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1 Prolog
Problem 1.1 (Prolog in Prolog)
Consider the following Prolog program that represents Prolog in Prolog, i.e. Prolog terms, literals, and
clauses are represented as Prolog terms:

1isTerm(pterm(F,ARGS)) :- string(F), isTermList(ARGS).
2isTerm(pvar(X)) :- string(X).
3
4isTermList([]).
5isTermList([H|T]) :- isTerm(H), isTermList(T).
6
7isLiteral(plit(P,ARGS)) :- string(P), isTermList(ARGS).
8
9isLiteralList([]).
10isLiteralList([H|T]) :- isLiteral(H), isLiteralList(T).
11
12isClause(pclause(H,B)) :- isLiteral(H), isLiteralList(B).

Here string is a built-in predicate that succeeds if its argument is a string.

2 Points1. Explain intuitively what the predicate isClause(pclause(H,B)) computes?

Solution: It checks whether its argument represents a Prolog clause with head H and body B.

3 Points2. Write the Prolog clause isNat(succ(N)) :- isNat(N) as a Prolog term relative to the above
program (i.e., such that isClause succeeds for it).

Solution:

pclause(plit("isNat", [pterm("succ",[pvar("N")])]),
[plit("isNat", [pvar("N")])]).

2 Points3. Assume that the Prolog term𝐶 contains no free variables. How is the result of the queryisClause(𝐶)
affected by exchanging the lines 4 and 5?

Solution: It is not affected.

3 Points4. Extend the program above with a unary Prolog predicate isProgram that succeeds if its argu-
ment is of the form pprog(𝑃) where 𝑃 is a list of clauses.

Solution:

isClauseList([]).
isClauseList([H|T]) :- isClause(H), isClauseList(T).

isProgram(pprog(C)) :- isClauseList(C).
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2 Search
Problem 2.1 (Search Algorithms)
Consider the graph below. Every edge is labeled with its cost.
Each node is labeled with 𝑛 ∶ ℎ(𝑛) where 𝑛 is its name and ℎ(𝑛) its value for heuristic ℎ.

𝐴 ∶ 8

𝐵 ∶ 6 𝐶 ∶ 7

𝐷 ∶ 5 𝐸 ∶ 4 𝐹 ∶ 5 𝐺 ∶ 2

𝐻 ∶ 0 𝐼 ∶ 1

1 3

5 1

2

2 5

1 1

Assume you have already expanded the root node𝐴. In each problem below, list the next 4 nodes that
will be expanded using the respective search algorithm and (if needed) heuristic ℎ.
If there is a tie, break it using alphabetical order of the nodes.

1 Points1. depth-first search

Solution: 𝐵,𝐷,𝐻, 𝐼

1 Points2. breadth-first search

Solution: 𝐵, 𝐶, 𝐷, 𝐸

2 Points3. uniform-cost search

Solution: 𝐵, 𝐸, 𝐶, 𝐼

2 Points4. greedy search

Solution: 𝐵, 𝐸, 𝐼, 𝐷

2 Points5. 𝐴∗-search

Solution: 𝐵, 𝐸, 𝐼, 𝐶

2



FAU:AI1retake:WS2425:42 2 SEARCH

Problem 2.2 (Remembering expanded states)
When searching in a graph, it can happen that the same node can be reached along two different paths.
When inserting a node 𝑛 into the fringe, the search algorithms presented in the course do not check if
𝑛 has already been expanded before.

3 Points1. In about 1 sentence each, explain the advantage and disadvantage of additionally performing
such a check.

Solution: pro: It allows avoiding redundantly expanding the same node twice, thus potentially
saving time or even avoiding a cycle.
con: It requires overhead in space and time to store the set of previously expanded nodes and to
check membership in it, which is wasted if no node is found twice (e.g., in a tree).

3 Points2. Now assume we have implemented such a check. We consider only breadth-first and uniform-
cost search.
Explain in about 2 sentences whether it is correct to simply skip inserting 𝑛 into the fringe if 𝑛
has been expanded before.

Solution: BFS: Yes, because the children of 𝑛 have already been inserted into the fringe during
the previous expansion of 𝑛.
UCS: No, the second path to 𝑛 may be cheaper than the path that was found previously. In that
case, we have to expand 𝑛 again and recompute the path costs of its children.

Problem 2.3 (Search Problem)
Consider the deterministic search problem ⟨𝒮,𝒜,𝒯, ℐ, 𝒢⟩ where

• 𝒮 = ℤ

• 𝒜 = {−6,−4, 0, 5}

• 𝒯(𝑎, 𝑠) = {𝑎 + 𝑠}

• ℐ = {0}

• 𝒢 = {9}
1 Points1. Give the state resulting from applying the action sequence −4, 5, 5 to the initial state.

Solution: 6

3 Points2. Give a solution to the problem.

Solution: 5, 5, 5, −6 (any sequence of actions that add up to 9)

2 Points3. Explain in about 2 sentences whether DFS a good choice for this problem.

Solution: No. It will not find a solution: whichever action we try first, can be applied infinitely
often.
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1 Points4. If we change the set 𝒜 to {−6, −4, 0, 2}, the problem changes substantially. In what way?

Solution: There is no solution.

3 Adversarial Search
Problem 3.1 (Minimax)
Consider the following minimax game tree for themaximizing player’s turn. The values at the leaves
are the static evaluation function values of those states.

A

B C D

E F G H

N O

I J K L

P Q

5 10 6

5 8

26 7

8 7

2 Points1. Which move will the player choose?

Solution: 𝐷

2 Points2. What change to the label of only a single node can you make such that the player chooses a
different move?

Solution: The label 𝐿 of must be lower than 5 (in which case move 𝐵 is chosen). Making the
label equal to 5 causes a draw, which was also accepted as correct.

For the remaining questions: Use 𝛼𝛽-pruning and expand child nodes in alphabetical order.
Ignore any change you may have applied in the previous problem.

2 Points3. Which nodes would be pruned?

Solution: None

2 Points4. What change to the labels of the nodes 𝑁 and 𝑂 can you make such that 𝐽 is pruned but not 𝐼?

Solution: The labels of 𝑁 and 𝑂must be below 5.
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4 Constraint Satisfaction
Problem 4.1 (Assignments, Solutions, and Algorithms)
Consider the CSP given by

• Variables: {𝑎, 𝑏, 𝑐, 𝑑}

• Domains: 𝐷𝑎 = 𝐷𝑏 = 𝐷𝑐 = 𝐷𝑑 = {0, 1, 2, 3}

• Constraints:

□ 𝑎 + 𝑏 = 3
□ 2 ≤ 𝑐 ⋅ 𝑑 < 4
□ 𝑎 + 𝑐 > 4
□ 2𝑎 + 𝑏 + 𝑐 > 7

1 Points1. Mark the constraints that make this CSP non-binary.

Solution: Only the last one (because it is ternary).

3 Points2. Give all solutions.

Solution: (𝑎, 𝑏, 𝑐, 𝑑) ∈ {(2, 1, 3, 1), (3, 0, 2, 1), (3, 0, 3, 1)}

2 Points3. By testing arc-consistency only for the third constraint, which domain values can be eliminated
immediately?

Solution: The resulting domains are 𝐷𝑎 = {2, 3} and 𝐷𝑐 = {2, 3}.

1 Points4. After assigning 𝑎 = 2, what is the domain of 𝑐 after applying forward-checking using the third
constraint?

Solution: 𝐷𝑐 = {2, 3}

2 Points5. Give an equivalent binary CSP.

Solution: Remove the ternary constraint. This works because that constraint happens to be
redundant: it is implied by the others.

5 Logic
Problem 5.1 (Propositional Logic)
Consider the formula 𝐴 of propositional logic given by

(𝑝 ∧ 𝑞) ⇒
(
(𝑝 ⇒ ¬𝑞) ⇒ 𝑞

)
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2 Points1. Give the propositional variables that occur in 𝐴.

Solution: 𝑝 and 𝑞

2 Points2. Give all assignments that satisfy 𝐴.

Solution: All assignments, i.e., 𝜑(𝑝), 𝜑(𝑞) ∈ {⊤, ⊥}.

2 Points3. Give a DNF for 𝐴.

Solution: Systematic transformation yields ¬𝑝 ∨¬𝑞 ∨ (𝑝 ∧ 𝑞) ∨ 𝑞. But any tautology works, e.g.,
𝑞 ∨ ¬𝑞 or 𝑇.

2 Points4. What is the smallest number 𝑛 for which we can give 𝑛 formulas such that every other formula
in 𝑝 and 𝑞 is equivalent to one of them?

Solution: 16.
There are 4 assignments each returning one of 2 values. So there are at most 24 pairwise non-
equivalent formulas. And there are indeed 16: a possible set contains 𝑇, 𝑝, 𝑞, 𝑝 ⇔ 𝑞, 𝑝∧𝑞, 𝑝∨𝑞,
𝑝 ⇒ 𝑞, 𝑞 ⇒ 𝑝, and their negations.

Problem 5.2 (First-Order Logic)
Consider the formula 𝐴 of first-order logic with equality given by

(
∀𝑥.∃𝑦.𝑝(𝑥, 𝑦)

)
⇒ ∀𝑥.𝑝(𝑥, 𝑓(𝑥))

over the smallest signature that makes it well-formed.
2 Points1. Give that signature.

Solution: The signature with a unary function symbol 𝑓 and a binary predicate symbol 𝑝.

2 Points2. Give a model that satisfies 𝐴.

Solution: Lots of options. The easiest way is to make 𝑝 false everywhere or true everywhere,
e.g., (𝑈, 𝐼) with universe 𝑈 = {0}, 𝐼(𝑓)(𝑢) = 0 and 𝐼(𝑝) = ∅.

2 Points3. Now assume ∀𝑥.∃𝑦.𝑝(𝑥, 𝑦) is the only axiom. Give a second axiom such that the models (𝑈, 𝐼)
that satisfy both axioms are exactly the ones where 𝐼(𝑝) (which is a binary relation on 𝑈) also
represents a unary function from 𝑈 to 𝑈.

Solution: The first axiom already ensures that 𝐼(𝑝) is a total relation. So we need to additionally
make it functional by requiring, e.g., ∀𝑥.∀𝑦.∀𝑦′.𝑝(𝑥, 𝑦) ∧ 𝑝(𝑥, 𝑦′) ⇒ 𝑦 = 𝑦′.
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2 Points4. In about 1 sentence, explain why the dual of 𝐴 (i.e., with⇐ instead of⇒) is a theorem.

Solution: For any 𝑥, we can use 𝑓(𝑥) as the witness for 𝑦 that allows proving ∃𝑦.𝑝(𝑥, 𝑦).

Problem 5.3 (Proving in Natural Deduction)
6 Points1. Prove the formula (

∀𝑥.𝑝(𝑥, 𝑓(𝑥))
)
⇒ ∀𝑦.∃𝑢.𝑝(𝑦, 𝑢)

using a natural deduction–style proof.

Solution: Starting goal is the formula.
Apply implication-introduction. Let ℎ be the resulting hypothesis ∀𝑥.𝑝(𝑥, 𝑓(𝑥)). New goal is
∀𝑦.∃𝑢.𝑝(𝑦, 𝑢).
Apply forall-introduction for arbitrary 𝑦. New goal is ∃𝑢.𝑝(𝑦, 𝑢).
Apply exists-introduction using the term 𝑓(𝑦) for 𝑢. New goal is 𝑝(𝑦, 𝑓(𝑦)).
Apply forall-elimination to ℎ using the term 𝑓(𝑦) for 𝑥. That yields 𝑝(𝑦, 𝑓(𝑦)).
That closes the proof.

6 Knowledge Representation
Problem 6.1 (ALC Description Logic)
Consider the following ALC setting:

• concepts: 𝚏𝚘𝚘𝚍, 𝚍𝚛𝚒𝚗𝚔, 𝚙𝚎𝚛𝚜𝚘𝚗

• relations: 𝚕𝚒𝚔𝚎𝚜, 𝚐𝚘𝚎𝚜𝚆𝚒𝚝𝚑

We abbreviate every concept/relation by its first letter.
2 Points1. Give an ALC ABox with 1 piece of food and 2 persons that like it.

Solution: 𝑥 ∶ 𝑝, 𝑦 ∶ 𝑝, 𝑧 ∶ 𝑓, 𝑥 𝑙 𝑧, 𝑦 𝑙 𝑧

1 Points2. Give an ALC TBox that formalizes the property that any person who likes some food also likes
some drink.

Solution: (𝑝 ⊓ ∃𝑙.𝑓) ⊑ (∃𝑙.𝑑)

1 Points3. Give an ALC TBox that formalizes the property that persons cannot be liked.

Solution: ∃𝑙.𝑝 ⊑ ⊥
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2 Points4. Give an ALC formalization for the concept of persons who only like food that a drink goes with.

Solution: 𝑝 ⊓ ∀𝑙.(𝑓 ⊓ ∃𝑔.𝑑)

2 Points5. Give the translation to first-order logic of the ALC statement (∀𝑙.𝑓) ⊑ (∃𝑙.𝑑).

Solution: ∀𝑥.
(
∀𝑦.𝑙(𝑥, 𝑦) ⇒ 𝑓(𝑦)

)
⇒
(
∃𝑦.𝑙(𝑥, 𝑦) ∧ 𝑑(𝑦)

)

7 Planning
Problem 7.1 (STRIPS Planning)
Consider a map of Australia. Starting from Sydney (𝑆), we want to visit Darwin (𝐷), Brisbane (𝐵), and
Perth (𝑃), passing Adelaide (𝐴).
Using 𝐶 = {𝐴, 𝐵, 𝐷, 𝑃, 𝑆}, we use the following STRIPS task:

• The facts are 𝚊𝚝(𝑥), 𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝑥), and 𝚛𝚘𝚊𝚍(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝐶.

• The actions are 𝚍𝚛𝚒𝚟𝚎(𝑥, 𝑦) for 𝑥, 𝑦 ∈ 𝐶 with precondition/add-list/delete-list given by, respec-
tively, {𝚊𝚝(𝑥), 𝚛𝚘𝚊𝚍(𝑥, 𝑦)}, {𝚊𝚝(𝑦), 𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝑦)}, and {𝚊𝚝(𝑥)}.

• The initial state is 𝐼 = {𝚊𝚝(𝑆), 𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝑆)} ∪ 𝑅𝑜𝑎𝑑𝑠 where
𝑅𝑜𝑎𝑑𝑠 = {𝚛𝚘𝚊𝚍(𝐴, 𝑃), 𝚛𝚘𝚊𝚍(𝐴,𝐷), 𝚛𝚘𝚊𝚍(𝐷,𝐴), 𝚛𝚘𝚊𝚍(𝐴, 𝑆), 𝚛𝚘𝚊𝚍(𝑆, 𝐴), 𝚛𝚘𝚊𝚍(𝑆, 𝐵), 𝚛𝚘𝚊𝚍(𝐵, 𝑆)}.

• The goal is 𝐺 = {𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝐵), 𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝐷), 𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝑃)}.

You may abbreviate all fact/action names by their first letter.
2 Points1. Give an optimal plan for this task, or argue why no plan exists.

Solution: 𝚍𝚛𝚒𝚟𝚎(𝑆, 𝐵), 𝚍𝚛𝚒𝚟𝚎(𝐵, 𝑆), 𝚍𝚛𝚒𝚟𝚎(𝑆, 𝐴), 𝚍𝚛𝚒𝚟𝚎(𝐴,𝐷), 𝚍𝚛𝚒𝚟𝚎(𝐷,𝐴), 𝚍𝚛𝚒𝚟𝚎(𝐴, 𝑃)

2 Points2. Give an optimal plan for the delete-relaxed task, or argue why no plan exists.

Solution: 𝚍𝚛𝚒𝚟𝚎(𝑆, 𝐵), 𝚍𝚛𝚒𝚟𝚎(𝑆, 𝐴), 𝚍𝚛𝚒𝚟𝚎(𝐴,𝐷), 𝚍𝚛𝚒𝚟𝚎(𝐴, 𝑃). (Some reordering is possible.)

2 Points3. Let 𝐼′ = 𝐼 ∪ {𝚟𝚒𝚜𝚒𝚝𝚎𝚍(𝐷)}. Give ℎ∗(𝐼′).

Solution: 4

2 Points4. Let ℎ(𝑠) = |𝐺 ⧵ 𝑠|. Explain whether ℎ is an admissible heuristic.

Solution: It is admissible. ℎ(𝑠) is the number of cities that still have to be visited. Because each
city takes at least one action to visit, we have ℎ(𝑠) ≤ ℎ∗(𝑠).
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Problem 7.2 (Partial Order Planning)
2 Points1. In about 2 sentences, explain the key properties and significance of the Sussmann anomaly.

Solution: It is a planning problem in which the goal consists of 2 facts. If a planner first focuses
on either one of them as a subgoal, it will reach a state in which the next action must undo
the first subgoal to achieve the second subgoal. It shows that planning problems require more
finesse than simply splitting the goal into subgoals and achieving them in order.

2 Points2. In 1-2 sentences, explain the general idea of a causal link.

Solution: It relates two actions that could potentially be applied in order because the first one’s
effect helps establish the second one’s preconditions.
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