
FAU:AI1retake:WS2324:42

Last Name: First Name:

Matriculation Number:

Exam
Artificial Intelligence 1

October, 2024

To be used for grading, do not write here

prob. 1.1 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 5.3 6.1 7.1 7.2 Sum grade
total 10 12 8 5 3 9 7 6 6 8 6 6 5 91
reached

i

FAU:AI1retake:WS2324:42

In the course Artificial Intelligence I/II we award bonus points for the first student
who reports a factual error in an old exam. (Please report spelling/formatting errors
as well.)

ii

FAU:AI1retake:WS2324:42 1 PROLOG

Problem 4.1 was changed to count for 10 points instead of 8. This changed the total points to 92 and
the bonus points to 7.

1 Prolog
Problem 1.1 (Analyzing a Prolog Program)
Consider the following Prolog program:

1 rch(X,[],X).
2 rch(X,[A|As],Z) :- trns(X,A,Y), rch(Y,As,Z).
3
4 slt(As) :- i(X), g(Z), rch(X,As,Z).

3 pt1. Extend this program with clauses so that the query slt([a,b]) succeeds.

Solution: For example, i(0). g(2). trns(0,a,1). trns(1,b,2).

Technically, a solution like slt(_) is also correct. Except, technically, it is not because i and g
are not defined. Such solutions received 2.5 points.

3 pt2. Which definition from the course does the program slt(As) implement?

Solution: It checks if the list As of actions is a solution to the search problem whose initial/goal
states are the ones satisfying i resp. g and which has transitions from state 𝑠 to state 𝑠′ under
action 𝑎 if 𝚝𝚛𝚗𝚜(𝑠, 𝑎, 𝑠′) holds.

For the remaining questions, assume that the predicates i, g, and trns are defined by a finite set of
facts. We now reverse the order of the subgoals in line 2, i.e., change line 2 to
rch(X,[A|As],Z) :- rch(Y,As,Z), trns(X,A,Y).

Explain (in about 2 sentences each) if/how this change affects the query slt(As) regarding
2 pt3. . . . correctness?

Solution: It has no effect. No clause has a side-effect, and the recursion in line 2 definitely
terminates. Therefore, reordering subgoals does not change the behavior of the program.

2 pt4. . . . time efficiency?

Solution: The program will now search backwards through all paths to Z instead of forwards
through all paths from X. This has similar efficiency, and which method is faster depends on the
structure of the search problem.

1

FAU:AI1retake:WS2324:42 2 SEARCH

2 Search
Problem 2.1 (Search Algorithms)
Consider the following directed graph:

𝐴 ∶ 10

𝐵 ∶ 2 𝐶 ∶ 6

𝐷 ∶ 3 𝐸 ∶ 6 𝐹 ∶ 6

𝐺 ∶ 7 𝐻 ∶ 3 𝐼 ∶ 0

6
1

8

1

37
3 3

2 2

26

1 8

4 6

Every node is labeled with 𝑛 ∶ ℎ(𝑛) where 𝑛 is the identifier of the node and ℎ(𝑛) is the heuristic for
estimating the cost from 𝑛 to a goal node.
Each node’s children are ordered alphabetically.
Every edge is labeled with its actual cost.

2 pt1. Show or refute that the heuristic is admissible.

Solution: It is not admissible: We have ℎ(𝐴) = 10 ≰ 9 = ℎ∗(𝐴).
This assumes that 𝐼 is the goal, which is implied but not clearly stated by the problem. Any
answer arguing that the question depends on the choice of goal node is also accepted.

2 pt2. Give one example of a transition in that graph that makes the heuristic inconsistent.

Solution: 𝐴 → 𝐵,𝐴 → 𝐶, or𝐺 → 𝐻 (because they decrease the heuristic by more than the cost)
Creating a new transition that would make the graph inconsistent is also accepted.

Assume you have already expanded the node 𝐴. List the next 4 nodes (i.e., excluding 𝐴) that will
be expanded using the respective algorithm.
If there is a tie, break it using alphabetical order.

1 pt3. Depth-first search

Solution: 𝐵,𝐷, 𝐺,𝐻

1 pt4. Breadth-first search

Solution: 𝐵, 𝐶, 𝐸, 𝐷

2 pt5. uniform-cost search

Solution: 𝐶, 𝐹, 𝐸, 𝐵

2

FAU:AI1retake:WS2324:42 2 SEARCH

2 pt6. greedy search

Solution: 𝐵,𝐷,𝐻, 𝐼

2 pt7. 𝐴∗-search

Solution: 𝐶, 𝐵, 𝐹, 𝐼

Problem 2.2 (Search Problems)
Consider the family of search problems 𝑃𝑛 given for 𝑛 = 1, 2,… by ⟨𝑆𝑛, 𝐴𝑛, 𝑇𝑛, 𝐼𝑛, 𝐺𝑛⟩ where

• 𝑆𝑛 = {0, 1}𝑛, i.e., states 𝑥 ∈ 𝑆𝑛 are 𝑛-tuples (𝑥1,… , 𝑥𝑛)

• 𝐴𝑛 = {𝑙, 𝑟, 𝑖}

• 𝑇𝑛 is given by

– 𝑇𝑛(𝑙, 𝑥) = {(𝑥2,… , 𝑥𝑛, 0)}
– 𝑇𝑛(𝑟, 𝑥) = {(0, 𝑥1,… , 𝑥𝑛−1)}
– 𝑇𝑛(𝑖, 𝑥) = {𝑢} where

* if 𝑥𝑛 = 0: 𝑢 = (𝑥1,… , 𝑥𝑛−1, 1)

* if 𝑥𝑛 = 1: 𝑢𝑛 = 0 and (if 𝑛 > 1) (𝑢1,… , 𝑢𝑛−1) ∈ 𝑇𝑛−1(𝑖, (𝑥1,… , 𝑥𝑛−1))

• 𝐼 = {(0,… , 0)}

• 𝐺 = {(1,… , 1)}

2 pt1. For 𝑛 = 5, give the result of applying the action sequence 𝑖, 𝑙, 𝑖, 𝑖 in the initial state.

Solution: (0, 0, 1, 0, 0)
Note that the transition system is that of an 𝑛-bit register with action left-shift, right-shift, and
increment.

2 pt2. What is the shortest solution to 𝑃𝑛?

Solution: 𝑖, 𝑙,… , 𝑖, 𝑙, 𝑖 of length 2𝑛 − 1.
There is also a suboptimal solution 𝑖,… , 𝑖 of length 2𝑛.

Now we try to solve 𝑃𝑛 using depth-first search. We avoid cycles by only applying an action if it leads
to a previously unexpanded state.
Discuss this strategy for the particular case of 𝑃𝑛 (in about 1-2 sentences each) regarding

2 pt3. . . . completeness.

Solution: Complete. Because the state space is finite and the goal reachable, it always finds a
solution.

3

FAU:AI1retake:WS2324:42 3 ADVERSARIAL SEARCH

2 pt4. optimality.

Solution: Optimality behavior depends on the unspecified order in which we try actions. For
example, trying 𝑖 first finds the suboptimal solution 𝑖,… , 𝑖. DFSwill not find the optimal solution
using any order because it would require alternating 𝑙 and 𝑖 even though both actions are always
applicable.

3 Adversarial Search
Problem 3.1 (Minimax)
Consider the following minimax game tree for themaximizing player’s turn. The values at the leaves
are the static evaluation function values of those states; some of those values are currently missing.

𝐴

𝐵 𝐶 𝐷

𝐸

5

𝐹

4

𝐺

7

𝐻

5

𝐼 𝐽

2

𝐾

8

𝐿

1

𝑀

3

𝑁

𝑂

3

𝑃

1

2 pt1. Label the node 𝐴 with its minimax value.

Solution: 4

1 pt2. Which move would be chosen by the player?

Solution: 𝐵

2 pt3. Which nodes does 𝛼𝛽-pruning prune? We expand child nodes in alphabetical order.

Solution: P, J

Problem 3.2 (Minimax Applicability)
Consider the following game:

• Initially, 2 players have 10 tokens each, and there is an empty bag of tokens in the center.

4

FAU:AI1retake:WS2324:42 4 CONSTRAINT SATISFACTION

• The players take turns either putting an odd number of tokens into the bag or taking a non-zero
even number of tokens from the bag.

• A player loses if they have no more tokens.
3 pt1. Explain why minimax can/cannot be used to find a perfect strategy for this game.

Solution: It cannot be used. The game is not guaranteed to be finite, e.g., the move sequence
put 1, put 1, take 2 could repeat forever.

4 Constraint Satisfaction
Problem 4.1 (Solving and Propagation)
Consider the following binary CSP:

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

• 𝐷𝑎 = 𝐷𝑏 = 𝐷𝑐 = {0, 1, 2, 3}, 𝐷𝑑 = 𝐷𝑒 = {0, 1, 2, 3, 4, 5}

• Constraints:

– 𝑎 > 1 or 𝑑 > 2
– 𝑏 ⋅ 𝑒 > 8
– 𝑑 = 2𝑐
– 𝑎 > 𝑏
– 𝑏 > 𝑐

1 pt1. Give an inconsistent total assignment to the variables.

Solution: Any assignment that is not a solution, e.g., 𝑎 = 𝑏 = 𝑐 = 𝑑 = 𝑒 = 0.

3 pt2. Give the two solutions.

Solution: 𝑎 = 3, 𝑏 = 2, (𝑐, 𝑑) = (0, 0) or (𝑐, 𝑑) = (1, 2), 𝑒 = 5

2 pt3. Check the boxes for (𝑣, 𝑤) where 𝑣 is arc-consistent relative to 𝑤.

□ (𝑎, 𝑑) □ (𝑑, 𝑎) □ (𝑐, 𝑑) □ (𝑑, 𝑐)

Solution: (𝑎, 𝑑), (𝑑, 𝑎)

2 pt4. Now assume you have assigned 𝑏 = 2. Give the domains after forward-checking.

Solution: 𝐷𝑎 = {3}, 𝐷𝑐 = {0, 1}, 𝐷𝑑 = {0, 1, 2, 3, 4, 5}, 𝐷𝑒 = {5}

5

FAU:AI1retake:WS2324:42 5 LOGIC

1 pt5. What additional step can be taken if forward-checking results in a variable domain of size 1?

Solution: The variable can be assigned to its unique remaining value, and forward-checking can
be called again.

Problem 4.2 (Relating CSP and SAT)
We want to reduce SAT to CSP.

2 pt1. Explain (in 2 sentences) why it is easier and sufficient to reduce SAT to higher-order CSPs (as
opposed to reducing SAT to binary CSPs).

Solution: Easier: Higher-order CSPs are a larger class. So the reduction is easier. Sufficient: We
already know that higher-order CSPs can be reduced to binary CSPs.

5 pt2. Show that SAT can be reduced to CSP by defining
• for every SAT-instance 𝑃 a CSP-instance 𝑄 = (𝑉,𝐷, 𝐶) and
• a bijection between 𝑄-solutions and satisfying 𝑃-instances

Solution: Assume 𝑃 given by a propositional signature Σ = {𝑋1,… , 𝑋𝑛} and a Σ-formula 𝐹.
We define 𝑄 = (𝑉,𝐷, 𝐶) by

• 𝑉 = Σ
• 𝐷𝑋 = {0, 1} for all 𝑋 ∈ 𝑉
• 𝐶 contains only 𝐹 = 1 where 𝐹 is seen as a Boolean function.

Both satisfying assignments for 𝑃 and solutions of𝑄 are maps Σ→ {0, 1}, and the bijection is the
identity.

5 Logic
Problem 5.1 (Propositional Logic)
Consider the formula 𝐴 = (𝑝 ∧ 𝑞 ∧ ¬𝑟) ∨ (¬𝑝 ⇒ 𝑟) ∨ (𝑝 ∧ 𝑞 ∧ 𝑟) using propositional variables 𝑝, 𝑞, 𝑟.

2 pt1. Give all falsifying assignments for 𝐴.

Solution: ⟨𝜑(𝑝), 𝜑(𝑞), 𝜑(𝑟)⟩ ∈ {⟨𝐹, 𝐹, 𝐹⟩, ⟨𝐹, 𝑇, 𝐹⟩}

2 pt2. Give a formula in CNF that is equivalent to 𝐴.

Solution: 𝑝 ∨ 𝑟 (This can be read off off the list of falsifying assignments. Reading off a faulty
list was also accepted.)

6

FAU:AI1retake:WS2324:42 5 LOGIC

2 pt3. Give a formula 𝐵 such that 𝐴 ∨ (𝐵 ⇒ 𝐴) is valid.

Solution: 𝐵 = 𝑓𝑎𝑙𝑠𝑒 and 𝐵 = 𝐴 are the easiest options.
But any formula that is false for the two falsifying assignments works.

Problem 5.2 (Modeling in First-Order Logic)
Consider the following situation:

• Some individuals are persons, some are animals.
• Individuals may own other individuals.

2 pt1. Model this situation in first-order logic by giving a signature, i.e., a list of function/predicate
symbols with arity.

Solution:
• unary predicate symbols: 𝑝 (for person), 𝑎 (for animal)
• binary predicate symbols: 𝑜 (for owns)

2 pt2. State formulas over your signature that capture the following properties:
1. There is a person that owns an animal.
2. Persons cannot be owned.

Solution:
1. ∃𝑥.∃𝑦.𝑝(𝑥) ∧ 𝑎(𝑦) ∧ 𝑜(𝑥, 𝑦)
2. ∀𝑥.𝑝(𝑥) ⇒ ¬∃𝑖.𝑜(𝑖, 𝑥)

2 pt3. Give a model of your signature in which the universe is as small as possible and the above two
formulas are true.

Solution: 𝐷 = {𝐴𝑙𝑖𝑐𝑒, 𝐵𝑢𝑏𝑏𝑙𝑒}, 𝐼(𝑝) = {𝐴𝑙𝑖𝑐𝑒}, 𝐼(𝑎) = {𝐵𝑢𝑏𝑏𝑙𝑒𝑠}, 𝐼(𝑜) = {(𝐴𝑙𝑖𝑐𝑒, 𝐵𝑢𝑏𝑏𝑙𝑒𝑠)}.

Problem 5.3 (Resolution)
Consider the signature of first-order logic with unary predicate symbol 𝑃, binary predicate symbol 𝑅,
and nullary function symbols 𝑎, 𝑏.

8 pt1. Prove the following formula using the first-order resolution calculus.

∃𝑋 ∀𝑌 ∃𝑍 ∃𝑊 (¬𝑃(𝑍) ∧ ¬𝑅(𝑏, 𝑎)) ∨ ¬𝑅(𝑎, 𝑏) ∨ 𝑅(𝑊,𝑎) ∨ (𝑃(𝑌) ∧ 𝑅(𝑋, 𝑏))

Solution: We negate:

∀𝑋 ∃𝑌 ∀𝑍 ∀𝑊 (𝑃(𝑍) ∨ 𝑅(𝑏, 𝑎)) ∧ 𝑅(𝑎, 𝑏) ∧ ¬𝑅(𝑊,𝑎) ∧ (¬𝑃(𝑌) ∨ ¬𝑅(𝑋, 𝑏))

We skolemize:

(𝑃(𝑍) ∨ 𝑅(𝑏, 𝑎)) ∧ 𝑅(𝑎, 𝑏) ∧ ¬𝑅(𝑊,𝑎) ∧ (¬𝑃(𝑓𝑌(𝑋)) ∨ ¬𝑅(𝑋, 𝑏))

7

FAU:AI1retake:WS2324:42 7 PLANNING

This yields the clauses {𝑃(𝑍)𝖳, 𝑅(𝑏, 𝑎)𝖳}, {𝑅(𝑎, 𝑏)𝖳}, {𝑅(𝑊,𝑎)𝖥}, {𝑃(𝑓𝑌(𝑋))
𝖥, 𝑅(𝑋, 𝑏)𝖥}. We resolve:

{𝑃(𝑍)𝖳, 𝑅(𝑏, 𝑎)𝖳} + {𝑅(𝑊,𝑎)𝖥}[𝑏∕𝑊]⟹ {𝑃(𝑍)𝖳}

{𝑅(𝑎, 𝑏)𝖳} + {𝑃(𝑓𝑌(𝑋))
𝖥, 𝑅(𝑋, 𝑏)𝖥}[𝑎∕𝑋]⟹ {𝑃(𝑓𝑌(𝑎))

𝖥}

{𝑃(𝑍)𝖳}[𝑓𝑌(𝑎)∕𝑍] + {𝑃(𝑓𝑌(𝑎))
𝖥}⟹ ∅

6 Knowledge Representation
Problem 6.1 (ALC)
Consider the following ALC signature

• concept symbols: 𝑝 (for person), 𝑎 (for animal)
• role symbols: 𝑜 (for owns)

1 pt1. Give a concept that represents the set of people that own animals.

Solution: 𝑝 ⊓ ∃𝑜.𝑎

2 pt2. Give an axiom that states that people cannot be owned.

Solution: ∃𝑜.𝑝 ⊑ ⊥

1 pt3. Give an ABox that represents a person Alice owning an animal Bubbles.

Solution: 𝐴𝑙𝑖𝑐𝑒 ∶ 𝑝, 𝐵𝑢𝑏𝑏𝑙𝑒𝑠 ∶ 𝑎,𝐴𝑙𝑖𝑐𝑒 𝑜 𝐵𝑢𝑏𝑏𝑙𝑒𝑠

2 pt4. Calculate the translation to first-order logic of the concept ∀𝑜.∃𝑜.𝑎.

Solution: ∀𝑥.𝑜(𝑢, 𝑥) ⇒ ∃𝑦.𝑜(𝑥, 𝑦) ∧ 𝑎(𝑦) with free variable 𝑢

7 Planning
Problem 7.1 (STRIPS and Relaxation)
Consider the STRIPS task given by

• facts: {𝑎, 𝑏, 𝑐, 𝑑}

• actions: {𝑝, 𝑞, 𝑟} with 𝑝 = ⟨{𝑎}, {𝑏}, {𝑎}⟩, 𝑞 = ⟨{𝑐}, {𝑑}, {𝑐}⟩, and 𝑟 = ⟨{𝑏}, {𝑐}, {𝑏}⟩, where each
action is given as a triple of preconditions, add list, and delete list

• initial state: {𝑎}

8

FAU:AI1retake:WS2324:42 7 PLANNING

• goal state: {𝑑}

2 pt1. Give the optimal plan for this problem.

Solution: 𝑝, 𝑟, 𝑞

2 pt2. Give the optimal delete-relaxed plan for this problem.

Solution: 𝑝, 𝑟, 𝑞

2 pt3. Give the optimal only-adds-relaxed plan for this problem.

Solution: 𝑞

Problem 7.2 (Kinds of Planning)
5 pt1. Explain (in about 3-5 sentences) the differences between satisficing, optimal, and relaxed plan-

ning.

Solution: Optimal planning tries to find the shortest plan.
Satisficing planning tries to find any plan, not necessarily the shortest. It is easier than optimal
planning.
Relaxed planning finds a plan for a simplified problem. That does not solve the original problem,
but it is easier and can be used as a heuristic.

9

	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction
	Logic
	Knowledge Representation
	Planning

