
Last Name: First Name:

Matriculation Number:

Seat:

Retake Exam
Artificial Intelligence 1

—
with Solutions

August 10., 2020

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 2.3 3.1 4.1 4.2 5.1 5.2 6.1 7.1 Sum grade
total 4 4 8 5 5 10 5 10 8 7 7 10 83
reached

i



The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.

In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)

ii



1 Prolog
Problem 1.1 (A PROLOGwarm-up) 4 pt
Given as a 𝙿𝚛𝚘𝙻𝚘𝚐 fragment we have clauses for natural numbers.
nat(zero).
nat(s(X)):-nat(X).

Write unary predicates even/1 and odd/1 with the obvious meanings as well as a
binary predicate leq for the “less or equal” relation on natural numbers.

Solution:
nat(zero).
nat(s(X)) :- nat(X).

even(zero).
even(s(X)) :- odd(X).
odd(s(X)) :- even(X).

leq(zero, X).
leq(s(X), s(Y)) :- leq(X,Y).

Problem 1.2 (Query for Ancestry) 4 pt
Write the following facts in 𝙿𝚛𝚘𝙻𝚘𝚐, write a 𝙿𝚛𝚘𝙻𝚘𝚐 predicate ancestor/2, and
query the database to find out whether Helen is Harry’s ancestor. To write down
the facts, only use the predicates mother/2 and father/2.

• Helen is Saul’s mother,

• Saul is James’ father,

• James is Harry’s father.

Hint: It may be a good idea to write a parent/2 predicate. Only use it to write the predicate
ancestor/2.

Solution:
mother(helen,saul).
father(saul,james).
father(james,harry).

parent(X,_) :- mother(X,_).
parent(X,_) :- father(X,_).

ancestor(X,Y):- parent(X,Y).
ancestor(X,Y):- parent(X,Z), ancestor(Z,Y).

?- ancestor(helen, harry).

1



2 Search
Problem 2.1 (Search in a graph) 8 pt
Look at the following graph and complete the tables below. 𝑆 is the start state and
𝐺 is the goal state, the step costs are given as labels on the edges.

In the table below, enter the labels of the nodes in the order they are visited by
the respective search strategy. Remember that the search ends once the goal state
is visited. If two nodes have equal chances to be visited, take the leftmost one first.

Search method Sequence of nodes
BFS
DFS
Uniform cost
Iterative deepening (step size 2)

In the table below, complete the table with Yes or No for the respective search
strategies and properties.

Property BFS DFS Uniform Cost Iterative Deepening
Optimal
Complete

2



Solution:

Search method Sequence of nodes
BFS S A B C D E F G
DFS S A C F G
Uniform cost S B A C D E F H G
Iterative deepening (step size 2) S S A C B D E S A C F G

Property BFS DFS Uniform Cost Iterative Deepening
Optimal N N Y N
Complete Y N Y Y

For the purpose of this question, the requirements regarding completeness were
considered reasonably satisfied in practice, yielding a Y. The caveats regarding op-
timality were considered as sometimes and thus not always satisfied, yielding an N.

Problem 2.2 (Admissibility limits) 5 pt
The condition for a heuristic ℎ(𝑛) to be admissible is that for all nodes 𝑛 holds that
(0 ≤ ℎ(𝑛) ≤ ℎ∗(𝑛)), where ℎ∗(𝑛) is the true cost from 𝑛 to goal. What happens
when for all nodes, ℎ(𝑛) = 0 and when ℎ(𝑛) = ℎ∗(𝑛) ?

Solution: When ℎ(𝑛) = 0, the search will behave like an uninformed search, and
when ℎ(𝑛) = ℎ∗(𝑛) the search will only expand the nodes on the optimal path to a
goal.

Problem 2.3 (Astar vs. Greedy) 5 pt
Shortly explain the principle of operation of the A* search. Explain (in few sen-
tences) how it differs from the greedy search?

Solution: A* will expand the nodes in the fringe in an ascending order of the func-
tion f(node)=h(node)+g(node), where h(node) is the heuristic of the node and
g(node) is the (current) distance from the initial node to this node. Greedy will
expand only taking the heuristic into account.

3 Adversarial Search
Problem 3.1 (Game Tree) 10 pt
Consider the following game tree. Assume it is the maximizing player’s turn to
move. The values under the leaves are the static evaluation function values of the
states at each of those nodes.

3



A

B C D

E F G H J K L
4 5 6 3 8

M N O P
3 2 7 9

3 pt
1. What is the minimax value of node A? 1 pt
2. Which move would be selected by Max? 4 pt
3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). As-

sume children of a node are visited left-to-right. 2 pt
4. In general (i.e., not just for the tree shown above), if we traverse a game tree

by visiting children in right-to-left order instead of left-to-right, can this result
in a change to

(a) the minimax value computed at the root?
(b) The number of nodes pruned by the alpha-beta algorithm?

Solution:

1. A:4

2. B

3. J,O P, L

4. (a) no, (b) yes

4 Constraint Satisfaction Problems & Inference
Problem 4.1 (Arc consistency) 5 pt
Define the concept of arc consistency.

Solution: A variable 𝑢 is arc consistent relative to 𝑣, if there is either no constraint
between 𝑢 and 𝑣, or for every value 𝑑 ∈ 𝐷𝑢, there is some 𝑑′ ∈ 𝐷𝑣 such that
(𝑑, 𝑑′) ∈ 𝐶𝑢𝑣. A constraint network is arc consistent if all variables are pairwise arc
consistent relative to each other.

4



Problem 4.2 (Scheduling CS Classes) 10 pt
You are in charge of scheduling for computer science classes that meet Mondays,
Wednesdays and Fridays. There are 5 classes that meet on these days and 3 profes-
sors who will be teaching these classes. You are constrained by the fact that each
professor can only teach one class at a time. The classes are:

• Class 1 - Intro to Artificial Intelligence: meets 8:30-9:30am,

• Class 2 - Intro to Programming: meets 8:00-9:00am,

• Class 3 - Natural Language Processing: meets 9:00-10:00am,

• Class 4 -Machine Learning: meets 9:30-10:30am,

• Class 5 - Computer Vision: meets 9:00-10:00am.

The professors are:

• Professor A, who is available to teach Classes 1, 2, 3, 4, 5.

• Professor B, who is available to teach Classes 3 and 4.

• Professor C, who is available to teach Classes 2, 3, 4, and 5.
3 pt

1. Formulate this problem as a CSP problem in which there is one variable per
class, stating the domains, and constraints. Constraints should be specified
formally and precisely, but may be implicit rather than explicit. 2 pt

2. Give the constraint graph associated with your CSP. 3 pt
3. Show the domains of the variables after running arc-consistency on this ini-

tial graph (after having already enforced any unary constraints). 2 pt
4. List all optimal cutsets for the constraint graph associated with the CSP.

5



Solution:

1.

Variables Domains
𝐶1 A
𝐶2 A,C
𝐶3 A,B,C
𝐶4 A,B,C
𝐶5 A,C
Constraints: 𝐶1 ≠ 𝐶2, 𝐶1 ≠ 𝐶3, 𝐶1 ≠ 𝐶5, 𝐶3 ≠ 𝐶4, 𝐶3 ≠ 𝐶5, 𝐶4 ≠ 𝐶5

2.

𝐶1

𝐶2

𝐶3

𝐶4𝐶5

3.

Variable Domain
𝐶1 A
𝐶2 C
𝐶3 B
𝐶4 A
𝐶5 C

4. The two optimal cutsets are {𝐶3} and {𝐶5}.

5 Logic
Problem 5.1 (Natural Deduction) 8 pt
Prove the validity of the following formulae in Natural Deduction. Do not forget to
mark your assumptions! 4 pt

1. (𝐴 ∨ 𝐵) ⇒ (𝐵 ∨ 𝐴)
Recall that case distinction can be done with ∨-Elimination. 4 pt

2. (𝐴 ⇒ 𝐵) ⇒ ((𝐵 ⇒ 𝐶) ⇒ (𝐴 ⇒ 𝐶))

6



Solution:

1.

1(Assumption)1 𝐴 ∨ 𝐵
2(Assumption)2 𝐴
3 ∨ -Introduction 𝐵 ∨ 𝐴
4(Assumption)2 𝐵
5 ∨ -Introduction 𝐵 ∨ 𝐴
6 ∨ -Elimination2 𝐵 ∨ 𝐴

7 ⇒ -Introduction1 (𝐴 ∨ 𝐵) ⇒ (𝐵 ∨ 𝐴)

2.

1(Assumption)1 𝐴 ⇒ 𝐵
2(Assumption)2 𝐵 ⇒ 𝐶
3(Assumption)3 𝐴
4 ⇒ -Elimination𝑜𝑛1 𝐵
5 ⇒ -Elimination𝑜𝑛2 𝐶

6 ⇒ -introduction3 𝐴 ⇒ 𝐶
7 ⇒ -introduction2 (𝐵 ⇒ 𝐶) ⇒ (𝐴 ⇒ 𝐶)
8 ⇒ -introduction1 (𝐴 ⇒ 𝐵) ⇒ ((𝐵 ⇒ 𝐶) ⇒ (𝐴 ⇒ 𝐶))

Problem 5.2 (First-Order Tableaux) 7 pt

Prove or refute the following formula using the first-order free variable tableaux
calculus. We have 𝑃,𝑄 ∈ Σ𝑝1 .

∀𝑋.𝑃(𝑋) ⇒ 𝑄(𝑋) ⇒ (∀𝑋.𝑃(𝑋) ⇒ ∀𝑋.𝑄(𝑋))

7



Solution:
∀𝑋.𝑃(𝑋) ⇒ 𝑄(𝑋) ⇒ ∀𝑋.𝑃(𝑋) ⇒ ∀𝑋.𝑄(𝑋)𝐹

∀𝑋.𝑃(𝑋) ⇒ 𝑄(𝑋)𝑇
∀𝑋.𝑃(𝑋) ⇒ ∀𝑋.𝑄(𝑋)𝐹

𝑃(𝑌) ⇒ 𝑄(𝑌)𝑇
∀𝑋.𝑃(𝑋)𝑇
∀𝑋.𝑄(𝑋)𝐹
𝑃(𝑍)𝑇
𝑄(𝑐)𝐹

𝑃(𝑌)𝐹
⊥[𝑌∕𝑍]

𝑄(𝑌)𝑇
⊥[𝑐∕𝑌]

6 Knowledge Representation
Problem 6.1 (Tableau-Calculus for ALC) 7 pt
Prove that the following concept is inconsistent using 𝒯𝒜ℒ𝒞:

(∀takes 𝖦𝖫𝖮𝖨𝖭 ⊔ ∀takes 𝖠𝖨𝟣) ⊓ ∃takes (𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭)

Remember that inALCquantifiers bind tightly, so∀takes 𝖦𝖫𝖮𝖨𝖭⊔∀takes 𝖠𝖨𝟣means
(∀takes 𝖦𝖫𝖮𝖨𝖭) ⊔ (∀takes 𝖠𝖨𝟣).
Hint: Use the judgment 𝑥 ∶ 𝐶 in 𝒯𝒜ℒ𝒞, where 𝐶 is the concept above.

Solution: We use the 𝒜ℒ𝒞 tableau calculus 𝒯𝒜ℒ𝒞 for consistency:

𝑥 ∶ (∀takes 𝖦𝖫𝖮𝖨𝖭 ⊔ ∀takes 𝖠𝖨𝟣) ⊓ ∃takes (𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭)
𝑥 ∶ (∀takes 𝖦𝖫𝖮𝖨𝖭 ⊔ ∀takes 𝖠𝖨𝟣)

𝑥 ∶ ∃takes (𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭)
𝑥 takes 𝑦

𝑦 ∶ 𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭
𝑦 ∶ 𝖠𝖨𝟣

𝑦 ∶ 𝖦𝖫𝖮𝖨𝖭
𝑥 ∶ ∀takes 𝖦𝖫𝖮𝖨𝖭

𝑦 ∶ 𝖦𝖫𝖮𝖨𝖭
⊥

𝑥 ∶ ∀takes 𝖠𝖨𝟣
𝑦 ∶ 𝖠𝖨𝟣

⊥

7 Planning
Problem 7.1 (Planning Bike Repair) 10 pt
Consider the following problem. A bicycle has a front wheel and a back wheel

8



installed and both wheels have a flat tire. A robot needs to repair the bicycle. The
room also contains a tire pump and a box with all the other equipment needed by
the robot to repair a bicycle. The robot can repair a wheel with the help of the box
and the tire pump when the robot and the three objects are at the same position.
The bicycle is repairedwhen the robot has done a final overall checkwhich requires
both tires to be repaired and to be installed on the bicycle again. For this check, the
box is also needed at the same position as the bicycle and the robot.

The exercise is to model this problem as a STRIPS planning task. In doing so,
assume the following framework. The robot is currently at position “A”, the bicycle
is at position “B”, and the “Frontwheel” and the “Backwheel” are installed on the
“Bicycle”. The “Box” is at position “C” and the “Pump” at position “D”. The actions
available for the robot are:

• “𝐺𝑜” from one position to another. The four possible positions A, B, C, and
D are connected in such a way that the robot can reach every other place in
one “𝐺𝑜”.

• “𝑃𝑢𝑠ℎ” an object from one place to another. The bicycle is not pushable and
the wheels are only pushable if not installed on the bicycle; obviously the
robot cannot push itself; every other object is always pushable. “𝑃𝑢𝑠ℎ”moves
both the object and the robot.

• “𝑅𝑒𝑚𝑜𝑣𝑒” a wheel from the bike.

• “𝑅𝑒𝑝𝑎𝑖𝑟𝑊ℎ𝑒𝑒𝑙” to fix a wheel with a flat tire.

• “𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑊ℎ𝑒𝑒𝑙” to put a wheel back on the bike.

• “𝐹𝑖𝑛𝑎𝑙𝐶ℎ𝑒𝑐𝑘” to make sure that not only the two wheels are repaired and
installed but also the rest of the bike is in good condition. The box is needed
at the same position for this.

(a) Write a STRIPS formalization of the initial state and goal descriptions.

(b) Write a STRIPS formalization of the actions 𝑅𝑒𝑚𝑜𝑣𝑒 and 𝐹𝑖𝑛𝑎𝑙𝐶ℎ𝑒𝑐𝑘, and
only these two actions. In doing so, please make use of “object variables”,
i.e., write the actions up in a parametrized way. State, for each parameter, by
which objects it can be instantiated.

In both (a) and (b), make use of only the following predicates:

• 𝐴𝑡(𝑥, 𝑦): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙, 𝐵𝑜𝑥,
𝑃𝑢𝑚𝑝} is at position 𝑦 ∈ {𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐴, 𝐵, 𝐶, 𝐷}.

• 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑥): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙,
𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝} can be pushed.

• 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑥): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙,
𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝} is repaired.

9



• 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝑥): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙,
𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝} has a flat tire.

10



Solution:

(a) Initial state description:
𝐼 = {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐴), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐵), 𝐴𝑡(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒),

𝐴𝑡(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒), 𝐴𝑡(𝐵𝑜𝑥, 𝐶), 𝐴𝑡(𝑃𝑢𝑚𝑝,𝐷), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝐵𝑜𝑥),
𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑃𝑢𝑚𝑝), 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙), 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙)}

Goal description: 𝐺 = {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}

(b) Action descriptions:

• 𝐺𝑜(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥)}

for all 𝑥, 𝑦 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.
• 𝑃𝑢𝑠ℎ(𝑥, 𝑦, 𝑧) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝐴𝑡(𝑥, 𝑦), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑥)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑧), 𝐴𝑡(𝑥, 𝑧)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝐴𝑡(𝑥, 𝑦)}

for all 𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒,𝑊ℎ𝑒𝑒𝑙, 𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝}, 𝑦, 𝑧 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.
• 𝑅𝑒𝑚𝑜𝑣𝑒(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝑥), 𝐴𝑡(𝑦, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑦, 𝑥), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑦)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑦, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑦 ∈ {𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙}.
[Note that the facts Pushable(Frontwheel) and Pushable(Backwheel) can
also be initially given and never deleted because of the way the action
“Push" is defined.]

• 𝑅𝑒𝑝𝑎𝑖𝑟𝑊ℎ𝑒𝑒𝑙(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝑦, 𝑥), 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝑦), 𝐴𝑡(𝐵𝑜𝑥, 𝑥), 𝐴𝑡(𝑃𝑢𝑚𝑝, 𝑥)}
𝑎𝑑𝑑 ∶ {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑦)}
𝑑𝑒𝑙 ∶ {𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑦 ∈ {𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙}.
• 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑊ℎ𝑒𝑒𝑙(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝑥), 𝐴𝑡(𝑦, 𝑥), 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑦), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑦)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑦, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑦, 𝑥), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑦 ∈ {𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙}.
• 𝐹𝑖𝑛𝑎𝑙𝐶ℎ𝑒𝑐𝑘(𝑥) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝑥), 𝐴𝑡(𝐵𝑜𝑥, 𝑥),
𝐴𝑡(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒), 𝐴𝑡(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒),
𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙), 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙)}

𝑎𝑑𝑑 ∶ {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}
𝑑𝑒𝑙 ∶ {}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.

11


	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction Problems & Inference
	Logic
	Knowledge Representation
	Planning

