
Last Name: First Name

Matriculation Number: Birth Date:

Seat:

Exam

Arti�cial Intelligence 1

Feb 14, 2022

To be used for grading, do not write here

prob. 1.1 2.1 2.2 3.1 4.1 4.2 5.1 5.2 5.3 6.1 7.1 7.2 Sum grade

total 10 8 7 6 6 7 6 8 8 9 12 8 95

reached

Exam Grade: Bonus Points: Final Grade:

i

The �solutions� to the exam/assignment problems in this document are sup-
plied to give students a starting point for answering questions. While we are
striving for helpful �solutions�, they can be incomplete and can even contain
errors even after our best e�orts.
In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.
If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors. We
will � if needed � correct them ASAP.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.

ii

1 Prolog

Problem 1.1 (Prolog) 10 pt
Consider the following Prolog code:

isNat(zero).
isNat(succ(N)) := isNat(N).

isTree(tree(N,Ts)) := isNat(N), isTrees(Ts).

isTrees([]).
isTrees([H|T]) := isTree(H), isTrees(T).

evaluateNat(zero,0).
evaluateNat(succ(N),X) := evaluateNat(N,Y), X is Y+1.

% If T is a tree, treeSum(T,S) holds if
% S is the sum of the labels of the nodes (evaluated into Prolog integers) .
treeSum() :=

treeListSum([],S) :=

treeListSum([H|T],S) :=

1. What do the following queries return: 3 pt

(a) isTree(tree(succ(zero),[tree(zero,[]), tree(succ(zero),[])]))

(b) isTree(X)

If a query returns multiple results, only give the �rst two.

2. Complete the implementation of the predicate treeSum. 5 pt
Hint: Use treeListSum as an auxiliary predicate.

3. Assume we change the isTree predicate to 2 pt

isTree(tree(N,Ts)) := write(N), isNat(N), isTrees(Ts).

Why and how does Prolog's search behavior matter now?

1

Solution:

1. (a) True

(b) X = tree(zero, []), X = tree(zero, [tree(zero, [])])

2. isNat(zero).
isNat(succ(N)) := isNat(N).

isTree(tree(N,Ts)) := isNat(N), isTrees(Ts).

isTrees([]).
isTrees([H|T]) := isTree(H), isTrees(T).

evaluateNat(zero,0).
evaluateNat(succ(N),X) := evaluateNat(N,Y), X is Y+1.

% If T is a tree, treeSum(T,S) holds if
% S is the sum of the labels of the nodes (evaluated into Prolog integers).
treeSum(tree(N,Ts),S) := evaluateNat(N,E), treeListSum(Ts,F), S is E+F.

% If Ts is a list of tree, treesSum(Ts,S) if S is the sum of nodeSum of all trees.
treeListSum([],S) := S is 0.
treeListSum([H|T],S) := treeSum(H,E), treeListSum(T,F), S is E+F.

3. The predicate has a side-e�ect. So the search order matters. Prolog searches depth-�rst, so

each call to isTree in the predicate isTrees is processed before moving to the next tree in

the list. E�ectively, the node labels are printed in depth-�rst order.

2 Search

Problem 2.1 (Search Algorithms) 8 pt
Consider the following tree with root 0:

0

1 2

3 4 5 6

7 8

2

Every edge from parent node i to child node j has path cost i.
As a heuristic for estimating the distance from node n to a goal node, we use h(n) = 8−n.

Assume you have already expanded the root node. List the next 4 nodes that will be
expanded using

1. depth-�rst search 1 pt

2. breadth-�rst search 1 pt

3. uniform-cost search 2 pt

4. greedy search 2 pt

5. A∗-search 2 pt

If there is a tie, �rst expand the node with the smaller number.
Solution:

1. 1, 3, 4, 2

2. 1, 2, 3, 4

3. 1, 2, 3, 4

4. 2, 6, 5, 8

5. 2, 6, 5, 1

Problem 2.2 (Search Problems) 7 pt
Consider the search problem (S,A, T, I, G) where

� S = Z

� A = {−6,−4, 0, 5}

� T (a, s) = {a+ s}

� I = {0}

� G = {7}

1. Give the state resulting from applying the action sequence −6,−4, 5 to the initial
state. 1 pt

2. Give a solution to the problem. 3 pt

3. Is DFS a good choice for this problem and why (not)? 2 pt

3

4. If we change the set A to {−6,−4, 0, 2}, the problem changes substantially. In what
way? 1 pt

Solution:

1. −5

2. 5, 5, 5,−4,−4 (any sequence of actions that add up to 7)

3. No. It will not �nd a solution: whichever action we try �rst, can be applied in�nitely often.

4. There is no solution.

3 Adversarial Search

Problem 3.1 (Minimax) 6 pt
Consider the following minimax game tree (without alpha-beta pruning) for the maxi-
mizing player's turn. The values at the leafs are the static evaluation function values of
those states; some of those values are currently missing.

A

B C D

E F G H

N O

I J K L M

6 5

3 5

7 4 1 2

1. Label the nodes H and C with their minimax values. 2 pt

2. Label the node E with an evaluation function value that results in the player choosing
move B. 2 pt

3. Now assume E is labeled 1.
Label the node K with an evaluation function value that results in α-β-search pruning
(i.e., not visiting) L and M.
Assume children of a node are visited in alphabetical order. 2 pt

Solution:

1. H= 5, C= 4

4

2. Anything > 4.

3. Anything ≤ 4.

4 Constraint Satisfaction/Propagation

Problem 4.1 (Modeling) 6 pt
You are designing an exam consisting of 4 questions, and you need to assign a positive
integer point value to each question.
The total points of the exam should be 20.
Questions 1 and 2 are hard and should contribute at most 10 points together.
Questions 2 and 3 cover essential topics and should contribute at least 12 points together.
Question 4 is long and should contribute more points than any of the others.

Model this problem as a (not necessarily binary) constraint satisfaction problem (V,D,C).
Brie�y explain the meaning of the variables.

Note: Make sure you give a formally exact de�nition, i.e., explicitly de�ne the sets V and all

sets Dv. You can describe each constraint as a set of tuples or as a formula.

Solution: V = p1, p2, p3, p4
Dpi = {1, 2, . . . , } for all i
The sets {1, . . . , n} for 17 ≤ n were also accepted for the domains. Constraints in C:

� p1 + p2 + p3 + p4 = 20

� p1 + p2 ≤ 10

� p2 + p3 ≥ 12

� p4 > pi for i = 1, 2, 3

pi is the number of points of question i.

Problem 4.2 (Solving) 7 pt
Consider the following binary CSP:

� V = {a, b, c, d}

� Da = bool, Db = Dc = {0, 1, 2, 3}, Dd = {0, 1, 2, 3, 4, 5, 6}

� Constraints:

� if a, then b ≤ 2

� if c < 2, then a

� b+ c < 4

� b > d

5

� d = 2c

1. Give all pairs (v, w) of variables such that v is not arc-consistent relative to w. 3 pt

2. Give a solution. 1 pt

3. Give an inconsistent total assignment to the variables. 1 pt

4. Assume we assign a to be true, and apply forward-checking. Give the resulting
domains Db and Dc. 2 pt

Solution:

� (b, d), (d, b), (d, c)

� There are 2 solutions: a true, b ∈ {1, 2}, c = 0, d = 0

� Any total assignment that is not a solution, e.g., a false, b = 0, c = 0, d = 0

� Db = {0, 1, 2}, Dc = {0, 1, 2, 3}

5 Logic

Problem 5.1 (Propositional Logic) 6 pt
We use the propositional variables P,Q,R. Consider the formula A given by

(P ∨Q)⇒ ¬(Q ∧ (R⇒ Q))

1. Using the assignment ϕ(P) = T , ϕ(Q) = F , and ϕ(R) = T , give the value Iϕ(A). 2 pt

2. Argue whether A is valid (i.e., give a proof or a counter-example). 4 pt

Solution:

1. T

2. It is not valid. Any assignment with ϕ(Q) = T falsi�es it and is thus a counter-example.

Problem 5.2 (De�nitions) 8 pt
Consider the following signature of �rst-order logic:

� unary function symbol f

� unary predicate symbol P

Give counter-examples for the following statements:

1. If a formula A is not a theorem, then ¬A is a theorem. 2 pt

6

2. Every model that satis�es ∀x.P (f(x)) also satis�es ∀x.P (x). 3 pt

3. In the model given by universe N, I(P) = {n ∈ N|n > 5}, and I(f)(n) = n + 1, we

have Iϕ

((
P (f(x)) ∧ ¬P (y)

)
⇒ P (f(y))

)
= T for all assignments ϕ. 3 pt

Solution:

1. Any non-theorem non-contradiction, e.g., F = ∀x.P (x)

2. Any model with image I(f) ⊆ I(P) ⊂ U , e.g., U = N, I(P) = {0}, I(f)(u) = 0

3. Any assignment with ϕ(x) ≥ 5 and ϕ(y) ≤ 4

Problem 5.3 (Proving in Natural Deduction) 8 pt

Complete the following sequent-style natural deduction proof by �lling in all boxes:

Γ ` ∀x.P (x)⇒ ¬Q(x)
Ax

Γ `

∀E Γ ` ∃y.P (y)
Ax

Γ `

∃E

Γ `

⇒ E
Γ ` ∀z.Q(z)

Ax

Γ `

∀E

Γ `

falseI

¬I

⇒ I

` (∀x.P (x)⇒ ¬Q(x))⇒
(
(∃y.P (y))⇒ ¬∀z.Q(z)

) ⇒ I

where we abbreviate

Γ =

Solution:

Γ ` ∀x.P (x)⇒ ¬Q(x)
Ax

Γ ` P (c)⇒ ¬Q(c)
∀E Γ ` ∃y.P (y)

Ax

Γ ` P (c)
∃E

Γ ` ¬Q(c)
⇒ E

Γ ` ∀z.Q(z)
Ax

Γ ` Q(c)
∀E

Γ ` false
falseI

∀x.P (x)⇒ ¬Q(x), ∃y.P (y) ` ¬∀z.Q(z)
¬I

∀x.P (x)⇒ ¬Q(x) ` (∃y.P (y))⇒ ¬∀z.Q(z)
⇒ I

` (∀x.P (x)⇒ ¬Q(x))⇒
(
(∃y.P (y))⇒ ¬∀z.Q(z)

) ⇒ I

7

where we abbreviate

Γ = ∀x.P (x)⇒ ¬Q(x), ∃y.P (y), ∀z.Q(z)

6 Knowledge Representation

Problem 6.1 (Specifying Properties in ALC) 9 pt
Consider the following ALC setting:

� concepts: human, child, grownup, animal

� relations: isChildOf, owns

We abbreviate every concept/relation by its �rst letter.

1. Give an ALC ABox that is not consistent with the axiom h u ∃o.a = ⊥. 2 pt

2. Give an ALC TBox that formalizes the following properties 3 pt

� Children and grownups are humans, and humans are children or grownups. No
one is both a child and a grownup.

� Humans cannot be owned.

3. Give an ALC formalization for the concept of children who have a parent who owns
an animal. 2 pt

4. Give the translation to �rst-order logic of the ALC statement (∀i.h) v (∃i.g). 2 pt

Solution:

1. x : h, y : a, x o y

2. We use the axioms h = c t g, c u g = ⊥, and ∃o.h = ⊥

3. c u ∃i.∃o.a

4. ∀x.
(
∀y.i(x, y)⇒ h(y)

)
⇒

(
∃y.i(x, y) ∧ g(y)

)

8

7 Planning

Problem 7.1 (STRIPS) 12 pt
Consider a set of objects Obj = {1, 2, 3, 4, 5, 6} that can be at location A or B. Currently all
objects are at location A and unpainted. Eventually all objects are needed in location A
and painted. At location B, a painting station is available that can paint up to 3 objects
at a time. A robot is available (currently at location A) that can move up to 2 objects at
a time from one location to another.

A
1 2 3 4 5 6

B
Painter

O
O
O

Robot
O O

We formalize this problem as a STRIPS task (P,A, I,G) where the set P of facts contains

� at(l, o) for l ∈ {A,B} and o ∈ Obj ∪ {Robot}

� painted(o) for o ∈ Obj

and the set A of actions contains

� move(l,m,O) for l,m ∈ {A,B}, O ⊆ Obj, |O| ≤ 2 given by

� precondition: at(l, o) for all o ∈ O ∪ {Robot}
� add list: at(m, o) for all o ∈ O ∪ {Robot}
� delete list: same as precondition

� paint(O) for O ⊆ Obj, |O| ≤ 3 given by

� precondition: at(B, o) for all o ∈ O
� add list: painted(o) for all o ∈ O
� delete list: nothing

1. Give the initial state I and the goal G. 2 pt

2. After applying move(A,B, {1, 2}) in I, multiple actions are applicable. Give two of
them. 3 pt

3. Give the value h∗(I). 2 pt

4. Give the value h+(I). 2 pt

5. Let Us(l) and Ps(l) be the numbers of unpainted and painted objects at location l in
state s. For each of the following heuristics h(s), say if it is admissible. 3 pt

9

(a) 2 · Us(A) + Us(B)

(b) 0

(c) Us(A) + roundDown((Us(A) + Us(B))/3) + roundDown((Ps(B) + Us(B))/2)

Solution:

1. initial state: at(A, o) for all o ∈ Obj ∪ {Robot}, goal: at(A, o), painted(o) for all o ∈ Obj

2. The applicable actions are move(B,A,O) and paint(O) for any O ⊆ {1, 2}. Note: Among

those, move(A,B, ∅) and paint({1, 2}) are the not-obviously-suboptimal ones and pondering

those helps with the next subquestion.

3. 9. Note: An optimal plan is move(A,B,O), paint(O), move(B,A,O), repeated 3 times

for disjoint sets O. move(A,B, {1, 2}), move(B,A, ∅), move(A,B, {3, 4}), paint({1, 2, 3}),
move(B,A, {1, 2}), move(A,B, {5, 6}), paint({4, 5, 6}), move(B,A, {3, 4}), move(A,B, ∅),
move(B,A, {5, 6}) takes 10 steps and is not optimal, but induces an optimal relaxed plan,

in which some moves actions can be dropped.

4. 5. Note: An optimal relaxed plan moves 2 objects 3 times, paints twice.

5. 2 and 3. Note:

(a) too pessimistic, e.g., two unpainted objects in location A need 3 steps, heuristics yields

4

(b) trivially admissible but useless

(c) a good heuristic: unpainted objects in location A (resp. any objects in location B)

need to be moved at least twice (resp. once) in groups of at most 2; unpainted objects

must be painted in groups of at most 3.

Problem 7.2 (Partial Order Planning) 8 pt
Consider the planning task (P,A, I,G) where

� facts P = {p, q, r, s}

� actions A = {X, Y, Z} where the preconditions (above the box) and e�ects (below
the box) of the actions are given by

p

X
q

q

Y
¬p, r

p

Z
¬p, s

� initial state I = {p}

� goal G = {r, s}

10

Our goal is to build a partially ordered plan. Recall that the steps consist of the actions
plus the start and �nish step; and that the e�ect of an action consists of the added facts
and the negations of the deleted facts.

1. Give the start step and �nish step. 2 pt

2. Give all causal links between the steps. 2 pt

3. Give an example of a step that clobbers a link. 2 pt

4. Give the temporal ordering that yields a partially ordered plan that solves the task. 2 pt

Solution:

1. Start

p

r, s

Finish

2. Start
p→ X, Start

p→ Z, X
q→ Y , Y

r→ Finish, Z
s→ Finish

3. Both steps Y and Z clobber both of the links
p→.

4. X ≺ Z and Z ≺ Y

When reusing this question, note that (while not relevant in this case) in general the same
action can occur multiple times as di�erent steps.

11

	1 Prolog
	2 Search
	3 Adversarial Search
	4 Constraint Satisfaction/Propagation
	5 Logic
	6 Knowledge Representation
	7 Planning

