maximal-
level choice variable contained in the learned clause.

� The actual algorithm is called Conflict Directed Clause Learning (CDCL), and
differs from DPLL more radically:

let L := 0; I := ∅
repeat

execute UP
if a conflict was reached then /∗ learned clause C = l1 ∨ . . . ∨ lk ∨ l′∗/

if L = 0 then return UNSAT
L := maxki=1 level(li); erase I below L

add C into ∆; add l′ to I at level L
else

if I is a total interpretation then return I
choose a new decision literal l; add l to I at level L
L := L+ 1

Michael Kohlhase: Artificial Intelligence 1 579 2025-02-06

A.2. CONFLICT DRIVEN CLAUSE LEARNING 161

Remarks

� Which clause(s) to learn?:

� While we only select choice literals, much more can be done.

� For any cut through the conflict graph, with Choice literals on the “left hand”
side of the cut and the conflict literals on the right-hand side, the literals on the
left border of the cut yield a learnable clause.

� Must take care to not learn too many clauses . . .

� Origins of clause learning:

� Clause learning originates from “explanation-based (no-good) learning” devel-
oped in the CSP community.

� The distinguishing feature here is that the “no-good” is a clause:

� The exact same type of constraint as the rest of ∆.

Michael Kohlhase: Artificial Intelligence 1 580 2025-02-06

A.2.3 Phase Transitions: Where the Really Hard Problems Are
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/25088.

Where Are the Hard Problems?

� SAT is NP hard. Worst case for DPLL is O(2n), with n propositions.

� Imagine I gave you as homework to make a formula family {φ} where DPLL running
time necessarily is in the order of O(2n).

� I promise you’re not gonna find this easy . . . (although it is of course possible:
e.g., the “Pigeon Hole Problem”).

� People noticed by the early 90s that, in practice, the DPLL worst case does not
tend to happen.

� Modern SAT solvers successfully tackle practical instances where n > 1.000.000.

Michael Kohlhase: Artificial Intelligence 1 581 2025-02-06

Where Are the Hard Problems?

� So, what’s the problem: Science is about understanding the world.

� Are “hard cases” just pathological outliers?

� Can we say something about the typical case?

� Difficulty 1: What is the “typical case” in applications? E.g., what is the “average”
hardware verification instance?

� Consider precisely defined random distributions instead.

https://fau.tv/clip/id/25088

162 APPENDIX A. EXCURSIONS

� Difficulty 2: Search trees get very complex, and are difficult to analyze math-
ematically, even in trivial examples. Never mind examples of practical relevance
. . .

� The most successful works are empirical. (Interesting theory is mainly concerned
with hand-crafted formulas, like the Pigeon Hole Problem.)

Michael Kohlhase: Artificial Intelligence 1 582 2025-02-06

Phase Transitions in SAT [MSL92]

� Fixed clause length model: Fix clause length k; n variables.
Generate m clauses, by uniformly choosing k variables P for each clause C, and for
each variable P deciding uniformly whether to add P or P F into C.

� Order parameter: Clause/variable ratio m
n .

� Phase transition: (Fixing k = 3, n = 50)

Michael Kohlhase: Artificial Intelligence 1 583 2025-02-06

Does DPLL Care?

� Oh yes, it does: Extreme running time peak at the phase transition!

A.2. CONFLICT DRIVEN CLAUSE LEARNING 163

Michael Kohlhase: Artificial Intelligence 1 584 2025-02-06

Why Does DPLL Care?

� Intuition:

Under-Constrained: Satisfiability likelihood close to 1. Many solutions, first
DPLL search path usually successful. (“Deep but narrow”)

Over-Constrained: Satisfiability likelihood close to 0. Most DPLL search paths
short, conflict reached after few applications of splitting rule. (“Broad but shal-
low”)

Critically Constrained: At the phase transition, many almost-successful DPLL
search paths. (“Close, but no cigar”)

Michael Kohlhase: Artificial Intelligence 1 585 2025-02-06

The Phase Transition Conjecture

� Definition A.2.20. We say that a class P of problems exhibits a phase transition, if
there is an order parameter o, i.e. a structural parameter of P , so that almost all the
hard problems of P cluster around a critical value c of o and c separates one region
of the problem space from another, e.g. over-constrained and under-constrained
regions.

� All NP-complete problems exhibit at least one phase transition.

� [CKT91] confirmed this for Graph Coloring and Hamiltonian Circuits. Later work
confirmed it for SAT (see previous slides), and for numerous other NP-complete
problems.

Michael Kohlhase: Artificial Intelligence 1 586 2025-02-06

164 APPENDIX A. EXCURSIONS

Why Should We Care?

� Enlightenment:

� Phase transitions contribute to the fundamental understanding of the behavior
of search, even if it’s only in random distributions.

� There are interesting theoretical connections to phase transition phenomena in
physics. (See [GS05] for a short summary.)

� Ok, but what can we use these results for?:

� Benchmark design: Choose instances from phase transition region.

� Commonly used in competitions etc. (In SAT, random phase transition
formulas are the most difficult for DPLL style searches.)

� Predicting solver performance: Yes, but very limited because:

� All this works only for the particular considered distributions of instances! Not
meaningful for any other instances.

Michael Kohlhase: Artificial Intelligence 1 587 2025-02-06

A.3 Completeness of Calculi for First-Order Logic
We will now analyze the first-order calculi for completeness. Just as in the case of the propositional
calculi, we prove a model existence theorem for the first-order model theory and then use that
for the completeness proofs2. The proof of the first-order model existence theorem is completelyEdN:2
analogous to the propositional one; indeed, apart from the model construction itself, it is just an
extension by a treatment for the first-order quantifiers.3EdN:3

A.3.1 Abstract Consistency and Model Existence
We will now come to an important tool in the theoretical study of reasoning calculi: the “abstract
consistency”/“model existence” method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyan, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before. The basis for
this method is Smullyan’s Observation [Smu63] that completeness proofs based on Hintikka sets
only certain properties of consistency and that with little effort one can obtain a generalization
“Smullyan’s Unifying Principle”.
The basic intuition for this method is the following: typically, a logical system L := ⟨L,K,⊨⟩ has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-
consistency (sets that cannot be refuted in C), and the other construct K-models for C-consistent
sets.

In this situtation the “abstract consistency”/“model existence” method encapsulates the model
construction process into a meta-theorem: the “model existence” theorem. This provides a set of
syntactic (“abstract consistency”) conditions for calculi that are sufficient to construct models.

With the model existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)

2EdNote: reference the theorems
3EdNote: MK: what about equality?

http://www.cs.cornell.edu/gomes/papers/gs-nature-05.pdf

A.3. COMPLETENESS OF CALCULI FOR FIRST-ORDER LOGIC 165

to obtain a completeness result for C.

Model Existence (Overview)

� Definition: Abstract consistency

� Definition: Hintikka set (maximally abstract consistent)

� Theorem: Hintikka sets are satisfiable

� Theorem: If Φ is abstract consistent, then Φ can be extended to a Hintikka set.

� Corollary: If Φ is abstract consistent, then Φ is satisfiable.

� Application: Let C be a calculus, if Φ is C-consistent, then Φ is abstract consistent.

� Corollary: C is complete.

Michael Kohlhase: Artificial Intelligence 1 588 2025-02-06

The proof of the model existence theorem goes via the notion of a Hintikka set, a set of
formulae with very strong syntactic closure properties, which allow to read off models. Jaako
Hintikka’s original idea for completeness proofs was that for every complete calculus C and every
C-consistent set one can induce a Hintikka set, from which a model can be constructed. This can
be considered as a first model existence theorem. However, the process of obtaining a Hintikka set
for a C-consistent set Φ of sentences usually involves complicated calculus dependent constructions.

In this situation, Raymond Smullyan was able to formulate the sufficient conditions for the
existence of Hintikka sets in the form of “abstract consistency properties” by isolating the calculus
independent parts of the Hintikka set construction. His technique allows to reformulate Hintikka
sets as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.
To carry out the “model-existence”/“abstract consistency” method, we will first have to look at

the notion of consistency.
Consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency

� Let C be a calculus,. . .

� Definition A.3.1. Let C be a calculus, then a formula set Φ is called C-refutable, if
there is a refutation, i.e. a derivation of a contradiction from Φ. The act of finding
a refutation for Φ is called refuting Φ.

� Definition A.3.2. We call a pair of formulae A and ¬A a contradiction.

� So a set Φ is C-refutable, if C canderive a contradiction from it.

� Definition A.3.3. Let C be a calculus, then a formula set Φ is called C-consistent,
iff there is a formula B, that is not derivable from Φ in C.

� Definition A.3.4. We call a calculus C reasonable, iff implication elimination and
conjunction introduction are admissible in C and A ∧ ¬A⇒B is a C-theorem.

� Theorem A.3.5. C-inconsistency and C-refutability coincide for reasonable calculi.

166 APPENDIX A. EXCURSIONS

Michael Kohlhase: Artificial Intelligence 1 589 2025-02-06

It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former have the
calculus (a syntactic device) as a parameter, while the latter does not. In fact we should actually
say S-satisfiability, where ⟨L,K,⊨⟩ is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its Latin root.
The notion of an “abstract consistency class” provides the a calculus-independent notion of con-
sistency: A set Φ of sentences is considered “consistent in an abstract sense”, iff it is a member of
an abstract consistency class ∇.

Abstract Consistency

� Definition A.3.6. Let ∇ be a collection of sets. We call ∇ closed under subsets,
iff for each Φ ∈ ∇, all subsets Ψ ⊆ Φ are elements of ∇.

� Notation: We will use Φ∗A for Φ ∪ {A}.

� Definition A.3.7. A family ∇ ⊆ wff o(Σι,Vι) of sets of formulae is called a (first-
order) abstract consistency class, iff it is closed under subsets, and for each Φ ∈ ∇

∇c) A ̸∈ Φ or ¬A ̸∈ Φ for atomic A ∈ wff o(Σι,Vι).
∇¬) ¬¬A ∈ Φ implies Φ∗A ∈ ∇
∇∧) A ∧B ∈ Φ implies Φ ∪ {A,B} ∈ ∇
∇∨) ¬(A ∧B) ∈ Φ implies Φ∗¬A ∈ ∇ or Φ∗¬B ∈ ∇
∇∀) If ∀X.A ∈ Φ, then Φ∗([B/X](A)) ∈ ∇ for each closed term B.

∇∃) If ¬(∀X.A) ∈ Φ and c is an individual constant that does not occur in Φ,
then Φ∗¬([c/X](A)) ∈ ∇

Michael Kohlhase: Artificial Intelligence 1 590 2025-02-06

The conditions are very natural: Take for instance ∇c, it would be foolish to call a set Φ of
sentences “consistent under a complete calculus”, if it contains an elementary contradiction. The
next condition ∇¬ says that if a set Φ that contains a sentence ¬¬A is “consistent”, then we should
be able to extend it by A without losing this property; in other words, a complete calculus should
be able to recognize A and ¬¬A to be equivalent. We will carry out the proof here, since it
gives us practice in dealing with the abstract consistency properties.
The main result here is that abstract consistency classes can be extended to compact ones. The

proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).
Actually we are after abstract consistency classes that have an even stronger property than just

being closed under subsets. This will allow us to carry out a limit construction in the Hintikka
set extension argument later.

Compact Collections

� Definition A.3.8. We call a collection ∇ of sets compact, iff for any set Φ we
have

Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.

� Lemma A.3.9. If ∇ is compact, then ∇ is closed under subsets.

A.3. COMPLETENESS OF CALCULI FOR FIRST-ORDER LOGIC 167

� Proof:

1. Suppose S ⊆ T and T ∈ ∇.
2. Every finite subset A of S is a finite subset of T .
3. As ∇ is compact, we know that A ∈ ∇.
4. Thus S ∈ ∇.

Michael Kohlhase: Artificial Intelligence 1 591 2025-02-06

The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for the
compactness condition will be to show that infinite sets of formulae are in a collection ∇ by testing
all their finite subsets (which is much simpler).

Compact Abstract Consistency Classes

� Lemma A.3.10. Any first-order abstract consistency class can be extended to a
compact one.

� Proof:

1. We choose ∇′ := {Φ ⊆ cwff o(Σι) | every finite subset of Φis in ∇}.
2. Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset of
Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇ ⊆ ∇′.

3. Let us now show that each ∇ is compact.’
3.1. Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.
3.2. By definition of ∇′ all finite subsets of Φ are in ∇ and therefore Ψ ∈ ∇′.
3.3. Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
3.4. On the other hand, suppose all finite subsets of Φ are in ∇′.
3.5. Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so

Φ ∈ ∇′. Thus ∇′ is compact.
4. Note that ∇′ is closed under subsets by the Lemma above.
5. Next we show that if ∇ satisfies ∇∗, then ∇ satisfies ∇∗.’

5.1. To show ∇c, let Φ ∈ ∇′ and suppose there is an atom A, such that
{A,¬A} ⊆ Φ. Then {A,¬A} ∈ ∇ contradicting ∇c.

5.2. To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ∗A ∈ ∇′.
5.2.1. Let Ψ be any finite subset of Φ∗A, and Θ := (Ψ\{A})∗¬¬A.
5.2.2. Θ is a finite subset of Φ, so Θ ∈ ∇.
5.2.3. Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get
Θ∗A ∈ ∇ by ∇¬.

5.2.4. We know that Ψ ⊆ Θ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
5.2.5. Thus every finite subset Ψ of Φ∗A is in ∇ and therefore by definition
Φ∗A ∈ ∇′.

5.3. the other cases are analogous to ∇¬.

Michael Kohlhase: Artificial Intelligence 1 593 2025-02-06

Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

168 APPENDIX A. EXCURSIONS

∇-Hintikka Set

� Definition A.3.11. Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇ Hintikka Set, iff H is maximal in ∇, i.e. for all A with H∗A ∈ ∇ we
already have A ∈ H.

� Theorem A.3.12 (Hintikka Properties). Let ∇ be an abstract consistency class
and H be a ∇-Hintikka set, then

Hc) For all A ∈ wff o(Σι,Vι) we have A ̸∈ H or ¬A ̸∈ H.

H¬) If ¬¬A ∈ H then A ∈ H.

H∧) If A ∧B ∈ H then A,B ∈ H.

H∨) If ¬(A ∧B) ∈ H then ¬A ∈ H or ¬B ∈ H.

H∀) If ∀X.A ∈ H, then [B/X](A) ∈ H for each closed term B.

H∃) If ¬(∀X.A) ∈ H then ¬([B/X](A)) ∈ H for some term closed term B.

� Proof:

We prove the properties in turn Hc goes by induction on the structure of A
1. A atomic

1.1. Then A ̸∈ H or ¬A ̸∈ H by ∇c.
2. A = ¬B

2.1. Let us assume that ¬B ∈ H and ¬¬B ∈ H,
2.2. then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.
2.3. So {B,¬B} ⊆ H, which contradicts the induction hypothesis.

3. A = B ∨C similar to the previous case
4. We prove H¬ by maximality of H in ∇.

4.1. If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
4.2. The maximality of H now gives us that A ∈ H.

5. The other H∗ are similar

Michael Kohlhase: Artificial Intelligence 1 595 2025-02-06

The following theorem is one of the main results in the “abstract consistency”/“model existence”
method. For any abstract consistent set Φ it allows us to construct a Hintikka set H with Φ ∈ H.

Extension Theorem

� Theorem A.3.13. If ∇ is an abstract consistency class and Φ ∈ ∇ finite, then
there is a ∇-Hintikka set H with Φ ⊆ H.

� Proof:

1. Wlog. assume that ∇ compact (else use compact extension)
2. Choose an enumeration A1, . . . of cwff o(Σι) and c1, . . . of Σsk0 .
3. and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn if Hn∗An ̸∈ ∇
Hn ∪ {An,¬([cn/X](B))} if Hn∗An ∈ ∇ and An = ¬(∀X.B)

Hn∗An else

4. Note that all Hi ∈ ∇, choose H :=
⋃
i∈NHi

A.3. COMPLETENESS OF CALCULI FOR FIRST-ORDER LOGIC 169

5. Ψ ⊆ H finite implies there is a j ∈ N such that Ψ ⊆ Hj ,
6. so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.
7. Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1 and
Hj+1 ⊆ H

8. Thus H is ∇-maximal

Michael Kohlhase: Artificial Intelligence 1 596 2025-02-06

Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class ∇, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for Φ, but depends on the choice of the enumeration of cwff o(Σι). If
we pick a different enumeration, we will end up with a different H. Say if A and ¬A are both
∇-consistent4 with Φ, then depending on which one is first in the enumeration H, will contain
that one; with all the consequences for subsequent choices in the construction process.

Valuations

� Definition A.3.14. A function ν : cwff o(Σι)→D0 is called a (first-order) valuation,
iff ν is a propositional valuation and

� ν(∀X.A) = T, iff ν([B/X](A)) = T for all closed terms B.

� Lemma A.3.15. If φ : Vι→U is a variable assignment, then Iφ : cwff o(Σι)→D0

is a valuation.

� Proof sketch: Immediate from the definitions

Michael Kohlhase: Artificial Intelligence 1 597 2025-02-06

Thus a valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.5

Valuation and Satisfiability

� Lemma A.3.16. If ν : cwff o(Σι) → D0 is a valuation and Φ ⊆ cwff o(Σι) with
ν(Φ) = {T}, then Φ is satisfiable.

� Proof: We construct a model for Φ.

1. Let Dι := cwff ι(Σι), and
� I(f) : Dιk →Dι ; ⟨A1, . . .,Ak⟩ 7→ f(A1, . . .,Ak) for f ∈ Σf

� I(p) : Dιk →D0 ; ⟨A1, . . .,Ak⟩ 7→ ν(p(A1, . . .,Ak)) for p ∈ Σp.
2. Then variable assignments into Dι are ground substitutions.
3. We show Iφ(A) = φ(A) for A ∈ wff ι(Σι,Vι) by induction on A:

3.1. A = X
3.1.1. then Iφ(A) = φ(X) by definition.

3.2. A = f(A1, . . .,Ak)
3.2.1. then Iφ(A) = I(f)(Iφ(A1), . . . , Iφ(An)) = I(f)(φ(A1), . . . , φ(An)) =
f(φ(A1), . . . , φ(An)) = φ(f(A1, . . .,Ak)) = φ(A)

4EdNote: introduce this above
5EdNote: I think that we only get a semivaluation, look it up in Andrews.

170 APPENDIX A. EXCURSIONS

We show Iφ(A) = ν(φ(A)) for A ∈ wff o(Σι,Vι) by induction on A.
3.3. A = p(A1, . . .,Ak)

3.3.1. then Iφ(A) = I(p)(Iφ(A1), . . . , Iφ(An)) = I(p)(φ(A1), . . . , φ(An)) =
ν(p(φ(A1), . . . , φ(An))) = ν(φ(p(A1, . . .,Ak))) = ν(φ(A))

3.4. A = ¬B
3.4.1. then Iφ(A) = T, iff Iφ(B) = ν(φ(B)) = F, iff ν(φ(A)) = T.

3.5. A = B ∧C
3.5.1. similar

3.6. A = ∀X.B
3.6.1. then Iφ(A) = T, iff Iψ(B) = ν(ψ(B)) = T, for all C ∈ Dι, where
ψ = φ,[C/X]. This is the case, iff ν(φ(A)) = T.

4. Thus Iφ(A)ν(φ(A)) = ν(A) = T for all A ∈ Φ.
5. Hence M ⊨ A for M := ⟨Dι, I⟩.

Michael Kohlhase: Artificial Intelligence 1 599 2025-02-06

Now, we only have to put the pieces together to obtain the model existence theorem we are after.

Model Existence

� Theorem A.3.17 (Hintikka-Lemma). If ∇ is an abstract consistency class and
H a ∇-Hintikka set, then H is satisfiable.

� Proof:

1. we define ν(A):=T, iff A ∈ H,
2. then ν is a valuation by the Hintikka set properties.
3. We have ν(H) = {T}, so H is satisfiable.

� Theorem A.3.18 (Model Existence). If ∇ is an abstract consistency class and
Φ ∈ ∇, then Φ is satisfiable.

Proof:

� 1. There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)
2. We know that H is satisfiable. (Hintikka-Lemma)
3. In particular, Φ ⊆ H is satisfiable.

Michael Kohlhase: Artificial Intelligence 1 600 2025-02-06

A.3.2 A Completeness Proof for First-Order ND
With the model existence proof we have introduced in the last section, the completeness proof

for first-order natural deduction is rather simple, we only have to check that ND-consistency is an
abstract consistency property.

Consistency, Refutability and Abstract Consistency

� Theorem A.3.19 (Non-Refutability is an Abstract Consistency Property).
Γ := {Φ ⊆ cwff o(Σι) |Φ not ND1−refutable} is an abstract consistency class.

� Proof: We check the properties of an ACC

1. If Φ is non-refutable, then any subset is as well, so Γ is closed under subsets.

A.3. COMPLETENESS OF CALCULI FOR FIRST-ORDER LOGIC 171

We show the abstract consistency conditions ∇∗ for Φ ∈ Γ.
2. ∇c

2.1. We have to show that A ̸∈ Φ or ¬A ̸∈ Φ for atomic A ∈ wff o(Σι,Vι).
2.2. Equivalently, we show the contrapositive: If {A,¬A} ⊆ Φ, then Φ ̸∈ Γ.
2.3. So let {A,¬A} ⊆ Φ, then Φ is ND1-refutable by construction.
2.4. So Φ ̸∈ Γ.

3. ∇¬ We show the contrapositive again
3.1. Let ¬¬A ∈ Φ and Φ∗A ̸∈ Γ

3.2. Then we have a refutation D : Φ∗A⊢ND1F

3.3. By prepending an application of ND0¬E for ¬¬A to D, we obtain a refu-
tation D : Φ⊢ND1F ′.

3.4. Thus Φ ̸∈ Γ.
Proof sketch: other ∇∗ similar

Michael Kohlhase: Artificial Intelligence 1 602 2025-02-06

This directly yields two important results that we will use for the completeness analysis.

Henkin’s Theorem

� Corollary A.3.20 (Henkin’s Theorem). Every ND1-consistent set of sentences
has a model.

� Proof:

1. Let Φ be a ND1-consistent set of sentences.
2. The class of sets of ND1-consistent propositions constitute an abstract consis-

tency class.
3. Thus the model existence theorem guarantees a model for Φ.

� Corollary A.3.21 (Löwenheim&Skolem Theorem). Satisfiable set Φ of first-
order sentences has a countable model.

Proof sketch: The model we constructed is countable, since the set of ground terms
is.

Michael Kohlhase: Artificial Intelligence 1 603 2025-02-06

Now, the completeness result for first-order natural deduction is just a simple argument away.
We also get a compactness theorem (almost) for free: logical systems with a complete calculus are
always compact.

� Completeness and Compactness

� Theorem A.3.22 (Completeness Theorem for ND1). If Φ ⊨ A, then Φ⊢ND1A.

� Proof: We prove the result by playing with negations.

1. If A is valid in all models of Φ, then Φ∗¬A has no model
2. Thus Φ∗¬A is inconsistent by (the contrapositive of) Henkins Theorem.
3. So Φ⊢ND1¬¬A by ND0¬I and thus Φ⊢ND1A by ND0¬E.

� Theorem A.3.23 (Compactness Theorem for first-order logic). If Φ ⊨ A, then
there is already a finite set Ψ ⊆ Φ with Ψ ⊨ A.

172 APPENDIX A. EXCURSIONS

Proof: This is a direct consequence of the completeness theorem

� 1. We have Φ ⊨ A, iff Φ⊢ND1A.
2. As a proof is a finite object, only a finite subset Ψ ⊆ Φ can appear as leaves

in the proof.

Michael Kohlhase: Artificial Intelligence 1 604 2025-02-06

A.3.3 Soundness and Completeness of First-Order Tableaux
The soundness of the first-order free-variable tableaux calculus can be established a simple in-

duction over the size of the tableau.

Soundness of T f
1

� Lemma A.3.24. Tableau rules transform satisfiable tableaux into satisfiable ones.

� Proof:

we examine the tableau rules in turn
1. propositional rules as in propositional tableaux
2. T f1 ∃ by ??

3. T f1 ⊥ by ?? (substitution value lemma)

4. T f1 ∀
4.1. Iφ(∀X.A) = T, iff Iψ(A) = T for all a ∈ Dι
4.2. so in particular for some a ∈ Dι ̸= ∅.

� Corollary A.3.25. T f1 is correct.

Michael Kohlhase: Artificial Intelligence 1 605 2025-02-06

The only interesting steps are the cut rule, which can be directly handled by the substitution
value lemma, and the rule for the existential quantifier, which we do in a separate lemma.

Soundness of T f
1 ∃

� Lemma A.3.26. T f1 ∃ transforms satisfiable tableaux into satisfiable ones.

� Proof: Let T ′ be obtained by applying T f1 ∃ to (∀X.A)
F in T , extending it with

([f(X1, . . ., Xk)/X](A))
F, where W := free(∀X.A) = {X1, . . ., Xk}

1. Let T be satisfiable in M := ⟨D, I⟩, then Iφ(∀X.A) = F.
We need to find a model M′ that satisfies T ′ (find interpretation for f)
2. By definition Iφ,[a/X](A) = F for some a ∈ D (depends on φ|W)
3. Let g : Dk →D be defined by g(a1, . . ., ak):=a, if φ(Xi) = ai
4. choose M = ⟨D, I ′⟩′ with I ′ := I,[g/f], then by subst. value lemma

I ′
φ([f(X

1, . . ., Xk)/X](A)) = I ′
φ,[I′

φ(f(X1,...,Xk))/X](A)

= I ′
φ,[a/X](A) = F

5. So ([f(X1, . . ., Xk)/X](A))
F satisfiable in M′

A.3. COMPLETENESS OF CALCULI FOR FIRST-ORDER LOGIC 173

Michael Kohlhase: Artificial Intelligence 1 606 2025-02-06

This proof is paradigmatic for soundness proofs for calculi with Skolemization. We use the axiom
of choice at the meta-level to choose a meaning for the Skolem constant. Armed with the Model
Existence Theorem for first-order logic (??), the completeness of first-order tableaux is similarly
straightforward. We just have to show that the collection of tableau-irrefutable sentences is an
abstract consistency class, which is a simple proof-transformation exercise in all but the universal
quantifier case, which we postpone to its own Lemma (??).

Completeness of (T f
1)

� Theorem A.3.27. T f1 is refutation complete.

� Proof: We show that ∇ := {Φ |ΦT has no closed Tableau} is an abstract consis-
tency class

1. as for propositional case.
2. by the lifting lemma below
3. Let T be a closed tableau for ¬(∀X.A) ∈ Φ and ΦT∗([c/X](A))

F ∈ ∇.

ΨT

(∀X.A)
F

([c/X](A))
F

Rest

ΨT

(∀X.A)
F

([f(X1, . . ., Xk)/X](A))
F

[f(X1, . . ., Xk)/c](Rest)

Michael Kohlhase: Artificial Intelligence 1 607 2025-02-06

So we only have to treat the case for the universal quantifier. This is what we usually call a
“lifting argument”, since we have to transform (“lift”) a proof for a formula θ(A) to one for A. In
the case of tableaux we do that by an induction on the tableau refutation for θ(A) which creates
a tableau-isomorphism to a tableau refutation for A.

Tableau-Lifting

� Theorem A.3.28. If Tθ is a closed tableau for a set θ(Φ) of formulae, then there
is a closed tableau T for Φ.

� Proof: by induction over the structure of Tθ we build an isomorphic tableau T , and
a tableau-isomorphism ω : T → Tθ, such that ω(A) = θ(A).

only the tableau-substitution rule is interesting.
1. Let (θ(Ai))

T and (θ(Bi))
F cut formulae in the branch Θiθ of Tθ

2. there is a joint unifier σ of (θ(A1))=
?(θ(B1)) ∧ . . . ∧ (θ(An))=

?(θ(Bn))

3. thus σ ◦ θ is a unifier of A and B

4. hence there is a most general unifier ρ of A1=
?B1 ∧ . . . ∧An=

?Bn

5. so Θ is closed.

Michael Kohlhase: Artificial Intelligence 1 608 2025-02-06

Again, the “lifting lemma for tableaux” is paradigmatic for lifting lemmata for other refutation
calculi.

A.3.4 Soundness and Completeness of First-Order Resolution

174 APPENDIX A. EXCURSIONS

Correctness (CNF)

� Lemma A.3.29. A set Φ of sentences is satisfiable, iff CNF1(Φ) is.

� Proof: propositional rules and ∀-rule are trivial; do the ∃-rule

1. Let (∀X.A)
F satisfiable in M := ⟨D, I⟩ and free(A) = {X1, . . ., Xn}

2. Iφ(∀X.A) = F, so there is an a ∈ D with Iφ,[a/X](A) = F (only depends on
φ|free(A))

3. let g : Dn →D be defined by g(a1, . . ., an):=a, iff φ(Xi) = ai.
4. choose M′ := ⟨D, I ′⟩ with I(f)′ := g, then I ′

φ([f(X
1, . . . , Xk)/X](A)) = F

5. Thus ([f(X1, . . . , Xk)/X](A))
F is satisfiable in M′

Michael Kohlhase: Artificial Intelligence 1 609 2025-02-06

Resolution (Correctness)

� Definition A.3.30. A clause is called satisfiable, iff Iφ(A) = α for one of its
literals Aα.

� Lemma A.3.31. 2 is unsatisfiable

� Lemma A.3.32. CNF transformations preserve satisfiability (see above)

� Lemma A.3.33. Resolution and factorization too!

Michael Kohlhase: Artificial Intelligence 1 610 2025-02-06

Completeness (R1)

� Theorem A.3.34. R1 is refutation complete.

� Proof: ∇ := {Φ |ΦT has no closed tableau} is an abstract consistency class

1. as for propositional case.
2. by the lifting lemma below
3. Let T be a closed tableau for ¬(∀X.A) ∈ Φ and ΦT∗([c/X](A))

F ∈ ∇.
4. CNF1(Φ

T) = CNF1(Ψ
T) ∪ CNF1(([f(X1, . . ., Xk)/X](A))

F
)

5. ([f(X1, . . ., Xk)/c](CNF1(Φ
T)))∗([c/X](A))

F
= CNF1(Φ

T)

6. so R1 : CNF1(Φ
T)⊢D′2, where D = [f(X ′

1, . . . , X
′
k)/c](D).

Michael Kohlhase: Artificial Intelligence 1 611 2025-02-06

Clause Set Isomorphism

� Definition A.3.35. Let B and C be clauses, then a clause isomorphism ω : C→D
is a bijection of the literals of C and D, such that ω(L)α = Mα (conserves labels)
We call ω θ compatible, iff ω(Lα) = (θ(L))

α

A.3. COMPLETENESS OF CALCULI FOR FIRST-ORDER LOGIC 175

� Definition A.3.36. Let Φ and Ψ be clause sets, then we call a bijection Ω: Φ→Ψ
a clause set isomorphism, iff there is a clause isomorphism ω : C→ Ω(C) for each
C ∈ Φ.

� Lemma A.3.37. If θ(Φ) is set of formulae, then there is a θ-compatible clause set
isomorphism Ω: CNF1(Φ)→ CNF1(θ(Φ)).

� Proof sketch: by induction on the CNF derivation of CNF1(Φ).

Michael Kohlhase: Artificial Intelligence 1 612 2025-02-06

Lifting for R1

� Theorem A.3.38. If R1 : (θ(Φ))⊢Dθ
2 for a set θ(Φ) of formulae, then there is a

R1-refutation for Φ.

� Proof: by induction over Dθ we construct a R1-derivation R1 : Φ⊢DC and a θ-
compatible clause set isomorphism Ω: D→Dθ

1. If Dθ ends in

D′
θ

((θ(A)) ∨ (θ(C)))
T

D′′
θ

(θ(B))
F ∨ (θ(D))

res
(σ(θ(C))) ∨ (σ(θ(B)))

then we have (IH) clause isormorphisms ω′ : AT ∨C→ (θ(A))
T ∨ (θ(C)) and

ω′ : BT ∨D→ (θ(B))
T
, θ(D)

2. thus
AT ∨C BF ∨D

(ρ(C)) ∨ (ρ(B))
Res where ρ = mgu(A,B)(exists, as σ ◦ θ unifier)

Michael Kohlhase: Artificial Intelligence 1 613 2025-02-06

	10 Propositional Logic & Reasoning, Part I: Principles
	10.1 Introduction: Inference with Structured State Representations
	10.1.1 A Running Example: The Wumpus World
	10.1.2 Propositional Logic: Preview
	10.1.3 Propositional Logic: Agenda

	10.2 Propositional Logic (Syntax/Semantics)
	10.3 Inference in Propositional Logics
	10.4 Propositional Natural Deduction Calculus
	10.5 Predicate Logic Without Quantifiers
	10.6 Conclusion

	11 Formal Systems
	12 Machine-Oriented Calculi for Propositional Logic
	12.1 Test Calculi
	12.1.1 Normal Forms

	12.2 Analytical Tableaux
	12.2.1 Analytical Tableaux
	12.2.2 Practical Enhancements for Tableaux
	12.2.3 Soundness and Termination of Tableaux

	12.3 Resolution for Propositional Logic
	12.3.1 Resolution for Propositional Logic
	12.3.2 Killing a Wumpus with Propositional Inference

	12.4 Conclusion

	13 Propositional Reasoning: SAT Solvers
	13.1 Introduction
	13.2 Davis-Putnam
	13.3 DPLL ="0362= (A Restricted Form of) Resolution
	13.4 Conclusion

	14 First-Order Predicate Logic
	14.1 Motivation: A more Expressive Language
	14.2 First-Order Logic
	14.2.1 First-Order Logic: Syntax and Semantics
	14.2.2 First-Order Substitutions

	14.3 First-Order Natural Deduction
	14.4 Conclusion

	15 Automated Theorem Proving in First-Order Logic
	15.1 First-Order Inference with Tableaux
	15.1.1 First-Order Tableau Calculi
	15.1.2 First-Order Unification
	15.1.3 Efficient Unification
	15.1.4 Implementing First-Order Tableaux

	15.2 First-Order Resolution
	15.2.1 Resolution Examples

	15.3 Logic Programming as Resolution Theorem Proving
	15.4 Summary: ATP in First-Order Logic

	16 Knowledge Representation and the Semantic Web
	16.1 Introduction to Knowledge Representation
	16.1.1 Knowledge & Representation
	16.1.2 Semantic Networks
	16.1.3 The Semantic Web
	16.1.4 Other Knowledge Representation Approaches

	16.2 Logic-Based Knowledge Representation
	16.2.1 Propositional Logic as a Set Description Language
	16.2.2 Ontologies and Description Logics
	16.2.3 Description Logics and Inference

	16.3 A simple Description Logic: ALC
	16.3.1 Basic ALC: Concepts, Roles, and Quantification
	16.3.2 Inference for ALC
	16.3.3 ABoxes, Instance Testing, and ALC

	16.4 Description Logics and the Semantic Web

	A Excursions
	A.1 Completeness of Calculi for Propositional Logic
	A.1.1 Abstract Consistency and Model Existence
	A.1.2 A Completeness Proof for Propositional Tableaux

	A.2 Conflict Driven Clause Learning
	A.2.1 UP Conflict Analysis
	A.2.2 Clause Learning
	A.2.3 Phase Transitions

	A.3 Completeness of Calculi for First-Order Logic
	A.3.1 Abstract Consistency and Model Existence
	A.3.2 A Completeness Proof for First-Order ND
	A.3.3 Soundness and Completeness of First-Order Tableaux
	A.3.4 Soundness and Completeness of First-Order Resolution

