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This document contains Part I of the course notes for the course “Artificial Intelligence 1” held
at FAU Erlangen-Nürnberg in the Winter Semesters 2016/17 ff. This part of the lecture notes
sets the stage for the technical parts of the course by establishing a common framework (Rational
Agents) that gives context and ties together the various methods discussed in the course. Other
parts of the lecture notes can be found at http://kwarc.info/teaching/AI/notes-*.pdf.

http://kwarc.info/teaching/AI/notes-*.pdf
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4 CONTENTS

After having seen what AI can do and where AI is being employed today (see ??), we will now

1. introduce a programming language to use in the course,

2. prepare a conceptual framework in which we can think about “intelligence” (natural and arti-
ficial), and

3. recap some methods and results from theoretical computer science that we will need throughout
the course.

ad 1. Prolog: For the programming language we choose Prolog, historically one of the most
influential “AI programming languages”. While the other AI programming language: Lisp which
gave rise to the functional programming programming paradigm has been superseded by typed
languages like SML, Haskell, Scala, and F#, Prolog is still the prime example of the declarative
programming paradigm. So using Prolog in this course gives students the opportunity to explore
this paradigm. At the same time, Prolog is well-suited for trying out algorithms in symbolic AI the
topic of this semester since it internalizes the more complex primitives of the algorithms presented
here.
ad 2. Rational Agents: The conceptual framework centers around rational agents which
combine aspects of purely cognitive architectures (an original concern for the field of AI) with the
more recent realization that intelligence must interact with the world (embodied AI) to grow and
learn. The cognitive architectures aspect allows us to place and relate the various algorithms and
methods we will see in this course. Unfortunately, the “situated AI” aspect will not be covered in
this course due to the lack of time and hardware.
ad 3. Topics of Theoretical Computer Science: When we evaluate the methods and
algorithms introduced in AI-1, we will need to judge their suitability as agent functions. The main
theoretical tool for that is complexity theory; we will give a short motivation and overview of the
main methods and results as far as they are relevant for AI-1 in ??.

In the second half of the semester we will transition from search-based methods for problem
solving to inference-based ones, i.e. where the problem formulation is described as expressions of a
formal language which are transformed until an expression is reached from which the solution can
be read off. Phrase structure grammars are the method of choice for describing such languages;
we will introduce/recap them in ??.

Enough philosophy about “Intelligence” (Artificial or Natural)

� So far we had a nice philosophical chat, about “intelligence” et al.

� As of today, we look at technical stuff!

� Before we go into the algorithms and data structures proper, we will

1. introduce a programming language for AI-1

2. prepare a conceptual framework in which we can think about “intelligence” (nat-
ural and artificial), and

3. recap some methods and results from theoretical computer science.

Michael Kohlhase: Artificial Intelligence 1 41 2025-02-06



Chapter 3

Logic Programming

We will now learn a new programming paradigm: logic programming, which is one of the most
influential paradigms in AI. We are going to study Prolog (the oldest and most widely used) as a
concrete example of ideas behind logic programming and use it for our homeworks in this course.
As Prolog is a representative of a programming paradigm that is new to most students, pro-

gramming will feel weird and tedious at first. But subtracting the unusual syntax and program
organization logic programming really only amounts to recursive programming just as in func-
tional programming (the other declarative programming paradigm). So the usual advice applies,
keep staring at it and practice on easy examples until the pain goes away.

3.1 Introduction to Logic Programming and ProLog
Logic programming is a programming paradigm that differs from functional and imperative pro-
gramming in the basic procedural intuition. Instead of transforming the state of the memory by
issuing instructions (as in imperative programming), or computing the value of a function on some
arguments, logic programming interprets the program as a body of knowledge about the respective
situation, which can be queried for consequences.

This is actually a very natural conception of program; after all we usually run (imperative or
functional) programs if we want some question answered. Video Nuggets covering this section
can be found at https://fau.tv/clip/id/21752 and https://fau.tv/clip/id/21753.

.

Logic Programming

� Idea: Use logic as a programming language!

� We state what we know about a problem (the program) and then ask for results
(what the program would compute).

� Example 3.1.1.

Program Leibniz is human x+ 0 = x
Sokrates is human If x+ y = z then x+ s(y) = s(z)
Sokrates is a greek 3 is prime
Every human is fallible

Query Are there fallible greeks? is there a z with s(s(0)) + s(0) = z

Answer Yes, Sokrates! yes s(s(s(0)))

5

https://fau.tv/clip/id/21752
https://fau.tv/clip/id/21753
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� How to achieve this? Restrict a logic calculus sufficiently that it can be used as
computational procedure.

� Remark: This idea leads a totally new programming paradigm: logic programming.

� Slogan: Computation = Logic + Control (Robert Kowalski 1973; [Kow97])

� We will use the programming language Prolog as an example.

Michael Kohlhase: Artificial Intelligence 1 42 2025-02-06

We now formally define the language of Prolog, starting off the atomic building blocks.

Prolog Terms and Literals

� Definition 3.1.2. Prolog expresses knowledge about the world via

� constants denoted by lowercase strings,

� variables denoted by strings starting with an uppercase letter or _, and

� functions and predicates (lowercase strings) applied to terms.

� Definition 3.1.3. A Prolog term is

� a Prolog variable, or constant, or

� a Prolog function applied to terms.

A Prolog literal is a constant or a predicate applied to terms.

� Example 3.1.4. The following are

� Prolog terms: john, X, _, father(john), . . .

� Prolog literals: loves(john,mary), loves(john,_), loves(john,wife_of(john)),. . .

Michael Kohlhase: Artificial Intelligence 1 43 2025-02-06

Now we build up Prolog programs from those building blocks.

Prolog Programs: Facts and Rules

� Definition 3.1.5. A Prolog program is a sequence of clauses, i.e.

� facts of the form l., where l is a literal, (a literal and a dot)

� rules of the form h:−b1,. . .,bn., where n > 0. h is called the head literal (or
simply head) and the bi are together called the body of the rule.

A rule h:−b1,. . .,bn., should be read as h (is true) if b1 and . . . and bn are.

� Example 3.1.6. Write “something is a car if it has a motor and four wheels” as
car(X) :− has_motor(X),has_wheels(X,4). (variables are uppercase)
This is just an ASCII notation for m(x) ∧ w(x, 4)⇒ car(x).

� Example 3.1.7. The following is a Prolog program:

human(leibniz).
human(sokrates).
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greek(sokrates).
fallible(X):−human(X).

The first three lines are Prolog facts and the last a rule.

Michael Kohlhase: Artificial Intelligence 1 44 2025-02-06

The whole point of writing down a knowledge base (a Prolog program with knowledge about the
situation), if we do not have to write down all the knowledge, but a (small) subset, from which
the rest follows. We have already seen how this can be done: with logic. For logic programming
we will use a logic called “first-order logic” which we will not formally introduce here.

Prolog Programs: Knowledge bases

� Intuition: The knowledge base given by a Prolog program is the set of facts that
can be derived from it under the if/and reading above.

� Definition 3.1.8. The knowledge base given by Prolog program is that set of facts
that can be derived from it by Modus Ponens (MP), ∧I and instantiation.

A A⇒B

B
MP

A B

A ∧B ∧I A

[B/X](A)
Subst

Michael Kohlhase: Artificial Intelligence 1 45 2025-02-06

?? introduces a very important distinction: that between a Prolog program and the knowledge
base it induces. Whereas the former is a finite, syntactic object (essentially a string), the latter
may be an infinite set of facts, which represents the totality of knowledge about the world or the
aspects described by the program.
As knowledge bases can be infinite, we cannot pre-compute them. Instead, logic programming
languages compute fragments of the knowledge base by need; i.e. whenever a user wants to check
membership; we call this approach querying: the user enters a query expression and the system
answers yes or no. This answer is computed in a depth first search process.

Querying the Knowledge Base: Size Matters

� Idea: We want to see whether a fact is in the knowledge base.

� Definition 3.1.9. A query is a list of Prolog literals called goal literal (also subgoals
or simply goals). We write a query as ?−A1, . . ., An. where Ai are goals.

� Problem: Knowledge bases can be big and even infinite. (cannot pre-compute)

� Example 3.1.10. The knowledge base induced by the Prolog program

nat(zero).
nat(s(X)) :− nat(X).

contains the facts nat(zero), nat(s(zero)), nat(s(s(zero))), . . .

Michael Kohlhase: Artificial Intelligence 1 46 2025-02-06
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Querying the Knowledge Base: Backchaining

� Definition 3.1.11. Given a query Q: ?− A1, . . ., An. and rule R: h:− b1,. . .,bn,
backchaining computes a new query by

1. finding terms for all variables in h to make h and A1 equal and

2. replacing A1 in Q with the body literals of R, where all variables are suitably
replaced.

� Backchaining motivates the names goal/subgoal:

� the literals in the query are “goals” that have to be satisfied,

� backchaining does that by replacing them by new “goals”.

� Definition 3.1.12. The Prolog interpreter keeps backchaining from the top to the
bottom of the program until the query

� succeeds, i.e. contains no more goals, or (answer: true)

� fails, i.e. backchaining becomes impossible. (answer: false)

� Example 3.1.13 (Backchaining). We continue ??

?− nat(s(s(zero))).
?− nat(s(zero)).
?− nat(zero).
true

Michael Kohlhase: Artificial Intelligence 1 47 2025-02-06

Note that backchaining replaces the current query with the body of the rule suitably instantiated.
For rules with a long body this extends the list of current goals, but for facts (rules without a
body), backchaining shortens the list of current goals. Once there are no goals left, the Prolog
interpreter finishes and signals success by issuing the string true.
If no rules match the current subgoal, then the interpreter terminates and signals failure with the
string false,

Querying the Knowledge Base: Failure

� If no instance of a query can be derived from the knowledge base, then the Prolog
interpreter reports failure.

� Example 3.1.14. We vary ?? using 0 instead of zero.

?− nat(s(s(0))).
?− nat(s(0)).
?− nat(0).
FAIL
false

Michael Kohlhase: Artificial Intelligence 1 48 2025-02-06

We can extend querying from simple yes/no answers to programs that return values by simply
using variables in queries. In this case, the Prolog interpreter returns a substitution.
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Querying the Knowledge base: Answer Substitutions

� Definition 3.1.15. If a query contains variables, then Prolog will return an answer
substitution as the result to the query, i.e the values for all the query variables
accumulated during repeated backchaining.

� Example 3.1.16. We talk about (Bavarian) cars for a change, and use a query
with a variables
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):−has_wheels(X,4),has_motor(X).
?− car(Y) % query
?− has_wheels(Y,4),has_motor(Y). % substitution X = Y
?− has_motor(mybmw). % substitution Y = mybmw
Y = mybmw % answer substitution
true
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In ?? the first backchaining step binds the variable X to the query variable Y, which gives us the
two subgoals has_wheels(Y,4),has_motor(Y). which again have the query variable Y. The next
backchaining step binds this to mybmw, and the third backchaining step exhausts the subgoals.
So the query succeeds with the (overall) answer substitution Y = mybmw. With this setup, we
can already do the “fallible Greeks” example from the introduction.

PROLOG: Are there Fallible Greeks?

� Program:

human(leibniz).
human(sokrates).
greek(sokrates).
fallible(X):−human(X).

� Example 3.1.17 (Query). ?−fallible(X),greek(X).

� Answer substitution: [sokrates/X]
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3.2 Programming as Search

In this section, we want to really use Prolog as a programming language, so let use first get our tools
set up. Video Nuggets covering this section can be found at https://fau.tv/clip/id/21754
and https://fau.tv/clip/id/21827.

3.2.1 Running Prolog

We will now discuss how to use a Prolog interpreter to get to know the language. The SWI
Prolog interpreter can be downloaded from http://www.swi-prolog.org/. To start the Prolog
interpreter with pl or prolog or swipl from the shell. The SWI manual is available at http:
//www.swi-prolog.org/pldoc/

https://fau.tv/clip/id/21754
https://fau.tv/clip/id/21827
http://www.swi-prolog.org/
http://www.swi-prolog.org/pldoc/
http://www.swi-prolog.org/pldoc/
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We will introduce working with the interpreter using unary natural numbers as examples: we
first add the fact1 to the knowledge base

unat(zero).

which asserts that the predicate unat2 is true on the term zero. Generally, we can add a fact to
the knowledge base either by writing it into a file (e.g. example.pl) and then “consulting it” by
writing one of the following three commands into the interpreter:

[example]
consult(’example.pl’).
consult(’example’).

or by directly typing

assert(unat(zero)).

into the Prolog interpreter. Next tell Prolog about the following rule

assert(unat(suc(X)) :− unat(X)).

which gives the Prolog runtime an initial (infinite) knowledge base, which can be queried by

?− unat(suc(suc(zero))).

Even though we can use any text editor to program Prolog, but running Prolog in a modern
editor with language support is incredibly nicer than at the command line, because you can see
the whole history of what you have done. Its better for debugging too.

3.2.2 Knowledge Bases and Backtracking

Depth-First Search with Backtracking

� So far, all the examples led to direct success or to failure. (simple KB)

� Definition 3.2.1 (Prolog Search Procedure). The Prolog interpreter employs
top-down, left-right depth first search, concretely, Prolog search:

� works on the subgoals in left right order.

� matches first query with the head literals of the clauses in the program in top-
down order.

� if there are no matches, fail and backtracks to the (chronologically) last back-
track point.

� otherwise backchain on the first match, keep the other matches in mind for
backtracking via backtrack points.

We say that a goal G matches a head H, iff we can make them equal by replacing
variables in H with terms.

� We can force backtracking to compute more answers by typing ;.

Michael Kohlhase: Artificial Intelligence 1 51 2025-02-06

Note: With the Prolog search procedure detailed above, computation can easily go into infinite
loops, even though the knowledge base could provide the correct answer. Consider for instance
the simple program

1for “unary natural numbers”; we cannot use the predicate nat and the constructor function s here, since their
meaning is predefined in Prolog

2for “unary natural numbers”.
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p(X):− p(X).
p(X):− q(X).
q(X).

If we query this with ?− p(john), then DFS will go into an infinite loop because Prolog expands
by default the first predicate. However, we can conclude that p(john) is true if we start expanding
the second predicate.

In fact this is a necessary feature and not a bug for a programming language: we need to
be able to write non-terminating programs, since the language would not be Turing complete
otherwise. The argument can be sketched as follows: we have seen that for Turing machines the
halting problem is undecidable. So if all Prolog programs were terminating, then Prolog would be
weaker than Turing machines and thus not Turing complete.
We will now fortify our intuition about the Prolog search procedure by an example that extends
the setup from ?? by a new choice of a vehicle that could be a car (if it had a motor).

Backtracking by Example

� Example 3.2.2. We extend ??:
has_wheels(mytricycle,3).
has_wheels(myrollerblade,3).
has_wheels(mybmw,4).
has_motor(mybmw).
car(X):-has_wheels(X,3),has_motor(X). % cars sometimes have three wheels
car(X):-has_wheels(X,4),has_motor(X). % and sometimes four.
?- car(Y).
?- has_wheels(Y,3),has_motor(Y). % backtrack point 1
Y = mytricycle % backtrack point 2
?- has_motor(mytricycle).
FAIL % fails, backtrack to 2
Y = myrollerblade % backtrack point 2
?- has_motor(myrollerblade).
FAIL % fails, backtrack to 1
?- has_wheels(Y,4),has_motor(Y).
Y = mybmw
?- has_motor(mybmw).
Y=mybmw
true
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In general, a Prolog rule of the form A:−B,C reads as A, if B and C. If we want to express A if
B or C, we have to express this two separate rules A:−B and A:−C and leave the choice which
one to use to the search procedure.
In ?? we indeed have two clauses for the predicate car/1; one each for the cases of cars with three
and four wheels. As the three-wheel case comes first in the program, it is explored first in the
search process.
Recall that at every point, where the Prolog interpreter has the choice between two clauses for a
predicate, chooses the first and leaves a backtrack point. In ?? this happens first for the predicate
car/1, where we explore the case of three-wheeled cars. The Prolog interpreter immediately has
to choose again – between the tricycle and the rollerblade, which both have three wheels. Again,
it chooses the first and leaves a backtrack point. But as tricycles do not have motors, the subgoal
has_motor(mytricycle) fails and the interpreter backtracks to the chronologically nearest backtrack
point (the second one) and tries to fulfill has_motor(myrollerblade). This fails again, and the next
backtrack point is point 1 – note the stack-like organization of backtrack points which is in keeping
with the depth-first search strategy – which chooses the case of four-wheeled cars. This ultimately
succeeds as before with y=mybmw.
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3.2.3 Programming Features
We now turn to a more classical programming task: computing with numbers. Here we turn

to our initial example: adding unary natural numbers. If we can do that, then we have to consider
Prolog a programming language.

Can We Use This For Programming?

� Question: What about functions? E.g. the addition function?

� Question: We cannot define functions, in Prolog!

� Idea (back to math): use a three-place predicate.

� Example 3.2.3. add(X,Y,Z) stands for X+Y=Z

� Now we can directly write the recursive equations X + 0 = X (base case) and
X + s(Y ) = s(X + Y ) into the knowledge base.

add(X,zero,X).
add(X,s(Y),s(Z)) :− add(X,Y,Z).

� Similarly with multiplication and exponentiation.

mult(X,zero,zero).
mult(X,s(Y),Z) :− mult(X,Y,W), add(X,W,Z).

expt(X,zero,s(zero)).
expt(X,s(Y),Z) :− expt(X,Y,W), mult(X,W,Z).
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Note: Viewed through the right glasses logic programming is very similar to functional program-
ming; the only difference is that we are using n+1 ary relations rather than n ary function. To see
how this works let us consider the addition function/relation example above: instead of a binary
function + we program a ternary relation add, where relation add(X,Y ,Z) means X+Y = Z. We
start with the same defining equations for addition, rewriting them to relational style.

The first equation is straight-forward via our correspondence and we get the Prolog fact
add(X,zero,X). For the equation X + s(Y ) = s(X + Y ) we have to work harder, the straight-
forward relational translation add(X,s(Y),s(X+Y)) is impossible, since we have only partially
replaced the function + with the relation add. Here we take refuge in a very simple trick that we
can always do in logic (and mathematics of course): we introduce a new name Z for the offending
expression X + Y (using a variable) so that we get the fact add(X,s(Y ),s(Z)). Of course this is
not universally true (remember that this fact would say that “X + s(Y ) = s(Z) for all X, Y , and
Z”), so we have to extend it to a Prolog rule add(X,s(Y),s(Z)):−add(X,Y,Z). which relativizes to
mean “X + s(Y ) = s(Z) for all X, Y , and Z with X + Y = Z”.

Indeed the rule implements addition as a recursive predicate, we can see that the recursion
relation is terminating, since the left hand sides have one more constructor for the successor
function. The examples for multiplication and exponentiation can be developed analogously, but
we have to use the naming trick twice.

We now apply the same principle of recursive programming with predicates to other examples
to reinforce our intuitions about the principles.

More Examples from elementary Arithmetic
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� Example 3.2.4. We can also use the add relation for subtraction without changing
the implementation. We just use variables in the “input positions” and ground terms
in the other two. (possibly very inefficient “generate and test approach”)

?−add(s(zero),X,s(s(s(zero)))).
X = s(s(zero))
true

� Example 3.2.5. Computing the nth Fibonacci number (0, 1, 1, 2, 3, 5, 8, 13,. . . ;
add the last two to get the next), using the addition predicate above.

fib(zero,zero).
fib(s(zero),s(zero)).
fib(s(s(X)),Y):−fib(s(X),Z),fib(X,W),add(Z,W,Y).

� Example 3.2.6. Using Prolog’s internal floating-point arithmetic: a goal of the
form ?− D is e. — where e is a ground arithmetic expression binds D to the result
of evaluating e.

fib(0,0).
fib(1,1).
fib(X,Y):− D is X − 1, E is X − 2,fib(D,Z),fib(E,W), Y is Z + W.
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Note: Note that the is relation does not allow “generate and test” inversion as it insists on the
right hand being ground. In our example above, this is not a problem, if we call the fib with
the first (“input”) argument a ground term. Indeed, it matches the last rule with a goal ?− g,Y.,
where g is a ground term, then g−1 and g−2 are ground and thus D and E are bound to the
(ground) result terms. This makes the input arguments in the two recursive calls ground, and we
get ground results for Z and W, which allows the last goal to succeed with a ground result for
Y. Note as well that re-ordering the bodys literal of the rule so that the recursive calls are called
before the computation literals will lead to failure.
We will now add the primitive data structure of lists to Prolog; they are constructed by prepending
an element (the head) to an existing list (which becomes the rest list or “tail” of the constructed
one).

Adding Lists to Prolog

� Definition 3.2.7. In Prolog, lists are represented by list terms of the form

1. [a,b,c,. . .] for list literals, and

2. a first/rest constructor that represents a list with head F and rest list R as [F|R].

� Observation: Just as in functional programming, we can define list operations by
recursion, only that we program with relations instead of with functions.

� Example 3.2.8. Predicates for member, append and reverse of lists in default
Prolog representation.

member(X,[X|_]).
member(X,[_|R]):−member(X,R).

append([],L,L).
append([X|R],L,[X|S]):−append(R,L,S).
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reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).
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Logic programming is the third large programming paradigm (together with functional program-
ming and imperative programming).

Relational Programming Techniques

� Example 3.2.9. Parameters have no unique direction “in” or “out”

?− rev(L,[1,2,3]).
?− rev([1,2,3],L1).
?− rev([1|X],[2|Y]).

� Example 3.2.10. Symbolic programming by structural induction:

rev([],[]).
rev([X|Xs],Ys) :− ...

� Example 3.2.11. Generate and test:

sort(Xs,Ys) :− perm(Xs,Ys), ordered(Ys).
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From a programming practice point of view it is probably best understood as “relational program-
ming” in analogy to functional programming, with which it shares a focus on recursion.
The major difference to functional programming is that “relational programming” does not have
a fixed input/output distinction, which makes the control flow in functional programs very direct
and predictable. Thanks to the underlying search procedure, we can sometime make use of the
flexibility afforded by logic programming.
If the problem solution involves search (and depth first search is sufficient), we can just get by
with specifying the problem and letting the Prolog interpreter do the rest. In ?? we just specify
that list Xs can be sorted into Ys, iff Ys is a permutation of Xs and Ys is ordered. Given a concrete
(input) list Xs, the Prolog interpreter will generate all permutations of Ys of Xs via the predicate
perm/2 and then test them whether they are ordered.

This is a paradigmatic example of logic programming. We can (sometimes) directly use the
specification of a problem as a program. This makes the argument for the correctness of the
program immediate, but may make the program execution non optimal.

3.2.4 Advanced Relational Programming
It is easy to see that the running time of the Prolog program from ?? is not O(nlog2(n)) which
is optimal for sorting algorithms. This is the flip side of the flexibility in logic programming. But
Prolog has ways of dealing with that: the cut operator, which is a Prolog atom, which always
succeeds, but which cannot be backtracked over. This can be used to prune the search tree in
Prolog. We will not go into that here but refer the readers to the literature.

Specifying Control in Prolog

� Remark 3.2.12. The running time of the program from ?? is not O(nlog2(n))
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which is optimal for sorting algorithms.

sort(Xs,Ys) :− perm(Xs,Ys), ordered(Ys).

� Idea: Gain computational efficiency by shaping the search!
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Functions and Predicates in Prolog

� Remark 3.2.13. Functions and predicates have radically different roles in Prolog.

� Functions are used to represent data. (e.g. father(john) or s(s(zero)))

� Predicates are used for stating properties about and computing with data.

� Remark 3.2.14. In functional programming, functions are used for both.
(even more confusing than in Prolog if you think about it)

� Example 3.2.15. Consider again the reverse predicate for lists below:
An input datum is e.g. [1,2,3], then the output datum is [3,2,1].

reverse([],[]).
reverse([X|R],L):−reverse(R,S),append(S,[X],L).

We “define” the computational behavior of the predicate rev, but the list constructors
[. . .] are just used to construct lists from arguments.

� Example 3.2.16 (Trees and Leaf Counting). We represent (unlabelled) trees via
the function t from tree lists to trees. For instance, a balanced binary tree of depth
2 is t([t([t([]),t([])]),t([t([]),t([])])]). We count leaves by

leafcount(t([]),1).
leafcount(t([V]),W) :− leafcount(V,W).
leafcount(t([X|R]),Y) :− leafcount(X,Z), leafcount(t(R),W), Y is Z + W.
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For more information on Prolog

RTFM (=̂ “read the fine manuals”)

� RTFM Resources: There are also lots of good tutorials on the web,

� I personally like [Fis; LPN],

� [Fla94] has a very thorough logic-based introduction,
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� consult also the SWI Prolog Manual [SWI],
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Chapter 4

Recap of Prerequisites from Math &
Theoretical Computer Science

In this chapter we will briefly recap some of the prerequisites from theoretical computer science
that are needed for understanding Artificial Intelligence 1.

4.1 Recap: Complexity Analysis in AI?
We now come to an important topic which is not really part of Artificial Intelligence but which

adds an important layer of understanding to this enterprise: We (still) live in the era of Moore’s
law (the computing power available on a single CPU doubles roughly every two years) leading to an
exponential increase. A similar rule holds for main memory and disk storage capacities. And the
production of computer (using CPUs and memory) is (still) very rapidly growing as well; giving
mankind as a whole, institutions, and individual exponentially grow of computational resources.
In public discussion, this development is often cited as the reason why (strong) AI is inevitable.

But the argument is fallacious if all the algorithms we have are of very high complexity (i.e. at
least exponential in either time or space). So, to judge the state of play in Artificial Intelligence,
we have to know the complexity of our algorithms.
In this section, we will give a very brief recap of some aspects of elementary complexity theory

and make a case of why this is a generally important for computer scientists.
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21839 and

https://fau.tv/clip/id/21840.
To get a feeling what we mean by “fast algorithm”, we do some preliminary computations.

Performance and Scaling

� Suppose we have three algorithms to choose from. (which one to select)

� Systematic analysis reveals performance characteristics.

� Example 4.1.1. For a computational problem of size n we have

17
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performance
size linear quadratic exponential
n 100nµs 7n2µs 2nµs

1 100µs 7µs 2µs

5 .5ms 175µs 32µs

10 1ms .7ms 1ms

45 4.5ms 14ms 1.1Y

100 . . . . . . . . .
1 000 . . . . . . . . .

10 000 . . . . . . . . .
1 000 000 . . . . . . . . .
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The last number in the rightmost column may surprise you. Does the run time really grow that
fast? Yes, as a quick calculation shows; and it becomes much worse, as we will see.

What?! One year?

� 210 = 1024 (1024µs≃ 1ms)

� 245 = 35 184 372 088 832 (3.5×1013µs≃ 3.5×107s≃ 1.1Y )

� Example 4.1.2. We denote all times that are longer than the age of the universe
with −

performance
size linear quadratic exponential
n 100nµs 7n2µs 2nµs

1 100µs 7µs 2µs

5 .5ms 175µs 32µs

10 1ms .7ms 1ms

45 4.5ms 14ms 1.1Y

< 100 100ms 7s 1016Y

1 000 1s 12min −
10 000 10s 20h −

1 000 000 1.6min 2.5mon −
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So it does make a difference for larger computational problems what algorithm we choose. Consid-
erations like the one we have shown above are very important when judging an algorithm. These
evaluations go by the name of “complexity theory”.
Let us now recapitulate some notions of elementary complexity theory: we are interested in the
worst-case growth of the resources (time and space) required by an algorithm in terms of the sizes
of its arguments. Mathematically we look at the functions from input size to resource size and
classify them into “big-O” classes, abstracting from constant factors (which depend on the machine
thealgorithm runs on and which we cannot control) and initial (algorithm startup) factors.

Recap: Time/Space Complexity of Algorithms

� We are mostly interested in worst-case complexity in AI-1.
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� Definition 4.1.3. We say that an algorithm α that terminates in time t(n) for all
inputs of size n has running time T (α) := t.

Let S ⊆ N→N be a set of natural number functions, then we say that α has time
complexity in S (written T (α)∈S or colloquially T (α)=S), iff t∈S. We say α has
space complexity in S, iff α uses only memory of size s(n) on inputs of size n and
s∈S.

� Time/space complexity depends on size measures. (no canonical one)

� Definition 4.1.4. The following sets are often used for S in T (α):

Landau set class name rank Landau set class name rank
O(1) constant 1 O(n2) quadratic 4

O(log2(n)) logarithmic 2 O(nk) polynomial 5
O(n) linear 3 O(kn) exponential 6

where O(g) = {f | ∃k > 0.f≤ak · g} and f≤ag (f is asymptotically bounded by g),
iff there is an n0 ∈ N, such that f(n) ≤ g(n) for all n > n0.

� Lemma 4.1.5 (Growth Ranking). For k′ > 2 and k > 1 we have

O(1)⊂O(log2(n))⊂O(n)⊂O(n2)⊂O(nk
′
)⊂O(kn)

� For AI-1: I expect that given an algorithm, you can determine its complexity class.
(next)
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Advantage: Big-Oh Arithmetics

� Practical Advantage: Computing with Landau sets is quite simple. (good
simplification)

� Theorem 4.1.6 (Computing with Landau Sets).

1. If O(c · f) = O(f) for any constant c ∈ N. (drop constant factors)

2. If O(f) ⊆ O(g), then O(f + g) = O(g). (drop low-complexity summands)

3. If O(f · g) = O(f) · O(g). (distribute over products)

� These are not all of “big-Oh calculation rules”, but they’re enough for most purposes

� Applications: Convince yourselves using the result above that

� O(4n3 + 3n+ 71000n) = O(2n)

� O(n)⊂O(n · log2(n))⊂O(n2)

Michael Kohlhase: Artificial Intelligence 1 63 2025-02-06

OK, that was the theory, . . . but how do we use that in practice?
What I mean by this is that given an algorithm, we have to determine the time complexity.
This is by no means a trivial enterprise, but we can do it by analyzing the algorithm instruction

by instruction as shown below.
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Determining the Time/Space Complexity of Algorithms

� Definition 4.1.7. Given a function Γ that assigns variables v to functions Γ(v)
and α an imperative algorithm, we compute the

� time complexity TΓ(α) of program α and

� the context CΓ(α) introduced by α

by joint induction on the structure of α:

� constant: can be accessed in constant time
If α = δ for a data constant δ, then TΓ(α)∈O(1).

� variable: need the complexity of the value
If α = v with v ∈ dom(Γ), then TΓ(α)∈O(Γ(v)).

� application: compose the complexities of the function and the argument
If α = φ(ψ) with TΓ(φ)∈O(f) and TΓ∪CΓ(φ)(ψ)∈O(g), then TΓ(α)∈O(f ◦ g)
and CΓ(α) = CΓ∪CΓ(φ)(ψ).

� assignment: has to compute the value ; has its complexity
If α is v:=φ with TΓ(φ)∈S, then TΓ(α)∈S and CΓ(α) = Γ ∪ (v,S).

� composition: has the maximal complexity of the components
If α is φ ;ψ, with TΓ(φ)∈P and TΓ∪CΓ(ψ)(ψ)∈Q, then TΓ(α)∈max {P ,Q} and
CΓ(α) = CΓ∪CΓ(ψ)(ψ).

� branching: has the maximal complexity of the condition and branches
If α is ifγthenφelseψend, with TΓ(γ)∈C, TΓ∪CΓ(γ)(φ)∈P , TΓ∪CΓ(γ)(φ)∈Q,
and then TΓ(α)∈max {C,P ,Q} and CΓ(α) = Γ ∪ CΓ(γ) ∪ CΓ∪CΓ(γ)(φ) ∪
CΓ∪CΓ(γ)(ψ).

� looping: multiplies complexities
If α is whileγdoφend, with TΓ(γ)∈O(f), TΓ∪CΓ(γ)(φ)∈O(g), then TΓ(α)∈O(f(n)·
g(n)) and CΓ(α) = CΓ∪CΓ(γ)(φ).

� The time complexity T (α) is just T∅(α), where ∅ is the empty function.

� Recursion is much more difficult to analyze ; recurrences and Master’s theorem.

Michael Kohlhase: Artificial Intelligence 1 64 2025-02-06

As instructions in imperative programs can introduce new variables, which have their own time
complexity, we have to carry them around via the introduced context, which has to be defined
co-recursively with the time complexity. This makes ?? rather complex. The main two cases to
note here are

• the variable case, which “uses” the context Γ and

• the assignment case, which extends the introduced context by the time complexity of the value.

The other cases just pass around the given context and the introduced context systematically.
Let us now put one motivation for knowing about complexity theory into the perspective of the
job market; here the job as a scientist.

Please excuse the chemistry pictures, public imagery for CS is really just quite boring, this is
what people think of when they say “scientist”. So, imagine that instead of a chemist in a lab, it’s
me sitting in front of a computer.
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Why Complexity Analysis? (General)

� Example 4.1.8. Once upon a time I was trying to invent an efficient algorithm.

� My first algorithm attempt didn’t work, so I had to try harder.

� But my 2nd attempt didn’t work either, which got me a bit agitated.

� The 3rd attempt didn’t work either. . .

� And neither the 4th. But then:
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� Ta-da . . . when, for once, I turned around and looked in the other direction–
CAN one actually solve this efficiently? – NP hardness was there to rescue me.
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The meat of the story is that there is no profit in trying to invent an algorithm, which we could
have known that cannot exist. Here is another image that may be familiar to you.

Why Complexity Analysis? (General)

� Example 4.1.9. Trying to find a sea route east to India (from Spain) (does not
exist)

� Observation: Complexity theory saves you from spending lots of time trying to
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invent algorithms that do not exist.
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It’s like, you’re trying to find a route to India (from Spain), and you presume it’s somewhere to
the east, and then you hit a coast, but no; try again, but no; try again, but no; ... if you don’t
have a map, that’s the best you can do. But NP hardness gives you the map: you can check
that there actually is no way through here. But what is this notion of NP completness alluded
to above? We observe that we can analyze the complexity of problems by the complexity of the
algorithms that solve them. This gives us a notion of what to expect from solutions to a given
problem class, and thus whether efficient (i.e. polynomial time) algorithms can exist at all.

Reminder (?): NP and PSPACE (details ; e.g. [GJ79])

� Turing Machine: Works on a tape consisting of cells, across which its Read/Write
head moves. The machine has internal states. There is a transition function that
specifies – given the current cell content and internal state – what the subsequent
internal state will be, how what the R/W head does (write a symbol and/or move).
Some internal states are accepting.

� Decision problems are in NP if there is a non deterministic Turing machine that
halts with an answer after time polynomial in the size of its input. Accepts if at
least one of the possible runs accepts.

� Decision problems are in NPSPACE, if there is a non deterministic Turing ma-
chine that runs in space polynomial in the size of its input.

� NP vs. PSPACE: Non-deterministic polynomial space can be simulated in deter-
ministic polynomial space. Thus PSPACE = NPSPACE, and hence (trivially)
NP ⊆ PSPACE.

It is commonly believed that NP ̸⊇PSPACE. (similar to P ⊆ NP)
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The Utility of Complexity Knowledge (NP-Hardness)

� Assume: In 3 years from now, you have finished your studies and are working in
your first industry job. Your boss Mr. X gives you a problem and says Solve It!. By
which he means, write a program that solves it efficiently.

� Question: Assume further that, after trying in vain for 4 weeks, you got the next
meeting with Mr. X. How could knowing about NP hardness help?

� Answer: reserved for the plenary sessions ; be there!
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4.2 Recap: Formal Languages and Grammars

One of the main ways of designing rational agents in this course will be to define formal languages
that represent the state of the agent environment and let the agent use various inference techniques
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to predict effects of its observations and actions to obtain a world model. In this section we recap
the basics of formal languages and grammars that form the basis of a compositional theory for
them.

The Mathematics of Strings

� Definition 4.2.1. An alphabet A is a finite set; we call each element a ∈ A a
character, and an n tuple s ∈ An a string (of length n over A).

� Definition 4.2.2. Note that A0 = {⟨⟩}, where ⟨⟩ is the (unique) 0-tuple. With
the definition above we consider ⟨⟩ as the string of length 0 and call it the empty
string and denote it with ϵ.

� Note: Sets ̸= strings, e.g. {1, 2, 3} = {3, 2, 1}, but ⟨1, 2, 3⟩ ≠ ⟨3, 2, 1⟩.

� Notation: We will often write a string ⟨c1, . . ., cn⟩ as ”c1. . .cn”, for instance
”abc” for ⟨a, b, c⟩

� Example 4.2.3. Take A = {h, 1, /} as an alphabet. Each of the members h, 1,
and / is a character. The vector ⟨/, /, 1, h, 1⟩ is a string of length 5 over A.

� Definition 4.2.4 (String Length). Given a string s we denote its length with |s|.

� Definition 4.2.5. The concatenation conc(s, t) of two strings s = ⟨s1, ..., sn⟩ ∈ An

and t = ⟨t1, ..., tm⟩ ∈ Am is defined as ⟨s1, ..., sn, t1, ..., tm⟩ ∈ An+m.

We will often write conc(s, t) as s+ t or simply st

� Example 4.2.6. conc(”text”, ”book”) = ”text” + ”book” = ”textbook”
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We have multiple notations for concatenation, since it is such a basic operation, which is used
so often that we will need very short notations for it, trusting that the reader can disambiguate
based on the context.
Now that we have defined the concept of a string as a sequence of characters, we can go on to
give ourselves a way to distinguish between good strings (e.g. programs in a given programming
language) and bad strings (e.g. such with syntax errors). The way to do this by the concept of a
formal language, which we are about to define.

Formal Languages

� Definition 4.2.7. Let A be an alphabet, then we define the sets A+:=
⋃
i∈N+Ai

of nonempty string and A∗:=A+ ∪ {ϵ} of strings.

� Example 4.2.8. IfA = {a, b, c}, thenA∗ = {ϵ, a, b, c, aa, ab, ac, ba, . . . , aaa, . . . }.

� Definition 4.2.9. A set L ⊆ A∗ is called a formal language over A.

� Definition 4.2.10. We use c[n] for the string that consists of the character c

repeated n times.

� Example 4.2.11. #[5] = ⟨#,#,#,#,#⟩

� Example 4.2.12. The set M := {ba[n] |n ∈ N} of strings that start with character
b followed by an arbitrary numbers of a’s is a formal language over A = {a, b}.
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� Definition 4.2.13. Let L1, L2, L ⊆ Σ∗ be formal languages over Σ.

� Intersection and union: L1 ∩ L2, L1 ∪ L2.

� Language complement L: L := Σ∗\L.

� The language concatenation of L1 and L2: L1L2 := {uw |u ∈ L1, w ∈ L2}.
We often use L1L2 instead of L1L2.

� Language power L: L0 := {ϵ}, Ln+1 := LLn, where Ln := {w1. . .wn |wi ∈
L, for i = 1. . .n}, (for n ∈ N).

� language Kleene closure L: L∗ :=
⋃
n∈NL

n and also L+ :=
⋃
n∈N+Ln.

� The reflection of a language L: LR := {wR |w ∈ L}.
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There is a common misconception that a formal language is something that is difficult to under-
stand as a concept. This is not true, the only thing a formal language does is separate the “good”
from the bad strings. Thus we simply model a formal language as a set of stings: the “good”
strings are members, and the “bad” ones are not.

Of course this definition only shifts complexity to the way we construct specific formal languages
(where it actually belongs), and we have learned two (simple) ways of constructing them: by
repetition of characters, and by concatenation of existing languages. As mentioned above,
the purpose of a formal language is to distinguish “good” from “bad” strings. It is maximally
general, but not helpful, since it does not support computation and inference. In practice we
will be interested in formal languages that have some structure, so that we can represent formal
languages in a finite manner (recall that a formal language is a subset of A∗, which may be infinite
and even undecidable – even though the alphabet A is finite).
To remedy this, we will now introduce phrase structure grammars (or just grammars), the stan-

dard tool for describing structured formal languages.

Phrase Structure Grammars (Theory)

� Recap: A formal language is an arbitrary set of symbol sequences.

� Problem: This may be infinite and even undecidable even if A is finite.

� Idea: Find a way of representing formal languages with structure finitely.

� Definition 4.2.14. A phrase structure grammar (also called type 0 grammar,
unrestricted grammar, or just grammar) is a tuple ⟨N,Σ, P , S⟩ where

� N is a finite set of nonterminal symbols,

� Σ is a finite set of terminal symbols, members of Σ ∪N are called symbols.

� P is a finite set of production rules: pairs p := h→ b (also written as h⇒b),
where h ∈ (Σ ∪N)

∗
N(Σ ∪N)

∗ and b ∈ (Σ ∪N)
∗. The string h is called the

head of p and b the body.

� S ∈ N is a distinguished symbol called the start symbol (also sentence symbol).

The sets N and Σ are assumed to be disjoint. Any word w ∈ Σ∗ is called a terminal
word.

� Intuition: Production rules map strings with at least one nonterminal to arbitrary
other strings.
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� Notation: If we have n rules h→ bi sharing a head, we often write h→ b1 | . . . | bn
instead.
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We fortify our intuition about these – admittedly very abstract – constructions by an example
and introduce some more vocabulary.

Phrase Structure Grammars (cont.)

� Example 4.2.15. A simple phrase structure grammar G:

S → NP Vi

NP → Article N

Article → the | a | an
N → dog | teacher | . . .
Vi → sleeps | smells | . . .

Here S , is the start symbol, NP , Article, N , and Vi are nonterminals.

� Definition 4.2.16. A production rule whose head is a single non-terminal and
whose body consists of a single terminal is called lexical or a lexical insertion rule.

Definition 4.2.17. The subset of lexical rules of a grammar G is called the lexicon
of G and the set of body symbols the vocabulary (or alphabet). The nonterminals
in their heads are called lexical categories of G.

� Definition 4.2.18. The non-lexicon production rules are called structural, and the
nonterminals in the heads are called phrasal or syntactic categories.
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Now we look at just how a grammar helps in analyzing formal languages. The basic idea is that
a grammar accepts a word, iff the start symbol can be rewritten into it using only the rules of the
grammar.

Phrase Structure Grammars (Theory)

� Idea: Each symbol sequence in a formal language can be analyzed/generated by
the grammar.

� Definition 4.2.19. Given a phrase structure grammar G := ⟨N,Σ, P , S⟩, we say
G derives t ∈ (Σ ∪N)

∗ from s ∈ (Σ ∪N)
∗ in one step, iff there is a production

rule p ∈ P with p = h→ b and there are u, v ∈ (Σ ∪N)
∗, such that s = suhv and

t = ubv. We write s→p
Gt (or s→Gt if p is clear from the context) and use →∗

G for
the reflexive transitive closure of →G. We call s→∗

Gt a G derivation of t from s.

TEST1: A →G B
C →G D
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TEST2:
A →G B

→G C
→G D

TEST3:

s →G2 asb
→G2

aaSbb
→G2

aaaSbbb
→G2

aaaaSbbbb
→G2

aaaabbbb

� Definition 4.2.20. Given a phrase structure grammar G := ⟨N,Σ, P , S⟩, we say
that s ∈ (N ∪ Σ)

∗ is a sentential form of G, iff S→∗
Gs. A sentential form that

does not contain nontermials is called a sentence of G, we also say that G accepts
s. We say that G rejects s, iff it is not a sentence of G.

� Definition 4.2.21. The language L(G) of G is the set of its sentences. We say
that L(G) is generated by G.

Definition 4.2.22. We call two grammars equivalent, iff they have the same lan-
guages.

Definition 4.2.23. A grammar G is said to be universal if L(G) = Σ∗.

� Definition 4.2.24. Parsing, syntax analysis, or syntactic analysis is the process of
analyzing a string of symbols, either in a formal or a natural language by means of
a grammar.
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Again, we fortify our intuitions with ??.

Phrase Structure Grammars (Example)

� Example 4.2.25. In the grammar G from ??:
1. Article teacher Vi is a sentential

form,

S →G NP Vi

→G Article N Vi

→G Article teacher Vi

2. The teacher sleeps is a sentence.

S →∗
G Article teacher Vi

→G the teacher Vi

→G the teacher sleeps

S → NP Vi

NP → Article N

Article → the | a | an | . . .
N → dog | teacher | . . .
Vi → sleeps | smells | . . .
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Note that this process indeed defines a formal language given a grammar, but does not provide
an efficient algorithm for parsing, even for the simpler kinds of grammars we introduce below.

Grammar Types (Chomsky Hierarchy [Cho65])
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� Observation: The shape of the grammar determines the “size” of its language.

� Definition 4.2.26. We call a grammar:

1. context-sensitive (or type 1), if the bodies of production rules have no less symbols
than the heads,

2. context-free (or type 2), if the heads have exactly one symbol,

3. regular (or type 3), if additionally the bodies are empty or consist of a nonterminal,
optionally followed by a terminal symbol.

By extension, a formal language L is called context-sensitive/context-free/regular
(or type 1/type 2/type 3 respectively), iff it is the language of a respective grammar.
Context-free grammars are sometimes CFGs and context-free languages CFLs.

� Example 4.2.27 (Context-sensitive). The language {a[n]b[n]c[n]} is accepted by

S → a b c |A
A → a A B c | a b c

c B → B c

b B → b b

� Example 4.2.28 (Context-free). The language {a[n]b[n]} is accepted by S →a S b|
ϵ.

� Example 4.2.29 (Regular). The language {a[n]} is accepted by S →S a

� Observation: Natural languages are probably context-sensitive but parsable in
real time! (like languages low in the hierarchy)
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While the presentation of grammars from above is sufficient in theory, in practice the various
grammar rules are difficult and inconvenient to write down. Therefore computer science – where
grammars are important to e.g. specify parts of compilers – has developed extensions – notations
that can be expressed in terms of the original grammar rules – that make grammars more readable
(and writable) for humans. We introduce an important set now.

Useful Extensions of Phrase Structure Grammars

� Definition 4.2.30. The Bachus Naur form or Backus normal form (BNF) is a
metasyntax notation for context-free grammars.

It extends the body of a production rule by mutiple (admissible) constructors:

� alternative: s1 | . . . | sn,
� repetition: s∗ (arbitrary many s) and s+ (at least one s),

� optional: [s] (zero or one times),

� grouping: (s1 ; . . . ; sn), useful e.g. for repetition,

� character sets: [s−t] (all characters c with s≤c≤t for a given ordering on the
characters), and

� complements: [∧s1,. . .,sn], provided that the base alphabet is finite.
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� Observation: All of these can be eliminated, .e.g (; many more rules)

� replace X→Z (s∗) W with the production rules X→Z Y W , Y → ϵ, and
Y →Y s.

� replace X→Z (s+) W with the production rules X→Z Y W , Y → s, and
Y →Y s.
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We will now build on the notion of BNF grammar notations and introduce a way of writing
down the (short) grammars we need in AI-1 that gives us even more of an overview over what is
happening.

An Grammar Notation for AI-1

� Problem: In grammars, notations for nonterminal symbols should be

� short and mnemonic (for the use in the body)

� close to the official name of the syntactic category (for the use in the head)

� In AI-1 we will only use context-free grammars (simpler, but problem still applies)

� in AI-1: I will try to give “grammar overviews” that combine those, e.g. the
grammar of first-order logic.

variables X ∈ V1

function constants fk ∈ Σfk
predicate constants pk ∈ Σpk
terms t ::= X variable

| f0 constant
| fk(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧A2 conjunction
| ∀X.A quantifier
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We will generally get by with context-free grammars, which have highly efficient into parsing
algorithms, for the formal language we use in this course, but we will not cover the algorithms in
AI-1.

4.3 Mathematical Language Recap
We already clarified above that we will use mathematical language as the main vehicle for speci-
fying the concepts underlying the AI algorithms in this course.

In this section, we will recap (or introduce if necessary) an important conceptual practice of
modern mathematics: the use of mathematical structures.

Mathematical Structures

� Observation: Mathematicians often cast classes of complex objects as mathemat-
ical structures.
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� We have just seen an example of a mathematical structure: (repeated here for
convenience)

� Definition 4.3.1. A phrase structure grammar (also called type 0 grammar, unre-
stricted grammar, or just grammar) is a tuple ⟨N,Σ, P , S⟩ where

� N is a finite set of nonterminal symbols,

� Σ is a finite set of terminal symbols, members of Σ ∪N are called symbols.

� P is a finite set of production rules: pairs p := h→ b (also written as h⇒b),
where h ∈ (Σ ∪N)

∗
N(Σ ∪N)

∗ and b ∈ (Σ ∪N)
∗. The string h is called the

head of p and b the body.

� S ∈ N is a distinguished symbol called the start symbol (also sentence symbol).

The sets N and Σ are assumed to be disjoint. Any word w ∈ Σ∗ is called a terminal
word.

� Intuition: All grammars share structure: they have four components, which again
share struccture, which is further described in the definition above.

� Observation: Even though we call production rules “pairs” above, they are also
mathematical structures ⟨h, b⟩ with a funny notation h→ b.
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Note that the idea of mathematical structures has been picked up by most programming lan-
guages in various ways and you should therefore be quite familiar with it once you realize the
parallelism.

Mathematical Structures in Programming

� Observation: Most programming languages have some way of creating “named
structures”. Referencing components is usually done via “dot notation”.

� Example 4.3.2 (Structs in C). C data structures for representing grammars:

struct grule {
char[][] head;
char[][] body;

}
struct grammar {

char[][] nterminals;
char[][] termininals;
grule[] grules;
char[] start;

}
int main() {

struct grule r1;
r1.head = "foo";
r1.body = "bar";

}

� Example 4.3.3 (Classes in OOP). Classes in object-oriented programming lan-
guages are based on the same ideas as mathematical structures, only that OOP
adds powerful inheritance mechanisms.
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Even if the idea of mathematical structures may be familiar from programming, it may be quite
intimidating to some students in the mathematical notation we will use in this course. Therefore
will – when we get around to it – use a special overview notation in AI-1. We introduce it below.

In AI-1 we use a mixture between Math and Programming Styles

� In AI-1 we use mathematical notation, . . .

� Definition 4.3.4. A structure signature combines the components, their “types”,
and accessor names of a mathematical structure in a tabular overview.

� Example 4.3.5.

grammar =

〈 N Set nonterminal symbols,
Σ Set terminal symbols,
P {h→ b | . . . } production rules,
S N start symbol

〉

production rule h→ b =
〈
h (Σ ∪N)

∗
, N, (Σ ∪N)

∗
head,

b (Σ ∪N)
∗

body

〉
Read the first line “N Set nonterminal symbols” in the structure above as “N is in
an (unspecified) set and is a nonterminal symbol”.

Here – and in the future – we will use Set for the class of sets ; “N is a set”.

� I will try to give structure signatures where necessary.
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Chapter 5

Rational Agents: a Unifying
Framework for Artificial Intelligence

In this chapter, we introduce a framework that gives a comprehensive conceptual model for the
multitude of methods and algorithms we cover in this course. The framework of rational agents
accommodates two traditions of AI.
Initially, the focus of AI research was on symbolic methods concentrating on the mental processes
of problem solving, starting from Newell/Simon’s “physical symbol hypothesis”:

A physical symbol system has the necessary and sufficient means for general intelligent action.
[NS76]

Here a symbol is a representation an idea, object, or relationship that is physically manifested in
(the brain of) an intelligent agent (human or artificial).
Later – in the 1980s – the proponents of embodied AI posited that most features of cognition,

whether human or otherwise, are shaped – or at least critically influenced – by aspects of the
entire body of the organism. The aspects of the body include the motor system, the perceptual
system, bodily interactions with the environment (situatedness) and the assumptions about the
world that are built into the structure of the organism. They argue that symbols are not always
necessary since

The world is its own best model. It is always exactly up to date. It always has every detail
there is to be known. The trick is to sense it appropriately and often enough. [Bro90]

The framework of rational agents initially introduced by Russell and Wefald in [RW91] – ac-
commodates both, it situates agents with percepts and actions in an environment, but does not
preclude physical symbol systems – i.e. systems that manipulate symbols as agent functions. Rus-
sell and Norvig make it the central metaphor of their book “Artificial Intelligence – A modern
approach” [RN03], which we follow in this course.

5.1 Introduction: Rationality in Artificial Intelligence
We now introduce the notion of rational agents as entities in the world that act optimally (given
the available information). We situate rational agents in the scientific landscape by looking at
variations of the concept that lead to slightly different fields of study.

What is AI? Going into Details

� Recap: AI studies how we can make the computer do things that humans can still
do better at the moment. (humans are proud to be rational)

33
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� What is AI?: Four possible answers/facets: Systems that

think like humans think rationally
act like humans act rationally

expressed by four different definitions/quotes:

Humanly Rational
Thinking “The exciting new effort

to make computers think
. . . machines with human-like
minds” [Hau85]

“The formalization of mental
faculties in terms of computa-
tional models” [CM85]

Acting “The art of creating machines
that perform actions requiring
intelligence when performed by
people” [Kur90]

“The branch of CS concerned
with the automation of appro-
priate behavior in complex situ-
ations” [LS93]

� Idea: Rationality is performance-oriented rather than based on imitation.
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So, what does modern AI do?

� Acting Humanly: Turing test, not much pursued outside Loebner prize

� =̂ building pigeons that can fly so much like real pigeons that they can fool
pigeons

� Not reproducible, not amenable to mathematical analysis

� Thinking Humanly: ; Cognitive Science.

� How do humans think? How does the (human) brain work?

� Neural networks are a (extremely simple so far) approximation

� Thinking Rationally: Logics, Formalization of knowledge and inference

� You know the basics, we do some more, fairly widespread in modern AI

� Acting Rationally: How to make good action choices?

� Contains logics (one possible way to make intelligent decisions)

� We are interested in making good choices in practice (e.g. in AlphaGo)
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We now discuss all of the four facets in a bit more detail, as they all either contribute directly
to our discussion of AI methods or characterize neighboring disciplines.

Acting humanly: The Turing test

� Introduced by Alan Turing (1950) “Computing machinery and intelligence” [Tur50]:
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� “Can machines think?” −→ “Can machines behave intelligently?”

� Definition 5.1.1. The Turing test is an operational test for intelligent behavior
based on an imitation game over teletext (arbitrary topic)

� It was predicted that by 2000, a machine might have a 30% chance of fooling a lay
person for 5 minutes.

� Note: In [Tur50], Alan Turing

� anticipated all major arguments against AI in following 50 years and

� suggested major components of AI: knowledge, reasoning, language understand-
ing, learning

� Problem: Turing test is not reproducible, constructive, or amenable to mathe-
matical analysis!
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Thinking humanly: Cognitive Science

� 1960s: “cognitive revolution”: information processing psychology replaced prevail-
ing orthodoxy of behaviorism.

� Requires scientific theories of internal activities of the brain

� What level of abstraction? “Knowledge” or “circuits”?

� How to validate?: Requires

1. Predicting and testing behavior of human subjects or (top-down)

2. Direct identification from neurological data. (bottom-up)

� Definition 5.1.2. Cognitive science is the interdisciplinary, scientific study of the
mind and its processes. It examines the nature, the tasks, and the functions of
cognition.

� Definition 5.1.3. Cognitive neuroscience studies the biological processes and as-
pects that underlie cognition, with a specific focus on the neural connections in the
brain which are involved in mental processes.

� Both approaches/disciplines are now distinct from AI.

� Both share with AI the following characteristic: the available theories do not explain
(or engender) anything resembling human-level general intelligence

� Hence, all three fields share one principal direction!
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Thinking rationally: Laws of Thought

� Normative (or prescriptive) rather than descriptive

� Aristotle: what are correct arguments/thought processes?

� Several Greek schools developed various forms of logic: notation and rules of
derivation for thoughts; may or may not have proceeded to the idea of mechaniza-
tion.

� Direct line through mathematics and philosophy to modern AI

� Problems:

1. Not all intelligent behavior is mediated by logical deliberation

2. What is the purpose of thinking? What thoughts should I have out of all the
thoughts (logical or otherwise) that I could have?
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Acting Rationally

� Idea: Rational behavior =̂ doing the right thing!

� Definition 5.1.4. Rational behavior consists of always doing what is expected to
maximize goal achievement given the available information.

� Rational behavior does not necessarily involve thinking e.g., blinking reflex — but
thinking should be in the service of rational action.

� Aristotle: Every art and every inquiry, and similarly every action and pursuit, is
thought to aim at some good. (Nicomachean Ethics)
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The Rational Agents

� Definition 5.1.5. An agent is an entity that perceives and acts.

� Central Idea: This course is about designing agent that exhibit rational behavior,
i.e. for any given class of environments and tasks, we seek the agent (or class of
agents) with the best performance.

� Caveat: Computational limitations make perfect rationality unachievable
; design best program for given machine resources.
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5.2 Agents and Environments as a Framework for AI
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21843.
Given the discussion in the previous section, especially the ideas that “behaving rationally” could
be a suitable – since operational – goal for AI research, we build this into the paradigm “rational
agents” introduced by Stuart Russell and Eric H. Wefald in [RW91].

Agents and Environments

� Definition 5.2.1. An agent is anything that

� perceives its environment via sensors (a means of sensing the environment)

� acts on it with actuators (means of changing the environment).

Definition 5.2.2. Any recognizable, coherent employment of the actuators of an
agent is called an action.

� Example 5.2.3. Agents include humans, robots, softbots, thermostats, etc.

� remark: The notion of an agent and its environment is intentionally designed to
be inclusive. We will classify and discuss subclasses of both later
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One possible objection to this is that the agent and the environment are conceptualized as separate
entities; in particular, that the image suggests that the agent itself is not part of the environment.
Indeed that is intended, since it makes thinking about agents and environments easier and is of
little consequence in practice. In particular, the offending separation is relatively easily fixed if
needed.
Let us now try to express the agent/environment ideas introduced above in mathematical language
to add the precision we need to start the process towards the implementation of rational agents.

Modeling Agents Mathematically and Computationally

� Definition 5.2.4. A percept is the perceptual input of an agent at a specific time
instant.

� Definition 5.2.5. Any recognizable, coherent employment of the actuators of an
agent is called an action.

� Definition 5.2.6. The agent function fa of an agent a maps from percept histories
to actions:

fa : P∗ →A

https://fau.tv/clip/id/21843
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� We assume that agents can always perceive their own actions. (but not necessarily
their consequences)

� Problem: Agent functions can become very big and may be uncomputable.
(theoretical tool only)

� Definition 5.2.7. An agent function can be implemented by an agent program
that runs on a (physical or hypothetical) agent architecture.
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Here we already see a problem that will recur often in this course: The mathematical formulation
gives us an abstract specification of what we want (here the agent function), but not directly a
way of how to obtain it. Here, the solution is to choose a computational model for agents (an
agent architecture) and see how the agent function can be implemented in a agent program.

Agent Schema: Visualizing the Internal Agent Structure

� Agent Schema: We will use the following kind of agent schema to visualize the
internal structure of an agent:Section 2.1. Agents and Environments 35

Agent Sensors

Actuators

E
n
v
iro

n
m

en
t

Percepts

Actions

?

Figure 2.1 Agents interact with environments through sensors and actuators.

there is to say about the agent. Mathematically speaking, we say that an agent’s behavior is
described by the agent function that maps any given percept sequence to an action.AGENT FUNCTION

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is anAGENT PROGRAM

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a very simple example—the vacuum-cleaner world
shown in Figure 2.2. This world is so simple that we can describe everything that happens;
it’s also a made-up world, so we can invent many variations. This particular world has just two
locations: squares A and B. The vacuum agent perceives which square it is in and whether
there is dirt in the square. It can choose to move left, move right, suck up the dirt, or do
nothing. One very simple agent function is the following: if the current square is dirty, then
suck; otherwise, move to the other square. A partial tabulation of this agent function is shown
in Figure 2.3 and an agent program that implements it appears in Figure 2.8 on page 48.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.

Different agents differ on the contents of the white box in the center.
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Let us fortify our intuition about all of this with an example, which we will use often in the course
of the AI-1 course.

Example: Vacuum-Cleaner World and Agent
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� percepts: location and con-
tents, e.g., [A,Dirty]

� actions: Left, Right, Suck,
NoOp

Percept sequence Action
[A,Clean] Right
[A,Dirty] Suck
[B,Clean] Left
[B,Dirty] Suck
[A,Clean], [A,Clean] Right
[A,Clean], [A,Dirty] Suck
[A,Clean], [B,Clean] Left
[A,Clean], [B,Dirty] Suck
[A,Dirty], [A,Clean] Right
[A,Dirty], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right
[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

� Science Question: What is the right agent function?

� AI Question: Is there an agent architecture and agent program that implements
it.
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The first implementation idea inspired by the table in last slide would just be table lookup algo-
rithm.

Table-Driven Agents

� Idea: We can just implement the agent function as a lookup table and lookup
actions.

� We can directly implement this:

function Table−Driven−Agent(percept) returns an action
persistent table /∗ a table of actions indexed by percept sequences ∗/
var percepts /∗ a sequence, initially empty ∗/
append percept to the end of percepts
action := lookup(percepts, table)
return action

� Problem: Why is this not a good idea?

� The table is much too large: even with n binary percepts whose order of occur-
rence does not matter, we have 2n rows in the table.

� Who is supposed to write this table anyways, even if it “only” has a million
entries?
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Example: Vacuum-Cleaner Agent Program

� A much better implementation idea is to trigger actions from specific percepts.

� Example 5.2.8 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
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if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

� This is the kind of agent programs we will be looking for in AI-1.
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5.3 Good Behavior ; Rationality
Now we try understand the mathematics of rational behavior in our quest to make the rational

agents paradigm implementable and take steps for realizing AI. A Video Nugget covering this
section can be found at https://fau.tv/clip/id/21844.

Rationality

� Idea: Try to design agents that are successful! (aka. “do the right thing”)

� Problem: What do we mean by “successful”, how do we measure “success”?

� Definition 5.3.1. A performance measure is a function that evaluates a sequence
of environments.

� Example 5.3.2. A performance measure for a vacuum cleaner could

� award one point per “square” cleaned up in time T?

� award one point per clean “square” per time step, minus one per move?

� penalize for > k dirty squares?

� Definition 5.3.3. An agent is called rational, if it chooses whichever action max-
imizes the expected value of the performance measure given the percept sequence
to date.

� Critical Observation: We only need to maximize the expected value, not the
actual value of the performance measure!

� Question: Why is rationality a good quality to aim for?
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Let us see how the observation that we only need to maximize the expected value, not the actual
value of the performance measure affects the consequences.

Consequences of Rationality: Exploration, Learning, Autonomy

� Note: A rational agent need not be perfect:

� It only needs to maximize expected value (rational ̸= omniscient)

� need not predict e.g. very unlikely but catastrophic events in the future

� Percepts may not supply all relevant information (rational ̸= clairvoyant)

� if we cannot perceive things we do not need to react to them.
� but we may need to try to find out about hidden dangers (exploration)

https://fau.tv/clip/id/21844
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� Action outcomes may not be as expected (rational ̸= successful)

� but we may need to take action to ensure that they do (more often)
(learning)

� Note: Rationality may entail exploration, learning, autonomy (depending on the
environment / task)

� Definition 5.3.4. An agent is called autonomous, if it does not rely on the prior
knowledge about the environment of the designer.

� Autonomy avoids fixed behaviors that can become unsuccessful in a changing en-
vironment. (anything else would be
irrational)

� The agent may have to learn all relevant traits, invariants, properties of the envi-
ronment and actions.
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For the design of agent for a specific task – i.e. choose an agent architecture and design an
agent program, we have to take into account the performance measure, the environment, and the
characteristics of the agent itself; in particular its actions and sensors.

PEAS: Describing the Task Environment

� Observation: To design a rational agent, we must specify the task environment in
terms of performance measure, environment, actuators, and sensors, together called
the PEAS components.

� Example 5.3.5. When designing an automated taxi:

� Performance measure: safety, destination, profits, legality, comfort, . . .

� Environment: US streets/freeways, traffic, pedestrians, weather, . . .

� Actuators: steering, accelerator, brake, horn, speaker/display, . . .

� Sensors: video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .

� Example 5.3.6 (Internet Shopping Agent). The task environment:

� Performance measure: price, quality, appropriateness, efficiency

� Environment: current and future WWW sites, vendors, shippers

� Actuators: display to user, follow URL, fill in form

� Sensors: HTML pages (text, graphics, scripts)
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The PEAS criteria are essentially a laundry list of what an agent design task description should
include.

Examples of Agents: PEAS descriptions



42 CHAPTER 5. RATIONAL AGENTS: AN AI FRAMEWORK

Agent Type Performance
measure

Environment Actuators Sensors

Chess/Go player win/loose/draw game board moves board position
Medical diagno-
sis system

accuracy of di-
agnosis

patient, staff display ques-
tions, diagnoses

keyboard entry
of symptoms

Part-picking
robot

percentage of
parts in correct
bins

conveyor belt
with parts, bins

jointed arm and
hand

camera, joint
angle sensors

Refinery con-
troller

purity, yield,
safety

refinery, opera-
tors

valves, pumps,
heaters, displays

temperature,
pressure, chem-
ical sensors

Interactive En-
glish tutor

student’s score
on test

set of students,
testing accuracy

display exer-
cises, sugges-
tions, correc-
tions

keyboard entry
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Agents

� Which are agents?

(A) James Bond.

(B) Your dog.

(C) Vacuum cleaner.

(D) Thermometer.

� Answer: reserved for the plenary sessions ; be there!
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5.4 Classifying Environments
A Video Nugget covering this section can be found at https://fau.tv/clip/id/21869.
It is important to understand that the kind of the environment has a very profound effect on the
agent design. Depending on the kind, different kinds of agents are needed to be successful. So be-
fore we discuss common kind of agents in ??, we will classify kinds environments.

Environment types

� Observation 5.4.1. Agent design is largely determined by the type of environment
it is intended for.

� Problem: There is a vast number of possible kinds of environments in AI.

� Solution: Classify along a few “dimensions”. (independent characteristics)

� Definition 5.4.2. For an agent a we classify the environment e of a by its type,
which is one of the following. We call e

1. fully observable, iff the a’s sensors give it access to the complete state of the
environment at any point in time, else partially observable.

https://fau.tv/clip/id/21869
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2. deterministic, iff the next state of the environment is completely determined by
the current state and a’s action, else stochastic.

3. episodic, iff a’s experience is divided into atomic episodes, where it perceives and
then performs a single action. Crucially, the next episode does not depend on
previous ones. Non-episodic environments are called sequential.

4. dynamic, iff the environment can change without an action performed by a, else
static. If the environment does not change but a’s performance measure does,
we call e semidynamic.

5. discrete, iff the sets of e’s state and a’s actions are countable, else continuous.

6. single-agent, iff only a acts on e; else multi-agent (when must we count parts of
e as agents?)
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Some examples will help us understand the classification of environments better.

Environment Types (Examples)

� Example 5.4.3. Some environments classified:

Solitaire Backgammon Internet shopping Taxi
fully observable No Yes No No
deterministic Yes No Partly No
episodic No Yes No No
static Yes Semi Semi No
discrete Yes Yes Yes No
single-agent Yes No Yes (except auctions) No

� Note: Take the example above with a grain of salt. There are often multiple
interpretations that yield different classifications and different agents. (agent
designer’s choice)

� Example 5.4.4. Seen as a multi-agent game, chess is deterministic, as a single-
agent game, it is stochastic.

� Observation 5.4.5. The real world is (of course) a partially observable, stochastic,
sequential, dynamic, continuous, and multi-agent environment. (worst case for AI)

� Preview: We will concentrate on the “easy” environment types (fully observ-
able, deterministic, episodic, static, and single-agent) in AI-1 and extend them to
“realworld”-compatible ones in AI-2.
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In the AI-1 course we will work our way from the simpler environment types to the more general
ones. Each environment type wil need its own agent types specialized to surviving and doing well
in them.

5.5 Types of Agents
We will now discuss the main types of agents we will encounter in this course, get an impression

of the variety, and what they can and cannot do. We will start from simple reflex agents, add
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state, and utility, and finally add learning. A Video Nugget covering this section can be found
at https://fau.tv/clip/id/21926.

Agent Types

� Observation: So far we have described (and analyzed) agents only by their be-
havior (cf. agent function f : P∗ →A).

� Problem: This does not help us to build agents. (the goal of AI)

� To build an agent, we need to fix an agent architecture and come up with an agent
program that runs on it.

� Preview: Four basic types of agent architectures in order of increasing generality:

1. simple reflex agents

2. model-based agents

3. goal-based agents

4. utility-based agents

All these can be turned into learning agents.
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Simple reflex agents

� Definition 5.5.1. A simple reflex agent is an agent a that only bases its actions
on the last percept: so the agent function simplifies to fa : P →A.

� Agent Schema:Section 2.4. The Structure of Agents 49
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Figure 2.9 Schematic diagram of a simple reflex agent.

function SIMPLE-REFLEX-AGENT(percept ) returns an action
persistent: rules, a set of condition–action rules

state ← INTERPRET-INPUT(percept )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches
the current state, as defined by the percept.

trivial; it gets more interesting shortly.) We use rectangles to denote the current internal state
of the agent’s decision process, and ovals to represent the background information used in
the process. The agent program, which is also very simple, is shown in Figure 2.10. The
INTERPRET-INPUT function generates an abstracted description of the current state from the
percept, and the RULE-MATCH function returns the first rule in the set of rules that matches
the given state description. Note that the description in terms of “rules” and “matching” is
purely conceptual; actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit.

Simple reflex agents have the admirable property of being simple, but they turn out to be
of limited intelligence. The agent in Figure 2.10 will work only if the correct decision can be
made on the basis of only the current percept—that is, only if the environment is fully observ-
able. Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted brake light. Unfortunately, older models have different configurations of taillights,

� Example 5.5.2 (Agent Program).

procedure Reflex−Vacuum−Agent [location,status] returns an action
if status = Dirty then . . .
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https://fau.tv/clip/id/21926
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Simple reflex agents (continued)

� General Agent Program:
function Simple−Reflex−Agent (percept) returns an action

persistent: rules /∗ a set of condition−action rules∗/

state := Interpret−Input(percept)
rule := Rule−Match(state,rules)
action := Rule−action[rule]
return action

� Problem: Simple reflex agents can only react to the perceived state of the envi-
ronment, not to changes.

� Example 5.5.3. Automobile tail lights signal braking by brightening. A simple
reflex agent would have to compare subsequent percepts to realize.

� Problem: Partially observable environments get simple reflex agents into trouble.

� Example 5.5.4. Vacuum cleaner robot with defective location sensor ; infinite
loops.
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Model-based Reflex Agents: Idea

� Idea: Keep track of the state of the world we cannot see in an internal model.

� Agent Schema:Section 2.4. The Structure of Agents 51

Agent

E
n
v
iro

n
m

en
t

Sensors

State

How the world evolves

What my actions do

Condition-action rules

Actuators

What the world
is like now

What action I
should do now

Figure 2.11 A model-based reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept ) returns an action
persistent: state, the agent’s current conception of the world state

model , a description of how the next state depends on current state and action
rules, a set of condition–action rules
action , the most recent action, initially none

state ← UPDATE-STATE(state,action ,percept ,model )
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design. Detailed examples of models and updating algorithms
appear in Chapters 4, 12, 11, 15, 17, and 25.

Regardless of the kind of representation used, it is seldom possible for the agent to
determine the current state of a partially observable environment exactly. Instead, the box
labeled “what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or
sometimes best guesses). For example, an automated taxi may not be able to see around the
large truck that has stopped in front of it and can only guess about what may be causing the
hold-up. Thus, uncertainty about the current state may be unavoidable, but the agent still has
to make a decision.

A perhaps less obvious point about the internal “state” maintained by a model-based
agent is that it does not have to describe “what the world is like now” in a literal sense. For
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Model-based Reflex Agents: Definition

� Definition 5.5.5. A model-based agent is an agent whose actions depend on

� a world model: a set S of possible states.
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� a sensor model S that given a state s and a percepts p determines a new state
S(s, p).

� a transition model T , that predicts a new state T (s, a) from a state s and an
action a.

� An action function f that maps (new) states to an actions.

If the world model of a model-based agent A is in state s and A has taken action
a, A will transition to state s′ = T (S(p, s), a) and take action a′ = f(s′).

� Note: As different percept sequences lead to different states, so the agent function
fa : P∗ →A no longer depends only on the last percept.

� Example 5.5.6 (Tail Lights Again). Model-based agents can do the ?? if the
states include a concept of tail light brightness.
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Model-Based Agents (continued)

� Observation 5.5.7. The agent program for a model-based agent is of the following
form:
function Model−Based−Agent (percept) returns an action

var state /∗ a description of the current state of the world ∗/
persistent rules /∗ a set of condition−action rules ∗/
var action /∗ the most recent action, initially none ∗/

state := Update−State(state,action,percept)
rule := Rule−Match(state,rules)
action := Rule−action(rule)
return action

� Problem: Having a world model does not always determine what to do (rationally).

� Example 5.5.8. Coming to an intersection, where the agent has to decide between
going left and right.
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Goal-based Agents

� Problem: A world model does not always determine what to do (rationally).

� Observation: Having a goal in mind does! (determines future actions)

� Agent Schema:
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

example, the taxi may be driving back home, and it may have a rule telling it to fill up with
gas on the way home unless it has at least half a tank. Although “driving back home” may
seem to an aspect of the world state, the fact of the taxi’s destination is actually an aspect of
the agent’s internal state. If you find this puzzling, consider that the taxi could be in exactly
the same place at the same time, but intending to reach a different destination.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words, as well
as a current state description, the agent needs some sort of goal information that describesGOAL

situations that are desirable—for example, being at the passenger’s destination. The agent
program can combine this with the model (the same information as was used in the model-
based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the goal-based
agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find a
way to achieve the goal. Search (Chapters 3 to 5) and planning (Chapters 10 and 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
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Goal-based agents (continued)

� Definition 5.5.9. A goal-based agent is a model-based agent with transition model
T that deliberates actions based on 3 and a world model: It employs

� a set G of goals and a goal function f that given a (new) state s′ selects an
action a to best reach G.

The action function is then s 7→ f(T (s),G).

� Observation: A goal-based agent is more flexible in the knowledge it can utilize.

� Example 5.5.10. A goal-based agent can easily be changed to go to a new desti-
nation, a model-based agent’s rules make it go to exactly one destination.
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Utility-based Agents

� Definition 5.5.11. A utility-based agent uses a world model along with a utility
function that models its preferences among the states of that world. It chooses the
action that leads to the best expected utility.

� Agent Schema:
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with
a utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

outcome. (Appendix A defines expectation more precisely.) In Chapter 16, we show that any
rational agent must behave as if it possesses a utility function whose expected value it tries
to maximize. An agent that possesses an explicit utility function can make rational decisions
with a general-purpose algorithm that does not depend on the specific utility function being
maximized. In this way, the “global” definition of rationality—designating as rational those
agent functions that have the highest performance—is turned into a “local” constraint on
rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Part IV, where we design decision-making agents that must handle the uncertainty
inherent in stochastic or partially observable environments.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
unachievable in practice because of computational complexity, as we noted in Chapter 1.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
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Utility-based vs. Goal-based Agents

� Question: What is the difference between goal-based and utility-based agents?

� Utility-based Agents are a Generalization: We can always force goal-directedness
by a utility function that only rewards goal states.

� Goal-based Agents can do less: A utility function allows rational decisions where
mere goals are inadequate:

� conflicting goals (utility gives tradeoff to make rational decisions)

� goals obtainable by uncertain actions (utility × likelihood helps)
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Learning Agents

� Definition 5.5.12. A learning agent is an agent that augments the performance
element – which determines actions from percept sequences with

� a learning element which makes improvements to the agent’s components,

� a critic which gives feedback to the learning element based on an external per-
formance standard,

� a problem generator which suggests actions that lead to new and informative
experiences.

� The performance element is what we took for the whole agent above.
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Learning Agents

� Agent Schema:
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Figure 2.15 A general learning agent.

He estimates how much work this might take and concludes “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Learning has another advantage, as we noted earlier: it allows the agent to operate
in initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particular
kinds of agents. Part V goes into much more depth on the learning algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-LEARNING ELEMENT

sponsible for making improvements, and the performance element, which is responsible forPERFORMANCE

ELEMENT

selecting external actions. The performance element is what we have previously considered
to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performanceCRITIC

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent need to do this once it has learned how?” Given an agent design, learning mechanisms
can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
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Learning Agents: Example

� Example 5.5.13 (Learning Taxi Agent). It has the components

� Performance element: the knowledge and procedures for selecting driving actions.
(this controls the actual driving)

� critic: observes the world and informs the learning element (e.g. when
passengers complain brutal braking)

� Learning element modifies the braking rules in the performance element (e.g.
earlier, softer)

� Problem generator might experiment with braking on different road surfaces

� The learning element can make changes to any “knowledge components” of the
diagram, e.g. in the

� model from the percept sequence (how the world evolves)

� success likelihoods by observing action outcomes (what my actions do)

� Observation: here, the passenger complaints serve as part of the “external perfor-
mance standard” since they correlate to the overall outcome – e.g. in form of tips
or blacklists.
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Domain-Specific vs. General Agents
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�

Domain-Specific Agent vs. General Agent

vs.
Solver specific to a particular prob-
lem (“domain”).

vs. Solver based on description in a
general problem-description language
(e.g., the rules of any board game).

More efficient. vs. Much less design/maintenance work.

� What kind of agent are you?
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5.6 Representing the Environment in Agents

We now come to a very important topic, which has a great influence on agent design: how does
the agent represent the environment. After all, in all agent designs above (except the simple
reflex agent) maintain a notion of world state and how the world state evolves given percepts and
actions. The form of this model crucially influences the algorithms we can build. A Video
Nugget covering this section can be found at https://fau.tv/clip/id/21925.

Representing the Environment in Agents

� We have seen various components of agents that answer questions like

� What is the world like now?

� What action should I do now?

� What do my actions do?

� Next natural question: How do these work? (see the rest of the course)

� Important Distinction: How the agent implements the world model.

� Definition 5.6.1. We call a state representation

� atomic, iff it has no internal structure (black box)

� factored, iff each state is characterized by attributes and their values.

� structured, iff the state includes representations of objects, their properties and
relationships.

� Intuition: From atomic to structured, the representations agent designer more
flexibility and the algorithms more components to process.

� Also The additional internal structure will make the algorithms more complex.
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Again, we fortify our intuitions with a an illustration and an example.

Atomic/Factored/Structured State Representations

� Schematically: We can visualize the three kinds by

B C

(a) Atomic (b) Factored (b) Structured

B C

� Example 5.6.2. Consider the problem of finding a driving route from one end of
a country to the other via some sequence of cities.

� In an atomic representation the state is represented by the name of a city.

� In a factored representation we may have attributes “gps-location”, “gas”,. . .
(allows information sharing between states and uncertainty)

� But how to represent a situation, where a large truck blocking the road, since it
is trying to back into a driveway, but a loose cow is blocking its path. (attribute
“TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow” is unlikely)

� In a structured representation, we can have objects for trucks, cows, etc. and
their relationships. (at “run-time”)
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Note: The set of states in atomic representations and attributes in factored ones is determined
at design time, while the objects and their relationships in structured ones are discovered at
“runtime”.
Here – as always when we evaluate representations – the crucial aspect to look out for are the
idendity conditions: when do we consider two representations equal, and when can we (or more
crucially algorithms) distinguish them.

For instance for factored representations, make world representations equal, iff the values of
the attributes – that are determined at agent design time and thus immutable by the agent –
are all equual. So the agent designer has to make sure to add all the attributes to the chosen
representation that are necessary to distinguish environments that the agent program needs to
treat differently.

It is tempting to think that the situation with atomic representations is easier, since we can
“simply” add enough states for the necesssary distictions, but in practice this set of states may
have to be infinite, while in factored or structured representations we can keep representations
finite.

5.7 Rational Agents: Summary

Summary

� Agents interact with environments through actuators and sensors.
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� The agent function describes what the agent does in all circumstances.

� The performance measure evaluates the environment sequence.

� A perfectly rational agent maximizes expected performance.

� Agent programs implement (some) agent functions.

� PEAS descriptions define task environments.

� Environments are categorized along several dimensions:
fully observable? deterministic? episodic? static? discrete? single-agent?

� Several basic agent architectures exist:
reflex, model-based, goal-based, utility-based
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Corollary: We are Agent Designers!

� State: We have seen (and will add more details to) different

� agent architectures,

� corresponding agent programs and algorithms, and

� world representation paradigms.

� Problem: Which one is the best?

� Answer: That really depends on the environment type they have to survive/thrive
in! The agent designer – i.e. you – has to choose!

� The course gives you the necessary competencies.

� There is often more than one reasonable choice.

� Often we have to build agents and let them compete to
see what really works.

� Consequence: The rational agents paradigm used in this course challenges you
to become a good agent designer.
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