
Last Name: First Name:

Matriculation Number:

Seat:

Exam
Artificial Intelligence 1

Feb 10., 2020

To be used for grading, do not write here

prob. 1 2 3 Sum grade
total 18 5 3 92
reached

i



The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.

In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)

ii



1 Prolog
Problem 1 (Girls are witches) 6 pt

6 minConsider the following logic argument (after Monty Python):

• A witch is a female who burns.

• Things burn - because they’re made of wood.

• Wood floats.

• What else floats on water? A duck.

• If something has the same weight as a duck it must float.

• A duck and scales are fetched. A girl and the duck balance perfectly.

1. Write the given statements as a 𝙿𝚛𝚘𝙻𝚘𝚐 knowledge base.

2. How would you check whether – according to this knowledge base – a par-
ticular girl Mary is a witch?

3. Justify whether Mary is a witch – according to your knowledge base.

Solution:

1. witch(X):-burns(X),female(X).
burns(X):-wooden(X).
floats(X):-wooden(X).
floats(duck).
floats(X):-sameweight(duck,X).
female(girl).
sameweight(duck,girl).

2. Using the 𝙿𝚛𝚘𝙻𝚘𝚐 query ?- witch(girl).

3. Of course Mary is not a witch, 𝙿𝚛𝚘𝙻𝚘𝚐 cannot derive that 𝑀𝑎𝑟𝑦 can burn,
which is needed for being a witch.

Problem 2 (Prolog Fibbonaci) 6 pt
6 minWrite a 𝙿𝚛𝚘𝙻𝚘𝚐 program which computes the 𝑛-th Fibonacci number.

Solution:
/* Top down */
fibonacci(0, 0).
fibonacci(1, 1).
fibonacci(N, X) :- N>1, N1 is N - 1, N2 is N - 2, fibonacci(N1, Y), fibonacci(N2, Z), X is Y + Z.

/* A more efficient, bottom-up approach. */

1



fibo(N,F):-fibo1(0,0,1,N,F).
fibo1(N,F,_,N,F).
fibo1(N1,F1,F2,N,F):- N1<N, N2 is N1+1, F3 is F1+F2, fibo1(N2,F2,F3,N,F).

2 Search
Problem 1 2 pt

2 minDoes a finite state space always lead to a finite search tree? How about a finite space
state that is a tree? Justify your answers.
Solution: No (there can be cycles). Yes if it’s a tree (no cycles).

Problem 2 (Relaxed Problem) 8 pt
5 minThe relaxed version of a search problem 𝑃 is a problem 𝑃′ with the same states

as 𝑃, such that any solution of P is also a solution of 𝑃′. More precisely, if 𝑠′ is a
successor of 𝑠 in P, it is also a successor in 𝑃′ with the same cost. Prove or refute
that for any state 𝑠, the cost 𝑐′(𝑠) of the optimal path between 𝑠 and the goal in 𝑃′ is
an admissible 𝐴∗ heuristic for 𝑃.
Hint: Think about the graphical representation of the problems.

Solution: Graphically, 𝑃′ has all the arcs from 𝑃, plus maybe more. This means
that the optimal path in 𝑃′ is the same as the optimal path in 𝑃, or better through
the possibility of using the additional arcs. Therefore 𝑐′(𝑠) ≤ 𝑐(𝑠), which is the
admissibility criterion for a heuristic.

Problem 3 (Uninformed search) 4 pt
4 minApply uniform cost search and iterative deepening on the following tree exhaus-

tively (the goal is not node G!).

B

H

J

D E

A

F

C

G

I

1 2

2 3

2

1

2 1

1

2



List the nodes in the order they are expanded for uniform cost search and itera-
tive deepening. For iterative deepening, write out each iteration in a new line. For
uniform cost, assume that when nodes have the same cost, they get expanded left
to right.

1. Iterative deepening:

2. Uniform cost:

Solution:
Uniform cost:

A, B, C, D, G, E, F, I, H, J
Iterative deepening:

A
A, B, C
A, B, D, E, C, F, G
A, B, D, E, H, C, F, G, I
A, B, D, E, H, J, C, F, G, I

3 Adversarial Search
Problem 1 (Game Tree) 10 pt

10 minConsider the following game tree. Assume it is the maximizing player’s turn to
move. The values at the leaves are the static evaluation function values of the states
at each of those nodes.

A

B C D

E F G H I J K

L M N O P Q R S T U V W X Y Z
4 8 9 3 2 -2 9 -1 8 4 3 6 5 7 1

4 pt
1. Label each non-leaf node with its minimax value. 1 pt
2. Which move would be selected by Max? 3 pt
3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). As-

sume children of a node are visited left-to-right. 2 pt
4. In general (i.e., not just for the tree shown above), if we traverse a game tree

by visiting children in right-to-left order instead of left-to-right, can this result
in a change to

3



(a) the minimax value computed at the root?
(b) The number of nodes pruned by the alpha-beta algorithm?

Solution:

1. A:8, B:8, C:2, D:6, E:8, F:9, G:2, H:9, I:8, J:6, K:7

2. B

3. OHRSITUKYZ

4. (a) no, (b) yes

4 Constraint Satisfaction Problems & Inference
Problem 1 16 pt

16 minConsider solving the 4-queens problem as a constraint satisfaction problem. That
is, place 4 queens on a 4 × 4 board such that no queen is in the same row, column
or diagonal as any other queen.

One way to formulate this problem is to have a variable for each queen, and
binary constraints between each pair of queens indicating that they cannot be in
the same row, column or diagonal. Assuming the 𝑖-th queen is put somewhere
in the 𝑖-th column, then the possible values in the domain for each variable are
the row numbers in which it could be placed. Say we initially assign queen 𝑄1
the unique value 3, meaning 𝑄1 is placed in column 1 and row 3. This results in
an initial constraint graph given by the set of candidate values of each variable is
shown inside the node:

𝑄4 ∈ {1, 2, 3, 4}

𝑄2 ∈ {1, 2, 3, 4} 𝑄3 ∈ {1, 2, 3, 4}

𝑄1 ∈ {3}

4 pt
1. Apply forward checking and give the remaining candidate values for the vari-

ables 𝑄2, 𝑄3 and 𝑄4. 4 pt
2. Define the concept of arc consistency. 6 pt
3. Fill in the table below with the candidate values of each queen after each of

the following steps of applying the arc consistency algorithm to the figure.

4



Q1 Q2 Q3 Q4
Initial domain 3 1, 2, 3, 4 1, 2, 3, 4 1, 2, 3, 4
After 𝑄2→ 𝑄1 3

After 𝑄3→ 𝑄1 3

After 𝑄2→ 𝑄3 3

After 𝑄3→ 𝑄2 3

2 pt
4. In general, when will the arc consistency algorithm halt?

Solution:

1. 𝑄2 = {1}, 𝑄3 = {2, 4}, 𝑄4 = {1, 2, 4}

2. 𝑣 is arc-consistent wrt𝑤 if for every value of 𝑣 there is a value for𝑤 such that
𝐶𝑣𝑤 is satisfied.

3. 𝑄2 → 𝑄1: remove 2, 3, 4 from 𝐷2; 𝑄3 → 𝑄1: remove 1, 3 from 𝐷3; 𝑄2 → 𝑄3:
no change; 𝑄3→ 𝑄2: remove 2 from 𝑄3

4. When no constraint changes the domains anymore.

5 Logic
Problem 1 (Natural Deduction) 7 pt

7 minProve (or disprove) the validity of the following formulae in Natural Deduction:

2 pt1. ((𝑃 ⇒ 𝑄) ∧ 𝑃) ⇒ 𝑄
5 pt2. (¬𝑄 ⇒ ¬𝑃) ⇒ (𝑃 ⇒ ¬¬𝑄)

Solution:

1.

(1) 1 (𝑃 ⇒ 𝑄) ∧ 𝑃 Assumption
(2) 1 𝑃 ⇒ 𝑄 ∧𝐸𝓁 (on 1)
(3) 1 𝑃 ∧𝐸𝑟 (on 1)
(4) 1 𝑄 ⇒ 𝐸 (on 2 and 3)
(5) ((𝑃 ⇒ 𝑄) ∧ 𝑃) ⇒ 𝑄 ⇒ 𝐼 (on 1 and 4)

5



2.

(1) 1 ¬𝑄 ⇒ ¬𝑃 Assumption
(2) 1, 2 𝑃 Assumption
(3) 1, 2 ¬𝑄 Assumption
(4) 1, 2, 3 ¬𝑃 ⇒ 𝐸 (on 1 and 3)
(5) 1, 2, 3 𝐹 𝐹𝐼 (on 2 and 4)
(6) 1, 2 ¬¬𝑄 ¬𝐼 (on 3, 5)
(7) 1 𝑃 ⇒ ¬¬𝑄 ⇒ 𝐼 (on 2 and 6)
(8) (¬𝑄 ⇒ ¬𝑃) ⇒ (𝑃 ⇒ ¬¬𝑄) ⇒ 𝐼 (on 1 and 7)

Problem 2 (First-Order Tableau) 5 pt
5 minProve or refute the following formula using the first-order free variable tableaux

calculus. We have 𝑃, 𝑅 ∈ Σ𝑝1 and 𝑓 ∈ Σ𝑓1 .

(∀𝑋 𝑃(𝑋)⇒ 𝑅(𝑓(𝑋)))⇒ ((∃𝑋 𝑃(𝑋))⇒ (∃ 𝑅(𝑌)))

Solution:
(((∀𝑋 𝑃(𝑋)⇒ 𝑅(𝑓(𝑋)))⇒ (∃ 𝑃(𝑋)))⇒ (∃ 𝑅(𝑌)))𝖥

∀𝑋.𝑃(𝑋) ⇒ 𝑅(𝑓(𝑋))𝖳

∃𝑋.𝑃(𝑋) ⇒ ∃𝑌.𝑅(𝑌)𝖥

∃𝑋.𝑃(𝑋)𝖳

∃𝑌.𝑅(𝑌)𝖥

𝑃(𝑍) ⇒ 𝑅(𝑓(𝑍))𝖳

𝑃(𝑠)𝖳

𝑅(𝑊)𝖥

𝑃(𝑍)𝖥

⊥[𝑠∕𝑍]
𝑅(𝑓(𝑠))𝖳

⊥[𝑓(𝑠)∕𝑊]

Problem 3 (Unification) 3 pt
3 minGive a most general unifier of the terms 𝐀 = 𝑓(𝑋, 𝑔(𝑌,𝑋)) and 𝐁 = 𝑓(𝑌, 𝑍).

Give one more unifier that is NOT most general and justify why it is not.
Solution:

• [𝑌∕𝑋], [𝑔(𝑌,𝑌)∕𝑍] = 𝜎

• [𝑎∕𝑋], [𝑎∕𝑌], [𝑔(𝑎, 𝑎)∕𝑍] = [𝑎∕𝑌]◦𝜎

6



6 Knowledge Representation
Problem 1 (Tableau-Calculus for ALC) 7 pt

7 minProve that the following concept is inconsistent using 𝒯𝒜ℒ𝒞:

(∀takes 𝖦𝖫𝖮𝖨𝖭 ⊔ ∀takes 𝖠𝖨𝟣) ⊓ ∃takes (𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭)

Remember that inALCquantifiers bind tightly, so∀takes 𝖦𝖫𝖮𝖨𝖭⊔∀takes 𝖠𝖨𝟣means
(∀takes 𝖦𝖫𝖮𝖨𝖭) ⊔ (∀takes 𝖠𝖨𝟣).
Hint: Use the judgment 𝑥 ∶ 𝐶 in 𝒯𝒜ℒ𝒞, where 𝐶 is the concept above.

Solution: We use the 𝒜ℒ𝒞 tableau calculus 𝒯𝒜ℒ𝒞 for consistency:

𝑥 ∶ (∀takes 𝖦𝖫𝖮𝖨𝖭 ⊔ ∀takes 𝖠𝖨𝟣) ⊓ ∃takes (𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭)
𝑥 ∶ (∀takes 𝖦𝖫𝖮𝖨𝖭 ⊔ ∀takes 𝖠𝖨𝟣)

𝑥 ∶ ∃takes (𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭)
𝑥 takes 𝑦

𝑦 ∶ 𝖠𝖨𝟣 ⊓ 𝖦𝖫𝖮𝖨𝖭
𝑦 ∶ 𝖠𝖨𝟣

𝑦 ∶ 𝖦𝖫𝖮𝖨𝖭
𝑥 ∶ ∀takes 𝖦𝖫𝖮𝖨𝖭

𝑦 ∶ 𝖦𝖫𝖮𝖨𝖭
⊥

𝑥 ∶ ∀takes 𝖠𝖨𝟣
𝑦 ∶ 𝖠𝖨𝟣

⊥

7 Planning
Problem 1 18 pt

18 minConsider the following problem. A fused bulb hangs out of reach from the ceil-
ing. A robot needs to repair the bulb. The room also contains a box. Pushing that
box into the correct position, and climbing onto the box, will bring the bulb into
reach for the robot.

The exercise is to model this problem as a STRIPS planning task. In doing so,
assume the following framework. The robot is currently at position “A”, the fused
bulb is at position “B”, and the box is at position “C”. The robot and box are at the
same height “Low”, the fused bulb is at height “High”. By climbing onto the box,
the robot changes from “Low” to “High”; vice versa when climbing off the box. The
actions available for the robot are “𝐺𝑜” from one place to another (only possible if
the robot is at “Low”), “𝑃𝑢𝑠ℎ” an object from one place to another (only possible
if the robot and object are at “Low”), “𝐶𝑙𝑖𝑚𝑏𝑈𝑝” onto or “𝐶𝑙𝑖𝑚𝑏𝐷𝑜𝑤𝑛” from an
object, and “𝑅𝑒𝑝𝑎𝑖𝑟” to fix an object. The robot needs to be at the same place and
height as an object in order to repair it.

7



Note that the robot can only push an object or climb onto an object if both of
them are at the same location. Furthermore, in case of pushing an object the robot
changes to the destination location as well.

(a) Write a STRIPS formalization of the initial state and goal descriptions.

(b) Write a STRIPS formalization of thefive actions: 𝐺𝑜,𝑃𝑢𝑠ℎ,𝐶𝑙𝑖𝑚𝑏𝑈𝑝,𝐶𝑙𝑖𝑚𝑏𝐷𝑜𝑤𝑛,
and 𝑅𝑒𝑝𝑎𝑖𝑟. In doing so, please domake use of “object variables”, i.e., write the
actions up in a parameterized way. State, for each parameter, by which objects
it can be instantiated.

In both (a) and (b), make use of the following predicates: (do not use any other
predicates)

• 𝐴𝑡(𝑥, 𝑦): To indicate that object 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡} is at position 𝑦 ∈
{𝐴, 𝐵, 𝐶}.

• 𝐻𝑒𝑖𝑔ℎ𝑡(𝑥, 𝑦): To indicate that object 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡} is at height 𝑦 ∈
{𝐿𝑜𝑤,𝐻𝑖𝑔ℎ}.

• 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑥): To indicate that object 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡} can be pushed.

• 𝐶𝑙𝑖𝑚𝑏𝑎𝑏𝑙𝑒(𝑥): To indicate that the robot can climbonobject𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡}.

• 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑥): To indicate that object 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡} is repaired.

Solution:

(a) Initial state description:
𝐼 = {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐴), 𝐴𝑡(𝐵𝑢𝑙𝑏, 𝐵), 𝐴𝑡(𝐵𝑜𝑥, 𝐶),

𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐿𝑜𝑤), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑜𝑥, 𝐿𝑜𝑤), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑢𝑙𝑏,𝐻𝑖𝑔ℎ),
𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝐵𝑜𝑥), 𝐶𝑙𝑖𝑚𝑏𝑎𝑏𝑙𝑒(𝐵𝑜𝑥)}

Goal description: 𝐺 = {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑢𝑙𝑏)}

(b) Action descriptions:

• 𝐺𝑜(𝑥, 𝑦) =
𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐿𝑜𝑤)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥)}

for all 𝑥, 𝑦 ∈ {𝐴, 𝐵, 𝐶}.
• 𝑃𝑢𝑠ℎ(𝑥, 𝑦, 𝑧) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑥), 𝐴𝑡(𝑥, 𝑦), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐿𝑜𝑤), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑥, 𝐿𝑜𝑤)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑥, 𝑧), 𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑧)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑥, 𝑦), 𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦)}

for all 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡}, 𝑦, 𝑧 ∈ {𝐴, 𝐵, 𝐶}.

8



• 𝐶𝑙𝑖𝑚𝑏𝑈𝑝(𝑥, 𝑦) =
𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝐴𝑡(𝑥, 𝑦), 𝐶𝑙𝑖𝑚𝑏𝑎𝑏𝑙𝑒(𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐿𝑜𝑤), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑥, 𝐿𝑜𝑤)}
𝑎𝑑𝑑 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡,𝐻𝑖𝑔ℎ)}
𝑑𝑒𝑙 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐿𝑜𝑤)}

for all 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡}, 𝑦 ∈ {𝐴, 𝐵, 𝐶}.
• 𝐶𝑙𝑖𝑚𝑏𝐷𝑜𝑤𝑛() =

𝑝𝑟𝑒 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡,𝐻𝑖𝑔ℎ)}
𝑎𝑑𝑑 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐿𝑜𝑤)}
𝑑𝑒𝑙 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡,𝐻𝑖𝑔ℎ)}

• 𝑅𝑒𝑝𝑎𝑖𝑟(𝑥, 𝑦, 𝑧) =
𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝐴𝑡(𝑥, 𝑦), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑧), 𝐻𝑒𝑖𝑔ℎ𝑡(𝑥, 𝑧)}
𝑎𝑑𝑑 ∶ {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑥)}
𝑑𝑒𝑙 ∶ {}

for all 𝑥 ∈ {𝐵𝑜𝑥, 𝐵𝑢𝑙𝑏, 𝑅𝑜𝑏𝑜𝑡}, 𝑦 ∈ {𝐴, 𝐵, 𝐶}, 𝑧 ∈ {𝐻𝑖𝑔ℎ, 𝐿𝑜𝑤}.

9


	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction Problems & Inference
	Logic
	Knowledge Representation
	Planning

