
Name:

Birth Date:

Matriculation Number:

Exam

Arti�cial Intelligence 1

July 19, 2021

To be used for grading, do not write here

prob. 1.1 2.1 2.2 2.3 3.1 3.2 4.1 4.2 5.1 5.2 6.1 Sum grade

total 15 8 5 8 7 8 6 9 9 8 12 95

reached

Exam Grade: Bonus Points: Final Grade:

i

The �solutions� to the exam/assignment problems in this document are sup-
plied to give students a starting point for answering questions. While we are
striving for helpful �solutions�, they can be incomplete and can even contain
errors.
If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.
In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.

ii

1 Prolog

Problem 1.1 (Reading and Writing Prolog) 15 pt

Note: The negation-normal-form of a formula F is a formula equivalent to F in which negations
only occur immediately in front of propositional variables. For example, the negation-normal form
of ¬(P ∧Q) is ¬P ∨ ¬Q.

Consider the following partial Prolog program for computing the negation-normal form:

contains([H|_],H).
contains([_|T],X) :- contains(T,X).

isForm(pv(A)) :- contains(["p", "q"], A).
isForm(conj(F,G)) :- isForm(F), isForm(G).
isForm(disj(F,G)) :- isForm(F), isForm(G).
isForm(neg(F)) :- isForm(F).

nnf(pv(A),H) :- .

nnf(conj(F,G), H) :- .

nnf(disj(F,G), H) :- .

nnf(neg(pv(A)),H) :- .

nnf(neg(neg(F)), H) :- .

nnf(neg(conj(F,G)), H) :- .

nnf(neg(), H) :- .

4 pt

1. Give the �rst three results in order that are returned by the query isForm(F)?
3 pt

2. Complete the following query such that it can be used as a test case for the program:

nnf(neg(conj(pv("p"),neg(pv("p")))),)
8 pt

3. Complete the program such that nnf(F,H) computes the negation-normal-form of
F .

Solution:

1

1. pv("p"), pv("q"), conj(pv("p"),pv("p"))

2. nnf(neg(conj(pv("p"),neg(pv("p")))), disj(neg(pv("p")), pv("p")))

3. contains([H|_],H).
contains([_|T],X) :- contains(T,X).

isForm(pv(A)) :- contains(["p", "q"], A).
isForm(conj(F,G)) :- isForm(F), isForm(G).
isForm(disj(F,G)) :- isForm(F), isForm(G).
isForm(neg(F)) :- isForm(F).

nnf(pv(A),H) :- H = pv(A).
nnf(conj(F,G), H) :- nnf(F,F2), nnf(G,G2), H = conj(F2,G2).
nnf(disj(F,G), H) :- nnf(F,F2), nnf(G,G2), H = disj(F2,G2).

nnf(neg(pv(A)),H) :- H = neg(pv(A)).
nnf(neg(neg(F)), H) :- nnf(F,H).
nnf(neg(conj(F,G)), H) :- nnf(disj(neg(F),neg(G)), H).
nnf(neg(disj(F,G)), H) :- nnf(conj(neg(F),neg(G)), H).

Grading:
1. 1 point per result and 1 point for the order
2. deductions for mistakes
3. 1 point per blank; −1 for various uniform errors like using nnf as unary, assuming nnf

negates, or using isForm as a return statement

2 Search

Problem 2.1 (DFS and BFS Concretely) 8 pt
Consider the in�nite tree whose nodes are the natural numbers with root 0. For every
node, the children and their order are as follows:

� children of 0: 1, 7, 11

� children of 1: 2, 5

� children of 2: 3

� children of 3: 4

� children of 5: 6

� children of 7: 8, 10

� children of 8: 9

� children of 11: 12

2

� children of n for n ≥ 12: n+1

� other nodes have no children

1. List the nodes in the order of expansion during

(a) depth-�rst search 3 pt

(b) breadth-�rst search 3 pt

2. Assuming the goal state is 7, how does it matter whether we use depth-�rst or
breadth-�rst search? 2 pt

Solution:

1. (a) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, . . .

(b) 0, 1, 7, 11, 2, 5, 8, 10, 12, 3, 6, 9, 13, 4, 14, 15, . . .

2. Both algorithms will �nd the goal state. DFS takes longer because it traverses all descen-
dants of 1 whereas BFS �nds 7 right away.

Grading:

1. If generally correct, we deducted 0.5 or 1 for each mistake.

2. We gave 2 points for the correct answer, and 0 points otherwise.

Problem 2.2 (Heuristics) 5 pt
Consider A∗ search with path cost function g and heuristic function h.

3 pt

1. What is the e�ect of using the heuristic h(n) = 0?
2 pt

2. What is the e�ect of using the path cost as the heuristic, i.e., if we put h(n) = g(n)?

Solution:

1. The algorithm will behave like uninformed search.

2. The algorithm will behave like uninformed search (because 2g(n) leads to the same expan-
sion decisions as g(n)). Bonus point: the heuristic is not even admissible because we may
have g(n) > h∗(n).

1. deductions for mistakes
2. deductions for mistakes; 1 bonus point for the heuristics not being admissible (needed

because the intended solution was incorrect)

Problem 2.3 (Adversarial Search) 8 pt
Consider the following minimax game tree for the minimizing player's turn. The values
at the leaves are the static evaluation function values of those states.

3

A

B C D

E F G H I J K L M
5 6 7 1 6 4 8 4 9

1. Label each non-leaf node with its minimax value. 4 pt

2. Which move would be selected by the player? 1 pt

3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). Assume
children of a node are visited left-to-right. 3 pt

Solution:

1. A=6, B=7, C=6, D=9

2. Move C

3. L, M

Grading:

1. 1 point for each correct node

2. 1 point for the correct answer

3. 1 point for each correct node and 1 point for not having extraneous nodes

3 Constraint Satisfaction/Propagation

Problem 3.1 (4 Rooks on a Small Board) 7 pt
Consider the following problem: We want to place 4 rooks on a 3×3 chess-board such that
no two rooks threaten each other. (Rooks move like queens except not diagonally.)

Model the problem as a constraint satisfaction problem (V,D,C).
Use your model to argue brie�y but rigorously why this problem is unsatis�able.

Note: Make sure you give a formally exact de�nition, i.e., explicitly de�ne the sets V and all
sets Dv. You can describe each constraint as a set of tuples or as a formula.

Solution: V = a1, a2, b1, b2, c1, c2, d1, d2
Dx = {1, 2, 3} for all x ∈ V Constraints in C:

� v1 6= w1 for all (v, w) ∈ V 2 with v 6= w

� v2 6= w2 for all (v, w) ∈ V 2 with v 6= w

4

The constraints require that all of a1, b1, c1, d1 are all di�erent. But their joint domain only has
3 di�erent values.

Grading: 2 points each for the variables, domains, and constraints, and 1 point for the argument.
Deductions for mistakes.

Problem 3.2 (CSP Formalization) 8 pt
Consider the following binary CSP:

� V = {x, y, z}

� Dx = {0, 1, 2}, Dy = {1, 2}, Dz = {0, 1}

� Constraints: x < y, y 6= z, x > z

1. Give all pairs (v, w) of variables such that v is arc-consistent relative to w. 3 pt

2. Give all solutions. 2 pt

3. What is special about the constraint y 6= z? 1 pt

4. Assume we assign y = 1 and apply forward-checking. Give the resulting domains
Dx, Dy, Dz. 2 pt

Solution:

� (y, x), (z, x), (y, z), (z, y)

� Solutions: (x, y, z) = (1, 2, 0)

� The constraint can be dropped because it is satis�ed automatically if the other two con-
straints are.

� Dx = {0}, Dy = {1}, Dz = {0}

Grading:

1. 0.5 points for the correctly classi�cation of each pair.

2. 2 points the correct set of solutions.

3. no partial credit

4. 1 point each for the two non-trivial domains

5

4 Logic

Problem 4.1 (Satis�ability and Validity) 6 pt
Consider propositional logic with propositional variables {P,Q,R}. For each of the follow-
ing statements, give a counter-example that refutes it:

2 pt

1. The formula
(
(P ∧Q) ∨ (Q ∧R)

)
⇒ (¬P ∨ ¬R) is satis�ed by all assignments.

2 pt

2. If a formula F cannot be proved in the natural deduction calculus, then ¬F is valid.
2 pt

3. If, for two formulas F , G, all assignments satisfy F ⇒ G and no assignment satis�es
F , then no assignment satis�es G.

Solution:

1. A falsifying assignment is P = Q = R = 1

2. P cannot be proved but is satis�able.

3. Let F = P ∧ ¬P and G = P . Then every assignments satis�es F ⇒ G, none satis�es F ,
and G is satis�able.

Grading: deductions for mistakes

Problem 4.2 (Proving in Natural Deduction) 9 pt
Prove the following formula using natural deduction:

(∀x.P (x))⇒
(
(∀y.P (y)⇒ Q(y))⇒ ∀z.Q(z)

)
Solution:

∀x.P (x), ∀y.P (y)⇒ Q(y) ` ∀x.P (x)
Ax

∀x.P (x),∀y.P (y)⇒ Q(y) ` P (z)
∀E(z)

∀x.P (x),∀y.P (y)⇒ Q(y) ` ∀y.P (y)⇒ Q(y)
Ax

∀x.P (x),∀y.P (y)⇒ Q(y) ` P (z)⇒ Q(z)
∀E(z)

∀x.P (x), ∀y.P (y)⇒ Q(y) ` Q(z)
⇒ E

∀x.P (x), ∀y.P (y)⇒ Q(y) ` ∀z.Q(z)
∀I

∀x.P (x) ` (∀y.P (y)⇒ Q(y))⇒ ∀z.Q(z)
⇒ I

` (∀x.P (x))⇒
(
(∀y.P (y)⇒ Q(y))⇒ ∀z.Q(z)

) ⇒ I

Grading: 7−9 points if the structure of implication/forall introduction/elimination was present.
4− 6 points if there was some resemblance to it. 1− 3 points for other attempts.

6

5 Knowledge Representation

Problem 5.1 (Specifying Properties in ALC) 9 pt
Consider the following ALC setting:

� concepts: animal, plant

� relations: eats

We abbreviate every concept/relation by its �rst letter.

Note: For the purposes of this question, carnivores are the animals that eat other animals, and
herbivores are the animals that only eat plants.

1. Give ALC expressions for
3 pt

(a) the concept of all herbivores 3 pt
(b) the statement that carnivores do not eat each other

3 pt

2. Assume a domain D and interpretations A ⊆ D, P ⊆ D, and E ⊆ D × D of a, p,
and e, respectively. Give the semantics of the formula ∀e.

(
(∃e.a) u (∃e.p)

)
.

Solution:

1. (a) a u ∀e.p
(b) c u ∃e.c ≡ ⊥ where c abbreviates a u ∃e.a

2. {u ∈ D | for all v ∈ D with (u, v) ∈ E, there are x, y ∈ D such that (v, x) ∈ E, x ∈
A, (v, y) ∈ E, y ∈ P}

Grading: In each case, 2 points if mistakes, 1 point if some resemblance to the correct solution.

Problem 5.2 (Extending ALC) 8 pt
Consider ALC concepts as given by the grammar

C ::= a | > | ⊥ | C | C u C | C t C | ∃R.C | ∀R.C

and with the
� semantics that maps every concept C to JCK ⊆ D,
� translation to �rst-order logic with equality that translates every concept C to a

formula C
fo(x)

with free variable x,
both de�ned by induction on concepts.

We want to extend ALC with the following two concept constructors:
� C −D for the C's that are not D's
� ∃!R.C for objects that are connected via role R to at most one C

7

Give the cases that we must add to grammar, semantics, and translation to obtain that
extension.
Solution: We extend the

� syntax with productions C ::= C − C | ∃!R.C,

� semantics with cases JC−DK = JCK\ JDK and J∃!R.CK = {x ∈ D | there is at most one v ∈
JCK with (u, v) ∈ JRK},

� translation with cases C −D
fo(x)

= C
fo(x) ∧ ¬Dfo(x)

and ∃!R.C
fo(x)

= ∀y, y′.
(
R(x, y) ∧

R(x, y′) ∧ C
fo(y) ∧ C

fo(y′))⇒ y = y′.

Grading: 4 points for each operator; 2 points for the production, 1 each for the cases

6 Planning

Problem 6.1 (Planning Deliveries in STRIPS) 12 pt
Consider a truck that can carry 4 objects at a time and is supposed to deliver objects
Obj = {V,W,X, Y, Z} from location A to certain locations Loc = {A,B,C,D} along some
roads Roads = {{A,B}, {B,C}, {B,D}}. We use the following STRIPS task:

� facts: {at(l, o) | l ∈ Loc, o ∈ Obj} ∪ {truck(l) | l ∈ Loc}

� actions move(l,m,O) for {l,m} ∈ Roads, O ⊆ Obj, |O| ≤ 4 given by

� precondition: at(l, o) for all o ∈ O, truck(l)

� add list: at(m, o) for all o ∈ O, truck(m)

� delete list: same as precondition

� initial state: truck(C), at(A, o) for o ∈ Obj

� goal state: at(C, V), at(D,W), at(B,X), at(B, Y), at(A,Z)

1. Give a sequence of two actions that is applicable in the initial state and give the
resulting state. 4 pt

2. Give an optimal plan for the task above. 4 pt

3. Consider the following heuristics: h(s) = 1
4

∑
o∈Obj d(s, o) where d(s, o) is the number

of roads separating the location of o in state s from its location in the goal state.
Argue whether this heuristic is admissible or not. 4 pt

Solution:

8

1. move(C,B, ∅), move(B,Q, ∅) where Q ∈ {A,C,D} results in truck(Q), at(A, o) for o ∈ Obj

2. move(C,B, ∅), move(B,A, ∅), move(A,B, {V,W,X, Y }), move(B,C, {V }), move(C,B, ∅), move(B,D, {W})

3. The heuristic is admissible. An optimal must make at least ds(o) steps to move object o to
its goal state, so

∑
o∈Obj d

s(o) steps in total. At best, it can carry 4 objects in each step.
So h(s) is a smaller than the minimal number of steps in any optimal plan (which is the
de�nition of admissible).

Grading:
1. 2 points for the actions and 2 points for the successor state; deductions for mistakes
2. deductions for mistakes
3. 1 point for the answer, 3 points for the argument

9

	1 Prolog
	2 Search
	3 Constraint Satisfaction/Propagation
	4 Logic
	5 Knowledge Representation
	6 Planning

