
1

Artificial Intelligence 1
Winter Semester 2024/25

– Lecture Notes –
Part II: General Problem Solving

Prof. Dr. Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2025-02-06

Michael.Kohlhase@FAU.de

2

This document contains Part II of the course notes for the course “Artificial Intelligence 1” held at
FAU Erlangen-Nürnberg in the Winter Semesters 2016/17 ff. This part introduces search-based
methods for general problem solving using atomic and factored representations of states.

Concretely, we discuss the basic techniques of search-based symbolic AI. First in the shape of
classical and heuristic search and adversarial search paradigms. Then in constraint propagation,
where we see the first instances of inference-based methods. Other parts of the lecture notes
can be found at http://kwarc.info/teaching/AI/notes-*.pdf.

http://kwarc.info/teaching/AI/notes-*.pdf

Contents

6 Problem Solving and Search 5
6.1 Problem Solving . 5
6.2 Problem Types . 8
6.3 Search . 12
6.4 Uninformed Search Strategies . 15

6.4.1 Breadth-First Search Strategies . 16
6.4.2 Depth-First Search Strategies . 20
6.4.3 Further Topics . 27

6.5 Informed Search Strategies . 28
6.5.1 Greedy Search . 29
6.5.2 Heuristics and their Properties . 33
6.5.3 A-Star Search . 35
6.5.4 Finding Good Heuristics . 41

6.6 Local Search . 43

7 Adversarial Search for Game Playing 49
7.1 Introduction . 49
7.2 Minimax Search . 53
7.3 Evaluation Functions . 61
7.4 Alpha-Beta Search . 64
7.5 Monte-Carlo Tree Search (MCTS) . 76
7.6 State of the Art . 81
7.7 Conclusion . 82

8 Constraint Satisfaction Problems 85
8.1 Constraint Satisfaction Problems: Motivation . 85
8.2 The Waltz Algorithm . 90
8.3 CSP: Towards a Formal Definition . 93
8.4 Constraint Networks: Formalizing Binary CSPs . 96
8.5 CSP as Search . 98
8.6 Conclusion & Preview . 103

9 Constraint Propagation 105
9.1 Introduction . 105
9.2 Constraint Propagation/Inference . 106
9.3 Forward Checking . 110
9.4 Arc Consistency . 112
9.5 Decomposition: Constraint Graphs, and Three Simple Cases 120
9.6 Cutset Conditioning . 125
9.7 Constraint Propagation with Local Search . 127
9.8 Conclusion & Summary . 128

3

4 CONTENTS

Chapter 6

Problem Solving and Search

In this chapter, we will look at a class of algorithms called search algorithms. These are
algorithms that help in quite general situations, where there is a precisely described problem, that
needs to be solved. Hence the name “General Problem Solving” for the area.

6.1 Problem Solving
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21927.
Before we come to the search algorithms themselves, we need to get a grip on the types of problems
themselves and how we can represent them, and on what the various types entail for the problem
solving process.
The first step is to classify the problem solving process by the amount of knowledge we have

available. It makes a difference, whether we know all the factors involved in the problem before
we actually are in the situation. In this case, we can solve the problem in the abstract, i.e. make
a plan before we actually enter the situation (i.e. offline), and then when the problem arises, only
execute the plan. If we do not have complete knowledge, then we can only make partial plans, and
have to be in the situation to obtain new knowledge (e.g. by observing the effects of our actions or
the actions of others). As this is much more difficult we will restrict ourselves to offline problem
solving.

Problem Solving: Introduction

� Recap: Agents perceive the environment and compute an action.

� In other words: Agents continually solve “the problem of what to do next”.

� AI Goal: Find algorithms that help solving problems in general.

� Idea: If we can describe/represent problems in a standardized way, we may have
a chance to find general algorithms.

� Concretely: We will use the following two concepts to describe problems

� States: A set of possible situations in our problem domain (=̂ environments)

� Actions: that get us from one state to another. (=̂ agents)

A sequence of actions is a solution, if it brings us from an initial state to a goal
state. Problem solving computes solutions from problem formulations.

5

https://fau.tv/clip/id/21927

6 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Definition 6.1.1. In offline problem solving an agent computing an action sequence
based complete knowledge of the environment.

� Remark 6.1.2. Offline problem solving only works in fully observable, deterministic,
static, and episodic environments.

� Definition 6.1.3. In online problem solving an agent computes one action at a
time based on incoming perceptions.

� This Semester: We largely restrict ourselves to offline problem solving. (easier)

Michael Kohlhase: Artificial Intelligence 1 119 2025-02-06

We will use the following problem as a running example. It is simple enough to fit on one slide
and complex enough to show the relevant features of the problem solving algorithms we want to
talk about.

Example: Traveling in Romania

� Scenario: An agent is on holiday in Romania; currently in Arad; flight home leaves
tomorrow from Bucharest; how to get there? We have a map:68 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni

Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

� Formulate the Problem:

� States: various cities.

� Actions: drive between cities.

� Solution: Appropriate sequence of cities, e.g.: Arad, Sibiu, Fagaras, Bucharest

Michael Kohlhase: Artificial Intelligence 1 120 2025-02-06

Given this example to fortify our intuitions, we can now turn to the formal definition of problem
formulation and their solutions.

Problem Formulation

� Definition 6.1.4. A problem formulation models a situation using states and
actions at an appropriate level of abstraction.(do not model things like “put on my
left sock”, etc.)

� it describes the initial state (we are in Arad)

6.1. PROBLEM SOLVING 7

� it also limits the objectives by specifying goal states. (excludes, e.g. to stay
another couple of weeks.)

A solution is a sequence of actions that leads from the initial state to a goal state.

Problem solving computes solutions from problem formulations.

� Finding the right level of abstraction and the required (not more!) information is
often the key to success.

Michael Kohlhase: Artificial Intelligence 1 121 2025-02-06

The Math of Problem Formulation: Search Problems

� Definition 6.1.5. A search problem Π := ⟨S ,A, T , I ,G⟩ consists of a set S of
states, a set A of actions, and a transition model T : A×S →P(S) that assigns to
any action a ∈ A and state s ∈ S a set of successor states.

Certain states in S are designated as goal states (also called terminal state) (G ⊆ S
with G ̸= ∅) and initial states I ⊆ S.

� Definition 6.1.6. We say that an action a ∈ A is applicable in state s ∈ S, iff
T (a, s) ̸= ∅ and that any s′ ∈ T (a, s) is a result of applying action a to state s.

We call Ta : S → P(S) with Ta(s) := T (a, s) the result relation for a and TA :=⋃
a∈ATa the result relation of Π.

� Definition 6.1.7. The graph ⟨S, TA⟩ is called the state space induced by Π.

� Definition 6.1.8. A solution for Π consists of a sequence a1, . . ., an of actions
such that for all 1 < i ≤ n

� ai is applicable to state si−1, where s0 ∈ I and

� si ∈ Tai
(si−1), and sn ∈ G.

� Idea: A solution bring us from I to a goal state via applicable actions.

� Definition 6.1.9. Often we add a cost function c : A→R+
0 that associates a step

cost c(a) to an action a ∈ A. The cost of a solution is the sum of the step costs of
its actions.

Michael Kohlhase: Artificial Intelligence 1 122 2025-02-06

Observation: The formulation of problems from ?? uses an atomic (black-box) state represen-
tation. It has enough functionality to construct the state space but nothing else. We will come
back to this in slide ??.
Remark 6.1.10. Note that search problems formalize problem formulations by making many of
the implicit constraints explicit.

Structure Overview: Search Problem

� The structure overview for search problems:

8 CHAPTER 6. PROBLEM SOLVING AND SEARCH

search problem =

〈 S Set states,
A Set actions,
T A×S →P(S) transition model,
I S initial state,
G P(S) goal states

〉

Michael Kohlhase: Artificial Intelligence 1 123 2025-02-06

We will now specialize ?? to deterministic, fully observable environments, i.e. environments where
actions only have one – assured – outcome state.

Search Problems in deterministic, fully observable Environments

� This semester, we will restrict ourselves to search problems, where(extend in AI II)

� |T (a, s)| ≤ 1 for the transition models and (⇝deterministic environment)

� I = {s0} (⇝fully observable environment)

Definition 6.1.11. We call a search problem with transition model T deterministic,
iff |T (a, s)| ≤ 1.

�

� Definition 6.1.12. In a deterministic search problem, Ta induces partial function
Sa : S⇀S whose natural domain is the set of states where a is applicable: Sa(s):=s′

if Ta = {s′} and undefined at s otherwise. We call Sa the successor function for a
and Sa(s) the successor state of s.

� Definition 6.1.13. The predicate that tests for goal states is called a goal test.

Michael Kohlhase: Artificial Intelligence 1 124 2025-02-06

6.2 Problem Types
Note that the definition of a search problem is very general, it applies to many many real-world

problems. So we will try to characterize these by difficulty. A Video Nugget covering this
section can be found at https://fau.tv/clip/id/21928.

Problem types

� Definition 6.2.1. A search problem is called a single state problem, iff it is

� fully observable (at least the initial state)

� deterministic (unique successor states)

� static (states do not change other than by our own actions)

� discrete (a countable number of states)

� Definition 6.2.2. A search problem is called a multi state problem

� states partially observable (e.g. multiple initial states)

� deterministic, static, discrete

https://fau.tv/clip/id/21928

6.2. PROBLEM TYPES 9

� Definition 6.2.3. A search problem is called a contingency problem, iff

� the environment is non deterministic (solution can branch, depending on
contingencies)

� the state space is unknown (like a baby, agent has to learn about states and
actions)

Michael Kohlhase: Artificial Intelligence 1 125 2025-02-06

We will explain these problem types with another example. The problem P is very simple: We
have a vacuum cleaner and two rooms. The vacuum cleaner is in one room at a time. The floor
can be dirty or clean.

The possible states are determined by the position of the vacuum cleaner and the information,
whether each room is dirty or not. Obviously, there are eight states: S = {1, 2, 3, 4, 5, 6, 7, 8} for
simplicity.

The goal is to have both rooms clean, the vacuum cleaner can be anywhere. So the set G of
goal states is {7, 8}. In the single-state version of the problem, [right, suck] shortest solution, but
[suck, right, suck] is also one. In the multiple-state version we have

[right{2, 4, 6, 8}, suck{4, 8}, left{3, 7}, suck{7}]

Example: vacuum-cleaner world

� Single-state Problem:

� Start in 5

� Solution: [right, suck]

70 Chapter 3. Solving Problems by Searching

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

� Multiple-state Problem:

� Start in {1, 2, 3, 4, 5, 6, 7, 8}
� Solution: [right, suck, left, suck] right → {2, 4, 6, 8}

suck → {4, 8}
left → {3, 7}
suck → {7}

Michael Kohlhase: Artificial Intelligence 1 126 2025-02-06

Example: Vacuum-Cleaner World (continued)

� Contingency Problem:

10 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Murphy’s Law: suck can dirty a clean
carpet

� Local sensing: dirty/notdirty at lo-
cation only

� Start in: {1, 3}

� Solution: [suck, right, suck]
suck → {5, 7}
right → {6, 8}
suck → {6, 8}

70 Chapter 3. Solving Problems by Searching

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

Figure 3.3 The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The first example we examine is the vacuum world first introduced in Chapter 2. (See
Figure 2.2.) This can be formulated as a problem as follows:

• States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 × 22 = 8 possible world states. A larger environment with n locations has
n · 2n states.

• Initial state: Any state can be designated as the initial state.

• Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

• Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

• Goal test: This checks whether all the squares are clean.

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3×3 board with8-PUZZLE

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:

� better: [suck, right, if dirt then suck] (decide whether in 6 or 8 using local
sensing)

Michael Kohlhase: Artificial Intelligence 1 127 2025-02-06

In the contingency version of P a solution is the following:

[suck{5, 7}, right → {6, 8}, suck → {6, 8}, suck{5, 7}]

etc. Of course, local sensing can help: narrow {6, 8} to {6} or {8}, if we are in the first, then
suck.

Single-state problem formulation

� Defined by the following four items

1. Initial state: (e.g. Arad)

2. Successor function Sa(s): (e.g. SgoZer = {(Arad,Zerind), (goSib,Sibiu), . . . })
3. Goal test: (e.g. x = Bucharest (explicit test)

noDirt(x) (implicit test)
)

4. Path cost (optional):(e.g. sum of distances, number of operators executed, etc.)

� Solution: A sequence of actions leading from the initial state to a goal state.

Michael Kohlhase: Artificial Intelligence 1 128 2025-02-06

“Path cost”: There may be more than one solution and we might want to have the “best” one in
a certain sense.

Selecting a state space

� Abstraction: Real world is absurdly complex!
State space must be abstracted for problem solving.

� (Abstract) state: Set of real states.

� (Abstract) operator: Complex combination of real actions.

� Example: Arad → Zerind represents complex set of possible routes.

� (Abstract) solution: Set of real paths that are solutions in the real world.

6.2. PROBLEM TYPES 11

Michael Kohlhase: Artificial Intelligence 1 129 2025-02-06

“State”: e.g., we don’t care about tourist attractions found in the cities along the way. But this is
problem dependent. In a different problem it may well be appropriate to include such information
in the notion of state.

“Realizability”: one could also say that the abstraction must be sound wrt. reality.

Example: The 8-puzzleSection 3.2. Example Problems 71

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.4 A typical instance of the 8-puzzle.

• States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

• Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

• Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

States? Actions?. . .

States integer locations of tiles
Actions left, right, up, down
Goal test = goal state?
Path cost 1 per move

Michael Kohlhase: Artificial Intelligence 1 130 2025-02-06

How many states are there? N factorial, so it is not obvious that the problem is in NP. One
needs to show, for example, that polynomial length solutions do always exist. Can be done by
combinatorial arguments on state space graph (really ?).
Some rule-books give a different goal state for the 8-puzzle: starting with 1, 2, 3 in the top row
and having the hold in the lower right corner. This is completely irrelevant for the example and
its significance to AI-1.

Example: Vacuum-cleaner36 Chapter 2. Intelligent Agents

A B

Figure 2.2 A vacuum-cleaner world with just two locations.

Percept sequence Action

[A,Clean] Right
[A,Dirty] Suck
[B,Clean] Left
[B,Dirty] Suck
[A,Clean], [A,Clean] Right
[A,Clean], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right
[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world
shown in Figure 2.2.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.

2.2 GOOD BEHAVIOR: THE CONCEPT OF RATIONALITY

A rational agent is one that does the right thing—conceptually speaking, every entry in theRATIONAL AGENT

table for the agent function is filled out correctly. Obviously, doing the right thing is better
than doing the wrong thing, but what does it mean to do the right thing?

States? Actions?. . .

States integer dirt and robot locations
Actions left, right, suck, noOp
Goal test notdirty?
Path cost 1 per operation (0 for noOp)

Michael Kohlhase: Artificial Intelligence 1 131 2025-02-06

Example: Robotic assembly

12 CHAPTER 6. PROBLEM SOLVING AND SEARCH

States? Actions?. . .
States real-valued coordinates of

robot joint angles and parts of the object to be assembled
Actions continuous motions of robot joints
Goal test assembly complete?
Path cost time to execute

Michael Kohlhase: Artificial Intelligence 1 132 2025-02-06

General Problems

� Question: Which are “Problems”?

(A) You didn’t understand any of the lecture.

(B) Your bus today will probably be late.

(C) Your vacuum cleaner wants to clean your apartment.

(D) You want to win a chess game.

� Answer: reserved for the plenary sessions ; be there!

Michael Kohlhase: Artificial Intelligence 1 133 2025-02-06

6.3 Search
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21956.

Tree Search Algorithms

� Note: The state space of a search problem ⟨S ,A, T , I ,G⟩ is a graph ⟨S, TA⟩.

� As graphs are difficult to compute with, we often compute a corresponding tree
and work on that. (standard trick in graph algorithms)

� Definition 6.3.1. Given a search problem P := ⟨S ,A, T , I ,G⟩, the tree search
algorithm consists of the simulated exploration of state space ⟨S, TA⟩ in a search
tree formed by successively expanding already explored states. (offline algorithm)

procedure Tree−Search (problem, strategy) : <a solution or failure>

https://fau.tv/clip/id/21956

6.3. SEARCH 13

<initialize the search tree using the initial state of problem>
loop

if <there are no candidates for expansion> <return failure> end if
<choose a leaf node for expansion according to strategy>
if <the node contains a goal state> return <the corresponding solution>
else <expand the node and add the resulting nodes to the search tree>
end if

end loop
end procedure

We expand a node n by generating all successors of n and inserting them as children
of n in the search tree.

Michael Kohlhase: Artificial Intelligence 1 134 2025-02-06

Tree Search: Example

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

Michael Kohlhase: Artificial Intelligence 1 135 2025-02-06

Let us now think a bit more about the implementation of tree search algorithms based on the
ideas discussed above. The abstract, mathematical notions of a search problem and the induced
tree search algorithm gets further refined here.

Implementation: States vs. nodes

14 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Recap: A state is a (representation of) a physical configuration.

� Definition 6.3.2 (Implementing a Search Tree).

A search tree node is a data structure that in-
cludes accessors for parent, children, depth, path
cost, insertion order, etc.
A goal node (initial node) is a search tree node
labeled with a goal state (initial state).

Section 3.3. Searching for Solutions 79

1

23

45

6

7

81

23

45

6

7

8

Node

STATE

PARENT

ACTION = Right
PATH-COST = 6

Figure 3.10 Nodes are the data structures from which the search tree is constructed. Each
has a parent, a state, and various bookkeeping fields. Arrows point from child to parent.

Given the components for a parent node, it is easy to see how to compute the necessary
components for a child node. The function CHILD-NODE takes a parent node and an action
and returns the resulting child node:

function CHILD-NODE(problem ,parent ,action) returns a node
return a node with

STATE = problem .RESULT(parent .STATE,action),
PARENT = parent , ACTION = action ,
PATH-COST = parent .PATH-COST + problem .STEP-COST(parent .STATE,action)

The node data structure is depicted in Figure 3.10. Notice how the PARENT pointers
string the nodes together into a tree structure. These pointers also allow the solution path to be
extracted when a goal node is found; we use the SOLUTION function to return the sequence
of actions obtained by following parent pointers back to the root.

Up to now, we have not been very careful to distinguish between nodes and states, but in
writing detailed algorithms it’s important to make that distinction. A node is a bookkeeping
data structure used to represent the search tree. A state corresponds to a configuration of the
world. Thus, nodes are on particular paths, as defined by PARENT pointers, whereas states
are not. Furthermore, two different nodes can contain the same world state if that state is
generated via two different search paths.

Now that we have nodes, we need somewhere to put them. The frontier needs to be
stored in such a way that the search algorithm can easily choose the next node to expand
according to its preferred strategy. The appropriate data structure for this is a queue. TheQUEUE

operations on a queue are as follows:

• EMPTY?(queue) returns true only if there are no more elements in the queue.
• POP(queue) removes the first element of the queue and returns it.
• INSERT(element , queue) inserts an element and returns the resulting queue.

� Observation: A set of search tree nodes that can all (recursively) reach a single
initial node form a search tree. (they implement it)

� Observation: Paths in the search tree correspond to paths in the state space.

� Definition 6.3.3. We define the path cost of a node n in a search tree T to be
the sum of the step costs on the path from n to the root of T .

� Observation: As a search tree node has access to parents, we can read off the
solution from a goal node.

Michael Kohlhase: Artificial Intelligence 1 136 2025-02-06

It is very important to understand the fundamental difference between a state in a search problem,
a node search tree employed by the tree search algorithm, and the implementation in a search tree
node. The implementation above is faithful in the sense that the implemented data structures
contain all the information needed in the tree search algorithm.

So we can use it to refine the idea of a tree search algorithm into an implementation.

Implementation of Search Algorithms

� Definition 6.3.4 (Implemented Tree Search Algorithm).

procedure Tree_Search (problem,strategy)
fringe := insert(make_node(initial_state(problem)))

loop
if empty(fringe) fail end if
node := first(fringe,strategy)
if GoalTest(node) return node
else fringe := insert(expand(node,problem))
end if

end loop
end procedure

The fringe is the set of search tree nodes not yet expanded in tree search.

� Idea: We treat the fringe as an abstract data type with three accessors: the

� binary function first retrieves an element from the fringe according to a strategy.

� binary function insert adds a (set of) search tree node into a fringe.

� unary predicate empty to determine whether a fringe is the empty set.

� The strategy determines the behavior of the fringe (data structure) (see below)

Michael Kohlhase: Artificial Intelligence 1 137 2025-02-06

6.4. UNINFORMED SEARCH STRATEGIES 15

Note: The pseudocode in ?? is still relatively underspecified – leaves many implementation
details unspecified. Here are the specifications of the functions used without.

•

• make_node constructs a search tree node from a state.

• initial_state accesses the initial state of a search problem.

• State returns the state associated with its aregument.

• GoalNode checks whether its argument is a goal node

• expand = creates new search tree nodes by for all successor states.

Essentially, only the first function is non-trivial (as the strategy argument shows) In fact it is the
only place, where the strategy is used in the algorithm.

An alternative implementation would have been to make the fringe a queue, and insert order
the fringe as the strategy sees fit. Then first can just return the first element of the queue. This
would have lead to a different signature, possibly different runtimes, but the same overall result
of the algorithm.

Search strategies

� Definition 6.3.5. A strategy is a function that picks a node from the fringe of a
search tree. (equivalently, orders the fringe and picks the first.)

� Definition 6.3.6 (Important Properties of Strategies).

completeness does it always find a solution if one exists?
time complexity number of nodes generated/expanded
space complexity maximum number of nodes in memory
optimality does it always find a least cost solution?

� Time and space complexity measured in terms of:

b maximum branching factor of the search tree
d minimal graph depth of a solution in the search tree
m maximum graph depth of the search tree (may be ∞)

Complexity means here always worst-case complexity!

Michael Kohlhase: Artificial Intelligence 1 138 2025-02-06

Note that there can be infinite branches, see the search tree for Romania.

6.4 Uninformed Search Strategies
Video Nuggets covering this section can be found at https://fau.tv/clip/id/21994 and
https://fau.tv/clip/id/21995.

Uninformed search strategies

� Definition 6.4.1. We speak of an uninformed search algorithm, if it only uses the
information available in the problem definition.

https://fau.tv/clip/id/21994
https://fau.tv/clip/id/21995

16 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Next: Frequently used search algorithms

� Breadth first search

� Uniform cost search

� Depth first search

� Depth limited search

� Iterative deepening search

Michael Kohlhase: Artificial Intelligence 1 139 2025-02-06

The opposite of uninformed search is informed or heuristic search that uses a heuristic function
that adds external guidance to the search process. In the Romania example, one could add the
heuristic to prefer cities that lie in the general direction of the goal (here SE).

Even though heuristic search is usually much more efficient, uninformed search is important
nonetheless, because many problems do not allow to extract good heuristics.

6.4.1 Breadth-First Search Strategies

Breadth-First Search

� Idea: Expand the shallowest unexpanded node.

� Definition 6.4.2. The breadth first search (BFS) strategy treats the fringe as a
FIFO queue, i.e. successors go in at the end of the fringe.

� Example 6.4.3 (Synthetic).

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

6.4. UNINFORMED SEARCH STRATEGIES 17

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Michael Kohlhase: Artificial Intelligence 1 140 2025-02-06

We will now apply the breadth first search strategy to our running example: Traveling in Romania.
Note that we leave out the green dashed nodes that allow us a preview over what the search tree
will look like (if expanded). This gives a much cleaner picture we assume that the readers already
have grasped the mechanism sufficiently.

Breadth-First Search: Romania

� Example 6.4.4.

Arad

18 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Arad

Sibiu Timisoara Zerind

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea Arad Lugoj Oradea Arad

Michael Kohlhase: Artificial Intelligence 1 141 2025-02-06

Breadth-first search: Properties

�

Completeness Yes (if b is finite)
Time complexity 1+b+b2+b3+. . .+bd, so O(bd), i.e. exponential

in d
Space complexity O(bd) (fringe may be whole level)
Optimality Yes (if cost = 1 per step), not optimal in general

� Disadvantage: Space is the big problem (can easily generate nodes at
500MB/sec =̂ 1.8TB/h)

� Optimal?: No! If cost varies for different steps, there might be better solutions
below the level of the first one.

� An alternative is to generate all solutions and then pick an optimal one. This works
only, if m is finite.

Michael Kohlhase: Artificial Intelligence 1 142 2025-02-06

The next idea is to let cost drive the search. For this, we will need a non-trivial cost function: we
will take the distance between cities, since this is very natural. Alternatives would be the driving
time, train ticket cost, or the number of tourist attractions along the way.

Of course we need to update our problem formulation with the necessary information.

6.4. UNINFORMED SEARCH STRATEGIES 19

Romania with Step Costs as Distances68 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni

Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

Michael Kohlhase: Artificial Intelligence 1 143 2025-02-06

Uniform-cost search

� Idea: Expand least cost unexpanded node.

� Definition 6.4.5. Uniform-cost search (UCS) is the strategy where the fringe is
ordered by increasing path cost.

� Note: Equivalent to breadth first search if all step costs are equal.

� Synthetic Example:

Arad

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

Sibiu

140

Timisoara

118

Zerind

75

Oradea

71

Arad

75

20 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

118

Lugoj

111

Oradea

71

Arad

75

Arad

Sibiu

140

Timisoara

118

Zerind

75

Arad

140

Fagaras

99

Oradea

151

R. Vilcea

80

Arad

118

Lugoj

111

Oradea

71

Arad

75

Michael Kohlhase: Artificial Intelligence 1 144 2025-02-06

Note that we must sum the distances to each leaf. That is, we go back to the first level after the
third step.

Uniform-cost search: Properties

Completeness Yes (if step costs ≥ ϵ > 0)
Time complexity number of nodes with path cost less than that of opti-

mal solution
Space complexity ditto
Optimality Yes

Michael Kohlhase: Artificial Intelligence 1 145 2025-02-06

If step cost is negative, the same situation as in breadth first search can occur: later solutions may
be cheaper than the current one.

If step cost is 0, one can run into infinite branches. UCS then degenerates into depth first
search, the next kind of search algorithm we will encounter. Even if we have infinite branches,
where the sum of step costs converges, we can get into trouble, since the search is forced down
these infinite paths before a solution can be found.

Worst case is often worse than BFS, because large trees with small steps tend to be searched
first. If step costs are uniform, it degenerates to BFS.

6.4.2 Depth-First Search Strategies

Depth-first Search

� Idea: Expand deepest unexpanded node.

� Definition 6.4.6. Depth-first search (DFS) is the strategy where the fringe is
organized as a (LIFO) stack i.e. successors go in at front of the fringe.

� Definition 6.4.7. Every node that is pushed to the stack is called a backtrack
point. The action of popping a non-goal node from the stack and continuing the
search with the new top element of the stack (a backtrack point by construction)
is called backtracking, and correspondingly the DFS algorithm backtracking search.

6.4. UNINFORMED SEARCH STRATEGIES 21

� Note: Depth first search can perform infinite cyclic excursions
Need a finite, non cyclic state space (or repeated state checking)

Michael Kohlhase: Artificial Intelligence 1 146 2025-02-06

Depth-First Search

� Example 6.4.8 (Synthetic).

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

22 CHAPTER 6. PROBLEM SOLVING AND SEARCH

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

6.4. UNINFORMED SEARCH STRATEGIES 23

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

Michael Kohlhase: Artificial Intelligence 1 147 2025-02-06

24 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Depth-First Search: Romania

� Example 6.4.9 (Romania).

Arad

Arad

Sibiu Timisoara Zerind

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Arad

Sibiu Timisoara Zerind

Arad Fagaras Oradea R. Vilcea

Sibiu Timisoara Zerind

Michael Kohlhase: Artificial Intelligence 1 148 2025-02-06

Depth-first search: Properties

�

Completeness Yes: if search tree finite
No: if search tree contains infinite paths or
loops

Time complexity O(bm)
(we need to explore until max depth m in any
case!)

Space complexity O(bm) (i.e. linear space)
(need at most store m levels and at each level
at most b nodes)

Optimality No (there can be many better solutions in the
unexplored part of the search tree)

� Disadvantage: Time terrible if m much larger than d.

� Advantage: Time may be much less than breadth first search if solutions are
dense.

6.4. UNINFORMED SEARCH STRATEGIES 25

Michael Kohlhase: Artificial Intelligence 1 149 2025-02-06

Iterative deepening search

� Definition 6.4.10. Depth limited search is depth first search with a depth limit.

� Definition 6.4.11. Iterative deepening search (IDS) is depth limited search with
ever increasing depth limits. We call the difference between successive depth limits
the step size.

� procedure Tree_Search (problem)
<initialize the search tree using the initial state of problem>
for depth = 0 to ∞

result := Depth_Limited_search(problem,depth)
if depth ̸= cutoff return result end if

end for
end procedure

Michael Kohlhase: Artificial Intelligence 1 150 2025-02-06

Ilustration: Iterative Deepening Search at various Limit Depths

A A

A

B C

A

B C

A

B C

A

B C

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

26 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Michael Kohlhase: Artificial Intelligence 1 151 2025-02-06

Iterative deepening search: Properties

�
Completeness Yes
Time complexity (d+1)·b0+d·b1+(d−1)·b2+. . .+bd ∈ O(bd+1)
Space complexity O(b · d)
Optimality Yes (if step cost = 1)

� Consequence: IDS used in practice for search spaces of large, infinite, or unknown
depth.

Michael Kohlhase: Artificial Intelligence 1 152 2025-02-06

Note: To find a solution (at depth d) we have to search the whole tree up to d. Of course since
we do not save the search state, we have to re-compute the upper part of the tree for the next
level. This seems like a great waste of resources at first, however, IDS tries to be complete without
the space penalties.

However, the space complexity is as good as DFS, since we are using DFS along the way. Like
in BFS, the whole tree on level d (of optimal solution) is explored, so optimality is inherited from
there. Like BFS, one can modify this to incorporate uniform cost search behavior.

As a consequence, variants of IDS are the method of choice if we do not have additional
information.

Comparison BFS (optimal) and IDS (not)

� Example 6.4.12. IDS may fail to be be optimal at step sizes > 1.

6.4. UNINFORMED SEARCH STRATEGIES 27

Breadth first search Iterative deepening search

Comparison

Breadth-first search Iterative deepening search

Kohlhase: Künstliche Intelligenz 1 150 July 5, 2018

Comparison

Breadth-first search Iterative deepening search

Kohlhase: Künstliche Intelligenz 1 150 July 5, 2018

Michael Kohlhase: Artificial Intelligence 1 153 2025-02-06

6.4.3 Further Topics

Tree Search vs. Graph Search

� We have only covered tree search algorithms.

� States duplicated in nodes are a huge problem for efficiency.

� Definition 6.4.13. A graph search algorithm is a variant of a tree search algorithm
that prunes nodes whose state has already been considered (duplicate pruning),
essentially using a DAG data structure.

� Observation 6.4.14. Tree search is memory intensive it has to store the fringe so
keeping a list of “explored states” does not lose much.

� Graph versions of all the tree search algorithms considered here exist, but are more
difficult to understand (and to prove properties about).

� The (time complexity) properties are largely stable under duplicate pruning. (no
gain in the worst case)

� Definition 6.4.15. We speak of a search algorithm, when we do not want to
distinguish whether it is a tree or graph search algorithm. (difference considered an
implementation detail)

Michael Kohlhase: Artificial Intelligence 1 154 2025-02-06

Uninformed Search Summary

� Tree/Graph Search Algorithms: Systematically explore the state tree/graph

28 CHAPTER 6. PROBLEM SOLVING AND SEARCH

induced by a search problem in search of a goal state. Search strategies only differ
by the treatment of the fringe.

� Search Strategies and their Properties: We have discussed

Criterion
Breadth

first
Uniform

cost
Depth
first

Iterative
deepening

Completeness Yes1 Yes2 No Yes
Time complexity bd ≈ bd bm bd+1

Space complexity bd ≈ bd bm bd
Optimality Yes∗ Yes No Yes∗

Conditions 1 b finite 2 0 < ϵ ≤ cost

Michael Kohlhase: Artificial Intelligence 1 155 2025-02-06

Search Strategies; the XKCD Take

� More Search Strategies?: (from https://xkcd.com/2407/)

Michael Kohlhase: Artificial Intelligence 1 156 2025-02-06

6.5 Informed Search Strategies

Summary: Uninformed Search/Informed Search

� Problem formulation usually requires abstracting away real-world details to define
a state space that can feasibly be explored.

� Variety of uninformed search strategies.

� Iterative deepening search uses only linear space and not much more time than

https://xkcd.com/2407/

6.5. INFORMED SEARCH STRATEGIES 29

other uninformed algorithms.

� Next Step: Introduce additional knowledge about the problem (heuristic search)

� Best-first-, A∗-strategies (guide the search by heuristics)

� Iterative improvement algorithms.

� Definition 6.5.1. A search algorithm is called informed, iff it uses some form of
external information – that is not part of the search problem – to guide the search.

Michael Kohlhase: Artificial Intelligence 1 157 2025-02-06

6.5.1 Greedy Search
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/22015.

Best-first search

� Idea: Order the fringe by estimated “desirability” (Expand most desirable
unexpanded node)

� Definition 6.5.2. An evaluation function assigns a desirability value to each node
of the search tree.

� Note: A evaluation function is not part of the search problem, but must be added
externally.

� Definition 6.5.3. In best first search, the fringe is a queue sorted in decreasing
order of desirability.

� Special cases: Greedy search, A∗ search

Michael Kohlhase: Artificial Intelligence 1 158 2025-02-06

This is like UCS, but with an evaluation function related to problem at hand replacing the path
cost function.

If the heuristic is arbitrary, we expect incompleteness!
Depends on how we measure “desirability”.
Concrete examples follow.

Greedy search

� Idea: Expand the node that appears to be closest to the goal.

� Definition 6.5.4. A heuristic is an evaluation function h on states that estimates
the cost from n to the nearest goal state. We speak of heuristic search if the search
algorithm uses a heuristic in some way.

� Note: All nodes for the same state must have the same h-value!

� Definition 6.5.5. Given a heuristic h, greedy search is the strategy where the
fringe is organized as a queue sorted by increasing h value.

� Example 6.5.6. Straight-line distance from/to Bucharest.

https://fau.tv/clip/id/22015

30 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Note: Unlike uniform cost search the node evaluation function has nothing to do
with the nodes expanded so far

internal search control ; external search control
partial solution cost ; goal cost estimation

Michael Kohlhase: Artificial Intelligence 1 159 2025-02-06

In greedy search we replace the objective cost to construct the current solution with a heuristic or
subjective measure from which we think it gives a good idea how far we are from a solution. Two
things have shifted:

• we went from internal (determined only by features inherent in the search space) to an external/heuris-
tic cost

• instead of measuring the cost to build the current partial solution, we estimate how far we are
from the desired goal

Romania with Straight-Line Distances

� Example 6.5.7 (Informed Travel). hSLD(n) = straight− line distance to Bucharest

Arad 366 Mehadia 241 Bucharest 0 Neamt 234
Craiova 160 Oradea 380 Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193 Fragaras 176 Sibiu 253
Giurgiu 77 Timisoara 329 Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199 Lugoj 244 Zerind 37468 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni

Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

Michael Kohlhase: Artificial Intelligence 1 160 2025-02-06

Greedy Search: Romania

Arad

366

6.5. INFORMED SEARCH STRATEGIES 31

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

Arad

366

Sibiu

253

Timisoara

329

Zerind

374

Arad

366

Fagaras

176

Oradea

380

R. Vilcea

193

Sibiu

253

Bucharest

0

Michael Kohlhase: Artificial Intelligence 1 161 2025-02-06

Let us fortify our intuitions with another example: navigation in a simple maze. Here the states
are the cells in the grid underlying the maze and the actions navigating to one of the adjoining
cells. The initial and goal states are the left upper and right lower corners of the grid. To see the
influence of the chosen heuristic (indicated by the red number in the cell), we compare the search
induced goal distance function with a heuristic based on the Manhattan distance. Just follow the
greedy search by following the heuristic gradient.

Heuristic Functions in Path Planning

� Example 6.5.8 (The maze solved). We indicate h∗ by giving the goal distance:

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

9

89 7

8

6 5

4 3 2 1

01

1011

11

12

12

12

12

13

13

13

13

14 14

14

14

15 15

15

15

15

16

16

16

16

1617

17 17

17

18

18

18

19

20

21

2122

22

22

23

23

2324

24

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again

Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018

� Example 6.5.9 (Maze Heuristic: The good case). We use the Manhattan
distance to the goal as a heuristic:

32 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

11 10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

910

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again

Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018

� Example 6.5.10 (Maze Heuristic: The bad case). We use the Manhattan
distance to the goal as a heuristic again:

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

91017

16

13

12

12

11

11

11

8

8

7 6 5

5

4 3

2

2

11

Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018

Michael Kohlhase: Artificial Intelligence 1 162 2025-02-06

Not surprisingly, the first maze is searchless, since we are guided by the perfect heuristic. In cases,
where there is a choice, the this has no influence on the length (or in other cases cost) of the
solution.

In the “good case” example, greedy search performs well, but there is some limited backtracking
needed, for instance when exploring the left lower corner 3×3 area before climbing over the second
wall.

In the “bad case”, greedy search is led down the lower garden path, which has a dead end, and
does not lead to the goal. This suggests that there we can construct adversary examples – i.e.
example mazes where we can force greedy search into arbitrarily bad performance.

Greedy search: Properties

�

Completeness No: Can get stuck in infinite loops.
Complete in finite state spaces with repeated
state checking

Time complexity O(bm)
Space complexity O(bm)
Optimality No

� Example 6.5.11. Greedy search can get stuck going from Iasi to Oradea:
Iasi → Neamt → Iasi → Neamt → · · ·

6.5. INFORMED SEARCH STRATEGIES 33
68 Chapter 3. Solving Problems by Searching

Giurgiu

Urziceni

Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Drobeta

Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

• A path cost function that assigns a numeric cost to each path. The problem-solvingPATH COST

agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.3 The step cost of taking actionSTEP COST

a in state s to reach state s′ is denoted by c(s, a, s′). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.4

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.OPTIMAL SOLUTION

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.

� Worst-case Time: Same as depth first search.

� Worst-case Space: Same as breadth first search. (⇝repeated state checking)

� But: A good heuristic can give dramatic improvements.

Michael Kohlhase: Artificial Intelligence 1 163 2025-02-06

Remark 6.5.12. Greedy search is similar to UCS. Unlike the latter, the node evaluation function
has nothing to do with the nodes explored so far. This can prevent nodes from being enumerated
systematically as they are in UCS and BFS.
For completeness, we need repeated state checking as the example shows. This enforces complete
enumeration of the state space (provided that it is finite), and thus gives us completeness.

Note that nothing prevents from all nodes being searched in worst case; e.g. if the heuristic
function gives us the same (low) estimate on all nodes except where the heuristic mis-estimates
the distance to be high. So in the worst case, greedy search is even worse than BFS, where d
(depth of first solution) replaces m.

The search procedure cannot be optimal, since actual cost of solution is not considered.
For both, completeness and optimality, therefore, it is necessary to take the actual cost of

partial solutions, i.e. the path cost, into account. This way, paths that are known to be expensive
are avoided.

6.5.2 Heuristics and their Properties
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/22019.

Heuristic Functions

� Definition 6.5.13. Let Π be a search problem with states S. A heuristic function
(or short heuristic) for Π is a function h : S→R+

0 ∪{∞} so that h(s) = 0 whenever
s is a goal state.

� h(s) is intended as an estimate the distance between state s and the nearest goal
state.

� Definition 6.5.14. Let Π be a search problem with states S, then the function
h∗ : S → R+

0 ∪ {∞}, where h∗(s) is the cost of a cheapest path from s to a goal
state, or ∞ if no such path exists, is called the goal distance function for Π.

� Notes:

� h(s) = 0 on goal states: If your estimator returns “I think it’s still a long way”
on a goal state, then its intelligence is, um . . .

https://fau.tv/clip/id/22019

34 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Return value ∞: To indicate dead ends, from which the goal state can’t be
reached anymore.

� The distance estimate depends only on the state s, not on the node (i.e., the
path we took to reach s).

Michael Kohlhase: Artificial Intelligence 1 164 2025-02-06

Where does the word “Heuristic” come from?

� Ancient Greek word ϵυρισκϵιν (=̂ “I find”) (aka. ϵυρϵκα!)

� Popularized in modern science by George Polya: “How to solve it” [Pól73]

� Same word often used for “rule of thumb” or “imprecise solution method”.

Michael Kohlhase: Artificial Intelligence 1 165 2025-02-06

Heuristic Functions: The Eternal Trade-Off

� “Distance Estimate”? (h is an arbitrary function in principle)

� In practice, we want it to be accurate (aka: informative), i.e., close to the actual
goal distance.

� We also want it to be fast, i.e., a small overhead for computing h.

� These two wishes are in contradiction!

� Example 6.5.15 (Extreme cases).

� h = 0: no overhead at all, completely un-informative.

� h = h∗: perfectly accurate, overhead =̂ solving the problem in the first place.

� Observation 6.5.16. We need to trade off the accuracy of h against the overhead
for computing it.

Michael Kohlhase: Artificial Intelligence 1 166 2025-02-06

Properties of Heuristic Functions

� Definition 6.5.17. Let Π be a search problem with states S and actions A. We
say that a heuristic h for Π is admissible if h(s) ≤ h∗(s) for all s ∈ S.

We say that h is consistent if h(s) − h(s′) ≤ c(a) for all s ∈ S, a ∈ A, and
s′ ∈ T (s, a).

� In other words . . . :

� h is admissible if it is a lower bound on goal distance.

� h is consistent if, when applying an action a, the heuristic value cannot decrease
by more than the cost of a.

6.5. INFORMED SEARCH STRATEGIES 35

Michael Kohlhase: Artificial Intelligence 1 167 2025-02-06

Properties of Heuristic Functions, ctd.

� Let Π be a search problem, and let h be a heuristic for Π. If h is consistent, then
h is admissible.

� Proof: we prove h(s) ≤ h∗(s) for all s ∈ S by induction over the length of the cheapest
path to a goal node.

1. base case
1.1. h(s) = 0 by definition of heuristic, so h(s) ≤ h∗(s) as desired.

2. step case
2.1. We assume that h(s′) ≤ h∗(s) for all states s′ with a cheapest goal node path

of length n.
2.2. Let s be a state whose cheapest goal path has length n+1 and the first transition

is o = (s,s′).
2.3. By consistency, we have h(s)− h(s′) ≤ c(o) and thus h(s) ≤ h(s′) + c(o).
2.4. By construction, h∗(s) has a cheapest goal path of length n and thus, by induc-

tion hypothesis h(s′) ≤ h∗(s′).
2.5. By construction, h∗(s) = h∗(s′) + c(o).
2.6. Together this gives us h(s) ≤ h∗(s) as desired.

� Consistency is a sufficient condition for admissibility (easier to check)

Michael Kohlhase: Artificial Intelligence 1 168 2025-02-06

Properties of Heuristic Functions: Examples

� Example 6.5.18. Straight line distance is admissible and consistent by the triangle
inequality.
If you drive 100km, then the straight line distance to Rome can’t decrease by more
than 100km.

� Observation: In practice, admissible heuristics are typically consistent.

� Example 6.5.19 (An admissible, but inconsistent heuristic). When traveling
to Rome, let h(Munich) = 300 and h(Innsbruck) = 100.

� Inadmissible heuristics typically arise as approximations of admissible heuristics
that are too costly to compute. (see later)

Michael Kohlhase: Artificial Intelligence 1 169 2025-02-06

6.5.3 A-Star Search
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/22020.

A∗ Search: Evaluation Function

� Idea: Avoid expanding paths that are already expensive(make use of actual cost)

The simplest way to combine heuristic and path cost is to simply add them.

https://fau.tv/clip/id/22020

36 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Definition 6.5.20. The evaluation function for A∗ search is given by f(n) =
g(n) + h(n), where g(n) is the path cost for n and h(n) is the estimated cost to
the nearest goal from n.

� Thus f(n) is the estimated total cost of the path through n to a goal.

� Definition 6.5.21. Best first search with evaluation function g + h is called A∗

search.

Michael Kohlhase: Artificial Intelligence 1 170 2025-02-06

This works, provided that h does not overestimate the true cost to achieve the goal. In other
words, h must be optimistic wrt. the real cost h∗. If we are too pessimistic, then non-optimal
solutions have a chance.

A∗ Search: Optimality

� Theorem 6.5.22. A∗ search with admissible heuristic is optimal.

� Proof: We show that sub-optimal nodes are never expanded by A∗

1. Suppose a suboptimal goal node G has been generated then we are in the
following situation:

start

n

O G

2. Let n be an unexpanded node on a path to an optimality goal node O, then
f(G) = g(G) since h(G) = 0
g(G) > g(O) since G suboptimal
g(O) = g(n) + h∗(n) n on optimal path
g(n) + h∗(n) ≥ g(n) + h(n) since h is admissible
g(n) + h(n) = f(n)

3. Thus, f(G) > f(n) and A∗ never expands G.

Michael Kohlhase: Artificial Intelligence 1 171 2025-02-06

A∗ Search Example

Arad

366=0+366

Arad

Sibiu

393=140+253

Timisoara

447=118+329

Zerind

449=75+374

6.5. INFORMED SEARCH STRATEGIES 37

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

413=220+193

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras

415=239+176

Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti

417=317+100

Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Arad

Sibiu Timisoara

447=118+329

Zerind

449=75+374

Arad

646=280+366

Fagaras Oradea

671=291+380

R. Vilcea

Craiova

526=366+160

Pitesti Sibiu

553=300+253

Sibiu

591=338+253

Bucharest

450=450+0

Bucharest

418=418+0

Craiova

615=455+160

Sibiu

607=414+193

Michael Kohlhase: Artificial Intelligence 1 172 2025-02-06

To extend our intuitions about informed search algorithms to A∗-search, we take up the maze
examples from above again. We first show the good maze with Manhattan distance again.

Additional Observations (Not Limited to Path Planning)

� Example 6.5.23 (Greedy best-first search, “good case”).

38 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

11 10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

910

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again

Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018

We will find a solution with little search.

Michael Kohlhase: Artificial Intelligence 1 173 2025-02-06

To compare it to A∗-search, here is the same maze but now with the numbers in red for the
evaluation function f where h is the Manhattan distance.

Additional Observations (Not Limited to Path Planning)

� Example 6.5.24 (A∗ (g + h), “good case”).
Additional Observations (Not Limited to Path Planning) II

I Example 4.21 (A⇤ (g + h), “good case”).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

18

18

18

18

18 18 18

18 18

18 18

20 20 20

20

20

20 20

20 20

22 22 22 22 22

22

22 22 22

22 22 22 22 22 22 22 22

22

22

22

22 22 22

24

24

24 24 24

2424

24 24 24 24 24 24 24

I A⇤ with a consistent heuristic g + h always increases monotonically (h cannot
decrease mor than g increases)

I We need more search, in the “right upper half”. This is typical: Greedy best-first
search tends to be faster than A⇤.

Kohlhase: Künstliche Intelligenz 1 177 July 5, 2018

� In A∗ with a consistent heuristic, g + h always increases monotonically (h
cannot decrease more than g increases)

� We need more search, in the “right upper half”. This is typical: Greedy best
first search tends to be faster than A∗.

Michael Kohlhase: Artificial Intelligence 1 174 2025-02-06

Let’s now consider the “bad maze” with Manhattan distance again.

Additional Observations (Not Limited to Path Planning)

� Example 6.5.25 (Greedy best-first search, “bad case”).

6.5. INFORMED SEARCH STRATEGIES 39

Heuristic Functions in Path Planning

I Example 4.4 (The maze solved).
We indicate h⇤ by giving the goal distance

I Example 4.5 (Maze Heuristic: the good case).
We use the Manhattan distance to the goal as a heuristic

I Example 4.6 (Maze Heuristic: the bad case).
We use the Manhattan distance to the goal as a heuristic again

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

14 13 12

131415

16

17

18

15 14

15

16 15

14 13

14 13 12

10

1012

11

10

10

9

9

9 8

9

8 7 6 5 4

345678

7

67 5

6

4 3

4 3 2 1

01

91017

16

13

12

12

11

11

11

8

8

7 6 5

5

4 3

2

2

11

Kohlhase: Künstliche Intelligenz 1 160 July 5, 2018

Search will be mis-guided into the “dead-end street”.

Michael Kohlhase: Artificial Intelligence 1 175 2025-02-06

And we compare it to A∗-search; again the numbers in red are for the evaluation function f .

Additional Observations (Not Limited to Path Planning)

� Example 6.5.26 (A∗ (g + h), “bad case”).
Additional Observations (Not Limited to Path Planning) IV

I Example 4.23 (A⇤ (g + h), “bad case”).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

18 18 18

181818

18

18

18

15 20

22

24 24

14 13

24 24 24

10

2222

20

18

10

9

9

9 45678

5

6 4 2

1

2417

16

13

12

12

24

22

18

8

5 3

11

22

22 22 22

24

26 26 26

26

26 26 26

28

30

24

24

24

24

242424242424

We will search less of the “dead-end street”. Sometimes g + h gives better
search guidance than h. (; A⇤ is faster there)

Kohlhase: Künstliche Intelligenz 1 179 July 5, 2018

We will search less of the “dead-end street”. Sometimes g + h gives better search
guidance than h. (; A∗ is faster there)

Michael Kohlhase: Artificial Intelligence 1 176 2025-02-06

Finally, we compare that with the goal distance function for the “bad maze”. Here we see that the
lower garden path is under-estimated by the evaluation function f , but still large enough to keep
the search out of it, thanks to the admissibility of the Manhattan distance.

Additional Observations (Not Limited to Path Planning)

� Example 6.5.27 (A∗ (g + h) using h∗).

40 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Additional Observations (Not Limited to Path Planning) V

I Example 4.24 (A⇤ (g + h) using h⇤).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2

3

4

5

I

G

15

14 13 10

10

9

9

9 45678

5

6 4 2

1

17

16

13

12

12

8

5 3

11

24

24

24

24

24242424242424242424242424

24

24

242424

24

24

24

26 26 26 28 30

32

34 36 38

40

42 44 46

48

50 52 54

56

58 60 62

64

66

In A⇤, node values always increase monotonically (with any heuristic). If the
heuristic is perfect, they remain constant on optimal paths.

Kohlhase: Künstliche Intelligenz 1 180 July 5, 2018

In A∗, node values always increase monotonically (with any heuristic). If the heuris-
tic is perfect, they remain constant on optimal paths.

Michael Kohlhase: Artificial Intelligence 1 177 2025-02-06

A∗ search: f -contours

� Intuition: A∗-search gradually adds “f -contours” (areas of the same f -value) to
the search.

Section 3.5. Informed (Heuristic) Search Strategies 97

O

Z

A

T

L

M

D
C

R

F

P

G

B
U

H

E

V

I

N

380

400

420

S

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f -costs less than or equal to the
contour value.

Figure 3.9; because f is nondecreasing along any path, n′ would have lower f -cost than n
and would have been selected first.

From the two preceding observations, it follows that the sequence of nodes expanded
by A∗ using GRAPH-SEARCH is in nondecreasing order of f(n). Hence, the first goal node
selected for expansion must be an optimal solution because f is the true cost for goal nodes
(which have h= 0) and all later goal nodes will be at least as expensive.

The fact that f -costs are nondecreasing along any path also means that we can draw
contours in the state space, just like the contours in a topographic map. Figure 3.25 showsCONTOUR

an example. Inside the contour labeled 400, all nodes have f(n) less than or equal to 400,
and so on. Then, because A∗ expands the frontier node of lowest f -cost, we can see that an
A∗ search fans out from the start node, adding nodes in concentric bands of increasing f -cost.

With uniform-cost search (A∗ search using h(n) = 0), the bands will be “circular”
around the start state. With more accurate heuristics, the bands will stretch toward the goal
state and become more narrowly focused around the optimal path. If C∗ is the cost of the
optimal solution path, then we can say the following:

• A∗ expands all nodes with f(n) < C∗.

• A∗ might then expand some of the nodes right on the “goal contour” (where f(n) = C∗)
before selecting a goal node.

Completeness requires that there be only finitely many nodes with cost less than or equal to
C∗, a condition that is true if all step costs exceed some finite ε and if b is finite.

Notice that A∗ expands no nodes with f(n) > C∗—for example, Timisoara is not
expanded in Figure 3.24 even though it is a child of the root. We say that the subtree below

Michael Kohlhase: Artificial Intelligence 1 178 2025-02-06

A∗ search: Properties

� Properties or A∗-search:

Completeness Yes (unless there are infinitely many nodes n
with f(n) ≤ f(0))

Time complexity Exponential in [relative error in h × length of
solution]

Space complexity Same as time (variant of BFS)
Optimality Yes

n

6.5. INFORMED SEARCH STRATEGIES 41

� A∗-search expands all (some/no) nodes with f(n) < h∗(n)

� The run-time depends on how well we approximated the real cost h∗ with h.

Michael Kohlhase: Artificial Intelligence 1 179 2025-02-06

6.5.4 Finding Good Heuristics
A Video Nugget covering this subsection can be found at https://fau.tv/clip/id/22021.
Since the availability of admissible heuristics is so important for informed search (particularly for
A∗-search), let us see how such heuristics can be obtained in practice. We will look at an example,
and then derive a general procedure from that.

Admissible heuristics: Example 8-puzzleSection 3.2. Example Problems 71

2

Start State Goal State

1

3 4

6 7

5

1

2

3

4

6

7

8

5

8

Figure 3.4 A typical instance of the 8-puzzle.

• States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

• Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

• Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

• Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

• Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

• Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used asSLIDING-BLOCK

PUZZLES

test problems for new search algorithms in AI. This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2= 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 × 5 board) has around 1025 states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that8-QUEENS PROBLEM

no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.

� Example 6.5.28. Let h1(n) be the number of misplaced tiles in node n.
(h1(S) = 9)

� Example 6.5.29. Let h2(n) be the total Manhattan distance from desired location
of each tile. (h2(S) = 3 + 1 + 2 + 2 + 2 + 3 + 2 + 2 + 3 = 20)

� Observation 6.5.30 (Typical search costs). (IDS =̂ iterative deepening search)

nodes explored IDS A∗(h1) A∗(h2)

d = 14 3,473,941 539 113
d = 24 too many 39,135 1,641

Michael Kohlhase: Artificial Intelligence 1 180 2025-02-06

Actually, the crucial difference between the heuristics h1 and h2 is that – not only in the example
configuration above, but for all configurations – the the value of the latter is larger than that of
the former. We will explore this next.

Dominance

� Definition 6.5.31. Let h1 and h2 be two admissible heuristics we say that h2

dominates h1 if h2(n) ≥ h1(n) for all n.

� Theorem 6.5.32. If h2 dominates h1, then h2 is better for search than h1.

� Proof sketch: If h2 dominates h1, then h2 is “closer to h∗” than h1, which means
better search performance.

Michael Kohlhase: Artificial Intelligence 1 181 2025-02-06

We now try to generalize these insights into (the beginnings of) a general method for obtaining

https://fau.tv/clip/id/22021

42 CHAPTER 6. PROBLEM SOLVING AND SEARCH

admissible heuristics.

Relaxed problems

� Observation: Finding good admissible heuristics is an art!

� Idea: Admissible heuristics can be derived from the exact solution cost of a relaxed
version of the problem.

� Example 6.5.33. If the rules of the 8-puzzle are relaxed so that a tile can move
anywhere, then we get heuristic h1.

� Example 6.5.34. If the rules are relaxed so that a tile can move to any adjacent
square, then we get heuristic h2. (Manhattan distance)

� Definition 6.5.35. Let Π := ⟨S ,A, T , I ,G⟩ be a search problem, then we call
a search problem Pr := ⟨S,Ar, T r, Ir,Gr⟩ a relaxed problem (wrt. Π; or simply
relaxation of Π), iff A ⊆ Ar, T ⊆ T r, I ⊆ Ir, and G ⊆ Gr.

� Lemma 6.5.36. If Pr relaxes Π, then every solution for Π is one for Pr.

� Key point: The optimal solution cost of a relaxed problem is not greater than the
optimal solution cost of the real problem.

Michael Kohlhase: Artificial Intelligence 1 182 2025-02-06

Relaxation means to remove some of the constraints or requirements of the original problem,
so that a solution becomes easy to find. Then the cost of this easy solution can be used as an
optimistic approximation of the problem.

Empirical Performance: A∗ in Path Planning

� Example 6.5.37 (Live Demo vs. Breadth-First Search).

See http://qiao.github.io/PathFinding.js/visual/

� Difference to Breadth-first Search?: That would explore all grid cells in a circle
around the initial state!

Michael Kohlhase: Artificial Intelligence 1 183 2025-02-06

http://qiao.github.io/PathFinding.js/visual/

6.6. LOCAL SEARCH 43

6.6 Local Search
Video Nuggets covering this section can be found at https://fau.tv/clip/id/22050 and
https://fau.tv/clip/id/22051.

Systematic Search vs. Local Search

� Definition 6.6.1. We call a search algorithm systematic, if it considers all states
at some point.

� Example 6.6.2. All tree search algorithms (except pure depth first search) are
systematic. (given reasonable assumptions e.g. about costs.)

� Observation 6.6.3. Systematic search algorithms are complete.

� Observation 6.6.4. In systematic search algorithms there is no limit of the number
of nodes that are kept in memory at any time.

� Alternative: Keep only one (or a few) nodes at a time

� ; no systematic exploration of all options, ; incomplete.

Michael Kohlhase: Artificial Intelligence 1 184 2025-02-06

Local Search Problems

� Idea: Sometimes the path to the solution is irrelevant.

� Example 6.6.5 (8 Queens Problem). Place 8
queens on a chess board, so that no two queens
threaten each other.

� This problem has various solutions (the one of
the right isn’t one of them)

� Definition 6.6.6. A local search algorithm is a
search algorithm that operates on a single state,
the current state (rather than multiple paths).
(advantage: constant space)

� Typically local search algorithms only move to successor of the current state, and
do not retain search paths.

� Applications include: integrated circuit design, factory-floor layout, job-shop schedul-
ing, portfolio management, fleet deployment,. . .

Michael Kohlhase: Artificial Intelligence 1 185 2025-02-06

Local Search: Iterative improvement algorithms

� Definition 6.6.7. The traveling salesman problem (TSP is to find shortest trip
through set of cities such that each city is visited exactly once.

https://fau.tv/clip/id/22050
https://fau.tv/clip/id/22051

44 CHAPTER 6. PROBLEM SOLVING AND SEARCH

� Idea: Start with any complete tour, perform pairwise exchanges

Local Search: Iterative improvement algorithms

I Definition 5.7 (Traveling Salesman Problem). Find shortest trip through set
of cities such that each city is visited exactly once.

I Idea: Start with any complete tour, perform pairwise exchanges

I Definition 5.8 (n-queens problem). Put n queens on n ⇥ n board such that
no two queens in the same row, columns, or diagonal.

I Idea: Move a queen to reduce number of conflicts

Kohlhase: Künstliche Intelligenz 1 189 July 5, 2018

� Definition 6.6.8. The n-queens problem is to put n queens on n× n board such
that no two queen in the same row, columns, or diagonal.

� Idea: Move a queen to reduce number of conflicts

Local Search: Iterative improvement algorithms

I Definition 5.7 (Traveling Salesman Problem). Find shortest trip through set
of cities such that each city is visited exactly once.

I Idea: Start with any complete tour, perform pairwise exchanges

I Definition 5.8 (n-queens problem). Put n queens on n ⇥ n board such that
no two queens in the same row, columns, or diagonal.

I Idea: Move a queen to reduce number of conflicts

Kohlhase: Künstliche Intelligenz 1 189 July 5, 2018

Michael Kohlhase: Artificial Intelligence 1 186 2025-02-06

Hill-climbing (gradient ascent/descent)

� Idea: Start anywhere and go in the direction of the steepest ascent.

� Definition 6.6.9. Hill climbing (also gradient ascent) is a local search algorithm
that iteratively selects the best successor:

procedure Hill−Climbing (problem) /∗ a state that is a local minimum ∗/
local current, neighbor /∗ nodes ∗/
current := Make−Node(Initial−State[problem])
loop

neighbor := <a highest−valued successor of current>
if Value[neighbor] < Value[current] return [current] end if
current := neighbor

end loop
end procedure

� Intuition: Like best first search without memory.

� Works, if solutions are dense and local maxima can be escaped.

Michael Kohlhase: Artificial Intelligence 1 187 2025-02-06

In order to understand the procedure on a more intuitive level, let us consider the following
scenario: We are in a dark landscape (or we are blind), and we want to find the highest hill. The
search procedure above tells us to start our search anywhere, and for every step first feel around,
and then take a step into the direction with the steepest ascent. If we reach a place, where the
next step would take us down, we are finished.

Of course, this will only get us into local maxima, and has no guarantee of getting us into
global ones (remember, we are blind). The solution to this problem is to re-start the search at
random (we do not have any information) places, and hope that one of the random jumps will get
us to a slope that leads to a global maximum.

Example Hill Climbing with 8 Queens

6.6. LOCAL SEARCH 45

� Idea: Consider h =̂ number of
queens that threaten each other.

� Example 6.6.10. An 8-queens state
with heuristic cost estimate h = 17
showing h-values for moving a queen
within its column:

� Problem: The state space has local
minima. e.g. the board on the right
has h = 1 but every successor has
h > 1.

Michael Kohlhase: Artificial Intelligence 1 188 2025-02-06

Hill-climbing

� Problem: Depending on initial
state, can get stuck on local max-
ima/minima and plateaux.

� “Hill-climbing search is like climbing
Everest in thick fog with amnesia”.

Section 4.1. Local Search Algorithms and Optimization Problems 121

If the path to the goal does not matter, we might consider a different class of algo-
rithms, ones that do not worry about paths at all. Local search algorithms operate usingLOCAL SEARCH

a single current node (rather than multiple paths) and generally move only to neighborsCURRENT NODE

of that node. Typically, the paths followed by the search are not retained. Although local
search algorithms are not systematic, they have two key advantages: (1) they use very little
memory—usually a constant amount; and (2) they can often find reasonable solutions in large
or infinite (continuous) state spaces for which systematic algorithms are unsuitable.

In addition to finding goals, local search algorithms are useful for solving pure op-
timization problems, in which the aim is to find the best state according to an objectiveOPTIMIZATION

PROBLEM

function. Many optimization problems do not fit the “standard” search model introduced inOBJECTIVE

FUNCTION

Chapter 3. For example, nature provides an objective function—reproductive fitness—that
Darwinian evolution could be seen as attempting to optimize, but there is no “goal test” and
no “path cost” for this problem.

To understand local search, we find it useful to consider the state-space landscape (asSTATE-SPACE

LANDSCAPE

in Figure 4.1). A landscape has both “location” (defined by the state) and “elevation” (defined
by the value of the heuristic cost function or objective function). If elevation corresponds to
cost, then the aim is to find the lowest valley—a global minimum; if elevation correspondsGLOBAL MINIMUM

to an objective function, then the aim is to find the highest peak—a global maximum. (YouGLOBAL MAXIMUM

can convert from one to the other just by inserting a minus sign.) Local search algorithms
explore this landscape. A complete local search algorithm always finds a goal if one exists;
an optimal algorithm always finds a global minimum/maximum.

current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum. Hill-climbing search modifies
the current state to try to improve it, as shown by the arrow. The various topographic features
are defined in the text.

� Idea: Escape local maxima by allowing some “bad” or random moves.

� Example 6.6.11. local search, simulated annealing, . . .

� Properties: All are incomplete, nonoptimal.

� Sometimes performs well in practice (if (optimal) solutions are dense)

Michael Kohlhase: Artificial Intelligence 1 189 2025-02-06

Recent work on hill climbing algorithms tries to combine complete search with randomization to
escape certain odd phenomena occurring in statistical distribution of solutions.

Simulated annealing (Idea)

� Definition 6.6.12. Ridges are ascending
successions of local maxima.

� Problem: They are extremely difficult to
bv navigate for local search algorithms.

� Idea: Escape local maxima by allowing
some “bad” moves, but gradually decrease
their size and frequency.

124 Chapter 4. Beyond Classical Search

Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of local
maxima that are not directly connected to each other. From each local maximum, all the
available actions point downhill.

Many variants of hill climbing have been invented. Stochastic hill climbing chooses atSTOCHASTIC HILL

CLIMBING

random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes, it finds better solutions. First-choice hill climbing implements stochasticFIRST-CHOICE HILL

CLIMBING

hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.

The hill-climbing algorithms described so far are incomplete—they often fail to find
a goal when one exists because they can get stuck on local maxima. Random-restart hill
climbing adopts the well-known adage, “If at first you don’t succeed, try, try again.” It con-RANDOM-RESTART

HILL CLIMBING

ducts a series of hill-climbing searches from randomly generated initial states,1 until a goal
is found. It is trivially complete with probability approaching 1, because it will eventually
generate a goal state as the initial state. If each hill-climbing search has a probability p of
success, then the expected number of restarts required is 1/p. For 8-queens instances with
no sideways moves allowed, p ≈ 0.14, so we need roughly 7 iterations to find a goal (6 fail-
ures and 1 success). The expected number of steps is the cost of one successful iteration plus
(1−p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways moves,
1/0.94 ≈ 1.06 iterations are needed on average and (1× 21)+ (0.06/0.94)× 64 ≈ 25 steps.
For 8-queens, then, random-restart hill climbing is very effective indeed. Even for three mil-
lion queens, the approach can find solutions in under a minute.2

1 Generating a random state from an implicitly specified state space can be a hard problem in itself.
2 Luby et al. (1993) prove that it is best, in some cases, to restart a randomized search algorithm after a particular,
fixed amount of time and that this can be much more efficient than letting each search continue indefinitely.
Disallowing or limiting the number of sideways moves is an example of this idea.

� Annealing is the process of heating steel and let it cool gradually to give it time to

46 CHAPTER 6. PROBLEM SOLVING AND SEARCH

grow an optimal cristal structure.

� Simulated annealing is like shaking a ping pong ball occasionally on a bumpy surface
to free it. (so it does not get stuck)

� Devised by Metropolis et al for physical process modelling [Met+53]

� Widely used in VLSI layout, airline scheduling, etc.

Michael Kohlhase: Artificial Intelligence 1 190 2025-02-06

Simulated annealing (Implementation)

� Definition 6.6.13. The following algorithm is called simulated annealing:

procedure Simulated−Annealing (problem,schedule) /∗ a solution state ∗/
local node, next /∗ nodes ∗/
local T /∗ a ‘‘temperature’’ controlling prob.~of downward steps ∗/
current := Make−Node(Initial−State[problem])
for t :=1 to ∞
T := schedule[t]

if T = 0 return current end if
next := <a randomly selected successor of current>
∆(E) := Value[next]−Value[current]
if ∆(E) > 0 current := next
else
current := next <only with probability> e∆(E)/T

end if
end for

end procedure

A schedule is a mapping from time to “temperature”.

Michael Kohlhase: Artificial Intelligence 1 191 2025-02-06

Properties of simulated annealing

� At fixed “temperature” T , state occupation probability reaches Boltzman distribu-
tion

p(x) = αe
E(x)
kT

T decreased slowly enough ; always reach best state x∗ because

e
E(x∗)
kT

e
E(x)
kT

= e
E(x∗)−E(x)

kT ≫ 1

for small T .

� Question: Is this necessarily an interesting guarantee?

Michael Kohlhase: Artificial Intelligence 1 192 2025-02-06

6.6. LOCAL SEARCH 47

Local beam search

� Definition 6.6.14. Local beam search is a search algorithm that keep k states
instead of 1 and chooses the top k of all their successors.

� Observation: Local beam search is not the same as k searches run in parallel!
(Searches that find good states recruit other searches to join them)

� Problem: Quite often, all k searches end up on the same local hill!

� Idea: Choose k successors randomly, biased towards good ones. (Observe the
close analogy to natural selection!)

Michael Kohlhase: Artificial Intelligence 1 193 2025-02-06

Genetic algorithms (very briefly)

� Definition 6.6.15. A genetic algorithm is a variant of local beam search that
generates successors by

� randomly modifying states (mutation)

� mixing pairs of states (sexual reproduction or crossover)

to optimize a fitness function. (survival of the fittest)

� Example 6.6.16. Generating successors for 8 queens
Section 4.1. Local Search Algorithms and Optimization Problems 127

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

Figure 4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for
mating in (c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Like beam searches, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.6(b)–(e). In (b),
each state is rated by the objective function, or (in GA terminology) the fitness function. AFITNESS FUNCTION

fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), two pairs are selected at random for reproduction, in accordance with the prob-

Michael Kohlhase: Artificial Intelligence 1 194 2025-02-06

Genetic algorithms (continued)

� Problem: Genetic algorithms require states encoded as strings.

� Crossover only helps iff substrings are meaningful components.

� Example 6.6.17 (Evolving 8 Queens). First crossover

48 CHAPTER 6. PROBLEM SOLVING AND SEARCH

Section 4.1. Local Search Algorithms and Optimization Problems 127

(a)

Initial Population

(b)

Fitness Function

(c)

Selection

(d)

Crossover

(e)

Mutation

24

23

20

11

29%

31%

26%

14%

32752411

24748552

32752411

24415124

32748552

24752411

32752124

24415411

32252124

24752411

32748152

24415417

24748552

32752411

24415124

32543213

Figure 4.6 The genetic algorithm, illustrated for digit strings representing 8-queens states.
The initial population in (a) is ranked by the fitness function in (b), resulting in pairs for
mating in (c). They produce offspring in (d), which are subject to mutation in (e).

+ =

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The shaded columns are lost in the crossover step and the
unshaded columns are retained.

Like beam searches, GAs begin with a set of k randomly generated states, called the
population. Each state, or individual, is represented as a string over a finite alphabet—mostPOPULATION

INDIVIDUAL commonly, a string of 0s and 1s. For example, an 8-queens state must specify the positions of
8 queens, each in a column of 8 squares, and so requires 8× log2 8= 24 bits. Alternatively,
the state could be represented as 8 digits, each in the range from 1 to 8. (We demonstrate later
that the two encodings behave differently.) Figure 4.6(a) shows a population of four 8-digit
strings representing 8-queens states.

The production of the next generation of states is shown in Figure 4.6(b)–(e). In (b),
each state is rated by the objective function, or (in GA terminology) the fitness function. AFITNESS FUNCTION

fitness function should return higher values for better states, so, for the 8-queens problem
we use the number of nonattacking pairs of queens, which has a value of 28 for a solution.
The values of the four states are 24, 23, 20, and 11. In this particular variant of the genetic
algorithm, the probability of being chosen for reproducing is directly proportional to the
fitness score, and the percentages are shown next to the raw scores.

In (c), two pairs are selected at random for reproduction, in accordance with the prob-

� Note: Genetic algorithms ̸= evolution: e.g., real genes also encode replication
machinery!

Michael Kohlhase: Artificial Intelligence 1 195 2025-02-06

Chapter 7

Adversarial Search for Game Playing

A Video Nugget covering this chapter can be found at https://fau.tv/clip/id/22079.

7.1 Introduction
Video Nuggets covering this section can be found at https://fau.tv/clip/id/22060 and
https://fau.tv/clip/id/22061.

The Problem

� The Problem of Game-Play: cf. ??

� Example 7.1.1.

� Definition 7.1.2. Adversarial search =̂ Game playing against an opponent.

Michael Kohlhase: Artificial Intelligence 1 196 2025-02-06

Why Game Playing?

� What do you think?

49

https://fau.tv/clip/id/22079
https://fau.tv/clip/id/22060
https://fau.tv/clip/id/22061

50 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

� Playing a game well clearly requires a form of “intelligence”.

� Games capture a pure form of competition between opponents.

� Games are abstract and precisely defined, thus very easy to formalize.

� Game playing is one of the oldest sub-areas of AI (ca. 1950).

� The dream of a machine that plays chess is, indeed, much older than AI!

“Schachtürke” (1769) “El Ajedrecista” (1912)

Michael Kohlhase: Artificial Intelligence 1 197 2025-02-06

“Game” Playing? Which Games?

� . . . sorry, we’re not gonna do soccer here.

� Definition 7.1.3 (Restrictions). A game in the sense of AI-1 is one where

� Game state discrete, number of game state finite.

� Finite number of possible moves.

� The game state is fully observable.

� The outcome of each move is deterministic.

� Two players: Max and Min.

� Turn-taking: It’s each player’s turn alternatingly. Max begins.

� Terminal game states have a utility u. Max tries to maximize u, Min tries to
minimize u.

� In that sense, the utility for Min is the exact opposite of the utility for Max
(“zero sum”).

� There are no infinite runs of the game (no matter what moves are chosen, a
terminal state is reached after a finite number of moves).

Michael Kohlhase: Artificial Intelligence 1 198 2025-02-06

An Example Game

7.1. INTRODUCTION 51

� Game states: Positions of figures.

� Moves: Given by rules.

� Players: white (Max), black (Min).

� Terminal states: checkmate.

� Utility of terminal states, e.g.:

� +100 if black is checkmated.

� 0 if stalemate.

� −100 if white is checkmated.

Michael Kohlhase: Artificial Intelligence 1 199 2025-02-06

“Game” Playing? Which Games Not?

� Soccer (sorry guys; not even RoboCup)

� Important types of games that we don’t tackle here:

� Chance. (E.g., backgammon)

� More than two players. (E.g., Halma)

� Hidden information. (E.g., most card games)

� Simultaneous moves. (E.g., Diplomacy)

� Not zero-sum, i.e., outcomes may be beneficial (or detrimental) for both players.
(cf. Game theory: Auctions, elections, economy, politics, . . .)

� Many of these more general game types can be handled by similar/extended algo-
rithms.

Michael Kohlhase: Artificial Intelligence 1 200 2025-02-06

(A Brief Note On) Formalization

� Definition 7.1.4. An adversarial search problem is a search problem ⟨S ,A, T , I ,G⟩,
where

1. S = SMax ⊎ SMin ⊎ G and A = AMax ⊎ AMin

2. For a ∈ AMax, if s a−→ s′ then s ∈ SMax and s′ ∈ (SMin ∪ G).
3. For a ∈ AMin, if s a−→ s′ then s ∈ SMin and s′ ∈ (SMax ∪ G).

together with a game utility function u : G → R. (the “score” of the game)

� Definition 7.1.5 (Commonly used terminology).
position =̂ state, move =̂ action, end state =̂ terminal state =̂ goal state.

� Remark: A round of the game – one move Max, one move Min – is often referred
to as a “move”, and individual actions as “half-moves” (we don’t in AI-1)

52 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Michael Kohlhase: Artificial Intelligence 1 201 2025-02-06

Why Games are Hard to Solve: I

� What is a “solution” here?

� Definition 7.1.6. Let Θ be an adversarial search problem, and let X ∈ {Max,Min}.
A strategy for X is a function σX : SX →AX so that a is applicable to s whenever
σX(s) = a.

� We don’t know how the opponent will react, and need to prepare for all possibilities.

� Definition 7.1.7. A strategy is called optimal if it yields the best possible utility
for X assuming perfect opponent play (not formalized here).

� Problem: In (almost) all games, computing an optimal strategy is infeasible.
(state/search tree too huge)

� Solution: Compute the next move “on demand”, given the current state instead.

Michael Kohlhase: Artificial Intelligence 1 202 2025-02-06

Why Games are hard to solve II

� Example 7.1.8. Number of reachable states in chess: 1040.

� Example 7.1.9. Number of reachable states in go: 10100.

� It’s even worse: Our algorithms here look at search trees (game trees), no
duplicate pruning.

� Example 7.1.10.

� Chess without duplicate pruning: 35100 ≃ 10154.

� Go without duplicate pruning: 200300 ≃ 10690.

Michael Kohlhase: Artificial Intelligence 1 203 2025-02-06

How To Describe a Game State Space?

� Like for classical search problems, there are three possible ways to describe a game:
blackbox/API description, declarative description, explicit game state space.

� Question: Which ones do humans use?

� Explicit ≈ Hand over a book with all 1040 moves in chess.

� Blackbox ≈ Give possible chess moves on demand but don’t say how they are
generated.

� Answer: Declarative!
With “game description language” =̂ natural language.

7.2. MINIMAX SEARCH 53

Michael Kohlhase: Artificial Intelligence 1 204 2025-02-06

Specialized vs. General Game Playing

� And which game descriptions do computers use?

� Explicit: Only in illustrations.

� Blackbox/API: Assumed description in (This Chapter)

� Method of choice for all those game players out there in the market (Chess
computers, video game opponents, you name it).

� Programs designed for, and specialized to, a particular game.
� Human knowledge is key: evaluation functions (see later), opening databases

(chess!!), end game databases.

� Declarative: General game playing, active area of research in AI.

� Generic game description language (GDL), based on logic.
� Solvers are given only “the rules of the game”, no other knowledge/input

whatsoever (cf. ??).
� Regular academic competitions since 2005.

Michael Kohlhase: Artificial Intelligence 1 205 2025-02-06

Our Agenda for This Chapter

� Minimax Search: How to compute an optimal strategy?

� Minimax is the canonical (and easiest to understand) algorithm for solving
games, i.e., computing an optimal strategy.

� Evaluation functions: But what if we don’t have the time/memory to solve the
entire game?

� Given limited time, the best we can do is look ahead as far as we can. Evaluation
functions tell us how to evaluate the leaf states at the cut off.

� Alphabeta search: How to prune unnecessary parts of the tree?

� Often, we can detect early on that a particular action choice cannot be part of
the optimal strategy. We can then stop considering this part of the game tree.

� State of the art: What is the state of affairs, for prominent games, of computer
game playing vs. human experts?

� Just FYI (not part of the technical content of this course).

Michael Kohlhase: Artificial Intelligence 1 206 2025-02-06

7.2 Minimax Search

A Video Nugget covering this section can be found at https://fau.tv/clip/id/22061.

https://fau.tv/clip/id/22061

54 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

“Minimax”?

� We want to compute an optimal strategy for player “Max”.

� In other words: We are Max, and our opponent is Min.

� Recall: We compute the strategy offline, before the game begins.

During the game, whenever it’s our turn, we just look up the corresponding action.

� Idea: Use tree search using an extension û of the utility function u to inner nodes.
û is computed recursively from u during search:

� Max attempts to maximize û(s) of the terminal states reachable during play.

� Min attempts to minimize û(s).

� The computation alternates between minimization and maximization ; hence “min-
imax”.

Michael Kohlhase: Artificial Intelligence 1 207 2025-02-06

Example Tic-Tac-Toe

� Example 7.2.1. A full game tree for tic-tac-toe

Section 5.2. Optimal Decisions in Games 163

until we reach leaf nodes corresponding to terminal states such that one player has three in
a row or all the squares are filled. The number on each leaf node indicates the utility value
of the terminal state from the point of view of MAX; high values are assumed to be good for
MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9! = 362, 880 terminal
nodes. But for chess there are over 1040 nodes, so the game tree is best thought of as a
theoretical construct that we cannot realize in the physical world. But regardless of the size
of the game tree, it is MAX’s job to search for a good move. We use the term search tree for aSEARCH TREE

tree that is superimposed on the full game tree, and examines enough nodes to allow a player
to determine what move to make.

XX

XX

X

X

X

XX

X X

O

OX O

O

X OX O

X

.

. . .

. . .

. . .

XX

–1 0 +1

XX

X XO

X XOX XO

O

O

X

X XO

OO

O O X X

MAX (X)

MIN (O)

MAX (X)

MIN (O)

TERMINAL

Utility

Figure 5.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial
state, and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

5.2 OPTIMAL DECISIONS IN GAMES

In a normal search problem, the optimal solution would be a sequence of actions leading to
a goal state—a terminal state that is a win. In adversarial search, MIN has something to say
about it. MAX therefore must find a contingent strategy, which specifies MAX’s move inSTRATEGY

the initial state, then MAX’s moves in the states resulting from every possible response by

� current player and action marked on the left.

� Last row: terminal positions with their utility.

Michael Kohlhase: Artificial Intelligence 1 208 2025-02-06

Minimax: Outline

� We max, we min, we max, we min . . .

1. Depth first search in game tree, with Max in the root.

7.2. MINIMAX SEARCH 55

2. Apply game utility function to terminal positions.

3. Bottom-up for each inner node n in the search tree, compute the utility û(n) of
n as follows:

� If it’s Max’s turn: Set û(n) to the maximum of the utilities of n’s successor
nodes.

� If it’s Min’s turn: Set û(n) to the minimum of the utilities of n’s successor
nodes.

4. Selecting a move for Max at the root: Choose one move that leads to a successor
node with maximal utility.

Michael Kohlhase: Artificial Intelligence 1 209 2025-02-06

Minimax: Example

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

� Blue numbers: Utility function u applied to terminal positions.

� Red numbers: Utilities of inner nodes, as computed by the minimax algorithm.

Michael Kohlhase: Artificial Intelligence 1 210 2025-02-06

The Minimax Algorithm: Pseudo-Code

� Definition 7.2.2. The minimax algorithm (often just called minimax) is given by
the following functions whose argument is a state s ∈ SMax, in which Max is to
move.
function Minimax−Decision(s) returns an action
v := Max−Value(s)
return an action yielding value v in the previous function call

function Max−Value(s) returns a utility value
if Terminal−Test(s) then return u(s)
v := −∞
for each a ∈ Actions(s) do
v := max(v,Min−Value(ChildState(s,a)))

return v

function Min−Value(s) returns a utility value

56 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

if Terminal−Test(s) then return u(s)
v := +∞
for each a ∈ Actions(s) do
v := min(v,Max−Value(ChildState(s,a)))

return v

We call nodes, where Max/Min acts Max-nodes/Min-nodes.

Michael Kohlhase: Artificial Intelligence 1 211 2025-02-06

Minimax: Example, Now in Detail

Max −∞

Max −∞

Min ∞

Max −∞

Min ∞

3

Max −∞

Min 3

3

7.2. MINIMAX SEARCH 57

Max −∞

Min 3

3 12

Max −∞

Min 3

3 12 8

Max 3

Min 3

3 12 8

Max 3

Min 3

3 12 8

Min ∞

58 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max 3

Min 3

3 12 8

Min ∞

2

Max 3

Min 3

3 12 8

Min ∞

2

Max 3

Min 3

3 12 8

Min 2

2 4

Max 3

Min 3

3 12 8

Min 2

2 4 6

7.2. MINIMAX SEARCH 59

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min ∞

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min ∞

14

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 14

14

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 5

14 5

60 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

� So which action for Max is returned?

� Leftmost branch.

� Note: The maximal possible pay-off is higher for the rightmost branch, but as-
suming perfect play of Min, it’s better to go left. (Going right would be “relying on
your opponent to do something stupid”.)

Michael Kohlhase: Artificial Intelligence 1 212 2025-02-06

Minimax, Pro and Contra

� Minimax advantages:

� Minimax is the simplest possible (reasonable) search algorithm for games.

7.3. EVALUATION FUNCTIONS 61

(If any of you sat down, prior to this lecture, to implement a Tic-Tac-Toe player,
chances are you either looked this up on Wikipedia, or invented it in the process.)

� Returns an optimal action, assuming perfect opponent play.

� No matter how the opponent plays, the utility of the terminal state reached
will be at least the value computed for the root.

� If the opponent plays perfectly, exactly that value will be reached.

� There’s no need to re-run minimax for every game state: Run it once, offline
before the game starts. During the actual game, just follow the branches taken
in the tree. Whenever it’s your turn, choose an action maximizing the value of
the successor states.

� Minimax disadvantages: It’s completely infeasible in practice.

� When the search tree is too large, we need to limit the search depth and apply
an evaluation function to the cut off states.

Michael Kohlhase: Artificial Intelligence 1 213 2025-02-06

7.3 Evaluation Functions
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22064.
We now address the problem that minimax is infeasible in practice. As so often, the solution is
to eschew optimal strategies and to approximate them. In this case, instead of a computed utility
function, we estimate one that is easy to compute: the evaluation function.

Evaluation Functions for Minimax

� Problem: Search tree are too big to search through in minimax.

� Solution: We impose a search depth limit (also called horizon) d, and apply an
evaluation function to the cut-off states, i.e. states s with dp(s) = d.

� Definition 7.3.1. An evaluation function f maps game states to numbers:

� f(s) is an estimate of the actual value of s (as would be computed by unlimited-
depth minimax for s).

� If cut-off state is terminal: Just use û instead of f .

� Analogy to heuristic functions (cf. ??): We want f to be both (a) accurate and
(b) fast.

� Another analogy: (a) and (b) are in contradiction ; need to trade-off accuracy
against overhead.

� In typical game playing algorithms today, f is inaccurate but very fast.
(usually no good methods known for computing accurate f)

Michael Kohlhase: Artificial Intelligence 1 214 2025-02-06

Example Revisited: Minimax With Depth Limit d = 2

https://fau.tv/clip/id/22064

62 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

� Blue numbers: evaluation function f , applied to the cut-off states at d = 2.

� Red numbers: utilities of inner node, as computed by minimax using f .

Michael Kohlhase: Artificial Intelligence 1 215 2025-02-06

Example Chess

� Evaluation function in chess:

� Material: Pawn 1, Knight 3, Bishop 3, Rook 5,
Queen 9.

� 3 points advantage ; safe win.

� Mobility: How many fields do you control?

� King safety, Pawn structure, . . .

� Note how simple this is! (probably is not how
Kasparov evaluates his positions)

Michael Kohlhase: Artificial Intelligence 1 216 2025-02-06

Linear Evaluation Functions

� Problem: How to come up with evaluation functions?

� Definition 7.3.2. A common approach is to use a weighted linear function for f ,
i.e. given a sequence of features f i : S→R and a corresponding sequence of weights
wi ∈ R, f is of the form f(s):=w1 · f1(s) + w2 · f2(s) + · · ·+ wn · fn(s)

� Problem: How to obtain these weighted linear functions?

� Weights wi can be learned automatically. (learning agent)

� The features f i, however, have to be designed by human experts.

� Note: Very fast, very simplistic.

� Observation: Can be computed incrementally: In transition s
a−→ s′, adapt f(s)

to f(s′) by considering only those features whose values have changed.

7.3. EVALUATION FUNCTIONS 63

Michael Kohlhase: Artificial Intelligence 1 217 2025-02-06

This assumes that the features (their contribution towards the actual value of the state) are
independent. That’s usually not the case (e.g. the value of a rook depends on the pawn struc-
ture).

The Horizon Problem

� Problem: Critical aspects of the game can be cut off by the horizon.
We call this the horizon problem.

� Example 7.3.3.

Black to move

� Who’s gonna win here?

� White wins (pawn cannot be prevented from
becoming a queen.)

� Black has a +4 advantage in material, so if
we cut-off here then our evaluation function
will say “100%, black wins”.

� The loss for black is “beyond our horizon” un-
less we search extremely deeply: black can
hold off the end by repeatedly giving check to
white’s king.

Michael Kohlhase: Artificial Intelligence 1 218 2025-02-06

So, How Deeply to Search?

� Goal: In given time, search as deeply as possible.

� Problem: Very difficult to predict search running time. (need an anytime
algorithm)

� Solution: Iterative deepening search.

� Search with depth limit d = 1, 2, 3, . . .

� When time is up: return result of deepest completed search.

� Definition 7.3.4 (Better Solution). The quiescent search algorithm uses a dy-
namically adapted search depth d: It searches more deeply in unquiet positions,
where value of evaluation function changes a lot in neighboring states.

� Example 7.3.5. In quiescent search for chess:

� piece exchange situations (“you take mine, I take yours”) are very unquiet

� ; Keep searching until the end of the piece exchange is reached.

Michael Kohlhase: Artificial Intelligence 1 219 2025-02-06

64 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

7.4 Alpha-Beta Search

We have seen that evaluation functions can overcome the combinatorial explosion induced by
minimax search. But we can do even better: certain parts of the minimax search tree can be safely
ignored, since we can prove that they will only sub-optimal results. We discuss the technique of
alphabeta-pruning in detail as an example of such pruning methods in search algorithms.

When We Already Know We Can Do Better Than This

Max (A)

Max
value: m

Min
value: n

Min (B)

� Say n > m.

� By choosing to go to the left in search
node (A), Max already can get utility
of at least n in this part of the game.

� So, if “later on” (further down in the
same subtree), in search node (B) we
already know that Min can force Max
to get value m < n.

� Then Max will play differently in (A)
so we will never actually get to (B).

Michael Kohlhase: Artificial Intelligence 1 220 2025-02-06

Alpha Pruning: Basic Idea

� Question: Can we save some work here?

Max 3

Min 3

3 12 8

Min 2

2 4 6

Min 2

14 5 2

Michael Kohlhase: Artificial Intelligence 1 221 2025-02-06

7.4. ALPHA-BETA SEARCH 65

Alpha Pruning: Basic Idea (Continued)

� Answer: Yes! We already know at this point that the middle action won’t be
taken by Max.

Max ≥ 3

Min 3

3 12 8

Min ≤ 2

2

Min

� Idea: We can use this to prune the search tree ; better algorithm

Michael Kohlhase: Artificial Intelligence 1 222 2025-02-06

Alpha Pruning

� Definition 7.4.1. For each node n in a minimax search tree, the alpha value α(n)
is the highest Max-node utility that search has encountered on its path from the
root to n.

� Example 7.4.2 (Computing alpha values).

Max −∞;α = −∞

Max −∞;α = −∞

Min ∞;α = −∞

Max −∞;α = −∞

Min ∞;α = −∞

3

66 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max −∞;α = −∞

Min 3;α = −∞

3

Max −∞;α = −∞

Min 3;α = −∞

3 12

Max −∞;α = −∞

Min 3;α = −∞

3 12 8

Max 3;α = 3

Min 3;α = −∞

3 12 8

7.4. ALPHA-BETA SEARCH 67

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min ∞;α = 3

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min ∞;α = 3

2

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min 2;α = 3

2

Max 3;α = 3

Min 3;α = −∞

3 12 8

Min 2;α = 3

2

Min

� How to use α?: In a Min-node n, if û(n′) ≤ α(n) for one of the successors, then
stop considering n. (pruning out its remaining successors)

68 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Michael Kohlhase: Artificial Intelligence 1 223 2025-02-06

Alpha-Beta Pruning

� Recall:

� What is α: For each search node n, the highest Max-node utility that search
has encountered on its path from the root to n.

� How to use α: In a Min-node n, if one of the successors already has utility
≤ α(n), then stop considering n. (Pruning out its remaining successors)

� Idea: We can use a dual method for Min!

� Definition 7.4.3. For each node n in a minimax search tree, the beta value β(n) is
the highest Min-node utility that search has encountered on its path from the root
to n.

� How to use β: In a Max-node n, if one of the successors already has utility
≥ β(n), then stop considering n. (pruning out its remaining successors)

� . . . and of course we can use α and β together! ; alphabeta-pruning

Michael Kohlhase: Artificial Intelligence 1 224 2025-02-06

Alpha-Beta Search: Pseudocode

� Definition 7.4.4. The alphabeta search algorithm is given by the following pseu-
docode
function Alpha−Beta−Search (s) returns an action

v := Max−Value(s, −∞, +∞)
return an action yielding value v in the previous function call

function Max−Value(s, α, β) returns a utility value
if Terminal−Test(s) then return u(s)
v:= −∞
for each a ∈ Actions(s) do
v := max(v,Min−Value(ChildState(s,a), α, β))
α := max(α, v)
if v ≥ β then return v /∗ Here: v ≥ β ⇔ α ≥ β ∗/

return v

function Min−Value(s, α, β) returns a utility value
if Terminal−Test(s) then return u(s)
v := +∞
for each a ∈ Actions(s) do

v := min(v,Max−Value(ChildState(s,a), α, β))
β := min(β, v)
if v ≤ α then return v /∗ Here: v ≤ α ⇔ α ≥ β ∗/

return v

=̂ Minimax (slide 211) + α/β book-keeping and pruning.

Michael Kohlhase: Artificial Intelligence 1 225 2025-02-06

Note: Note that α only gets assigned a value in Max-nodes, and β only gets assigned a value in
Min-nodes.

7.4. ALPHA-BETA SEARCH 69

Alpha-Beta Search: Example

� Notation: v; [α, β]

Max −∞; [−∞,∞]

Max −∞; [−∞,∞]

Min ∞; [−∞,∞]

Max −∞; [−∞,∞]

Min ∞; [−∞,∞]

3

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3 12

70 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max −∞; [−∞,∞]

Min 3; [−∞, 3]

3 12 8

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min ∞; [3,∞]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min ∞; [3,∞]

2

7.4. ALPHA-BETA SEARCH 71

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

14

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 14; [3, 14]

14

72 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 14; [3, 14]

14 5

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

14 5

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

14 5 2

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 2; [3, 2]

14 5 2

� Note: We could have saved work by choosing the opposite order for the successors

7.4. ALPHA-BETA SEARCH 73

of the rightmost Min-node.
Choosing the best moves (for each of Max and Min) first yields more pruning!

Michael Kohlhase: Artificial Intelligence 1 226 2025-02-06

Alpha-Beta Search: Modified Example

� Showing off some actual β pruning:

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min ∞; [3,∞]

5

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5

74 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max −∞; [3, 5]

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max −∞; [3, 5]

14

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max 14; [14, 5]

14

7.4. ALPHA-BETA SEARCH 75

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 5; [3, 5]

5
Max 14; [14, 5]

14

2

Max 3; [3,∞]

Min 3; [−∞, 3]

3 12 8

Min 2; [3, 2]

2

Min 2; [3, 2]

5
Max 14; [14, 5]

14

2

Michael Kohlhase: Artificial Intelligence 1 227 2025-02-06

How Much Pruning Do We Get?

� Choosing the best moves first yields most pruning in alphabeta search.

� The maximizing moves for Max, the minimizing moves for Min.

� Observation: Assuming game tree with branching factor b and depth limit d:

� Minimax would have to search bd nodes.

� Best case: If we always choose the best moves first, then the search tree is
reduced to b

d
2 nodes!

� Practice: It is often possible to get very close to the best case by simple move-
ordering methods.

� Example 7.4.5 (Chess).

76 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

� Move ordering: Try captures first, then threats, then forward moves, then back-
ward moves.

� From 35d to 35
d
2 . E.g., if we have the time to search a billion (109) nodes, then

minimax looks ahead d = 6 moves, i.e., 3 rounds (white-black) of the game.
Alpha-beta search looks ahead 6 rounds.

Michael Kohlhase: Artificial Intelligence 1 228 2025-02-06

7.5 Monte-Carlo Tree Search (MCTS)
Video Nuggets covering this section can be found at https://fau.tv/clip/id/22259 and
https://fau.tv/clip/id/22262.
We will now come to the most visible game-play program in recent times: The AlphaGo system

for the game of go. This has been out of reach of the state of the art (and thus for alphabeta
search) until 2016. This challenge was cracked by a different technique, which we will discuss in
this section.

And now . . .

� AlphaGo = Monte Carlo tree search (AI-1) + neural networks (AI-2)

CC-BY-SA: Buster Benson@ https://www.flickr.com/photos/erikbenson/25717574115

Michael Kohlhase: Artificial Intelligence 1 229 2025-02-06

Monte-Carlo Tree Search: Basic Ideas

� Observation: We do not always have good evaluation functions.

� Definition 7.5.1. For Monte Carlo sampling we evaluate actions through sampling.

� When deciding which action to take on game state s:

while time not up do
select action a applicable to s
run a random sample from a until terminal state t

return an a for s with maximal average u(t)

� Definition 7.5.2. For the Monte Carlo tree search algorithm (MCTS) we maintain
a search tree T , the MCTS tree.

https://fau.tv/clip/id/22259
https://fau.tv/clip/id/22262
https://www.flickr.com/photos/erikbenson/25717574115

7.5. MONTE-CARLO TREE SEARCH (MCTS) 77

while time not up do
apply actions within T to select a leaf state s′

select action a′ applicable to s′, run random sample from a′

add s′ to T , update averages etc.
return an a for s with maximal average u(t)
When executing a, keep the part of T below a.

� Compared to alphabeta search: no exhaustive enumeration.

� Pro: running time & memory.

� Contra: need good guidance how to select and sample.

Michael Kohlhase: Artificial Intelligence 1 230 2025-02-06

This looks only at a fraction of the search tree, so it is crucial to have good guidance where to go,
i.e. which part of the search tree to look at.

Monte-Carlo Sampling: Illustration of Sampling

� Idea: Sample the search tree keeping track of the average utilities.

� Example 7.5.3 (Single-player, for simplicity). (with adversary, distinguish
max/min nodes)

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0 Expan-
sions: 0, 1, 0
avg. reward: 0, 10, 0 Ex-
pansions: 1, 1, 0
avg. reward: 70, 10, 0 Ex-
pansions: 1, 1, 1
avg. reward: 70, 10, 40 Ex-
pansions: 1, 1, 2
avg. reward: 70, 10, 35 Ex-
pansions: 2, 1, 2
avg. reward: 60, 10, 35 Ex-
pansions: 2, 2, 2
avg. reward: 60, 55, 35 Ex-
pansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 0, 0
avg. reward: 0, 0

Michael Kohlhase: Artificial Intelligence 1 231 2025-02-06

The sampling goes middle, left, right, right, left, middle. Then it stops and selects the highest-
average action, 60, left. After first sample, when values in initial state are being updated, we
have the following “expansions” and “avg. reward fields”: small number of expansions favored for
exploration: visit parts of the tree rarely visited before, what is out there? avg. reward: high
values favored for exploitation: focus on promising parts of the search tree.

78 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Monte-Carlo Tree Search: Building the Tree

� Idea: We can save work by building the tree as we go along.

� Example 7.5.4 (Redoing the previous example).

40

70 50 30

100 10

Expansions: 0, 0, 0
avg. reward: 0, 0, 0 Expan-
sions: 0, 1, 0
avg. reward: 0, 10, 0 Expan-
sions: 1, 1, 0
avg. reward: 70, 10, 0 Ex-
pansions: 1, 1, 1
avg. reward: 70, 10, 40 Ex-
pansions: 1, 1, 2
avg. reward: 70, 10, 35 Ex-
pansions: 2, 1, 2
avg. reward: 60, 10, 35 Ex-
pansions: 2, 2, 2
avg. reward: 60, 55, 35 Ex-
pansions: 2, 2, 2
avg. reward: 60, 55, 35

Expansions: 1, 0
avg. reward: 70, 0 Ex-
pansions: 2, 0
avg. reward: 60, 0

Expansions: 1
avg. reward: 10
Expansions: 2
avg. reward: 55 Expansions: 1, 0

avg. reward: 40, 0 Ex-
pansions: 2, 0
avg. reward: 35, 0

Expansions: 0, 1
avg. reward: 0, 50

Expansions: 1
avg. reward: 100

Expansions: 0, 1
avg. reward: 0, 30

Michael Kohlhase: Artificial Intelligence 1 232 2025-02-06

This is the exact same search as on previous slide, but incrementally building the search tree, by
always keeping the first state of the sample. The first three iterations middle, left, right, go to
show the tree extension; do point out here that, like the root node, the nodes added to the tree
have expansions and avg reward counters for every applicable action. Then in next iteration right,
after 30 leaf node was found, an important thing is that the averages get updated *along the entire
path*, i.e., not only in the root as we did before, but also in the nodes along the way. After all
six iterations have been done, as before we select the action left, value 60; but we keep the part
of the tree below that action, “saving relevant work already done before”.

How to Guide the Search in MCTS?

� How to sample?: What exactly is “random”?

� Classical formulation: balance exploitation vs. exploration.

� Exploitation: Prefer moves that have high average already (interesting regions
of state space)

� Exploration: Prefer moves that have not been tried a lot yet (don’t overlook
other, possibly better, options)

� UCT: “Upper Confidence bounds applied to Trees” [KS06].

7.5. MONTE-CARLO TREE SEARCH (MCTS) 79

� Inspired by Multi-Armed Bandit (as in: Casino) problems.

� Basically a formula defining the balance. Very popular (buzzword).

� Recent critics (e.g. [FD14]): Exploitation in search is very different from the
Casino, as the “accumulated rewards” are fictitious (we’re only thinking about
the game, not actually playing and winning/losing all the time).

Michael Kohlhase: Artificial Intelligence 1 233 2025-02-06

AlphaGo: Overview

� Definition 7.5.5 (Neural Networks in AlphaGo).

� Policy networks: Given a state s, output a probability distribution over the
actions applicable in s.

� Value networks: Given a state s, output a number estimating the game value
of s.

� Combination with MCTS:

� Policy networks bias the action choices within the MCTS tree (and hence the
leaf state selection), and bias the random samples.

� Value networks are an additional source of state values in the MCTS tree, along
with the random samples.

� And now in a little more detail

Michael Kohlhase: Artificial Intelligence 1 234 2025-02-06

Neural Networks in AlphaGo

� Neural network training pipeline and architecture:

2 8 J A N U A R Y 2 0 1 6 | V O L 5 2 9 | N A T U R E | 4 8 5

ARTICLE RESEARCH

sampled state-action pairs (s, a), using stochastic gradient ascent to
maximize the likelihood of the human move a selected in state s

∆σ
σ

∝
∂ (|)

∂
σp a slog

We trained a 13-layer policy network, which we call the SL policy
network, from 30 million positions from the KGS Go Server. The net-
work predicted expert moves on a held out test set with an accuracy of
57.0% using all input features, and 55.7% using only raw board posi-
tion and move history as inputs, compared to the state-of-the-art from
other research groups of 44.4% at date of submission24 (full results in
Extended Data Table 3). Small improvements in accuracy led to large
improvements in playing strength (Fig. 2a); larger networks achieve
better accuracy but are slower to evaluate during search. We also
trained a faster but less accurate rollout policy pπ(a|s), using a linear
softmax of small pattern features (see Extended Data Table 4) with
weights π; this achieved an accuracy of 24.2%, using just 2 μs to select
an action, rather than 3 ms for the policy network.

Reinforcement learning of policy networks
The second stage of the training pipeline aims at improving the policy
network by policy gradient reinforcement learning (RL)25,26. The RL
policy network pρ is identical in structure to the SL policy network,

and its weights ρ are initialized to the same values, ρ = σ. We play
games between the current policy network pρ and a randomly selected
previous iteration of the policy network. Randomizing from a pool
of opponents in this way stabilizes training by preventing overfitting
to the current policy. We use a reward function r(s) that is zero for all
non-terminal time steps t < T. The outcome zt = ± r(sT) is the termi-
nal reward at the end of the game from the perspective of the current
player at time step t: +1 for winning and −1 for losing. Weights are
then updated at each time step t by stochastic gradient ascent in the
direction that maximizes expected outcome25

∆ρ
ρ

∝
∂ (|)

∂
ρp a s

z
log t t

t

We evaluated the performance of the RL policy network in game
play, sampling each move ~ (⋅|)ρa p st t from its output probability
distribution over actions. When played head-to-head, the RL policy
network won more than 80% of games against the SL policy network.
We also tested against the strongest open-source Go program, Pachi14,
a sophisticated Monte Carlo search program, ranked at 2 amateur dan
on KGS, that executes 100,000 simulations per move. Using no search
at all, the RL policy network won 85% of games against Pachi. In com-
parison, the previous state-of-the-art, based only on supervised

Figure 1 | Neural network training pipeline and architecture. a, A fast
rollout policy pπ and supervised learning (SL) policy network pσ are
trained to predict human expert moves in a data set of positions.
A reinforcement learning (RL) policy network pρ is initialized to the SL
policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous
versions of the policy network. A new data set is generated by playing
games of self-play with the RL policy network. Finally, a value network vθ
is trained by regression to predict the expected outcome (that is, whether

the current player wins) in positions from the self-play data set.
b, Schematic representation of the neural network architecture used in
AlphaGo. The policy network takes a representation of the board position
s as its input, passes it through many convolutional layers with parameters
σ (SL policy network) or ρ (RL policy network), and outputs a probability
distribution (|)σp a s or (|)ρp a s over legal moves a, represented by a
probability map over the board. The value network similarly uses many
convolutional layers with parameters θ, but outputs a scalar value vθ(s′)
that predicts the expected outcome in position s′.

R
eg

re
ss

io
n

C
la

ss
i�

ca
tio

nC
lassi�cation

Self Play

Policy gradient

a b

Human expert positions Self-play positions

N
eural netw

ork
D

ata

Rollout policy

p p p (a⎪s) (s′)p

SL policy network RL policy network Value network Policy network Value network

s s′

Figure 2 | Strength and accuracy of policy and value networks.
a, Plot showing the playing strength of policy networks as a function
of their training accuracy. Policy networks with 128, 192, 256 and 384
convolutional filters per layer were evaluated periodically during training;
the plot shows the winning rate of AlphaGo using that policy network
against the match version of AlphaGo. b, Comparison of evaluation
accuracy between the value network and rollouts with different policies.

Positions and outcomes were sampled from human expert games. Each
position was evaluated by a single forward pass of the value network vθ,
or by the mean outcome of 100 rollouts, played out using either uniform
random rollouts, the fast rollout policy pπ, the SL policy network pσ or
the RL policy network pρ. The mean squared error between the predicted
value and the actual game outcome is plotted against the stage of the game
(how many moves had been played in the given position).

15 45 75 105 135 165 195 225 255 >285
Move number

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ea

n
sq

ua
re

d
 e

rr
or

on
 e

xp
er

t
ga

m
es

Uniform random
rollout policy
Fast rollout policy
Value network
SL policy network
RL policy network

50 51 52 53 54 55 56 57 58 59

Training accuracy on KGS dataset (%)

0

10

20

30

40

50

60

70
128 �lters
192 �lters
256 �lters
384 �lters

A
lp

ha
G

o
w

in
 r

at
e

(%
)

a b

© 2016 Macmillan Publishers Limited. All rights reserved

Illustration taken from [Sil+16] .

� Rollout policy pπ: Simple but fast, ≈ prior work on Go.
� SL policy network pσ: Supervised learning, human-expert data (“learn to choose

an expert action”).
� RL policy network pρ: Reinforcement learning, self-play (“learn to win”).

80 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

� Value network vθ: Use self-play games with pρ as training data for game-position
evaluation vθ (“predict which player will win in this state”).

Michael Kohlhase: Artificial Intelligence 1 235 2025-02-06

Comments on the Figure:

a A fast rollout policy pπ and supervised learning (SL) policy network pσ are trained to predict
human expert moves in a data set of positions. A reinforcement learning (RL) policy network
pρ is initialized to the SL policy network, and is then improved by policy gradient learning to
maximize the outcome (that is, winning more games) against previous versions of the policy
network. A new data set is generated by playing games of self-play with the RL policy network.
Finally, a value network vθ is trained by regression to predict the expected outcome (that is,
whether the current player wins) in positions from the self-play data set.

b Schematic representation of the neural network architecture used in AlphaGo. The policy
network takes a representation of the board position s as its input, passes it through many con-
volutional layers with parameters σ (SL policy network) or ρ (RL policy network), and outputs a
probability distribution pσ(a|s) or pρ(a|s) over legal moves a, represented by a probability map
over the board. The value network similarly uses many convolutional layers with parameters θ,
but outputs a scalar value vθ(s

′) that predicts the expected outcome in position s′.

Neural Networks + MCTS in AlphaGo

� Monte Carlo tree search in AlphaGo:

4 8 6 | N A T U R E | V O L 5 2 9 | 2 8 J A N U A R Y 2 0 1 6

ARTICLERESEARCH

learning of convolutional networks, won 11% of games against Pachi23
and 12% against a slightly weaker program, Fuego24.

Reinforcement learning of value networks
The final stage of the training pipeline focuses on position evaluation,
estimating a value function vp(s) that predicts the outcome from posi-
tion s of games played by using policy p for both players28–30

E()= | = ~…v s z s s a p[,]p
t t t T

Ideally, we would like to know the optimal value function under
perfect play v*(s); in practice, we instead estimate the value function

ρv p for our strongest policy, using the RL policy network pρ. We approx-
imate the value function using a value network vθ(s) with weights θ,

⁎()≈ ()≈ ()θ ρv s v s v sp . This neural network has a similar architecture
to the policy network, but outputs a single prediction instead of a prob-
ability distribution. We train the weights of the value network by regres-
sion on state-outcome pairs (s, z), using stochastic gradient descent to
minimize the mean squared error (MSE) between the predicted value
vθ(s), and the corresponding outcome z

∆θ
θ

∝
∂ ()
∂
(− ())θ

θ
v s

z v s

The naive approach of predicting game outcomes from data con-
sisting of complete games leads to overfitting. The problem is that
successive positions are strongly correlated, differing by just one stone,
but the regression target is shared for the entire game. When trained
on the KGS data set in this way, the value network memorized the
game outcomes rather than generalizing to new positions, achieving a
minimum MSE of 0.37 on the test set, compared to 0.19 on the training
set. To mitigate this problem, we generated a new self-play data set
consisting of 30 million distinct positions, each sampled from a sepa-
rate game. Each game was played between the RL policy network and
itself until the game terminated. Training on this data set led to MSEs
of 0.226 and 0.234 on the training and test set respectively, indicating
minimal overfitting. Figure 2b shows the position evaluation accuracy
of the value network, compared to Monte Carlo rollouts using the fast
rollout policy pπ; the value function was consistently more accurate.
A single evaluation of vθ(s) also approached the accuracy of Monte
Carlo rollouts using the RL policy network pρ, but using 15,000 times
less computation.

Searching with policy and value networks
AlphaGo combines the policy and value networks in an MCTS algo-
rithm (Fig. 3) that selects actions by lookahead search. Each edge

(s, a) of the search tree stores an action value Q(s, a), visit count N(s, a),
and prior probability P(s, a). The tree is traversed by simulation (that
is, descending the tree in complete games without backup), starting
from the root state. At each time step t of each simulation, an action at
is selected from state st

= (()+ ())a Q s a u s aargmax , ,t
a

t t

so as to maximize action value plus a bonus

()∝
()
+ ()

u s a
P s a

N s a
,

,
1 ,

that is proportional to the prior probability but decays with
repeated visits to encourage exploration. When the traversal reaches a
leaf node sL at step L, the leaf node may be expanded. The leaf position
sL is processed just once by the SL policy network pσ. The output prob-
abilities are stored as prior probabilities P for each legal action a,
()= (|)σP s a p a s, . The leaf node is evaluated in two very different ways:

first, by the value network vθ(sL); and second, by the outcome zL of a
random rollout played out until terminal step T using the fast rollout
policy pπ; these evaluations are combined, using a mixing parameter
λ, into a leaf evaluation V(sL)

λ λ()= (−) ()+θV s v s z1L L L

At the end of simulation, the action values and visit counts of all
traversed edges are updated. Each edge accumulates the visit count and
mean evaluation of all simulations passing through that edge

∑

∑

()= ()

()=
()

() ()

=

=

N s a s a i

Q s a
N s a

s a i V s

, 1 , ,

, 1
,

1 , ,

i

n

i

n

L
i

1

1

where sL
i is the leaf node from the ith simulation, and 1(s, a, i) indicates

whether an edge (s, a) was traversed during the ith simulation. Once
the search is complete, the algorithm chooses the most visited move
from the root position.

It is worth noting that the SL policy network pσ performed better in
AlphaGo than the stronger RL policy network pρ, presumably because
humans select a diverse beam of promising moves, whereas RL opti-
mizes for the single best move. However, the value function
()≈ ()θ ρv s v sp derived from the stronger RL policy network performed

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that
edge. b, The leaf node may be expanded; the new node is processed once
by the policy network pσ and the output probabilities are stored as prior
probabilities P for each action. c, At the end of a simulation, the leaf node

is evaluated in two ways: using the value network vθ; and by running
a rollout to the end of the game with the fast rollout policy pπ, then
computing the winner with function r. d, Action values Q are updated to
track the mean value of all evaluations r(·) and vθ(·) in the subtree below
that action.

Selectiona b c dExpansion Evaluation Backup

p

p

Q + u(P)

Q + u(P)Q + u(P)

Q + u(P)

P P

P P

Q

Q

QQ

Q

rr r r

P

max

max

P

© 2016 Macmillan Publishers Limited. All rights reserved

Illustration taken from [Sil+16]

� Rollout policy pπ: Action choice in random samples.

� SL policy network pσ: Action choice bias within the UCTS tree (stored as “P ”,
gets smaller to “u(P)” with number of visits); along with quality Q.

� RL policy network pρ: Not used here (used only to learn vθ).

� Value network vθ: Used to evaluate leaf states s, in linear sum with the value
returned by a random sample on s.

Michael Kohlhase: Artificial Intelligence 1 236 2025-02-06

Comments on the Figure:

a Each simulation traverses the tree by selecting the edge with maximum action value Q, plus a
bonus u(P) that depends on a stored prior probability P for that edge.

7.6. STATE OF THE ART 81

b The leaf node may be expanded; the new node is processed once by the policy network pσ and
the output probabilities are stored as prior probabilities P for each action.

c At the end of a simulation, the leaf node is evaluated in two ways:

• using the value network vθ,

• and by running a rollout to the end of the game

with the fast rollout policy p π, then computing the winner with function r.

d Action values Q are updated to track the mean value of all evaluations r(·) and vθ(·) in the
subtree below that action.

AlphaGo, Conclusion?: This is definitely a great achievement!

• “Search + neural networks” looks like a great formula for general problem solving.

• expect to see lots of research on this in the coming decade(s).

• The AlphaGo design is quite intricate (architecture, learning workflow, training data design,
neural network architectures, . . .).

• How much of this is reusable in/generalizes to other problems?

• Still lots of human expertise in here. Not as much, like in chess, about the game itself. But
rather, in the design of the neural networks + learning architecture.

7.6 State of the Art
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22250.

State of the Art

� Some well-known board games:

� Chess: Up next.

� Othello (Reversi): In 1997, “Logistello” beat the human world champion. Best
computer players now are clearly better than best human players.

� Checkers (Dame): Since 1994, “Chinook” is the offical world champion. In
2007, it was shown to be unbeatable: Checkers is solved. (We know the exact
value of, and optimal strategy for, the initial state.)

� Go: In 2016, AlphaGo beat the Grandmaster Lee Sedol, cracking the “holy grail”
of board games. In 2017, “AlphaZero” – a variant of AlphaGo with zero prior
knowledge beat all reigning champion systems in all board games (including
AlphaGo) 100/0 after 24h of self-play.

� Intuition: Board Games are considered a “solved problem” from the AI per-
spective.

Michael Kohlhase: Artificial Intelligence 1 237 2025-02-06

Computer Chess: “Deep Blue” beat Garry Kasparov in 1997

https://fau.tv/clip/id/22250

82 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

� 6 games, final score 3.5 : 2.5.

� Specialized chess hardware, 30 nodes with
16 processors each.

� Alphabeta search plus human knowledge.
(more details in a moment)

� Nowadays, standard PC hardware plays at
world champion level.

Michael Kohlhase: Artificial Intelligence 1 238 2025-02-06

Computer Chess: Famous Quotes

� The chess machine is an ideal one to start with, since (Claude Shannon (1949))

1. the problem is sharply defined both in allowed operations (the moves) and in the
ultimate goal (checkmate),

2. it is neither so simple as to be trivial nor too difficult for satisfactory solution,

3. chess is generally considered to require “thinking” for skilful play, [. . .]

4. the discrete structure of chess fits well into the digital nature of modern comput-
ers.

� Chess is the drosophila of Artificial Intelligence. (Alexander Kronrod (1965))

Michael Kohlhase: Artificial Intelligence 1 239 2025-02-06

Computer Chess: Another Famous Quote

� In 1965, the Russian mathematician Alexander Kronrod said, “Chess is the Drosophila
of artificial intelligence.”

However, computer chess has developed much as genetics might have if the geneti-
cists had concentrated their efforts starting in 1910 on breeding racing Drosophilae.
We would have some science, but mainly we would have very fast fruit flies. (John
McCarthy (1997))

Michael Kohlhase: Artificial Intelligence 1 240 2025-02-06

7.7 Conclusion

Summary

� Games (2-player turn-taking zero-sum discrete and finite games) can be understood
as a simple extension of classical search problems.

� Each player tries to reach a terminal state with the best possible utility (maximal
vs. minimal).

7.7. CONCLUSION 83

� Minimax searches the game depth-first, max’ing and min’ing at the respective turns
of each player. It yields perfect play, but takes time O(bd) where b is the branching
factor and d the search depth.

� Except in trivial games (Tic-Tac-Toe), minimax needs a depth limit and apply an
evaluation function to estimate the value of the cut-off states.

� Alpha-beta search remembers the best values achieved for each player elsewhere in
the tree already, and prunes out sub-trees that won’t be reached in the game.

� Monte Carlo tree search (MCTS) samples game branches, and averages the findings.
AlphaGo controls this using neural networks: evaluation function (“value network”),
and action filter (“policy network”).

Michael Kohlhase: Artificial Intelligence 1 241 2025-02-06

Suggested Reading:

• Chapter 5: Adversarial Search, Sections 5.1 – 5.4 [RN09].

– Section 5.1 corresponds to my “Introduction”, Section 5.2 corresponds to my “Minimax Search”,
Section 5.3 corresponds to my “Alpha-Beta Search”. I have tried to add some additional clarify-
ing illustrations. RN gives many complementary explanations, nice as additional background
reading.

– Section 5.4 corresponds to my “Evaluation Functions”, but discusses additional aspects re-
lating to narrowing the search and look-up from opening/termination databases. Nice as
additional background reading.

– I suppose a discussion of MCTS and AlphaGo will be added to the next edition . . .

84 CHAPTER 7. ADVERSARIAL SEARCH FOR GAME PLAYING

Chapter 8

Constraint Satisfaction Problems

In the last chapters we have studied methods for “general problem”, i.e. such that are applicable to
all problems that are expressible in terms of states and “actions”. It is crucial to realize that these
states were atomic, which makes the algorithms employed (search algorithms) relatively simple
and generic, but does not let them exploit the any knowledge we might have about the internal
structure of states.
In this chapter, we will look into algorithms that do just that by progressing to factored states

representations. We will see that this allows for algorithms that are many orders of magnitude
more efficient than search algorithms.
To give an intuition for factored states representations we, we present some motivational examples
in ?? and go into detail of the Waltz algorithm, which gave rise to the main ideas of constraint
satisfaction algorithms in ??. ?? and ?? define constraint satisfaction problems formally and use
that to develop a class of backtracking/search based algorithms. The main contribution of the
factored states representations is that we can formulate advanced search heuristics that guide
search based on the structure of the states.

8.1 Constraint Satisfaction Problems: Motivation
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22251.

A (Constraint Satisfaction) Problem

� Example 8.1.1 (Tournament Schedule). Who’s going to play against who, when
and where?

85

https://fau.tv/clip/id/22251

86 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

Michael Kohlhase: Artificial Intelligence 1 242 2025-02-06

Constraint Satisfaction Problems (CSPs)

� Standard search problem: state is a “black box” any old data structure that supports
goal test, eval, successor state, . . .

� Definition 8.1.2. A constraint satisfaction problem (CSP) is a triple ⟨V ,D,C ⟩
where

1. V is a finite set V of variables,

2. an V -indexed family (Dv)v∈V of domains, and

3. for some subsets {v1, . . ., vk} ⊆ V a constraint C{v1,...,vk}⊂Dv1 × . . .×Dvk
.

A variable assignment φ ∈ (v∈V) →Dv is a solution for C, iff ⟨φ(v1), . . ., φ(vk)⟩ ∈
C{v1,...,vk} for all {v1, . . ., vk} ⊆ V .

� Definition 8.1.3. A CSP γ is called satisfiable, iff it has a solution: a total variable
assignment φ that satisfies all constraints.

� Definition 8.1.4. The process of finding solutions to CSPs is called constraint
solving.

� Remark 8.1.5. We are using factored representation for world states now!

� Allows useful general-purpose algorithms with more power than standard tree
search algorithm.

Michael Kohlhase: Artificial Intelligence 1 243 2025-02-06

Another Constraint Satisfaction Problem

8.1. CONSTRAINT SATISFACTION PROBLEMS: MOTIVATION 87

� Example 8.1.6 (SuDoKu). Fill the cells with row/column/block-unique digits

;

� Variables: The 81 cells.

� Domains: Numbers 1, . . . , 9.

� Constraints: Each number only once in each row, column, block.

Michael Kohlhase: Artificial Intelligence 1 244 2025-02-06

CSP Example: Map-Coloring

� Definition 8.1.7. Given a map M , the map coloring problem is to assign colors to
regions in a map so that no adjoining regions have the same color.

� Example 8.1.8 (Map coloring in Australia).
204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

� Variables: WA, NT, Q, NSW, V, SA,
T

� Domains: Di = {red, green, blue}
� Constraints: adjacent regions must

have different colors e.g., WA ̸= NT (if
the language allows this), or ⟨WA,NT⟩ ∈
{⟨red, green⟩, ⟨red, blue⟩, ⟨green, red⟩, . . . }

� Intuition: solutions map variables
to domain values satisfying all con-
straints,

� e.g., {WA = red,NT = green, . . .}

Michael Kohlhase: Artificial Intelligence 1 245 2025-02-06

Bundesliga Constraints

� Variables: vAvs.B where A and B are teams, with domains {1, . . . ,34}: For each
match, the index of the weekend where it is scheduled.

88 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

� (Some) constraints:
� If {A,B} ∩ {C,D} ≠ ∅: vAvs.B ̸=
vCvs.D (each team only one match
per day).

� If {A,B} = {C,D}: vAvs.B ≤ 17 <
vCvs.D or vCvs.D ≤ 17 < vAvs.B

(each pairing exactly once in each
half-season).

� If A = C: vAvs.B + 1 ̸= vCvs.D

(each team alternates between home
matches and away matches).

� Leading teams of last season meet
near the end of each half-season.

� . . .

Michael Kohlhase: Artificial Intelligence 1 246 2025-02-06

How to Solve the Bundesliga Constraints?

� 306 nested for-loops (for each of the 306 matches), each ranging from 1 to 306.
Within the innermost loop, test whether the current values are (a) a permutation
and, if so, (b) a legal Bundesliga schedule.

� Estimated running time: End of this universe, and the next couple billion ones
after it . . .

� Directly enumerate all permutations of the numbers 1, . . . , 306, test for each whether
it’s a legal Bundesliga schedule.

� Estimated running time: Maybe only the time span of a few thousand uni-
verses.

� View this as variables/constraints and use backtracking (this chapter)

� Executed running time: About 1 minute.

� How do they actually do it?: Modern computers and CSP methods: fractions
of a second. 19th (20th/21st?) century: Combinatorics and manual work.

� Try it yourself: with an off-the shelf CSP solver, e.g. Minion [Min]

Michael Kohlhase: Artificial Intelligence 1 247 2025-02-06

More Constraint Satisfaction Problems

8.1. CONSTRAINT SATISFACTION PROBLEMS: MOTIVATION 89

Traveling Tournament Problem Scheduling

Timetabling Radio Frequency Assignment

Michael Kohlhase: Artificial Intelligence 1 248 2025-02-06

1. U.S. Major League Baseball, 30 teams, each 162 games. There’s one crucial additional difficulty,
in comparison to Bundesliga. Which one? Travel is a major issue here!! Hence “Traveling
Tournament Problem” in reference to the TSP.

2. This particular scheduling problem is called “car sequencing”, how to most efficiently get cars
through the available machines when making the final customer configuration (non-standard/flexible/custom
extras).

3. Another common form of scheduling . . .

4. The problem of assigning radio frequencies so that all can operate together without noticeable
interference. Variable domains are available frequencies, constraints take form of |x− y| > δxy,
where delta depends on the position of x and y as well as the physical environment.

Our Agenda for This Topic

� Our treatment of the topic “Constraint Satisfaction Problems” consists of Chap-
ters 7 and 8. in [RN03]

� This Chapter: Basic definitions and concepts; naïve backtracking search.

� Sets up the framework. Backtracking underlies many successful algorithms for
solving constraint satisfaction problems (and, naturally, we start with the sim-
plest version thereof).

� Next Chapter: Constraint propagation and decomposition methods.

� Constraint propagation reduces the search space of backtracking. Decomposi-
tion methods break the problem into smaller pieces. Both are crucial for efficiency
in practice.

Michael Kohlhase: Artificial Intelligence 1 249 2025-02-06

90 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

Our Agenda for This Chapter

� How are constraint networks, and assignments, consistency, solutions: How are
constraint satisfaction problems defined? What is a solution?

� Get ourselves on firm ground.

� Naïve Backtracking: How does backtracking work? What are its main weak-
nesses?

� Serves to understand the basic workings of this wide-spread algorithm, and to
motivate its enhancements.

� Variable- and Value Ordering: How should we guide backtracking searchs?

� Simple methods for making backtracking aware of the structure of the problem,
and thereby reduce search.

Michael Kohlhase: Artificial Intelligence 1 250 2025-02-06

8.2 The Waltz Algorithm
We will now have a detailed look at the problem (and innovative solution) that started the

field of constraint satisfaction problems.
Background:

Adolfo Guzman worked on an algorithm to count the number of simple objects (like children’s
blocks) in a line drawing. David Huffman formalized the problem and limited it to objects in
general position, such that the vertices are always adjacent to three faces and each vertex is
formed from three planes at right angles (trihedral). Furthermore, the drawings could only have
three kinds of lines: object boundary, concave, and convex. Huffman enumerated all possible
configurations of lines around a vertex. This problem was too narrow for real-world situations, so
Waltz generalized it to include cracks, shadows, non-trihedral vertices and light. This resulted in
over 50 different line labels and thousands of different junctions. [ILD]

The Waltz Algorithm

� Remark: One of the earliest examples of applied CSPs.

� Motivation: Interpret line drawings of polyhedra.

� Problem: Are intersections convex or concave? (interpret =̂ label as such)

� Idea: Adjacent intersections impose constraints on each other. Use CSP to find a
unique set of labelings.

8.2. THE WALTZ ALGORITHM 91

Michael Kohlhase: Artificial Intelligence 1 251 2025-02-06

Waltz Algorithm on Simple Scenes

� Assumptions: All objects

� have no shadows or cracks,

� have only three-faced vertices,

� are in “general position”, i.e. no junctions change with small movements of the
eye.

� Observation 8.2.1. Then each line on the images is one of the following:

� a boundary line (edge of an object) (<) with right hand of arrow denoting “solid”
and left hand denoting “space”

� an interior convex edge (label with “+”)

� an interior concave edge (label with “-”)

Michael Kohlhase: Artificial Intelligence 1 252 2025-02-06

18 Legal Kinds of Junctions

� Observation 8.2.2. There are only 18 “legal” kinds of junctions:

� Idea: given a representation of a diagram

� label each junction in one of these manners (lots of possible ways)

92 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

� junctions must be labeled, so that lines are labeled consistently

� Fun Fact: CSP always works perfectly! (early success story for CSP [Wal75])

Michael Kohlhase: Artificial Intelligence 1 253 2025-02-06

Waltz’s Examples

� In his dissertation 1972 [Wal75] David Waltz used the following examples

Michael Kohlhase: Artificial Intelligence 1 254 2025-02-06

Waltz Algorithm (More Examples): Ambiguous Figures

Michael Kohlhase: Artificial Intelligence 1 255 2025-02-06

8.3. CSP: TOWARDS A FORMAL DEFINITION 93

Waltz Algorithm (More Examples): Impossible Figures

Michael Kohlhase: Artificial Intelligence 1 256 2025-02-06

8.3 CSP: Towards a Formal Definition
We will now work our way towards a definition of CSPs that is formal enough so that we can

define the concept of a solution. This gives use the necessary grounding to talk about algorithms
later. A Video Nugget covering this section can be found at https://fau.tv/clip/id/22277.

Types of CSPs

� Definition 8.3.1. We call a CSP discrete, iff all of the variables have countable
domains; we have two kinds:

� finite domains (size d ; O(dn) solutions)

� e.g., Boolean CSPs (solvability =̂ Boolean satisfiability ; NP complete)

� infinite domains (e.g. integers, strings, etc.)

� e.g., job scheduling, variables are start/end days for each job
� need a “constraint language”, e.g., StartJob1 + 5 ≤ StartJob3

� linear constraints decidable, nonlinear ones undecidable

� Definition 8.3.2. We call a CSP continuous, iff one domain is uncountable.

� Example 8.3.3. Start/end times for Hubble Telescope observations form a contin-
uous CSP.

� Theorem 8.3.4. Linear constraints solvable in poly time by linear programming
methods.

https://fau.tv/clip/id/22277

94 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

� Theorem 8.3.5. There cannot be optimal algorithms for nonlinear constraint
systems.

Michael Kohlhase: Artificial Intelligence 1 257 2025-02-06

Types of Constraints

� We classify the constraints by the number of variables they involve.

� Definition 8.3.6. Unary constraints involve a single variable, e.g., SA ̸= green.

� Definition 8.3.7. Binary constraints involve pairs of variables, e.g., SA ̸= WA.

� Definition 8.3.8. Higher-order constraints involve n = 3 or more variables, e.g.,
cryptarithmetic column constraints.

The number n of variables is called the order of the constraint.

� Definition 8.3.9. Preferences (soft constraint) (e.g., red is better than green)
are often representable by a cost for each variable assignment ; constrained opti-
mization problems.

Michael Kohlhase: Artificial Intelligence 1 258 2025-02-06

Non-Binary Constraints, e.g. “Send More Money”

� Example 8.3.10 (Send More Money). A student writes home:

S E N D
+ M O R E
M O N E Y

Puzzle: letters stand for digits, addition should
work out (parents send MONEY€)

� Variables: S,E,N,D,M,O,R, Y , each with domain {0, . . . ,9}.
� Constraints:

1. all variables should have different values: S ̸= E, S ̸= N , . . .
2. first digits are non-zero: S ̸= 0, M ̸= 0.
3. the addition scheme should work out: i.e.

1000 · S + 100 ·E + 10 ·N +D + 1000 ·M + 100 ·O + 10 ·R+E = 10000 ·M +
1000 · 0 + 100 ·N + 10 · E + Y .

BTW: The solution is S 7→ 9, E 7→ 5, N 7→ 6, D 7→ 7,M 7→ 1, O 7→ 0, R 7→
8, Y 7→ 2 ; parents send 10652€

� Definition 8.3.11. Problems like the one in ?? are called crypto-arithmetic puzzles.

Michael Kohlhase: Artificial Intelligence 1 259 2025-02-06

Encoding Higher-Order Constraints as Binary ones

8.3. CSP: TOWARDS A FORMAL DEFINITION 95

� Problem: The last constraint is of order 8. (n = 8 variables involved)

� Observation 8.3.12. We can write the addition scheme constraint column wise
using auxiliary variables, i.e. variables that do not “occur” in the original problem.

D + E = Y + 10 ·X1

X1 +N +R = E + 10 ·X2

X2 + E +O = N + 10 ·X3

X3 + S +M = O + 10 ·M

S E N D
+ M O R E
M O N E Y

These constraints are of order ≤ 5.

� General Recipe: For n ≥ 3, encode C(v1, . . . , vn−1, vn) as

C(p1(x), . . . , pn−1(x), vn) ∧ v1 = p1(x) ∧ . . . ∧ vn−1 = pn−1(x)

� Problem: The problem structure gets hidden. (search algorithms can get
confused)

Michael Kohlhase: Artificial Intelligence 1 260 2025-02-06

Constraint Graph

� Definition 8.3.13. A binary CSP is a CSP where each constraint is unary or binary.

� Observation 8.3.14. A binary CSP forms a graph called the constraint graph
whose nodes are variables, and whose edges represent the constraints.

� Example 8.3.15. Australia as a binary CSP204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

� Intuition: General-purpose CSP algorithms use the graph structure to speed up
search. (E.g., Tasmania is an independent subproblem!)

Michael Kohlhase: Artificial Intelligence 1 261 2025-02-06

Real-world CSPs

� Example 8.3.16 (Assignment problems). e.g., who teaches what class

96 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

� Example 8.3.17 (Timetabling problems). e.g., which class is offered when and
where?

� Example 8.3.18 (Hardware configuration).

� Example 8.3.19 (Spreadsheets).

� Example 8.3.20 (Transportation scheduling).

� Example 8.3.21 (Factory scheduling).

� Example 8.3.22 (Floorplanning).

� Note: many real-world problems involve real-valued variables ; continuous CSPs.

Michael Kohlhase: Artificial Intelligence 1 262 2025-02-06

8.4 Constraint Networks: Formalizing Binary CSPs
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22279.

Constraint Networks (Formalizing binary CSPs)

� Definition 8.4.1. A constraint network is a triple γ := ⟨V ,D,C ⟩, where

� V is a finite set of variables,

� D := {Dv | v ∈ V } the set of their domains, and

� C := {Cuv ⊆ Du×Dv |u, v ∈ V and u ̸= v} is a set of constraints with Cuv =
C−1

vu .

We call the undirected graph ⟨V , {(u,v) ∈ V 2 |Cuv ̸= Du ×Dv}⟩, the constraint
graph of γ.

� We will talk of CSPs and mean constraint networks.

� Remarks: The mathematical formulation gives us a lot of leverage:

� Cuv ⊆ Du×Dv =̂ possible assignments to variables u and v

� Relations are the most general formalization, generally we use symbolic formu-
lations, e.g. “u = v” for the relation Cuv = {(a,b) | a = b} or “u ̸= v”.

� We can express unary constraints Cu by restricting the domain of v: Dv := Cv.

Michael Kohlhase: Artificial Intelligence 1 263 2025-02-06

Example: SuDoKu as a Constraint Network

� Example 8.4.2 (Formalize SuDoKu). We use the added formality to encode
SuDoKu as a constraint network, not just as a CSP as ??.

https://fau.tv/clip/id/22279

8.4. CONSTRAINT NETWORKS: FORMALIZING BINARY CSPS 97

� Variables: V = {vij | 1 ≤ i, j ≤ 9}: vij =cell in row i column j.

� Domains For all v ∈ V : Dv = D = {1, . . . ,9}.
� Unary constraint: Cvij = {d} if cell i, j is pre-filled with d.

� (Binary) constraint: Cvijvi′j′ =̂ “vij ̸= vi′j′ ”, i.e.
Cvijvi′j′ = {(d,d′) ∈ D ×D | d ̸= d′}, for: i = i′ (same row), or j = j′ (same

column), or (⌈ i
3⌉,⌈

j
3⌉) = (⌈ i′

3 ⌉,⌈
j′

3 ⌉) (same block).

Note that the ideas are still the same as ??, but in constraint networks we have a
language to formulate things precisely.

Michael Kohlhase: Artificial Intelligence 1 264 2025-02-06

Constraint Networks (Solutions)

� Let γ := ⟨V ,D,C ⟩ be a constraint network.

� Definition 8.4.3. We call a partial function a : V ⇀
⋃

u∈V Du a variable assignment
if a(u) ∈ Du for all u ∈ dom(a).

� Definition 8.4.4. Let C := ⟨V ,D,C ⟩ be a constraint network and a : V⇀
⋃

v∈V Dv

a variable assignment. We say that a satisfies (otherwise violates) a constraint Cuv,
iff u, v ∈ dom(a) and (a(u),a(v)) ∈ Cuv. a is called consistent in C, iff it satisfies
all constraints in C. A value w ∈ Du is legal for a variable u in C, iff {(u,w)} is a
consistent assignment in C. A variable with illegal value under a is called conflicted.

� Example 8.4.5. The empty assignment ϵ is (trivially) consistent in any constraint
network.

� Definition 8.4.6. Let f and g be variable assignments, then we say that f extends
(or is an extension of) g, iff dom(g)⊂dom(f) and f |dom(g) = g.

� Definition 8.4.7. We call a consistent (total) assignment a solution for γ and γ
itself solvable or satisfiable.

Michael Kohlhase: Artificial Intelligence 1 265 2025-02-06

How it all fits together

� Lemma 8.4.8. Higher-order constraints can be transformed into equi-satisfiable

98 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

binary constraints using auxiliary variables.

� Corollary 8.4.9. Any CSP can be represented by a constraint network.

� In other words The notion of a constraint network is a refinement of a CSP.

� So we will stick to constraint networks in this course.

� Observation 8.4.10. We can view a constraint network as a search problem, if we
take the states as the variable assignments, the actions as assignment extensions,
and the goal states as consistent assignments.

� Idea: We will explore that idea for algorithms that solve constraint networks.

Michael Kohlhase: Artificial Intelligence 1 266 2025-02-06

8.5 CSP as Search
We now follow up on ?? to use search algorithms for solving constraint networks.

The key point of this section is that the factored states representations realized by constraint
networks allow the formulation of very powerful heuristics. A Video Nugget covering this
section can be found at https://fau.tv/clip/id/22319.

Standard search formulation (incremental)

� Idea: Every constraint network induces a single state problem.

� Definition 8.5.1 (Let’s do the math). Given a constraint network γ := ⟨V ,D,C ⟩,
then Πγ := ⟨Sγ ,Aγ , T γ , Iγ ,Gγ⟩ is called the search problem induced by γ, iff

� State Sγ are variable assignments

� Action Aγ : extend φ ∈ Sγ by a pair x 7→ v not conflicted with φ.

� Transition model T γ(a, φ) = φ,x 7→ v (extended assignment)

� Initial state Iγ : the empty assignment ϵ.

� Goal states Gγ : the total, consistent assignments

� What has just happened?: We interpret a constraint network γ as a search
problem Πγ . A solution to Πγ induces a solution to γ.

� Idea: We have algorithms for that: e.g. tree search.

� Remark: This is the same for all CSPs! ,
; fail if no consistent assignments exist (not fixable!)

Michael Kohlhase: Artificial Intelligence 1 267 2025-02-06

Standard search formulation (incremental)

� Example 8.5.2. A search tree for ΠAustralia:

https://fau.tv/clip/id/22319

8.5. CSP AS SEARCH 99

WA = red WA = green WA = blue

WA = red
NT = green

WA = red
NT = blue

WA = red
NT = green
Q = red

WA = red
NT = green
Q = blue

� Observation: Every solution appears at depth n with n variables.

� Idea: Use depth first search!

� Observation: Path is irrelevant ; can use local search algorithms.

� Branching factor b = (n− ℓ)d at depth ℓ, hence n!dn leaves!!!! /

Michael Kohlhase: Artificial Intelligence 1 268 2025-02-06

Backtracking Search

� Assignments for different variables are independent!

� e.g. first WA = red then NT = green vs. first NT = green then WA = red

� ; we only need to consider assignments to a single variable at each node

� ; b = d and there are dn leaves.

� Definition 8.5.3. Depth first search for CSPs with single-variable assignment
extensions actions is called backtracking search.

� Backtracking search is the basic uninformed algorithm for CSPs.

� It can solve the n-queens problem for ≊ n, 25.

Michael Kohlhase: Artificial Intelligence 1 269 2025-02-06

Backtracking Search (Implementation)

� Definition 8.5.4. The generic backtracking search algorithm:

procedure Backtracking−Search(csp) returns solution/failure
return Recursive−Backtracking (∅, csp)

procedure Recursive−Backtracking (assignment) returns soln/failure
if assignment is complete then return assignment
var := Select−Unassigned−Variable(Variables[csp], assignment, csp)
foreach value in Order−Domain−Values(var, assignment, csp) do

if value is consistent with assignment given Constraints[csp] then
add {var = value} to assignment
result := Recursive−Backtracking(assignment,csp)

100 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

if result ̸= failure then return result
remove {var= value} from assignment

return failure

Michael Kohlhase: Artificial Intelligence 1 270 2025-02-06

Backtracking in Australia

� Example 8.5.5. We apply backtracking search for a map coloring problem:

Step 1:

Step 2:

8.5. CSP AS SEARCH 101

Step 3:

Step 4:

Michael Kohlhase: Artificial Intelligence 1 271 2025-02-06

Improving Backtracking Efficiency

� General-purpose methods can give huge gains in speed for backtracking search.

� Answering the following questions well helps find powerful heuristics:

1. Which variable should be assigned next? (i.e. a variable ordering heuristic)

2. In what order should its values be tried? (i.e. a value ordering heuristic)

3. Can we detect inevitable failure early? (for pruning strategies)

4. Can we take advantage of problem structure? (; inference)

� Observation: Questions 1/2 correspond to the missing subroutines
Select−Unassigned−Variable and Order−Domain−Values from ??.

Michael Kohlhase: Artificial Intelligence 1 272 2025-02-06

102 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

Heuristic: Minimum Remaining Values (Which Variable)

� Definition 8.5.6. The minimum remaining values (MRV) heuristic for backtracking
search always chooses the variable with the fewest legal values, i.e. a variable v that
given an initial assignment a minimizes #({d ∈ Dv | a ∪ {v 7→ d} is consistent}).

� Intuition: By choosing a most constrained variable v first, we reduce the branching
factor (number of sub trees generated for v) and thus reduce the size of our search
tree.

� Extreme case: If #({d ∈ Dv | a ∪ {v 7→ d} is consistent}) = 1, then the value
assignment to v is forced by our previous choices.

� Example 8.5.7. In step 3 of ??, there is only one remaining value for SA!

Michael Kohlhase: Artificial Intelligence 1 273 2025-02-06

Degree Heuristic (Variable Order Tie Breaker)

� Problem: Need a tie-breaker among MRV variables! (there was no preference in
step 1,2)

� Definition 8.5.8. The degree heuristic in backtracking search always chooses a
most constraining variable, i.e. given an initial assignment a always pick a variable
v with #({v ∈ (V \dom(a)) |Cuv ∈ C}) maximal.

� By choosing a most constraining variable first, we detect inconsistencies earlier on
and thus reduce the size of our search tree.

� Commonly used strategy combination: From the set of most constrained vari-
able, pick a most constraining variable.

� Example 8.5.9.

Degree heuristic: SA = 5, T = 0, all others 2 or 3.

Michael Kohlhase: Artificial Intelligence 1 274 2025-02-06

Where in ?? does the most constraining variable play a role in the choice? SA (only possible
choice), NT (all choices possible except WA, V, T). Where in the illustration does most con-
strained variable play a role in the choice? NT (all choices possible except T), Q (only Q and WA

8.6. CONCLUSION & PREVIEW 103

possible).

Least Constraining Value Heuristic (Value Ordering)

� Definition 8.5.10. Given a variable v, the least constraining value heuristic chooses
the least constraining value for v: the one that rules out the fewest values in the
remaining variables, i.e. for a given initial assignment a and a chosen variable v pick a
value d ∈ Dv that minimizes #({e ∈ Du |u ̸∈ dom(a), Cuv ∈ C, and (e,d) ̸∈ Cuv})

� By choosing the least constraining value first, we increase the chances to not rule
out the solutions below the current node.

� Example 8.5.11.

� Combining these heuristics makes 1000 queens feasible.

Michael Kohlhase: Artificial Intelligence 1 275 2025-02-06

8.6 Conclusion & Preview

Summary & Preview

� Summary of “CSP as Search”:

� Constraint networks γ consist of variables, associated with finite domains, and
constraints which are binary relations specifying permissible value pairs.

� A variable assignment a maps some variables to values. a is consistent if it
complies with all constraints. A consistent total assignment is a solution.

� The constraint satisfaction problem (CSP) consists in finding a solution for a
constraint network. This has numerous applications including, e.g., scheduling
and timetabling.

� Backtracking search assigns variable one by one, pruning inconsistent variable
assignments.

� Variable orderings in backtracking can dramatically reduce the size of the search
tree. Value orderings have this potential (only) in solvable sub trees.

� Up next: Inference and decomposition, for improved efficiency.

Michael Kohlhase: Artificial Intelligence 1 276 2025-02-06

Suggested Reading: p

• Chapter 6: Constraint Satisfaction Problems, Sections 6.1 and 6.3, in [RN09].

104 CHAPTER 8. CONSTRAINT SATISFACTION PROBLEMS

– Compared to our treatment of the topic “Constraint Satisfaction Problems” (?? and ??),
RN covers much more material, but less formally and in much less detail (in particular, my
slides contain many additional in-depth examples). Nice background/additional reading, can’t
replace the lectures.

– Section 6.1: Similar to our “Introduction” and “Constraint Networks”, less/different examples,
much less detail, more discussion of extensions/variations.

– Section 6.3: Similar to my “Naïve Backtracking” and “Variable- and Value Ordering”, with
less examples and details; contains part of what we cover in ?? (RN does inference first, then
backtracking). Additional discussion of backjumping.

Chapter 9

Constraint Propagation

In this chapter we discuss another idea that is central to symbolic AI as a whole. The first com-
ponent is that with the factored states representations, we need to use a representation language
for (sets of) states. The second component is that instead of state-level search, we can graduate
to representation-level search (inference), which can be much more efficient that state level search
as the respective representation language actions correspond to groups of state-level actions.

9.1 Introduction
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22321.

Illustration: Constraint Propagation

� Example 9.1.1. A constraint network γ:204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

� Question: Can we add a constraint without losing any solutions?

� Example 9.1.2. CWAQ := “=”. If WA and Q are assigned different colors, then
NT must be assigned the 3rd color, leaving no color for SA.

� Intuition: Adding constraints without losing solutions
=̂ obtaining an equivalent network with a “tighter description”
; a smaller number of consistent (partial) variable assignments
; more efficient search!

Michael Kohlhase: Artificial Intelligence 1 277 2025-02-06

Illustration: Decomposition

� Example 9.1.3. Constraint network γ:

105

https://fau.tv/clip/id/22321

106 CHAPTER 9. CONSTRAINT PROPAGATION
204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

� We can separate this into two independent constraint networks.

� Tasmania is not adjacent to any other state. Thus we can color Australia first, and
assign an arbitrary color to Tasmania afterwards.

� Decomposition methods exploit the structure of the constraint network. They
identify separate parts (sub-networks) whose inter-dependencies are “simple” and
can be handled efficiently.

� Example 9.1.4 (Extreme case). No inter-dependencies at all, as for Tasmania
above.

Michael Kohlhase: Artificial Intelligence 1 278 2025-02-06

Our Agenda for This Chapter

� Constraint propagation: How does inference work in principle? What are relevant
practical aspects?

� Fundamental concepts underlying inference, basic facts about its use.

� Forward checking: What is the simplest instance of inference?

� Gets us started on this subject.

� Arc consistency: How to make inferences between variables whose value is not fixed
yet?

� Details a state of the art inference method.

� Decomposition: Constraint graphs, and two simple cases

� How to capture dependencies in a constraint network? What are “simple cases”?

� Basic results on this subject.

� Cutset conditioning: What if we’re not in a simple case?

� Outlines the most easily understandable technique for decomposition in the gen-
eral case.

Michael Kohlhase: Artificial Intelligence 1 279 2025-02-06

9.2 Constraint Propagation/Inference
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22326.

https://fau.tv/clip/id/22326

9.2. CONSTRAINT PROPAGATION/INFERENCE 107

Constraint Propagation/Inference: Basic Facts

� Definition 9.2.1. Constraint propagation (i.e inference in constraint networks)
consists in deducing additional constraints, that follow from the already known
constraints, i.e. that are satisfied in all solutions.

� Example 9.2.2. It’s what you do all the time when playing SuDoKu:

� Formally: Replace γ by an equivalent and strictly tighter constraint network γ′.

Michael Kohlhase: Artificial Intelligence 1 280 2025-02-06

Equivalent Constraint Networks

� Definition 9.2.3. We say that two constraint networks γ := ⟨V ,D,C ⟩ and γ′ :=
⟨V ,D′, C ′⟩ sharing the same set of variables are equivalent, (write γ′≡γ), if they
have the same solutions.

� Example 9.2.4.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=

Are these constraint networks equivalent? No.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

108 CHAPTER 9. CONSTRAINT PROPAGATION

Are these constraint networks equivalent? Yes.

Michael Kohlhase: Artificial Intelligence 1 281 2025-02-06

Tightness

� Definition 9.2.5 (Tightness). Let γ := ⟨V ,D,C ⟩ and γ′ = ⟨V ,D′, C ′⟩ be
constraint networks sharing the same set of variables, then γ′ is tighter than γ,
(write γ′⊑γ), if:

(i) For all v ∈ V : D′
v ⊆ Dv.

(ii) For all u ̸= v ∈ V and C ′
uv ∈ C ′: either C ′

uv ̸∈ C or C ′
uv ⊆ Cuv.

γ′ is strictly tighter than γ, (written γ′<γ), if at least one of these inclusions is
proper.

� Example 9.2.6.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

̸=
Here, we do have γ′⊑γ.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

=

Here, we do have γ′⊑γ.

γ red
blue

v1

red
blue

v2
red
blue

v3

̸= ̸=

γ′ red
blue

v1

red
blue

v2
red
blue

v3

̸=

=

Here, we do not have γ′⊑γ!.

9.2. CONSTRAINT PROPAGATION/INFERENCE 109

� Intuition: Strict tightness =̂ γ′ has the same constraints as γ, plus some.

Michael Kohlhase: Artificial Intelligence 1 282 2025-02-06

Equivalence + Tightness = Inference

� Theorem 9.2.7. Let γ and γ′ be constraint networks such that γ′≡γ and γ′⊑γ.
Then γ′ has the same solutions as, but fewer consistent assignments than, γ.

� ; γ′ is a better encoding of the underlying problem.

� Example 9.2.8. Two equivalent constraint networks (one obviously unsolvable)

γ red
blue

v1

redv2 blue v3

̸= ̸=

γ′ red
blue

v1

redv2 blue v3

̸= ̸=

=

ϵ cannot be extended to a solution (neither in γ nor in γ′ because they’re equivalent);
this is obvious (red ̸= blue) in γ′, but not in γ.

Michael Kohlhase: Artificial Intelligence 1 283 2025-02-06

How to Use Constraint Propagation in CSP Solvers?

� Simple: Constraint propagation as a pre-process:

� When: Just once before search starts.

� Effect: Little running time overhead, little pruning power. (not considered
here)

� More Advanced: Constraint propagation during search:

� When: At every recursive call of backtracking.

� Effect: Strong pruning power, may have large running time overhead.

� Search vs. Inference: The more complex the inference, the smaller the number
of search nodes, but the larger the running time needed at each node.

� Idea: Encode variable assignments as unary constraints (i.e., for a(v) = d, set the
unary constraint Dv = {d}), so that inference reasons about the network restricted
to the commitments already made in the search.

Michael Kohlhase: Artificial Intelligence 1 284 2025-02-06

110 CHAPTER 9. CONSTRAINT PROPAGATION

Backtracking With Inference

� Definition 9.2.9. The general algorithm for backtracking with inference is

1 function BacktrackingWithInference(γ,a) returns a solution, or ‘‘inconsistent’’
2 if a is inconsistent then return ‘‘inconsistent’’
3 if a is a total assignment then return a
4 γ′ := a copy of γ /∗ γ′ = (V γ′ , Dγ′ , Cγ′) ∗/
5 γ′ := Inference(γ′)
6 if exists v with Dγ′

v = ∅ then return ‘‘inconsistent’’
7 select some variable v for which a is not defined
8 for each d ∈ copy of Dγ′

v in some order do
9 a′ := a ∪ {v = d}; Dγ′

v := {d} /∗ makes a explicit as a constraint ∗/
10 a′′ := BacktrackingWithInference(γ′,a′)
11 if a′′ ̸= “inconsistent” then return a′′

12 return ‘‘inconsistent’’

� Exactly the same as ??, only line 5 new!

� Inference(): Any procedure delivering a (tighter) equivalent network.

� Inference() typically prunes domains; indicate unsolvability by Dγ′
v = ∅.

� When backtracking out of a search branch, retract the inferred constraints: these
were dependent on a, the search commitments so far.

Michael Kohlhase: Artificial Intelligence 1 285 2025-02-06

9.3 Forward Checking
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22326.

Forward Checking

� Definition 9.3.1. Forward checking propagates information about illegal values:
Whenever a variable u is assigned by a, delete all values inconsistent with a(u) from
every Dv for all variables v connected with u by a constraint.

� Example 9.3.2. Forward checking in Australia

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

https://fau.tv/clip/id/22326

9.3. FORWARD CHECKING 111

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

� Definition 9.3.3 (Inference, Version 1). Forward checking implemented

function ForwardChecking(γ,a) returns modified γ
for each v where a(v) = d′ is defined do

for each u where a(u) is undefined and Cuv ∈ C do
Du := {d ∈ Du | (d,d′) ∈ Cuv}

return γ

Michael Kohlhase: Artificial Intelligence 1 286 2025-02-06

Note: It’s a bit strange that we start with d′ here; this is to make link to arc consistency –
coming up next – as obvious as possible (same notations u, and d vs. v and d′).

Forward Checking: Discussion

� Definition 9.3.4. An inference procedure is called sound, iff for any input γ the
output γ′ have the same solutions.

� Lemma 9.3.5. Forward checking is sound.

Proof sketch: Recall here that the assignment a is represented as unary constraints
inside γ.

� Corollary 9.3.6. γ and γ′ are equivalent.

� Incremental computation: Instead of the first for-loop in ??, use only the inner one
every time a new assignment a(v) = d′ is added.

� Practical Properties:

� Cheap but useful inference method.

� Rarely a good idea to not use forward checking (or a stronger inference method
subsuming it).

� Up next: A stronger inference method (subsuming forward checking).

112 CHAPTER 9. CONSTRAINT PROPAGATION

� Definition 9.3.7. Let p and q be inference procedures, then p subsumes q, if
p(γ)⊑q(γ) for any input γ.

Michael Kohlhase: Artificial Intelligence 1 287 2025-02-06

9.4 Arc Consistency

Video Nuggets covering this section can be found at https://fau.tv/clip/id/22350 and
https://fau.tv/clip/id/22351.

When Forward Checking is Not Good Enough

� Problem: Forward checking makes inferences only from assigned to unassigned
variables.

� Example 9.4.1.

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

We could do better here: value 3 for v2 is not consistent with any remaining value
for v3 ; it can be removed!

But forward checking does not catch this.

Michael Kohlhase: Artificial Intelligence 1 288 2025-02-06

Arc Consistency: Definition

� Definition 9.4.2 (Arc Consistency). Let γ := ⟨V ,D,C ⟩ be a constraint network.

1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either
Cuv ̸∈ C, or for every value d ∈ Du there exists a value d′ ∈ Dv such that
(d,d′) ∈ Cuv.

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.

� Intuition: Arc consistency =̂ for every domain value and constraint, at least one
value on the other side of the constraint “works”.

� Note the asymmetry between u and v: arc consistency is directed.

Michael Kohlhase: Artificial Intelligence 1 289 2025-02-06

https://fau.tv/clip/id/22350
https://fau.tv/clip/id/22351

9.4. ARC CONSISTENCY 113

Arc Consistency: Example

� Definition 9.4.3 (Arc Consistency). Let γ := ⟨V ,D,C ⟩ be a constraint network.

1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either
Cuv ̸∈ C, or for every value d ∈ Du there exists a value d′ ∈ Dv such that
(d,d′) ∈ Cuv.

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.

� Example 9.4.4 (Arc Consistency).

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

� Question: On top, middle, is v3 arc consistent relative to v2?

� Answer: No. For values 1 and 2, Dv2 does not have a value that works.

� Note: Enforcing arc consistency for one variable may lead to further reductions
on another variable!

� Question: And on the right?

� Answer: Yes. (But v2 is not arc consistent relative to v3)

Michael Kohlhase: Artificial Intelligence 1 290 2025-02-06

Arc Consistency: Example

� Definition 9.4.5 (Arc Consistency). Let γ := ⟨V ,D,C ⟩ be a constraint network.

1. A variable u ∈ V is arc consistent relative to another variable v ∈ V if either
Cuv ̸∈ C, or for every value d ∈ Du there exists a value d′ ∈ Dv such that
(d,d′) ∈ Cuv.

2. The constraint network γ is arc consistent if every variable u ∈ V is arc consistent
relative to every other variable v ∈ V .

The concept of arc consistency concerns both levels.

� Example 9.4.6.

114 CHAPTER 9. CONSTRAINT PROPAGATION

Forward Checking

I Inference, version 1: Forward Checking
function ForwardChecking(�,a) returns modified �

for each v where a(v) = d 0 is defined do
for each u where a(u) is undefined and Cuv 2 C do

Du := {d 2 Du | (d , d 0) 2 Cuv}
return �

I Example 3.1.

WA NT Q NSW V SA T

Kohlhase: Künstliche Intelligenz 1 295 July 5, 2018

;?

When Forward Checking is Not Good Enough

1

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

WA NT Q NSW V SA T

;?

Forward checking makes inferences only “from assigned to unassigned” variables.
Kohlhase: Künstliche Intelligenz 1 297 July 5, 2018

� Note: SA is not arc consistent relative to NT in 3rd row.

Michael Kohlhase: Artificial Intelligence 1 291 2025-02-06

Enforcing Arc Consistency: General Remarks

� Inference, version 2: “Enforcing Arc Consistency” = removing domain values
until γ is arc consistent. (Up next)

� Note: Assuming such an inference method AC(γ).

� Lemma 9.4.7. AC(γ) is sound: guarantees to deliver an equivalent network.

� Proof sketch: If, for d ∈ Du, there does not exist a value d′ ∈ Dv such that
(d,d′) ∈ Cuv, then u = d cannot be part of any solution.

� Observation 9.4.8. AC(γ) subsumes forward checking: AC(γ)⊑ForwardChecking(γ).

� Proof: Recall from slide 282 that γ′⊑γ means γ′ is tighter than γ.

1. Forward checking removes d from Du only if there is a constraint Cuv such
that Dv = {d′} (i.e. when v was assigned the value d′), and (d,d′) ̸∈ Cuv.

2. Clearly, enforcing arc consistency of u relative to v removes d from Du as well.

Michael Kohlhase: Artificial Intelligence 1 292 2025-02-06

Enforcing Arc Consistency for One Pair of Variables

� Definition 9.4.9 (Revise). Revise is an algorithm enforcing arc consistency of u
relative to v

function Revise(γ,u,v) returns modified γ
for each d ∈ Du do

if there is no d′ ∈ Dv with (d,d′) ∈ Cuv then Du := Du\{d}
return γ

� Lemma 9.4.10. If d is maximal domain size in γ and the test “(d,d′) ∈ Cuv?” has
time complexity O(1), then the running time of Revise(γ, u, v) is O(d2).

� Example 9.4.11. Revise(γ, v3, v2)

9.4. ARC CONSISTENCY 115

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 1 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

1

v1

2 3v2 3 v3

v1 < v2

v2 < v3

Michael Kohlhase: Artificial Intelligence 1 293 2025-02-06

AC-1: Enforcing Arc Consistency (Version 1)

� Idea: Apply Revise pairwise up to a fixed point.

� Definition 9.4.12. AC-1 enforces arc consistency in constraint networks:

function AC−1(γ) returns modified γ
repeat

changesMade := False
for each constraint Cuv do

Revise(γ,u,v) /∗ if Du reduces, set changesMade := True ∗/
Revise(γ,v,u) /∗ if Dv reduces, set changesMade := True ∗/

until changesMade = False
return γ

� Observation: Obviously, this does indeed enforce arc consistency for γ.

116 CHAPTER 9. CONSTRAINT PROPAGATION

� Lemma 9.4.13. If γ has n variables, m constraints, and maximal domain size d,
then the time complexity of AC1(γ) is O(md2nd).

� Proof sketch: O(md2) for each inner loop, fixed point reached at the latest once
all nd variable values have been removed.

� Problem: There are redundant computations.

� Question: Do you see what these redundant computations are?

� Redundant computations: u and v are revised even if theirdomains haven’t
changed since the last time.

� Better algorithm avoiding this: AC 3 (coming up)

Michael Kohlhase: Artificial Intelligence 1 294 2025-02-06

AC-3: Enforcing Arc Consistency (Version 3)

� Idea: Remember the potentially inconsistent variable pairs.

� Definition 9.4.14. AC-3 optimizes AC-1 for enforcing arc consistency.

function AC−3(γ) returns modified γ
M := ∅
for each constraint Cuv ∈ C do
M := M ∪ {(u,v), (v,u)}

while M ̸= ∅ do
remove any element (u,v) from M
Revise(γ, u, v)
if Du has changed in the call to Revise then

for each constraint Cwu ∈ C where w ̸= v do
M := M ∪ {(w,u)}

return γ

� Question: AC− 3(γ) enforces arc consistency because?

� Answer: At any time during the while-loop, if (u,v) ̸∈ M then u is arc consistent
relative to v.

� Question: Why only “where w ̸= v”?

� Answer: If w = v is the reason why Du changed, then w is still arc consistent
relative to u: the values just removed from Du did not match any values from Dw

anyway.

Michael Kohlhase: Artificial Intelligence 1 295 2025-02-06

AC-3: Example

� Example 9.4.15. y div x = 0: y modulo x is 0, i.e., y is divisible by x

9.4. ARC CONSISTENCY 117

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
(v1,v3)

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)
(v1,v3)

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)
(v3,v1)

118 CHAPTER 9. CONSTRAINT PROPAGATION

2 5

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v1,v2)

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v3,v1)

9.4. ARC CONSISTENCY 119

2

v1

2 4v2 2 5 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)
(v3,v1)

2

v1

2 4v2 2 v3

v2 div v1 = 0 v3 div v1 = 0

M
(v2,v1)

2

v1

2 4v2 2 v3

v2 div v1 = 0 v3 div v1 = 0

M

Michael Kohlhase: Artificial Intelligence 1 296 2025-02-06

AC-3: Runtime

� Theorem 9.4.16 (Runtime of AC-3). Let γ := ⟨V ,D,C ⟩ be a constraint network
with m constraints, and maximal domain size d. Then AC− 3(γ) runs in time
O(md3).

� Proof: by counting how often Revise is called.

120 CHAPTER 9. CONSTRAINT PROPAGATION

1. Each call to Revise(γ, u, v) takes time O(d2) so it suffices to prove that at
most O(md) of these calls are made.

2. The number of calls to Revise(γ, u, v) is the number of iterations of the while-
loop, which is at most the number of insertions into M .

3. Consider any constraint Cuv.
4. Two variable pairs corresponding to Cuv are inserted in the for-loop. In the

while loop, if a pair corresponding to Cuv is inserted into M , then
5. beforehand the domain of either u or v was reduced, which happens at most
2d times.

6. Thus we have O(d) insertions per constraint, and O(md) insertions overall, as
desired.

Michael Kohlhase: Artificial Intelligence 1 297 2025-02-06

9.5 Decomposition: Constraint Graphs, and Three Simple
Cases

A Video Nugget covering this section can be found at https://fau.tv/clip/id/22353.

Reminder: The Big Picture

� Say γ is a constraint network with n variables and maximal domain size d.

� dn total assignments must be tested in the worst case to solve γ.

� Inference: One method to try to avoid/ameliorate this combinatorial explosion in
practice.

� Often, from an assignment to some variables, we can easily make inferences
regarding other variables.

� Decomposition: Another method to avoid/ameliorate this combinatorial explosion
in practice.

� Often, we can exploit the structure of a network to decompose it into smaller
parts that are easier to solve.

� Question: What is “structure”, and how to “decompose”?

Michael Kohlhase: Artificial Intelligence 1 298 2025-02-06

Problem Structure

https://fau.tv/clip/id/22353

9.5. DECOMPOSITION: CONSTRAINT GRAPHS, AND THREE SIMPLE CASES 121

� Idea: Tasmania and mainland are “independent
subproblems”

� Definition 9.5.1. Independent subproblems are
identified as connected components of constraint
graphs.

� Suppose each independent subproblem has c vari-
ables out of n total. (d is max domain size)

� Worst-case solution cost is n div c · dc (linear in n)

� E.g., n = 80, d = 2, c = 20

� 280 =̂ 4 billion years at 10 million nodes/sec

� 4 · 220 =̂ 0.4 seconds at 10 million nodes/sec

204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

Michael Kohlhase: Artificial Intelligence 1 299 2025-02-06

“Decomposition” 1.0: Disconnected Constraint Graphs

� Theorem 9.5.2 (Disconnected Constraint Graphs). Let γ := ⟨V ,D,C ⟩ be a
constraint network. Let ai be a solution to each connected component γi of the
constraint graph of γ. Then a :=

⋃
iai is a solution to γ.

� Proof:

1. a satisfies all Cuv where u and v are inside the same connected component.
2. The latter is the case for all Cuv.
3. If two parts of γ are not connected, then they are independent.

� Example 9.5.3. Color Tasmania separately in Australia204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

� Example 9.5.4 (Doing the Numbers).

� γ with n = 40 variables, each domain size k = 2. Four separate connected
components each of size 10.

� Reduction of worst-case when using decomposition:

� No decomposition: 240. With: 4 · 210. Gain: 228 ≊ 280.000.000.

� Definition 9.5.5. The process of decomposing a constraint network into compo-
nents is called decomposition. There are various decomposition algorithms.

Michael Kohlhase: Artificial Intelligence 1 300 2025-02-06

122 CHAPTER 9. CONSTRAINT PROPAGATION

Tree-structured CSPs

� Definition 9.5.6. We call a CSP tree-structured, iff its constraint graph is acyclic

� Theorem 9.5.7. Tree-structured CSP can be solved in O(nd2) time.

� Compare to general CSPs, where worst case time is O(dn).

� This property also applies to logical and probabilistic reasoning: an important ex-
ample of the relation between syntactic restrictions and the complexity of reasoning.

Michael Kohlhase: Artificial Intelligence 1 301 2025-02-06

Algorithm for tree-structured CSPs

1. Choose a variable as root, order variables from root to leaves such that every node’s
parent precedes it in the ordering

2. For j from n down to 2, apply

RemoveInconsistent(Parent(Xj ,Xj))

3. For j from 1 to n, assign Xj consistently with Parent(Xj)

Michael Kohlhase: Artificial Intelligence 1 302 2025-02-06

Nearly tree-structured CSPs

� Definition 9.5.8. Conditioning: instantiate a variable, prune its neighbors’ do-
mains.

� Example 9.5.9.

9.5. DECOMPOSITION: CONSTRAINT GRAPHS, AND THREE SIMPLE CASES 123

� Definition 9.5.10. Cutset conditioning: instantiate (in all ways) a set of variables
such that the remaining constraint graph is a tree.

� Cutset size c ; running time O(dc(n− c)d2), very fast for small c.

Michael Kohlhase: Artificial Intelligence 1 303 2025-02-06

“Decomposition” 2.0: Acyclic Constraint Graphs

� Theorem 9.5.11 (Acyclic Constraint Graphs). Let γ := ⟨V ,D,C ⟩ be a con-
straint network with n variables and maximal domain size k, whose constraint graph
is acyclic. Then we can find a solution for γ, or prove γ to be unsatisfiable, in time
O(nk2).

� Proof sketch: See the algorithm on the next slide

� Constraint networks with acyclic constraint graphs can be solved in (low order)
polynomial time.

� Example 9.5.12. Australia is not acyclic. (But see next section)
204 Chapter 6. Constraint Satisfaction Problems

Western
Australia

Northern
Territory

South
Australia

Queensland

New
South
Wales

Victoria

Tasmania

WA

NT

SA

Q

NSW

V

T

(a) (b)

Figure 6.1 (a) The principal states and territories of Australia. Coloring this map can
be viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each
region so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

immediately discard further refinements of the partial assignment. Furthermore, we can see
why the assignment is not a solution—we see which variables violate a constraint—so we can
focus attention on the variables that matter. As a result, many problems that are intractable
for regular state-space search can be solved quickly when formulated as a CSP.

6.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB ,WheelLB ,NutsRF ,
NutsLF ,NutsRB ,NutsLB ,CapRF ,CapLF ,CapRB ,CapLB , Inspect} .

The value of each variable is the time that the task starts. Next we represent precedence
constraints between individual tasks. Whenever a task T1 must occur before task T2, andPRECEDENCE

CONSTRAINTS

task T1 takes duration d1 to complete, we add an arithmetic constraint of the form

T1 + d1 ≤ T2 .

� Example 9.5.13 (Doing the Numbers).

� γ with n = 40 variables, each domain size k = 2. Acyclic constraint graph.

� Reduction of worst-case when using decomposition:

� No decomposition: 240.
� With decomposition: 40 · 22. Gain: 232.

Michael Kohlhase: Artificial Intelligence 1 304 2025-02-06

124 CHAPTER 9. CONSTRAINT PROPAGATION

Acyclic Constraint Graphs: How To

� Definition 9.5.14. Algorithm AcyclicCG(γ):

1. Obtain a (directed) tree from γ’s constraint graph, picking an arbitrary variable
v as the root, and directing edges outwards.a

2. Order the variables topologically, i.e., such that each node is ordered before its
children; denote that order by v1, . . ., vn.

3. for i := n, n− 1, . . . , 2 do:

(a) Revise(γ, vparent(i), vi).
(b) if Dvparent(i)

= ∅ then return “inconsistent”

Now, every variable is arc consistent relative to its children.

4. Run BacktrackingWithInference with forward checking, using the variable order
v1, . . ., vn.

� Lemma 9.5.15. This algorithm will find a solution without ever having to back-
track!

Michael Kohlhase: Artificial Intelligence 1 305 2025-02-06

aWe assume here that γ’s constraint graph is connected. If it is not, do this and the following
for each component separately.

AcyclicCG(γ): Example

� Example 9.5.16 (AcyclicCG() execution).

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Input network γ.

1 2 3

v1

1 2 3v2 1 2 3 v3

v1 < v2

v2 < v3

Step 1: Directed tree for root v1.

9.6. CUTSET CONDITIONING 125

Step 2: Order v1, v2, v3.

1 2 3

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v2, v3).

1

v1

1 2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 3: After Revise(γ, v1, v2).

1

v1

2v2 1 2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v1) := 1 and forward checking.

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v2) := 2 and forward checking.

1

v1

2v2 3 v3

v1 < v2

v2 < v3

Step 4: After a(v3) := 3 (and forward checking).

Michael Kohlhase: Artificial Intelligence 1 306 2025-02-06

9.6 Cutset Conditioning

A Video Nugget covering this section can be found at https://fau.tv/clip/id/22354.

https://fau.tv/clip/id/22354

126 CHAPTER 9. CONSTRAINT PROPAGATION

“Almost” Acyclic Constraint Graphs

� Example 9.6.1 (Coloring Australia).

� Cutset Conditioning: Idea:

1. Recursive call of backtracking search on a s.t. the subgraph of the constraint
graph induced by {v ∈ V | a(v) is undefined} is acyclic.

� Then we can solve the remaining sub-problem with AcyclicCG().

2. Choose the variable ordering so that removing the first d variables renders the
constraint graph acyclic.

� Then with (1) we won’t have to search deeper than d . . . !

Michael Kohlhase: Artificial Intelligence 1 307 2025-02-06

“Decomposition” 3.0: Cutset Conditioning

� Definition 9.6.2 (Cutset). Let γ := ⟨V ,D,C ⟩ be a constraint network, and
V0 ⊆ V . Then V0 is a cutset for γ if the subgraph of γ’s constraint graph induced
by V \V0 is acyclic. V0 is called optimal if its size is minimal among all cutsets for
γ.

� Definition 9.6.3. The cutset conditioning algorithm, computes an optimal cutset,
from γ and an existing cutset V0.

function CutsetConditioning(γ,V0,a) returns a solution, or ‘‘inconsistent’’
γ′ := a copy of γ; γ′ := ForwardChecking(γ′,a)
if ex. v with Dγ′

v
= ∅ then return ‘‘inconsistent’’

if ex. v ∈ V0 s.t. a(v) is undefined then select such v
else a′ := AcyclicCG(γ′);
if a′ ̸= “inconsistent” then return a ∪ a′ else return ‘‘inconsistent’’
for each d ∈ copy of Dγ′

v
in some order do

a′ := a ∪ {v = d}; Dγ′
v

:= {d};
a′′ := CutsetConditioning(γ′,V0,a′)

if a′′ ̸= “inconsistent” then return a′′ else return ‘‘inconsistent’’

� Forward checking is required so that “a ∪AcyclicCG(γ′)” is consistent in γ.

� Observation 9.6.4. Running time is exponential only in #(V0), not in #(V)!

� Remark 9.6.5. Finding optimal cutsets is NP hard, but good approximations exist.

Michael Kohlhase: Artificial Intelligence 1 308 2025-02-06

9.7. CONSTRAINT PROPAGATION WITH LOCAL SEARCH 127

9.7 Constraint Propagation with Local Search
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22355.

Iterative algorithms for CSPs

� Local search algorithms like hill climbing and simulated annealing typically work
with “complete” states, i.e., all variables are assigned

� To apply to CSPs: allow states with unsatisfied constraints, actions reassign variable
values.

� Variable selection: Randomly select any conflicted variable.

� Value selection by min conflicts heuristic: choose value that violates the fewest
constraints i.e., hill climb with h(n):=total number of violated constraints.

Michael Kohlhase: Artificial Intelligence 1 309 2025-02-06

Example: 4-Queens

� States: 4 queens in 4 columns (44 = 256 states)

� Actions: Move queen in column

� Goal state: No conflicts

� Heuristic: h(n) =̂ number of conflict

Michael Kohlhase: Artificial Intelligence 1 310 2025-02-06

Performance of min-conflicts

� Given a random initial state, can solve n-queens in almost constant time for
arbitrary n with high probability (e.g., n = 10,000,000)

� The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

R =
number of constraints
number of variables

https://fau.tv/clip/id/22355

128 CHAPTER 9. CONSTRAINT PROPAGATION

Michael Kohlhase: Artificial Intelligence 1 311 2025-02-06

9.8 Conclusion & Summary
A Video Nugget covering this section can be found at https://fau.tv/clip/id/22356.

Conclusion & Summary

� γ and γ′ are equivalent if they have the same solutions. γ′ is tighter than γ if it is
more constrained.

� Inference tightens γ without losing equivalence, during backtracking search. This
reduces the amount of search needed; that benefit must be traded off against the
running time overhead for making the inferences.

� Forward checking removes values conflicting with an assignment already made.

� Arc consistency removes values that do not comply with any value still available at
the other end of a constraint. This subsumes forward checking.

� The constraint graph captures the dependencies between variables. Separate con-
nected components can be solved independently. Networks with acyclic constraint
graphs can be solved in low order polynomial time.

� A cutset is a subset of variables removing which renders the constraint graph acyclic.
Cutset conditioning backtracks only on such a cutset, and solves a sub-problem with
acyclic constraint graph at each search leaf.

Michael Kohlhase: Artificial Intelligence 1 312 2025-02-06

Topics We Didn’t Cover Here

� Path consistency, k-consistency: Generalizes arc consistency to size k subsets
of variables. Path consistency =̂ 3-consistency.

� Tree decomposition: Instead of instantiating variables until the leaf nodes are
trees, distribute the variables and constraints over sub-CSPs whose connections form
a tree.

� Backjumping: Like backtracking search, but with ability to back up across several

https://fau.tv/clip/id/22356

9.8. CONCLUSION & SUMMARY 129

levels (to a previous variable assignment identified to be responsible for failure).

� No-Good Learning: Inferring additional constraints based on information gath-
ered during backtracking search.

� Local search: In space of total (but not necessarily consistent) assignments.
(E.g., 8 queens in ??)

� Tractable CSP: Classes of CSPs that can be solved in P.

� Global Constraints: Constraints over many/all variables, with associated special-
ized inference methods.

� Constraint Optimization Problems (COP): Utility function over solutions, need
an optimal one.

Michael Kohlhase: Artificial Intelligence 1 313 2025-02-06

Suggested Reading:

• Chapter 6: Constraint Satisfaction Problems in [RN09], in particular Sections 6.2, 6.3.2, and
6.5.

– Compared to our treatment of the topic “constraint satisfaction problems” (?? and ??),
RN covers much more material, but less formally and in much less detail (in particular, our
slides contain many additional in-depth examples). Nice background/additional reading, can’t
replace the lectures.

– Section 6.3.2: Somewhat comparable to our “inference” (except that equivalence and tightness
are not made explicit in RN) together with “forward checking”.

– Section 6.2: Similar to our “arc consistency”, less/different examples, much less detail, addi-
tional discussion of path consistency and global constraints.

– Section 6.5: Similar to our “decomposition” and “cutset conditioning”, less/different examples,
much less detail, additional discussion of tree decomposition.

130 CHAPTER 9. CONSTRAINT PROPAGATION

Bibliography

[FD14] Zohar Feldman and Carmel Domshlak. “Simple Regret Optimization in Online Plan-
ning for Markov Decision Processes”. In: Journal of Artificial Intelligence Research 51
(2014), pp. 165–205.

[ILD] 7. Constraints: Interpreting Line Drawings. url: https://www.youtube.com/watch?
v=l-tzjenXrvI&t=2037s (visited on 11/19/2019).

[KS06] Levente Kocsis and Csaba Szepesvári. “Bandit Based Monte-Carlo Planning”. In: Pro-
ceedings of the 17th European Conference on Machine Learning (ECML 2006). Ed.
by Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou. Vol. 4212. LNCS.
Springer-Verlag, 2006, pp. 282–293.

[Met+53] N. Metropolis et al. “Equations of state calculations by fast computing machines”. In:
Journal of Chemical Physics 21 (1953), pp. 1087–1091.

[Min] Minion - Constraint Modelling. System Web page at http://constraintmodelling.
org/minion/. url: http://constraintmodelling.org/minion/.

[Pól73] George Pólya. How to Solve it. A New Aspect of Mathematical Method. Princeton
University Press, 1973.

[RN03] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 2nd ed.
Pearso n Education, 2003. isbn: 0137903952.

[RN09] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 3rd. Pren-
tice Hall Press, 2009. isbn: 0136042597, 9780136042594.

[Sil+16] David Silver et al. “Mastering the Game of Go with Deep Neural Networks and Tree
Search”. In: Nature 529 (2016), pp. 484–503. url: http://www.nature.com/nature/
journal/v529/n7587/full/nature16961.html.

[Wal75] David Waltz. “Understanding Line Drawings of Scenes with Shadows”. In: The Psy-
chology of Computer Vision. Ed. by P. H. Winston. McGraw-Hill, 1975, pp. 1–19.

131

https://www.youtube.com/watch?v=l-tzjenXrvI&t=2037s
https://www.youtube.com/watch?v=l-tzjenXrvI&t=2037s
http://constraintmodelling.org/minion/
http://constraintmodelling.org/minion/
http://constraintmodelling.org/minion/
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

132 BIBLIOGRAPHY

	6 Problem Solving and Search
	6.1 Problem Solving
	6.2 Problem Types
	6.3 Search
	6.4 Uninformed Search Strategies
	6.4.1 Breadth-First Search Strategies
	6.4.2 Depth-First Search Strategies
	6.4.3 Further Topics

	6.5 Informed Search Strategies
	6.5.1 Greedy Search
	6.5.2 Heuristics and their Properties
	6.5.3 A-Star Search
	6.5.4 Finding Good Heuristics

	6.6 Local Search

	7 Adversarial Search for Game Playing
	7.1 Introduction
	7.2 Minimax Search
	7.3 Evaluation Functions
	7.4 Alpha-Beta Search
	7.5 Monte-Carlo Tree Search (MCTS)
	7.6 State of the Art
	7.7 Conclusion

	8 Constraint Satisfaction Problems
	8.1 Constraint Satisfaction Problems: Motivation
	8.2 The Waltz Algorithm
	8.3 CSP: Towards a Formal Definition
	8.4 Constraint Networks: Formalizing Binary CSPs
	8.5 CSP as Search
	8.6 Conclusion & Preview

	9 Constraint Propagation
	9.1 Introduction
	9.2 Constraint Propagation/Inference
	9.3 Forward Checking
	9.4 Arc Consistency
	9.5 Decomposition: Constraint Graphs, and Three Simple Cases
	9.6 Cutset Conditioning
	9.7 Constraint Propagation with Local Search
	9.8 Conclusion & Summary

