
FAU:AI1retake:WS2223:42

Last Name: First Name:

Matriculation Number:

Retake Exam
Artificial Intelligence 1

October 9, 2023

Please ignore the QR codes; do not write on them, they are for grading support

To be used for grading, do not write here

prob. 1.1 2.1 2.2 3.1 4.1 4.2 5.1 5.2 5.3 6.1 7.1 7.2 Sum grade
total 8 10 9 6 7 7 6 6 7 8 10 6 90
reached

i



FAU:AI1retake:WS2223:42

The “solutions” to the exam/assignment problems in this document are supplied to
give students a starting point for answering questions. While we are striving for help-
ful “solutions”, they can be incomplete and can even contain errors even after our best
efforts.
In any case, grading student’s answers is not a process of simply “comparing with the
reference solution”, therefore errors in the “solutions” are not a problem in this case.
If you find “solutions” you do not understand or you find incorrect, discuss this on
the course forum and/or with your TA and/notify the instructors. We will – if needed
– correct them ASAP.
In the course Artificial Intelligence I/II we award bonus points for the first student
who reports a factual error in an old exam. (Please report spelling/formatting errors
as well.)

ii



FAU:AI1retake:WS2223:42 2 SEARCH

1 Prolog
Problem 1.1 (Prolog in Prolog)
Consider the following Prolog program that represents Prolog in Prolog, i.e. Prolog terms, literals, and
clauses are represented as Prolog terms:

1isTerm(pterm(F,ARGS)) :- string(F), isTermList(ARGS).
2isTerm(pvar(X)) :- string(X).
3
4isTermList([]).
5isTermList([H|T]) :- isTerm(H), isTermList(T).
6
7isLiteral(plit(P,ARGS)) :- string(P), isTermList(ARGS).
8
9isLiteralList([]).
10isLiteralList([H|T]) :- isLiteral(H), isLiteralList(T).
11
12isClause(pclause(H,B)) :- isLiteral(H), isLiteralList(B).

Here string is a built-in predicate that succeeds if its argument is a string.
3 Points1. Write the Prolog clause isNat(succ(N)) :- isNat(N) as a Prolog term relative to the above

program (i.e., such that isClause succeeds for it).

Solution:

pclause(plit("isNat", [pterm("succ",[pvar("N")])]),
[plit("isNat", [pvar("N")])]).

2 Points2. Assume that the Prolog term𝐶 contains no free variables. How is the result of the queryisClause(𝐶)
affected by exchanging the lines 4 and 5?

Solution: It is not affected.

3 Points3. Extend the program above with a unary Prolog predicate isProgram that succeeds if its argu-
ment is of the form pprog(𝑃) where 𝑃 is a list of clauses.

Solution:

isClauseList([]).
isClauseList([H|T]) :- isClause(H), isClauseList(T).

isProgram(pprog(C)) :- isClauseList(C).

2 Search
Problem 2.1 (Search Algorithms)
Consider the following directed graph:

1



FAU:AI1retake:WS2223:42 2 SEARCH

𝐴 ∶ 10

𝐵 ∶ 5 𝐶 ∶ 6

𝐷 ∶ 7 𝐸 ∶ 5 𝐹 ∶ 7 𝐺 ∶ 3

𝐻 ∶ 4 𝐼 ∶ 0

6 1
3

1

1
2

5
1

2 6

5 8 4

1

Every node is labeled with 𝑛 ∶ ℎ(𝑛) where 𝑛 is the identifier of the node and ℎ(𝑛) is the heuristic for
estimating the cost from 𝑛 to a goal node. Every edge is labeled with its actual cost.

2 Points1. Assume that 𝐼 is the goal node. Argue whether or not the heuristic is admissible.

Solution: It is not admissible: The cost from 𝐷 to the goal is 1 + 5 = 6 < 7 = ℎ(𝐷), and a
heuristic must not overestimate that cost.

Now assume you have already expanded the node 𝐴. List the next 4 nodes (i.e., excluding 𝐴) that
will be expanded using the respective algorithm. If there is a tie, break it using alphabetical order.

1 Points2. depth-first search

Solution: 𝐵, 𝐶, 𝐹,𝐻

1 Points3. breadth-first search

Solution: 𝐵, 𝐶, 𝐸, 𝐹

2 Points4. uniform-cost search

Solution: 𝐶, 𝐹, 𝐵, 𝐸

2 Points5. greedy-search

Solution: 𝐵, 𝐸, 𝐶, 𝐺

2 Points6. 𝐴∗-search

Solution: 𝐶, 𝐹, 𝐺, 𝐵

2



FAU:AI1retake:WS2223:42 3 ADVERSARIAL SEARCH

Problem 2.2 (Search Problems)
Consider the search problem ⟨𝑆,𝐴, 𝑇, 𝐼, 𝐺⟩ where

□ 𝑆 = ℤ ×ℤ

□ 𝐴 = {𝑅, 𝑆,𝑀}

□ 𝑇 is given by

□ 𝑇(𝑅, (𝑥, 𝑦)) = {(𝑥, 0), (0, 𝑦)}

□ 𝑇(𝑆, (𝑥, 𝑦)) = {(𝑦, 𝑥)}

□ 𝑇(𝑀, (𝑥, 𝑦)) = {(𝑥 + 1, 𝑦)}

□ 𝐼 = {(0, 0)}

□ 𝐺 = {(3, 3)}

1 Points1. Tick the box of the part of the definition that makes this problem fully observable.

Solution: the one for 𝐼

2 Points2. Give the possible states resulting from applying the action sequence𝑀,𝑅,𝑀 to the initial state.

Solution: (2, 0), (1, 0)

2 Points3. Which states are reachable from the initial state?

Solution: all states with non-negative coordinates

2 Points4. Give a solution of minimal length to this problem.

Solution: 𝑀,𝑀,𝑀, 𝑆,𝑀,𝑀,𝑀

2 Points5. Assume we use ℎ((𝑥, 𝑦)) = 1∕(1 + 𝑥 + 𝑦) as a heuristic. Whichs action will a greedy search
algorithm choose for the first two steps?

Solution: 𝑀,𝑀

3 Adversarial Search
Problem 3.1 (Minimax)
Consider the following minimax game tree for themaximizing player’s turn. The values at the leafs
are the static evaluation function values of those states; some of those values are currently missing.

3



FAU:AI1retake:WS2223:42 4 CONSTRAINT SATISFACTION/PROPAGATION

A

B C D

E F G H

N O

I J K L M

6 5

4 6

7 4 6 1 2

2 Points1. Label the nodes H and C with their minimax values.

Solution: H: 6, C: 4

2 Points2. If possible, label the nodeEwith an evaluation function value that results in the player definitely
choosing move C (no matter how ties are broken).
Otherwise, argue why that is impossible.

Solution: Any label < 4.

2 Points3. Now assume E is labeled with 5, and we use 𝛼𝛽-pruning. We expand child nodes in alphabetical
order. Which nodes would be pruned?

Solution: M

4 Constraint Satisfaction/Propagation
Problem 4.1 (Modeling) 7 Points
You want to schedule a tournament in which teams 𝐴, 𝐵, 𝐶, 𝐷 play each other once. The six games
must take place over the next 3 days. But team 𝐴must not play twice on the same day. Team 𝐵 is only
available for the next 2 days. And team 𝐶 wants to play against𝐷 a day before playing against anybody
else.

Model this problem as a constraint satisfaction problem ⟨𝑉,𝐷, 𝐶⟩. Explain how the solutions corre-
spond to the possible match schedules.

Solution: E.g.,
𝑉 = {𝐴𝐵,𝐴𝐶,𝐴𝐷, 𝐵𝐶, 𝐵𝐷, 𝐶𝐷}

𝐷𝑋𝑌 = {1, 2, 3} for all 𝑋𝑌 ∈ 𝑉

Constraints in 𝐶:

• 𝐴-matches on different days: 𝐴𝐵 ≠ 𝐴𝐶, 𝐴𝐵 ≠ 𝐴𝐷, 𝐴𝐶 ≠ 𝐴𝐷

• 𝐵-matches on first two days: 𝐴𝐵 ≤ 2, 𝐵𝐶 ≤ 2, 𝐵𝐷 ≤ 2

4



FAU:AI1retake:WS2223:42 5 LOGIC

• 𝐶𝐷-match before other 𝐶-matches: 𝐶𝐷 < 𝐴𝐶, 𝐶𝐷 < 𝐵𝐶

Explanation: For a solution 𝑠, the match 𝑋𝑌 is played on day 𝑠(𝑋𝑌).

Problem 4.2 (Solving)
Consider the following binary CSP:

• 𝑉 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

• 𝐷𝑎 = 𝐷𝑏 = 𝐷𝑐 = {0, 1, 2, 3}, 𝐷𝑑 = 𝐷𝑒 = {0, 1, 2, 3, 4, 5, 6, 7}

• Constraints:

∙ 𝑒2 − 𝑑2 < 18

∙ 𝑑 = 2𝑐

∙ 𝑒 − 𝑎 > 5

∙ 𝑎 < 𝑏 and 𝑏 < 𝑐 and 𝑑 < 𝑒

2 Points1. Check the boxes for (𝑣, 𝑤) if 𝑣 is arc-consistent relative to 𝑤.

□ (𝑎, 𝑏) □ (𝑏, 𝑎) □ (𝑎, 𝑒) □ (𝑒, 𝑎) □ (𝑐, 𝑑) □ (𝑑, 𝑐)

Solution: Only (𝑐, 𝑑).

3 Points2. Give the three solutions.

Solution: (𝑎, 𝑏) ∈ {(0, 1), (0, 2), (1, 2)}, 𝑐 = 3, 𝑑 = 6, 𝑒 = 7

2 Points3. Now assume we replace the last constraint with 𝑏 < min{𝑐, 𝑑} (where min is the minimum
operator). Transform the resulting problem into an equivalent binary one.

Solution: We can replace the new constraint with the constraints 𝑏 < 𝑐 and 𝑏 < 𝑑. In fact, the
constraint 𝑏 < 𝑐 suffices because then 𝑏 < 𝑑 can be inferred from the existing constraints.

5 Logic
Problem 5.1 (Propositional Logic)
We use the propositional variables 𝑋, 𝑌, and 𝑍. Consider the formula 𝐴 given by

(𝑋 ∧ (𝑌 ⇒ 𝑍)) ⇒ ¬(𝑋 ∧ 𝑌)

3 Points1. Give a satisfying assignment 𝜎 and a falsifying assignment 𝜑 for 𝐴.

Solution: The satisfying and falsifying assignments can be read off the following table. 𝜎(𝑋) =
𝜎(𝑌) = 𝜎(𝑍) = 1 and 𝜑 any other assignment.

5



FAU:AI1retake:WS2223:42 5 LOGIC

𝑋 𝑌 𝑍 interpretation of 𝐴
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 0

1 Points2. Which (if any) of the formulas 𝐴 and ¬𝐴 is a theorem?

Solution: Neither (because 𝐴 can be both satisfied and falsified).

2 Points3. Give the shortest formula in CNF that is equivalent to 𝐴 ⇒ 𝐴.

Solution: 𝑡𝑟𝑢𝑒 (because the formula is a theorem for any value of 𝐴)

Problem 5.2 (Predicate Logic)
Consider the following signature of predicate logic:

• binary function symbol 𝑓

• unary predicate symbol 𝑝

2 Points1. Give a model for that signature.

Solution: E.g., universe ℕ, ℐ(𝑓)(𝑢, 𝑣) = 𝑢 + 𝑣, ℐ(𝑝) = {0}.

2 Points2. Consider the formula 𝐴 = 𝑝(𝑥) ∧ 𝑝(𝑦) and assume a model with universe ℕ and ℐ(𝑝) = {0}.
Give an assignment 𝛼 such that ℐ𝛼(𝐴) holds.

Solution: 𝛼(𝑥) = 𝛼(𝑦) = 0

2 Points3. Prove or refute the following statement: A model that satisfies ∀𝑥.𝑝(𝑥) satisfies all formulas.

Solution: False. E.g., 𝑓𝑎𝑙𝑠𝑒 is a counter-example.

Problem 5.3 (Proving in Tableau Calculus) 7 Points
We use the propositional variables 𝑃, 𝑄, and 𝑅 and the following abbreviations

𝐴 = 𝑄 ∧ (𝑃 ⇒ 𝑄)

𝐵 = 𝑃 ⇒ 𝐴

6



FAU:AI1retake:WS2223:42 6 KNOWLEDGE REPRESENTATION

𝐶 = 𝑃 ⇒ 𝑅

Using the tableau calculus, find a falsifying assignment for the formula 𝐶 ⇒ 𝐵.

Solution:

𝐶 ⇒ 𝐵𝐹

𝐶𝑇

𝐵𝐹

𝑃𝑇

𝐴𝐹

𝑃𝐹 𝑅𝑇

close on 𝑃

𝑄𝐹 𝑃 ⇒ 𝑄𝐹

open: 𝑃𝑇 , 𝑄𝐹 , 𝑅𝑇 𝑃𝑇

𝑄𝐹

open: 𝑃𝑇 , 𝑄𝐹 , 𝑅𝑇

So the only falsifying assignment 𝜑 is given by 𝜑(𝑃) = 𝜑(𝑅) = 1 and 𝜑(𝑄) = 0

6 Knowledge Representation
Problem 6.1 (Description Logic)
Consider the following 𝒜ℒ𝒞-setting:

• concepts: 𝚙𝚒𝚣𝚣𝚊, 𝚒𝚌𝚎𝚌𝚛𝚎𝚊𝚖, 𝚏𝚘𝚘𝚍, 𝚝𝚘𝚙𝚙𝚒𝚗𝚐

• relations: 𝚌𝚊𝚗𝙷𝚊𝚟𝚎𝚃𝚘𝚙𝚙𝚒𝚗𝚐

• individuals: 𝚖𝚊𝚛𝚐𝚊𝚛𝚒𝚝𝚊, 𝚟𝚊𝚗𝚒𝚕𝚕𝚊, 𝚑𝚊𝚖, 𝚜𝚢𝚛𝚞𝚙

You may abbreviate every concept/relation/individual by its first letter.
2 Points1. Give the 𝒜ℒ𝒞-ABox with assertions that model common sense knowledge (e.g., we do not put

vanilla or syrup on pizza even though it is technically possible).

Solution: 𝑚 ∶ 𝑝, 𝑣 ∶ 𝑖, ℎ ∶ 𝑡, 𝑠 ∶ 𝑡, 𝑝 𝑐 ℎ, 𝑖 𝑐 𝑠

2 Points2. Give an 𝒜ℒ𝒞-TBox with two axioms expressing the following:
• All food is pizza or icecream.
• Only pizza can have toppings.

Solution: 𝑓 ⊑ 𝑝 ⊔ 𝑖, ∃𝑐.𝑡 ⊑ 𝑝

2 Points3. Give an 𝒜ℒ𝒞-TBox in which the concept 𝚙𝚒𝚣𝚣𝚊 is inconsistent.

Solution: E.g., 𝑝 ⊑ ⊥

7



FAU:AI1retake:WS2223:42 7 PLANNING

2 Points4. Give the result of translating the following formula to first-order logic: (∀𝑐.𝑖) ⊑ (𝑝 ⊓ 𝑡)

Solution: ∀𝑥.(∀𝑦.𝑐(𝑥, 𝑦) ⇒ 𝑖(𝑦)) ⇒ 𝑝(𝑥) ∧ 𝑡(𝑥)

7 Planning
Problem 7.1 (STRIPS)
Consider a machine that processes objects 𝑂𝑏𝑗 = {1, 2, 3}, which can be at location 𝐴, 𝐵, or 𝐶. Cur-
rently all objects are at location 𝐴 and unchecked and assembled. Eventually all objects are needed
in location 𝐴 and checked and assembled.
At location 𝐵, objects can be assembled or disassembled. At location 𝐶, disassembled objects can be
checked.
A transport system is available that can move exactly two objects at a time from one location to any
other location.

𝐴

1 2 3

𝐵 (dis)assembly

𝐶
check

We formalize this problem as a STRIPS task where the facts are

• position 𝑙 ∈ {𝐴, 𝐵, 𝐶} of object 𝑜 ∈ 𝑂𝑏𝑗: 𝚊𝚝(𝑙, 𝑜)

• state of object 𝑜 ∈ 𝑂𝑏𝑗: 𝚒𝚜𝙲𝚑(𝑜) (checked), 𝚒𝚜𝙰𝚜𝚜(𝑜) (assembled), and 𝚒𝚜𝙳𝚒𝚜(𝑜) (disassembled)

and the actions are given by table below for any 𝑙, 𝑚 ∈ {𝐴, 𝐵, 𝐶} and 𝑜, 𝑝 ∈ 𝑂𝑏𝑗

action precondition add list delete list
𝚖𝚘𝚟𝚎(𝑙, 𝑚, 𝑜, 𝑝) 𝚊𝚝(𝑙, 𝑜), 𝚊𝚝(𝑙, 𝑝) 𝚊𝚝(𝑚, 𝑜), 𝚊𝚝(𝑚,𝑝) 𝚊𝚝(𝑙, 𝑜), 𝚊𝚝(𝑙, 𝑝)
𝚊𝚜𝚜𝚎𝚖𝚋𝚕𝚎(𝑜) 𝚊𝚝(𝐵, 𝑜) 𝚒𝚜𝙰𝚜𝚜(𝑜) 𝚒𝚜𝙳𝚒𝚜(𝑜)

𝚍𝚒𝚜𝚊𝚜𝚜𝚎𝚖𝚋𝚕𝚎(𝑜) 𝚊𝚝(𝐵, 𝑜) 𝚒𝚜𝙳𝚒𝚜(𝑜) 𝚒𝚜𝙰𝚜𝚜(𝑜)

𝚌𝚑𝚎𝚌𝚔(𝑜) 𝚊𝚝(𝐶, 𝑜), 𝚒𝚜𝙳𝚒𝚜(𝑜) 𝚒𝚜𝙲𝚑(𝑜)

2 Points1. Give the initial state 𝐼 and the goal 𝐺.

Solution: initial state: 𝚊𝚝(𝐴, 𝑜) and 𝚒𝚜𝙰𝚜𝚜(𝑜) for all 𝑜 ∈ 𝑂𝑏𝑗,
goal: 𝚊𝚝(𝐴, 𝑜), 𝚒𝚜𝙲𝚑(𝑜) and 𝚒𝚜𝙰𝚜𝚜(𝑜) for all 𝑜 ∈ 𝑂𝑏𝑗

2 Points2. Give the state after applying the two actions 𝚖𝚘𝚟𝚎(𝐴, 𝐵, 1, 2) followed by 𝚍𝚒𝚜𝚊𝚜𝚜𝚎𝚖𝚋𝚕𝚎(1).

Solution: 𝚊𝚝(𝐴, 3), 𝚊𝚝(𝐵, 1), 𝚊𝚝(𝐵, 2), 𝚒𝚜𝙳𝚒𝚜(1), 𝚒𝚜𝙰𝚜𝚜(2), 𝚒𝚜𝙰𝚜𝚜(3)

8



FAU:AI1retake:WS2223:42 7 PLANNING

2 Points3. Give the value ℎ∗(𝐼).

Solution: 17 (3 actions per object for disassemble, check, assemble, as well as 2 sequences of 4
move actions 𝐴 − 𝐵 − 𝐶 − 𝐵 − 𝐴 for pairs of objects)

2 Points4. Give the value ℎ+(𝐼).

Solution: 10. (With the delete heuristic, objects do not have to re-assembled or moved back. So
only 2 actions are needed per object instead of 3 and only 2moves per pair of objects.)

2 Points5. Consider the heuristics ℎ that computes ℎ(𝑠) as 2𝑎+ 𝑑+ 3where 𝑎 is the number of unchecked
assembled and 𝑑 the number of unchecked disassembled objects in state 𝑠. Argue whether ℎ is
admissible.

Solution: It is not admissible. A counter-example is the goal state 𝑔where ℎ∗(𝑔) = 0 < 3 = ℎ(𝑔)

in violation of the admissibility condition.

Problem 7.2 (Planning Complexity)

2 Points1. What is the difference between satisficing and optimal planning?

Solution: Satisficing planning searches for any plan. Optimal planning for one with minimal
length.

1 Points2. Give the named complexity class (e.g., P, NP, etc.) of deciding the existence of a plan for a STRIPS
problem.

Solution: PSPACE (which is the same as NPSPACE)

3 Points3. Now we consider only STRIPS problems in which all delete lists are empty. Show that the num-
ber of facts is an upper bound for the length of an optimal plan.

Solution: Without delete lists, an action cannot decrease the number of facts in the state. Actions
that do not change the state are redundant. So every action in an optimal plan increases the state.
The number of facts is an upper bound for how often the state can be increased and thus for the
length of an optimal plan.

9


	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction/Propagation
	Logic
	Knowledge Representation
	Planning

