FAU:Allretake:WS2324:42

Last Name: First Name:

Matriculation Number:

Exam
Artificial Intelligence 1

October, 2024

To be used for grading, do not write here

prob. 1121 22|31(32|41|42|51]|52]53

6.1

7.1

7.2

Sum

grade

total 10 | 12 | 8 5 3 9 7 6 6 8

91

reached




FAU:Allretake:WS2324:42

In the course Artificial Intelligence I/II we award bonus points for the first student
who reports a factual error in an old exam. (Please report spelling/formatting errors
as well.)

ii



A WN -

FAU:AIlretake:WS2324:42 1 PROLOG

Problem 4.1 was changed to count for 10 points instead of 8. This changed the total points to 92 and
the bonus points to 7.

1 Prolog

Problem 1.1 (Analyzing a Prolog Program)
Consider the following Prolog program:

rch(X, [1,X).
rch(X,[A|As],Z) :- trns(X,A,Y), rch(Y,As,Z).

slt(As) :- i(X), g(Z), rch(X,As,Z).

1. Extend this program with clauses so that the query s1t ([a,b]) succeeds. 3pt

Solution: For example, 1(0). g(2). trns(0,a,1). trns(1,b,2).

Technically, a solution like s1t (_) is also correct. Except, technically, it is not because i and g
are not defined. Such solutions received 2.5 points.

2. Which definition from the course does the program s1t (As) implement? 3pt

Solution: It checks if the list As of actions is a solution to the search problem whose initial/goal

states are the ones satisfying i resp. g and which has transitions from state s to state s’ under
action a if trns(s, a, s’) holds.

For the remaining questions, assume that the predicates i, g, and trns are defined by a finite set of
facts. We now reverse the order of the subgoals in line 2, i.e., change line 2 to

rch(X,[A|As],Z) :- rch(Y,As,Z), trns(X,A,Y).

Explain (in about 2 sentences each) if/how this change affects the query s1t (As) regarding
3. ...correctness? 2pt

Solution: It has no effect. No clause has a side-effect, and the recursion in line 2 definitely
terminates. Therefore, reordering subgoals does not change the behavior of the program.

4. ...time efficiency? 2pt

Solution: The program will now search backwards through all paths to Z instead of forwards

through all paths from X. This has similar efficiency, and which method is faster depends on the
structure of the search problem.




FAU:AIllretake:WS2324:42 2 SEARCH

2 Search

Problem 2.1 (Search Algorithms)
Consider the following directed graph:

Every node is labeled with n : h(n) where n is the identifier of the node and h(n) is the heuristic for
estimating the cost from n to a goal node.

Each node’s children are ordered alphabetically.

Every edge is labeled with its actual cost.

1. Show or refute that the heuristic is admissible. 2 pt

Solution: 1t is not admissible: We have h(A) = 10 £ 9 = h*(A).

This assumes that I is the goal, which is implied but not clearly stated by the problem. Any
answer arguing that the question depends on the choice of goal node is also accepted.

2. Give one example of a transition in that graph that makes the heuristic inconsistent. 2pt

Solution: A - B, A — C,or G — H (because they decrease the heuristic by more than the cost)

Creating a new transition that would make the graph inconsistent is also accepted.

Assume you have already expanded the node A. List the next 4 nodes (i.e., excluding A) that will
be expanded using the respective algorithm.
If there is a tie, break it using alphabetical order.

3. Depth-first search 1pt

Solution: B,D,G,H

4. Breadth-first search 1pt

Solution: B,C,E,D

5. uniform-cost search 2 pt

Solution: C,F,E,B




FAU:AIllretake:WS2324:42 2 SEARCH

6. greedy search

7. A*-search

Solution: B,D,H,I

Solution: C,B,F,I

Problem 2.2 (Search Problems)
Consider the family of search problems P,, given for n = 1, 2,... by (S,,, Ay, Ty, I, G,,) Where

S, =1{0,1}", i.e., states x € S, are n-tuples (xy, ..., X;)
An = {l’ r’ l}
T, is given by

- T, x) ={(x3, ..., x5, 0)}

- Tn(r7 x) = {(O’ xla ceey xn—l)}

- T,(i,x) = {u} where

* ifx, =0 u=(xg,...,%X,_1,1)
* ifx, =1: u, =0and (ifn > 1) (uy, ..., up_1) € Tp—1 (i, (X1, e, Xp—1))

I={(0,..,0)}
G ={{,..,1)}

For n = 5, give the result of applying the action sequence i, 1, i, i in the initial state. 2pt

Solution: (0,0,1,0,0)
Note that the transition system is that of an n-bit register with action left-shift, right-shift, and
increment.

What is the shortest solution to P,,? 2pt

Solution: 1i,l,...,i,1,i of length 2n — 1.
There is also a suboptimal solution i, ..., i of length 2".

Now we try to solve P, using depth-first search. We avoid cycles by only applying an action if it leads
to a previously unexpanded state.
Discuss this strategy for the particular case of P,, (in about 1-2 sentences each) regarding

3.

...completeness. 2pt

Solution: Complete. Because the state space is finite and the goal reachable, it always finds a

solution.




FAU:AIlretake:WS2324:42 3 ADVERSARIAL SEARCH

4. optimality. 2pt

Solution: Optimality behavior depends on the unspecified order in which we try actions. For

example, trying i first finds the suboptimal solution i, ..., i. DFS will not find the optimal solution
using any order because it would require alternating [ and i even though both actions are always
applicable.

3 Adversarial Search

Problem 3.1 (Minimax)
Consider the following minimax game tree for the maximizing player’s turn. The values at the leaves
are the static evaluation function values of those states; some of those values are currently missing.

1. Label the node A with its minimax value. 2pt
Solution: 4

2. Which move would be chosen by the player? Ipt
Solution: B

3. Which nodes does af-pruning prune? We expand child nodes in alphabetical order. 2pt

Solution: P,J

Problem 3.2 (Minimax Applicability)
Consider the following game:
« Initially, 2 players have 10 tokens each, and there is an empty bag of tokens in the center.



FAU:AIllretake:WS2324:42 4 CONSTRAINT SATISFACTION

« The players take turns either putting an odd number of tokens into the bag or taking a non-zero

1.

even number of tokens from the bag.
A player loses if they have no more tokens.

Explain why minimax can/cannot be used to find a perfect strategy for this game.

Solution: It cannot be used. The game is not guaranteed to be finite, e.g., the move sequence

put 1, put 1, take 2 could repeat forever.

4 Constraint Satisfaction

Problem 4.1 (Solving and Propagation)
Consider the following binary CSP:

V ={a,b,c,d,e}
Da =Db =DC ={0717273}’Dd =De = {071’2’3’4’5}
Constraints:

a>lord>2
-b-e>8
-d=2c
-a>b

-b>c

. Give an inconsistent total assignment to the variables.

Solution: Any assignment that is not a solution,e.g,a=b=c=d =e =0.

. Give the two solutions.

Solution: a=3,b=2,(c,d) =(0,0)or (c,d)=(1,2),e=5

. Check the boxes for (v, w) where v is arc-consistent relative to w.

O(a,d) O(d,a) O(ed) [Od,c)

Solution: (a,d), (d,a)

. Now assume you have assigned b = 2. Give the domains after forward-checking.

Solution: D, = {3}, D, ={0,1}, D4 ={0,1,2,3,4,5}, D, = {5}




FAU:AIlretake:WS2324:42 5 LOGIC

5. What additional step can be taken if forward-checking results in a variable domain of size 1?

Solution: The variable can be assigned to its unique remaining value, and forward-checking can

be called again.

Problem 4.2 (Relating CSP and SAT)
We want to reduce SAT to CSP.
1. Explain (in 2 sentences) why it is easier and sufficient to reduce SAT to higher-order CSPs (as
opposed to reducing SAT to binary CSPs).

Solution: Easier: Higher-order CSPs are a larger class. So the reduction is easier. Sufficient: We
already know that higher-order CSPs can be reduced to binary CSPs.

2. Show that SAT can be reduced to CSP by defining
« for every SAT-instance P a CSP-instance Q = (V, D, C) and
« abijection between Q-solutions and satisfying P-instances

Solution: Assume P given by a propositional signature ¥ = {X, ..., X,;} and a Z-formula F.
We define Q = (V, D, C) by
e V==X
« Dy ={0,1}forallX e V
« C contains only F = 1 where F is seen as a Boolean function.
Both satisfying assignments for P and solutions of Q are maps £ — {0, 1}, and the bijection is the
identity.

5 Logic

Problem 5.1 (Propositional Logic)
Consider the formula A = (p Aq A7)V (mp=r1)V (p A qAr)using propositional variables p, g, r.

1. Give all falsifying assignments for A.

Solution: {(p), p(q), ¢(r)) € {F,F,F),(F,T,F)}

2. Give a formula in CNF that is equivalent to A.

Solution: p Vv r (This can be read off off the list of falsifying assignments. Reading off a faulty
list was also accepted.)

5pt



FAU:AIlretake:WS2324:42 5 LOGIC

3. Give a formula B such that A v (B = A) is valid. 2pt

Solution: B = false and B = A are the easiest options.
But any formula that is false for the two falsifying assignments works.

Problem 5.2 (Modeling in First-Order Logic)
Consider the following situation:
« Some individuals are persons, some are animals.
+ Individuals may own other individuals.
1. Model this situation in first-order logic by giving a signature, i.e., a list of function/predicate 2 pt
symbols with arity.

Solution:

 unary predicate symbols: p (for person), a (for animal)
« binary predicate symbols: o (for owns)

2. State formulas over your signature that capture the following properties: 2pt
1. There is a person that owns an animal.
2. Persons cannot be owned.

Solution:

1. 3x.3y.p(x) A a(y) A o(x,y)
2. Vx.p(x) = —-3i.o(i, x)

3. Give a model of your signature in which the universe is as small as possible and the above two 2 Pt
formulas are true.

Solution: D = {Alice, Bubble}, I(p) = {Alice}, I(a) = {Bubbles}, I(0) = {(Alice, Bubbles)}.

Problem 5.3 (Resolution)
Consider the signature of first-order logic with unary predicate symbol P, binary predicate symbol R,
and nullary function symbols a, b.

1. Prove the following formula using the first-order resolution calculus. 8 pt

AX.VY.3Z.3W.(=P(Z) A =R(b,a)) V =R(a,b) VR(W,a) v (P(Y) A R(X, b))

Solution: We negate:

VX.AY.VZVW.(P(Z) Vv R(b,a)) AR(a,b) A=R(W,a) A (-P(Y) vV =R(X, b))
‘We skolemize:

(P(Z) V R(b,a)) AR(a,b) A—"R(W,a) A (-P(fy(X)) V "R(X, b))



FAU:AIlretake:WS2324:42 7 PLANNING

Thisyields the clauses{P(2)", R(b, a)' },{R(a, b) '}, {RW, @) }, {P(fy (X))", R(X, b)" }. We resolve:

{P(2) ,R(b,a)' } + {ROW,a) }[b/W] = {P(2)"}

{R(a,b)"} + {P(fy(X)", R(X, b) Ya/X] = {P(fy(a)}

P U fy(@)/Z] +{P(fy(@) } = 0

6 Knowledge Representation

Problem 6.1 (ALC)

Consider the following ALC signature
« concept symbols: p (for person), a (for animal)
« role symbols: o (for owns)

1. Give a concept that represents the set of people that own animals.

Solution: prmJo.a

2. Give an axiom that states that people cannot be owned.

Solution: Jo.p C L

3. Give an ABox that represents a person Alice owning an animal Bubbles.

Solution: Alice : p,Bubbles : a, Alice o Bubbles

4. Calculate the translation to first-order logic of the concept Vo.30.a.

Solution: Vx.o(u,x)= y.o(x,y) A a(y) with free variable u

7 Planning

Problem 7.1 (STRIPS and Relaxation)
Consider the STRIPS task given by

« facts: {a,b,c,d}

« actions: {p,q,r} with p = ({a},{b},{a}), g = {{c},{d},{c}), and r = ({b},{c},{b}), where each

action is given as a triple of preconditions, add list, and delete list

« initial state: {a}



FAU:AIlretake:WS2324:42 7 PLANNING

« goal state: {d}

1. Give the optimal plan for this problem. 2 pt

Solution: p,r,q

2. Give the optimal delete-relaxed plan for this problem. 2pt

Solution: p,r,q

3. Give the optimal only-adds-relaxed plan for this problem. 2pt

Solution: q

Problem 7.2 (Kinds of Planning)

1. Explain (in about 3-5 sentences) the differences between satisficing, optimal, and relaxed plan- 5 pt
ning.

Solution: Optimal planning tries to find the shortest plan.

Satisficing planning tries to find any plan, not necessarily the shortest. It is easier than optimal
planning.

Relaxed planning finds a plan for a simplified problem. That does not solve the original problem,
but it is easier and can be used as a heuristic.




	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction
	Logic
	Knowledge Representation
	Planning

