
Name:

Birth Date:

Matriculation Number:

Exam

Arti�cial Intelligence 1

Feb 15, 2021

To be used for grading, do not write here

prob. 1.1 2.1 2.2 2.3 3.1 3.2 4.1 4.2 5.1 5.2 6.1 6.2 Sum grade

total 10 8 5 8 7 8 7 8 7 8 12 7 95

reached

Exam Grade: Bonus Points: Final Grade:

i

The �solutions� to the exam/assignment problems in this document are sup-
plied to give students a starting point for answering questions. While we are
striving for helpful �solutions�, they can be incomplete and can even contain
errors.
If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.
In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.

ii

1 Prolog

Problem 1.1 (Reading and Understanding Prolog) 10 pt
Consider the query ?=animal(Y) over the following Prolog program:

foo([H|_], X) := X=H.
foo([_|T], X) := foo(T,X).

eats(mouse,fruit).
eats(dog,meat).
eats(cat,mouse).
eats(Y,X) := Y=lion, alive(X).
eats(cat,bird).

animal(X) := eats(X,Y), alive(X), food(Y).
animal(Y) := Y=cat.

alive(Y) := foo([mouse,cat,lion,bird], Y).
alive("dog").

food(X) := alive(X).
food(fruit).
food(meat).

1. Which answers will the query return for Y? 5 pt

� Only the set of answers matters � order or duplicates do not.
� Write �none� if the query returns no answers.

2. Which answer is returned (a) �rst (b) second (�none� if no answer is returned). 2 pt

3. Add a rule to the program such that the above query does not return an answer. � 3 pt

� Indicate exactly where you insert your rule.
� You may not add a rule that is ill-formed (e.g., a syntax error, or calling a
predicate that does not exist).

� You may not use functions from standard library.

Solution:

1. mouse, cat, lion (Some of them are found multiple times, but we only asked for the set.)

2. (a) mouse

(b) cat

3. Prolog's DFS always �nds all solutions. So we need to

� send DFS into an in�nite loop by adding, e.g., animal(X):= animal(X), or
� cut o� the branches that have solutions by adding, e.g., animal(_):= !, false

at the beginning.

1

2 Search

Problem 2.1 (DFS and BFS Concretely) 8 pt
Consider the in�nite tree whose nodes are the natural numbers with root 0. For every
node, the children and their order are as follows:

� children of 0: 1, 2, 3
� children of 1: 4, 5
� children of 2: 6, 7
� children of 3: 8
� children of 4: 9
� children of 5: 10
� children of 6: 11
� children of 9: 12
� children of n for n ≥ 12: n+1
� other nodes have no children

1. List the nodes in the order of expansion during

(a) depth-�rst search 3 pt

(b) breadth-�rst search 3 pt

2. Assuming the goal state is 7, why does it matter whether we use depth-�rst or
breadth-�rst search? 2 pt

Solution:
1. (a) 0, 1, 4, 9, 12, 13, 14, . . .

(b) 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, . . .
2. DFS will run forever without �nding the goal state. BFS will �nd it.

Problem 2.2 (Heuristics) 5 pt
Consider heuristic search with heuristic function h.

1. Brie�y explain what is the same and what is di�erent between A∗ search and greedy
search regarding the decision which node to expand next. 3 pt

2. Is the constant function h(n) = 0 an admissible heuristic for A∗ search? 2 pt

Solution:
1. Both choose the node that minimizes a certain function. As that function, A∗ uses the sum

of path cost and heuristic whereas greedy only uses the heuristic.
2. Yes. (But it's a useless one.)

Problem 2.3 (Adversarial Search) 8 pt
Consider the following minimax game tree for the maximizing player's turn. The values
at the leaves are the static evaluation function values of those states.

2

A

B C D

E F G H I J K L M
5 6 7 1 7 4 8 4 9

1. Label each non-leaf node with its minimax value. 4 pt

2. Which move would be selected by the player? 1 pt

3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). Assume
children of a node are visited left-to-right. 3 pt

Solution:
1. A=5, B=5, C=1, D=4
2. Move B
3. I, J, M

3 Constraint Satisfaction/Propagation

Problem 3.1 (3 Rooks on a Small Board) 7 pt
Consider the following problem: We want to place 3 rooks on a 4×7 chess-board such that
no two rooks threaten each other. (Rooks move like queens except not diagonally.)
Model the problem as a constraint satisfaction problem (V,D,C).
Explain your model brie�y by saying how rook placements correspond to the assignments
for the problem.

Note: Make sure you give a formally exact de�nition, i.e., explicitly de�ne the sets V and all
sets Dv. You can describe each constraint as a set of tuples or as a formula.

Solution: V = a1, a2, b1, b2, c1, c2
Da1 = Db1 = Dc1 = {1, 2, 3, 4}
Da2 = Db2 = Dc2 = {1, 2, 3, 4, 5, 6, 7}
Constraints in C:

� v1 6= w1 for all (v, w) ∈ {(a, b), (a, c), (b, c)}
� v2 6= w2 for all (v, w) ∈ {(a, b), (a, c), (b, c)}

The assignments to (a1, a2), (b1, b2), and (c1, c2) correspond to the coordinates of the squares
where the rooks are placed.

Problem 3.2 (CSP Formalization) 8 pt
Consider the following binary CSP:

� V = {x, y, z}
� Dx = {0, 1, 2}, Dy = {1, 2}, Dz = {0, 1}
� Constraints: x 6= y, y > z

3

1. Give all pairs (v, w) of variables such that v is arc-consistent relative to w. 3 pt

2. Give all solutions that would remain if we added the constraint x 6= z. 3 pt

3. Assume we assign y = 1 and apply forward-checking. Give the resulting domains
Dx, Dy, Dz. 2 pt

Solution:

� (x, y), (x, z), (y, x), (y, z), (z, x), (z, y)

� Solutions (x, y, z) are (0, 2, 1), (1, 2, 0), (2, 1, 0)

� Dx = {0, 2}, Dy = {1}, Dz = {0}

4 Logic

Problem 4.1 (Satis�ability and Validity) 7 pt
Prove or refute each of the following statements about �rst-order logic:

1. The formula
(
∀x.P (x) ∨Q(x)

)
⇒

((
∀x.P (x)

)
∨
(
∀x.Q(x)

))
is satis�able. 3 pt

2. If A is not satis�able, then ¬A is valid. 4 pt

Solution:
1. True. A satisfying interpretation is any one that satis�es one of the following

� Both P and Q false for some value,
� P is true for all values, or
� Q is true for all values.

2. True. A not satis�able implies all model-assignment pairs make A false and thus make ¬A
true. So ¬A is valid.

Problem 4.2 (Proving in Natural Deduction) 8 pt
Prove the following formula using natural deduction:

(P ⇒ Q)⇒
(
P ⇒ (P ∧Q)

)
Solution:

P ⇒ Q,P ` P
Ax

P ⇒ Q,P ` P ⇒ Q
Ax

P ⇒ Q,P ` P
Ax

(P ⇒ Q), P ` Q
⇒ E

P ⇒ Q,P ` P ∧Q
∧I

P ⇒ Q ` P ⇒ (P ∧Q)
⇒ I

` (P ⇒ Q)⇒
(
P ⇒ (P ∧Q)

) ⇒ I

4

5 Knowledge Representation

Problem 5.1 (Specifying Properties in ALC) 7 pt
Consider the following ALC setting:

� concepts: man, woman,
� relations: parentOf, spouseOf

1. Give ALC expressions for

(a) the concept of all persons in a homosexual marriage 2 pt

(b) the statement that all men with children are married 2 pt

2. Translate to �rst-order logic the ALC statement (∃p.(m u w)) v ∀s.m t w. 3 pt

Note: You may abbreviate every concept/relation by its �rst letter in your solution.

Solution:

1. (a) (m u ∃s.m) t (w u ∃s.w)
(b) (m u ∃p.>) v ∃s.>

2. ∀x.
(
∃y.p(x, y) ∧m(y) ∧ w(y)

)
⇒

(
∀y.s(x, y)⇒ ¬(m(y) ∨ w(y))

)
Problem 5.2 (Induction on ALC) 8 pt
Consider the following fragment of the ALC grammar for concepts C:

C ::= a | > | C u C | ∀r.C

where a and r represent the names of atomic concepts and relations.
We de�ne a substitution s to be a mapping from atomic concepts a to concepts C.

By induction on C, de�ne a function f such that f(C, s) is the concept that arises from C
by substituting every a with s(a).
Solution:

f(a, s) = s(a)
f(>, s) = >
f(C1 u C2, s) = f(C1, s) u f(C2, s)
f(∀r.C, s) = ∀r.f(C, s)

5

6 Planning

Problem 6.1 (Planning Deliveries in STRIPS) 12 pt
Consider a truck that can carry 2 objects at a time and is supposed to deliver objects
Obj = {V,W,X, Y } from location A to certain locations Loc = {A,B,C,D} along some
roads Roads = {{A,B}, {B,C}, {B,D}}. We use the following STRIPS task:

� facts: {at(l, o) | l ∈ Loc, o ∈ Obj} ∪ {truck(l) | l ∈ Loc}
� actions move(l,m,O) for {l,m} ∈ Roads, O ⊆ Obj, |O| ≤ 2 given by

� precondition: at(l, o) for all o ∈ O, truck(l)
� add list: at(m, o) for all o ∈ O, truck(m)
� delete list: same as precondition

� initial state: truck(A), at(A, o) for o ∈ Obj
� goal state: at(C, V), at(D,W), at(B,X), at(B, Y)

1. Give an action that is applicable in the initial state and the resulting successor state.
4 pt

2. Give an optimal plan for the task above. 4 pt

3. Argue why the following heuristic h is not admissible: for any state s, let h(s) be
the number of objects that are not at their goal location. 4 pt

Solution:
1. For any O ⊆ Obj with |O| ≤ 2, the action move(A,B,O) results in the state containing

truck(B), at(B, o) for o ∈ O, at(A, o) for o 6∈ O.
2. move(A,B, {V,X}), move(B,C, {V }), move(C,B, {}), move(B,A, {}), move(A,B, {W,Y }),

move(B,D, {W})
3. In the state where at(C, V), at(D,W), at(A,X), at(A, Y), truck(A), the optimal plan

move(A,B, {X,Y }) has length 1, but h yields 2 in violation of the de�nition of admissible.

Problem 6.2 (Partial Order Planning) 7 pt
Consider partial-order planning.

1. Given a STRIPS task Π := 〈P,A, I,G〉, what are the components of a partially
ordered plan? 4 pt

2. What are the conditions on a partially ordered plan to be complete and consistent? 2 pt

3. How can we turn such a plan into a solution of the original planning task? 1 pt

Solution:

1. A partially ordered plan consists of

� a start node which has the facts in I as a postcondition, 1 pt

� a �nish node which has the facts in G as a precondition 1 pt

6

� causal links S
p−→ T where p is a precondition ful�lled by S 1 pt

� temporal ordering constraints S ≺ T . 1 pt

2. A partially ordered plan is complete i� all preconditions are achieved by a causal link; and
consistent i� the relation induced by causal links and ordering relations is a partial ordering. 2 pt

3. Any linearization of a complete partially ordered plan is a solution. 1 pt

7

	1 Prolog
	2 Search
	3 Constraint Satisfaction/Propagation
	4 Logic
	5 Knowledge Representation
	6 Planning

