
Last Name: First Name:

Matriculation Number:

Seat:

Exam
Artificial Intelligence 1

Feb 11., 2019

To be used for grading, do not write here

prob. 1 2 Sum grade
total 12 8 80
reached

i



The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.

In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)

ii



1 Prolog
Problem 1 4 pt

4 min
1. Program a Prolog predicate uadd for addition and umult for multiplication in

unary representation.

Hint: Thenumber 3 inunary representation is the𝙿𝚛𝚘𝙻𝚘𝚐 terms(s(s(o))),
i.e. application of the arbitrary function s to an arbitrary value o iterated three
times.

Hint: Note that 𝙿𝚛𝚘𝙻𝚘𝚐 does not allow you to program (binary) functions, so
you must come up with a three-place predicate. You should use add(X,Y,Z)
to mean 𝑋 + 𝑌 = 𝑍 and program the recursive equations 𝑋 + 0 = 𝑋 (base
case) and 𝑋 + 𝑠(𝑌) = 𝑠(𝑋 + 𝑌).

2. Write a Prolog predicate ufib that computes the 𝑛th Fibonacci Number (0, 1,
1, 2, 3, 5, 8, 13,. . . add the last two to get the next), using the addition predicate
above.

If you have mastered addition and multiplication, feel free to try your hands on
exponentiation as well.
Solution for=prolog-addition:
uadd(X,o,X).
uadd(X,s(Y),s(Z)) :- uadd(X,Y,Z).

umult(_,o,o).
umult(X,s(Y),Z) :- umult(X,Y,W), uadd(X,W,Z).

ufib(o,o).
ufib(s(o),s(o)).
ufib(s(s(X)),Y):-ufib(s(X),Z),ufib(X,W),uadd(Z,W,Y).

Problem 2 (DFS in Prolog) 12 pt
12 minWewant to implementDFS in𝙿𝚛𝚘𝙻𝚘𝚐using the following data structures for search

trees:
subtrees([]).
subtrees([(Cost,T)|Rest]) :- number(Cost),istree(T), subtrees(Rest).
istree(tree(_,Children)) :- subtrees(Children).

Write a Prolog predicate dfs such that dfs(G,T,X,Y) on a tree T returns the
path to the goal G in X and the cost of the path in Y
Solution:
dfs(GoalValue,tree(GoalValue,_),GoalValue,0).
dfs(GoalValue,tree(Value,[(Cost,T)|Rest]),Path,FinalCost) :- T = tree(IV,_), write(IV ),
dfs(GoalValue, T,P,C),string_concat(Value,P,Path),FinalCost is C+Cost; % go down one depth level
dfs(GoalValue,tree(Value,Rest),Path,FinalCost). % next child

1



2 Search
Problem 1 (BFS) 3 pt

3 minApply BFS and DFS on the following tree exhaustively (the goal is not node G!).

A

B

C

D F

G

L

N

P

Q

List the nodes in the order they are expanded:

1. BFS

2. DFS

Solution:

1. BFS: G, A, N, D, F, L, P, B, Q, C

2. DFS: G, A, D, F, B, C, N, L, P, Q

Problem 2 (Admissibility limits) 5 pt
5 minThe condition for a heuristic ℎ(𝑛) to be admissible is that for all nodes 𝑛 holds

that (0 ≤ ℎ(𝑛) ≤ ℎ∗(𝑛)), where ℎ∗(𝑛) is the true cost from 𝑛 to goal. What happens
when for all nodes, ℎ(𝑛) = 0 and when ℎ(𝑛) = ℎ∗(𝑛) ?
Solution: When ℎ(𝑛) = 0, the search will behave like an uninformed search, and
when ℎ(𝑛) = ℎ∗(𝑛) the search will only expand the nodes on the optimal path to a
goal.

3 Adversarial Search
Problem 1 (Minimax Restrictions) 3 pt

3 minName at least five criteria that a game has to satisfy in order for the minimax
algorithm to be applicable.
Solution: Any five of:

2



• Two-player

• Determininstic

• Fully observable

• Players alternate

• Finitely many / discrete game states

• Zero-sum

• Game ends after finitely many rounds

Problem 2 (Game Tree) 7 pt
7 minConsider the following game tree. Assume it is the maximizing player’s turn to

move. The values at the leaves are the static evaluation function values of the states
at each of those nodes.

A

B C D

E F G H I J K

L M N O P Q R S T U V W X Y Z
4 8 9 3 2 -2 9 -1 8 4 3 6 5 7 1

1. Compute the minimax game value of nodes A, B, C, and D

2. Which move would be selected by Max?

3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). As-
sume children of a node are visited left-to-right.

Submit your solution as a text file containing the following:
1. Line 1: 4 numbers, separated by space, corresponding to the nodes in alpha-

betical order, e.g., "1 3 2 5" means A=1, B=3, C=2, D=5.

2. Line 2: The upper-case letter for the selected move.

3. Line 3: The upper-case letters of the pruned moves.

Solution:

1. B = 8, C = 2, D = 6, A = 8

2. B

3. O, H (and R and S), I (and T and U), K (and Y and Z)

3



4 Constraint Satisfaction Problems & Inference
Problem 1 (Constraint Networks) 6 pt

6 minA constraint network is a triple ⟨𝑉, 𝐷, 𝐶⟩. Explain the roles of 𝑉, 𝐷, and 𝐶. If you
use the word “constraint” you have to define and briefly explain it.
Solution: 𝑉: a set of variables

𝐷: a set of sets 𝐷𝑣 of values for each 𝑣 ∈ 𝑉
𝐶: a set of constraints; i.e. relations on (the domains of the) variables.

Problem 2 (Arc Consistency for Chains) 10 pt
10 minConsider the general less than chain below, which we interpret as a CSP: Each of

the 𝑁 variables 𝑋𝑖 has the domain {1, … ,𝑀}. The constraints between adjacent
variables 𝑋𝑖 and 𝑋𝑖+1 require that 𝑋𝑖 < 𝑋𝑖+1.

𝑋1 < 𝑋2 < 𝑋3 < ⋯ < 𝑋𝑁

1. For now, assume 𝑁 = 𝑀 = 5.

(a) How many solutions does the CSP have?
(b) What will the domain of 𝑋1 be after enforcing the consistency of only

the arc 𝑋1 → 𝑋2?
(c) What will the domain of 𝑋1 be after enforcing the consistency of only

the arcs 𝑋2 → 𝑋3 and (then) 𝑋1 → 𝑋2?
(d) What will the domain of 𝑋1 be after fully enforcing arc consistency?

2. Now consider the general case for arbitrary 𝑁 and𝑀.

(a) Imagine youwish to construct a similar family of CSPs which forces one
of the two following types of solutions: either all values must be ascend-
ing or all values must be descending, from left to right. For example, if
𝑀 = 𝑁 = 3, there would be exactly two solutions: {1, 2, 3} and {3, 2, 1}.
Explain how to formulate this variant. Your answer should include pre-
cise statements of variables and constraints.

Solution:

1. 𝑁 = 𝑀 = 5.

(a) Just one: 1, 2, 3 . . .
(b) {1, 2, 3, 4}
(c) {1, 2, 3}
(d) {1}

2. (a) Several good answers. One is have ternary constraints on each adjacent
triple that the triple should be either an increasing or decreasing triple.
The overlap between triples enforces that the choice be global. Another
is to introduce a global variable indicating ascent or descent and have
ternary constraints between adjacent nodes and the global one, allow-
ing, for example, triples like ⟨1, 2, <⟩ or ⟨2, 1, >⟩.

4



5 Logic
Problem 1 (First-Order Resolution) 10 pt

10 minProve the following formula using resolution.
𝑃,𝑄 ∈ Σ𝑝1 ; 𝑅 ∈ Σ𝑝2 ; 𝑐, 𝑑 ∈ Σ𝑓0

∃𝑋.∀𝑌.∃𝑊.∃𝑍.¬ ((𝑅(𝑍, 𝑌) ∨ ¬𝑃(𝑍)) ∧ (¬𝑄(𝑑) ∨ 𝑃(𝑐)) ∧ (𝑄(𝑑) ∨ ¬𝑃(𝑐))

∧(¬𝑅(𝑍, 𝑌) ∨ ¬𝑃(𝑊) ∨ ¬𝑄(𝑋)) ∧ 𝑃(𝑐))

Hint: Note, that the formula is already (close to) a negated CNF, so if you spend
any significant amount of time transforming the formula, you aremost likely doing
something wrong.

Solution: We negate:

∀𝑋.∃𝑌.∀𝑊.∀𝑍. ((𝑅(𝑍, 𝑌) ∨ ¬𝑃(𝑍)) ∧ (¬𝑄(𝑑) ∨ 𝑃(𝑐)) ∧ (𝑄(𝑑) ∨ ¬𝑃(𝑐))

∧(¬𝑅(𝑍, 𝑌) ∨ ¬𝑃(𝑊) ∨ ¬𝑄(𝑋)) ∧ 𝑃(𝑐))

Substituting bound variables:

(𝑅(𝑍, 𝑓𝑌(𝑋))∨¬𝑃(𝑍))∧(¬𝑄(𝑑)∨𝑃(𝑐))∧(𝑄(𝑑)∨¬𝑃(𝑐))∧(¬𝑅(𝑍, 𝑓𝑌(𝑋))∨¬𝑃(𝑊)∨¬𝑄(𝑋))∧𝑃(𝑐)

Resolution:

{𝑄(𝑑)𝑇 , 𝑃(𝐶)𝐹} + {𝑃(𝑐)𝑇}⟹ {𝑄(𝑑)𝑇}
{𝑄(𝑑)𝑇} + {𝑅(𝑍, 𝑓𝑌(𝑋))𝐹 , 𝑃(𝑊)𝐹 , 𝑄(𝑋)𝐹}[𝑑∕𝑋]⟹ {𝑅(𝑍, 𝑓𝑌(𝑑))𝐹 , 𝑃(𝑊)𝐹}

{𝑃(𝑐)𝑇} + {𝑅(𝑍, 𝑓𝑌(𝑑))𝐹 , 𝑃(𝑊)𝐹}[𝑐∕𝑊]⟹ {𝑅(𝑍, 𝑓𝑌(𝑑))𝐹}
{𝑃(𝑐)𝑇} + {𝑅(𝑍, 𝑓𝑌(𝑋))𝑇 , 𝑃(𝑍)𝐹}[𝑐∕𝑍]⟹ {𝑅(𝑐, 𝑓𝑌(𝑋))𝑇}

{𝑅(𝑐, 𝑓𝑌(𝑋))𝑇}[𝑑∕𝑋] + {𝑅(𝑍, 𝑓𝑌(𝑑))𝐹}[𝑐∕𝑍]⟹ {}

Problem 2 (Natural Deduction) 8 pt
8 minLet 𝑅 ∈ Σ𝑝2 , 𝑃 ∈ Σ𝑝1 , 𝑐 ∈ Σ𝑓0 .

Prove the following formula in Natural Deduction:

((∀𝑋.∀𝑌.𝑅(𝑌, 𝑋) ⇒ 𝑃(𝑌)) ∧ (∃𝑌.𝑅(𝑐, 𝑌))) ⇒ 𝑃(𝑐)

5



Solution:

1(Assumption)1 (∀𝑋.∀𝑌.𝑅(𝑌, 𝑋) ⇒ 𝑃(𝑌)) ∧ (∃𝑌.𝑅(𝑐, 𝑌))
2 ∧ -Elimination on 1 ∀𝑋.∀𝑌.𝑅(𝑌, 𝑋) ⇒ 𝑃(𝑌)
3 ∧ -Elimination on 1 ∃𝑌.𝑅(𝑐, 𝑌)
4∀-Elimination on 2 ∀𝑌.𝑅(𝑌, 𝑋) ⇒ 𝑃(𝑌)
5∀-Elimination on 4 𝑅(𝑐, 𝑋) ⇒ 𝑃(𝑐)
6∀-Introduction on 5 ∀𝑋.𝑅(𝑐, 𝑋) ⇒ 𝑃(𝑐)

7(Assumption)2 𝑅(𝑐, 𝑑)
8∀-Elimination on 6 𝑅(𝑐, 𝑑) ⇒ 𝑃(𝑐)
9 ⇒ -Elimination on 8, 7 𝑃(𝑐)

10∃-Elimination2 on 3, 9 𝑃(𝑐)

11 ⇒ -Introduction1 on 10 ((∀𝑋.∀𝑌.𝑅(𝑌, 𝑋) ⇒ 𝑃(𝑌)) ∧ (∃𝑌.𝑅(𝑐, 𝑌))) ⇒ 𝑃(𝑐)

6 Planning
Problem 1 (Planning Bike Repair) 12 pt

12 minConsider the following problem. A bicycle has a front wheel and a back wheel
installed and both wheels have a flat tire. A robot needs to repair the bicycle. The
room also contains a tire pump and a box with all the other equipment needed by
the robot to repair a bicycle. The robot can repair a wheel with the help of the box
and the tire pump when the robot and the three objects are at the same position.
The bicycle is repairedwhen the robot has done a final overall checkwhich requires
both tires to be repaired and to be installed on the bicycle again. For this check, the
box is also needed at the same position as the bicycle and the robot.

The exercise is to model this problem as a STRIPS planning task. In doing so,
assume the following framework. The robot is currently at position “A”, the bicycle
is at position “B”, and the “Frontwheel” and the “Backwheel” are installed on the
“Bicycle”. The “Box” is at position “C” and the “Pump” at position “D”. The actions
available for the robot are:

• “𝐺𝑜” from one position to another. The four possible positions A, B, C, and
D are connected in such a way that the robot can reach every other place in
one “𝐺𝑜”.

• “𝑃𝑢𝑠ℎ” an object from one place to another. The bicycle is not pushable and
the wheels are only pushable if not installed on the bicycle; obviously the
robot cannot push itself; every other object is always pushable. “𝑃𝑢𝑠ℎ”moves
both the object and the robot.

• “𝑅𝑒𝑚𝑜𝑣𝑒” a wheel from the bike.

6



• “𝑅𝑒𝑝𝑎𝑖𝑟𝑊ℎ𝑒𝑒𝑙” to fix a wheel with a flat tire.

• “𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑊ℎ𝑒𝑒𝑙” to put a wheel back on the bike.

• “𝐹𝑖𝑛𝑎𝑙𝐶ℎ𝑒𝑐𝑘” to make sure that not only the two wheels are repaired and
installed but also the rest of the bike is in good condition. The box is needed
at the same position for this.

(a) Write a STRIPS formalization of the initial state and goal descriptions.

(b) Write a STRIPS formalization of the actions 𝑅𝑒𝑚𝑜𝑣𝑒 and 𝐹𝑖𝑛𝑎𝑙𝐶ℎ𝑒𝑐𝑘, and
only these two actions. In doing so, please make use of “object variables”,
i.e., write the actions up in a parametrized way. State, for each parameter, by
which objects it can be instantiated.

In both (a) and (b), make use of only the following predicates:

• 𝐴𝑡(𝑥, 𝑦): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙, 𝐵𝑜𝑥,
𝑃𝑢𝑚𝑝} is at position 𝑦 ∈ {𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐴, 𝐵, 𝐶, 𝐷}.

• 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑥): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙,
𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝} can be pushed.

• 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑥): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙,
𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝} is repaired.

• 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝑥): To indicate that object𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙,
𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝} has a flat tire.

Solution:

(a) Initial state description:
𝐼 = {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝐴), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝐵), 𝐴𝑡(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒),

𝐴𝑡(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒), 𝐴𝑡(𝐵𝑜𝑥, 𝐶), 𝐴𝑡(𝑃𝑢𝑚𝑝,𝐷), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝐵𝑜𝑥),
𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑃𝑢𝑚𝑝), 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙), 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙)}

Goal description: 𝐺 = {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}

(b) Action descriptions:

• 𝐺𝑜(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥)}

for all 𝑥, 𝑦 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.

7



• 𝑃𝑢𝑠ℎ(𝑥, 𝑦, 𝑧) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝐴𝑡(𝑥, 𝑦), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑥)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑧), 𝐴𝑡(𝑥, 𝑧)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑦), 𝐴𝑡(𝑥, 𝑦)}

for all 𝑥 ∈ {𝑅𝑜𝑏𝑜𝑡, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒,𝑊ℎ𝑒𝑒𝑙, 𝐵𝑜𝑥, 𝑃𝑢𝑚𝑝}, 𝑦, 𝑧 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.
• 𝑅𝑒𝑚𝑜𝑣𝑒(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝑥), 𝐴𝑡(𝑦, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑦, 𝑥), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑦)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑦, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑦 ∈ {𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙}.
[Note that the facts Pushable(Frontwheel) and Pushable(Backwheel) can
also be initially given and never deleted because of the way the action
“Push" is defined.]

• 𝑅𝑒𝑝𝑎𝑖𝑟𝑊ℎ𝑒𝑒𝑙(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝑦, 𝑥), 𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝑦), 𝐴𝑡(𝐵𝑜𝑥, 𝑥), 𝐴𝑡(𝑃𝑢𝑚𝑝, 𝑥)}
𝑎𝑑𝑑 ∶ {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑦)}
𝑑𝑒𝑙 ∶ {𝐹𝑙𝑎𝑡𝑇𝑖𝑟𝑒(𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑦 ∈ {𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙}.
• 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑊ℎ𝑒𝑒𝑙(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝑥), 𝐴𝑡(𝑦, 𝑥), 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝑦), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑦)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝑦, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝑦, 𝑥), 𝑃𝑢𝑠ℎ𝑎𝑏𝑙𝑒(𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑦 ∈ {𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙}.
• 𝐹𝑖𝑛𝑎𝑙𝐶ℎ𝑒𝑐𝑘(𝑥) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝑅𝑜𝑏𝑜𝑡, 𝑥), 𝐴𝑡(𝐵𝑖𝑐𝑦𝑐𝑙𝑒, 𝑥), 𝐴𝑡(𝐵𝑜𝑥, 𝑥),
𝐴𝑡(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒), 𝐴𝑡(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙, 𝐵𝑖𝑐𝑦𝑐𝑙𝑒),
𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐹𝑟𝑜𝑛𝑡𝑤ℎ𝑒𝑒𝑙), 𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑎𝑐𝑘𝑤ℎ𝑒𝑒𝑙)}

𝑎𝑑𝑑 ∶ {𝑅𝑒𝑝𝑎𝑖𝑟𝑒𝑑(𝐵𝑖𝑐𝑦𝑐𝑙𝑒)}
𝑑𝑒𝑙 ∶ {}

for all 𝑥 ∈ {𝐴, 𝐵, 𝐶, 𝐷}.

8


	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction Problems & Inference
	Logic
	Planning

