
Last Name: First Name:

Matriculation Number:

Seat:

Exam
Künstliche Intelligenz 1

Feb 12., 2018

To be used for grading, do not write here

prob. 1 2 Sum grade
total 12 10 80
reached

i

The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.

In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)

ii

1 Prolog
Problem 1 (The Zip Function) 4 pt

4 minThe zip function takes two lists with lengths that differ atmost by 1, and outputs
a list of lists containing one element from thefirst list and the elementwith the same
index from the other list, possibly followed by a one-element list with the left-over
argument.

Create a 𝙿𝚛𝚘𝙻𝚘𝚐 predicate with 3 arguments: the first two would be the two
lists you want to zip, and the third one would be the result. For instance:

?- zip([1,2,3],[4,5,6],L).
L = [[1, 4], [2, 5], [3, 6]].

?- zip([1,2],[3,4,5],L).
L = [[1, 3], [2, 4], [5]].

Feel free to implement any helper functions.
Hint: Remember that you can pattern match a list L as [HEAD∣TAIL].

Solution:
zip([L],[],[[L]]).
zip([],[L],[[L]]).
zip([],[],[]).
zip([H1|T1],[H2|T2],L) :- zip(T1,T2,T), L = [[H1,H2]|T).

Problem 2 (DFS in Prolog) 12 pt
12 minWewant to implementDFS in𝙿𝚛𝚘𝙻𝚘𝚐using the following data structures for search

trees:
subtrees([]).
subtrees([(Cost,T)|Rest]) :- number(Cost),istree(T), subtrees(Rest).
istree(tree(_,Children)) :- subtrees(Children).

Write a Prolog predicate dfs such that dfs(G,T,X,Y) on a tree T returns the
path to the goal G in X and the cost of the path in Y

Solution:
dfs(GoalValue,tree(GoalValue,_),GoalValue,0).
dfs(GoalValue,tree(Value,[(Cost,T)|Rest]),Path,FinalCost) :- T = tree(IV,_), write(IV),
dfs(GoalValue, T,P,C),string_concat(Value,P,Path),FinalCost is C+Cost; % go down one depth level
dfs(GoalValue,tree(Value,Rest),Path,FinalCost). % next child

1

2 Search
Problem 1 (Astar vs. Greedy) 5 pt

5 minShortly explain the principle of operation of the A* search. Explain (in few sen-
tences) how it differs from the greedy search?
Solution: A* will expand the nodes in the fringe in an ascending order of the
function f(node)=h(node)+g(node), where h(node) is the heuristic of the node and
g(node) is the (current) distance from the initial node to this node. Greedy will ex-
pand only taking the heuristic into account.

What is the condition on the heuristic function that makes 𝐴∗ optimal? Does a
heuristic with this condition always exist?
Solution: Admissible heuristic - always underestimates the real cost to the goal.
This always exists: ℎ(𝑥) = 0.

3 Adversarial Search
Problem 1 (Minimax Restrictions) 3 pt

3 minName at least five criteria that a game has to satisfy in order for the minimax
algorithm to be applicable.
Solution: Any five of:

• Two-player

• Determininstic

• Fully observable

• Players alternate

• Finitely many / discrete game states

• Zero-sum

• Game ends after finitely many rounds

Problem 2 (Minimax Algorithm and Alphabeta Pruning) 10 pt
10 minConsider the following (complete!) search tree:

2

A

B C D

E F G H I J K

L M N O P Q R S T U V W X Y Z
4 8 9 3 2 -2 9 -1 8 4 3 6 5 7 1

1. What is the minimax value at node B?

2. Which subtrees in the tree can be pruned during alpha-beta search? What is
the criterion for pruning a subtree?

4 Constraint Satisfaction Problems & Inference
Problem 1 (Constraint Networks) 4 pt

4 minA constraint network is a triple ⟨𝑉,𝐷, 𝐶⟩. Explain the roles of 𝑉, 𝐷, and 𝐶. If you
use the word “constraint” you have to define and briefly explain it.
Solution: 𝑉: a set of variables

𝐷: a set of sets 𝐷𝑣 of values for each 𝑣 ∈ 𝑉
𝐶: a set of constraints; i.e. relations on (the domains of the) variables.

Problem 2 (Constraint Networks) 10 pt
10 minDescribe the following problems as constraint networks

1. Sudoku

2. The 8 queens problem

Solution: Here are some possible answers:

Sudoku

• Variables: One variable 𝑣𝑖,𝑗 for each coordinate (𝑖, 𝑗) in the sudoku field.

• Domains: {1, ..., 9} for each variable.

• Constraints: For each pair 𝑣𝑖,𝑗 , 𝑣𝑘,𝓁 a binary constraint that is invalid iff

– 𝑖 = 𝑘 and 𝑣𝑖,𝑗 = 𝑣𝑘,𝓁 (same row)
– 𝑗 = 𝓁 and 𝑣𝑖,𝑗 = 𝑣𝑘,𝓁 (same column)
– 𝑣𝑖,𝑗 and 𝑣𝑘,𝓁 are in the same block and 𝑣𝑖,𝑗 = 𝑣𝑘,𝓁.

3

8-queens-problem

• Variables: {𝑄1, ..., 𝑄8} (where 𝑄𝑖 represents the queen in row 𝑖).

• Domains: {1, ..., 8} (representing the columns).

• Constraints: For each pair 𝑄𝑖 , 𝑄𝑗 (with 𝑖 < 𝑗) a binary constraint that is sat-
isfied iff 𝑄𝑖 ≠ 𝑄𝑗 (no two queens in the same column) and 𝑄𝑗 ≠ 𝑄𝑖 + (𝑗 − 𝑖)
and 𝑄𝑗 ≠ 𝑄𝑖 − (𝑗 − 𝑖) (not diagonal).

5 Logic
Problem 1 (Propositional Resolution) 5 pt

5 minProve the following formula using the resolution calculus:

¬(¬𝑃 ⇒ 𝑄) ∨ (𝑄 ∨ 𝑅) ∨ ¬(𝑃 ⇒ 𝑅)

To convert the formula to CNF, you can use the extended rules for the trans-
formation calculus from the lectures, for connectives ∨, ¬,⇒, and ∧. It is ok to do
a few steps at a time, but you should annotate each row with the rules you used.
Name the rules after the connective and label at the assumption. For example, the
rule

𝐂 ∨ (𝐀 ∨ 𝐁)𝖳

𝐂 ∨𝐀𝖳 ∨ 𝐁𝖳

would be named ∨𝖳.
Solution:

1. Transformation to CNF.

(¬¬𝑃⇒ 𝑄 ∨ 𝑄 ∨ 𝑅 ∨ ¬𝑃⇒ 𝑅)𝖥

¬(¬𝑃⇒ 𝑄)𝖥 ; 𝑄𝖥 ; 𝑅𝖥 ; ¬(𝑃⇒ 𝑅)𝖥, apply ∨𝖥 three times
(¬𝑃⇒ 𝑄)𝖳 ; 𝑄𝖥 ; 𝑅𝖥 ; (𝑃⇒ 𝑅)𝖳, apply ¬𝖥 twice
¬𝑃𝖥 ∨ 𝑄𝖳 ; 𝑄𝖥 ; 𝑅𝖥 ; 𝑃𝖥 ∨ 𝑅𝖳, apply⇒𝖳 twice

𝑃𝖳 ∨ 𝑄𝖳 ; 𝑄𝖥 ; 𝑅𝖥 ; 𝑃𝖥 ∨ 𝑅𝖳, apply ¬𝖥

𝐶𝑁𝐹 = {𝑃𝖳 ∨ 𝑄𝖳, 𝑄𝖥, 𝑅𝖥, 𝑃𝖥 ∨ 𝑅𝖳}

Problem 2 (First-Order Tableau) 10 pt
10 minProve the following formula using the first-order free variable tableaux calculus.

We have 𝑃 ∈ Σ𝑝2 , 𝑓, 𝑔 ∈ Σ𝑓1 and 𝑎, 𝑏 ∈ Σ𝑓0 .

∃𝑋
((
∃𝑌¬𝑃(𝑌, 𝑓(𝑏))

)
∨
(
¬𝑃(𝑏, 𝑓(𝑋)) ⇒ ¬𝑃(𝑔(𝑎), 𝑓(𝑋))

))

4

Solution:

∃𝑋 ((∃𝑌¬𝑃(𝑌, 𝑓(𝑏))) ∨ (¬𝑃(𝑏, 𝑓(𝑋)) ⇒ ¬𝑃(𝑔(𝑎), 𝑓(𝑋))))𝐹

(∃𝑌¬𝑃(𝑌, 𝑓(𝑏))) ∨ (¬𝑃(𝑏, 𝑓(𝑉𝑋)) ⇒ ¬𝑃(𝑔(𝑎), 𝑓(𝑉𝑋)))𝐹
∃𝑌¬𝑃(𝑌, 𝑓(𝑏))𝐹

¬𝑃(𝑏, 𝑓(𝑉𝑋)) ⇒ ¬𝑃(𝑔(𝑎), 𝑓(𝑉𝑋))𝐹
¬𝑃(𝑉𝑌 , 𝑓(𝑏))𝐹
𝑃(𝑉𝑌 , 𝑓(𝑏))𝑇

¬(𝑃(𝑏, 𝑓(𝑉𝑋)))𝑇
¬𝑃(𝑔(𝑎), 𝑓(𝑉𝑋))𝐹
𝑃(𝑏, 𝑓(𝑉𝑋))𝐹

𝑃(𝑔(𝑎), 𝑓(𝑉𝑋))𝑇
close using 𝑏∕𝑉𝑌 , 𝑏∕𝑉𝑋

6 Planning
Problem 1 12 pt

12 minCheeta is an intelligent and lazy monkey. Your task is to help him grab a banana.
Initially, the monkey and a boat are “Low” on the ground at position “A” and

the banana hangs “High” at position “B” on a tree. Cheeta can climb up the tree
where the banana hangs, meaning that it can climb from height “Low” to “High”
at B. Cheeta can grab the banana when they are both at the same position and at
the same height.

There is a river between “A” and “B”, and Cheeta can only travel between these
positions by boat. Cheeta can only enter the boat if they are at the same position
and height (the boat is a height “Low”).

The following STRIPS model is used. The facts are:

• 𝐴𝑡(𝑥, 𝑦): 𝑥 ∈ {𝐵𝑜𝑎𝑡, 𝐵𝑎𝑛𝑎𝑛𝑎, 𝐶ℎ𝑒𝑒𝑡𝑎} is at position 𝑦 ∈ {𝐴, 𝐵, 𝐵𝑜𝑎𝑡}.

• 𝐻𝑒𝑖𝑔ℎ𝑡(𝑥, 𝑦): 𝑥 ∈ {𝐵𝑜𝑎𝑡, 𝐵𝑎𝑛𝑎𝑛𝑎, 𝐶ℎ𝑒𝑒𝑡𝑎} is at height 𝑦 ∈ {𝐿𝑜𝑤,𝐻𝑖𝑔ℎ}.

• 𝐶𝑙𝑖𝑚𝑏𝑎𝑏𝑙𝑒(𝑥): Cheeta can climb at position 𝑥 ∈ {𝐴, 𝐵}.

• 𝐺𝑟𝑎𝑏𝑏𝑒𝑑(): Cheeta has grabbed the banana.

The goal for Cheeta is to grab the banana using the following available actions:

• 𝐷𝑟𝑖𝑣𝑒(𝑥, 𝑦) to get from 𝑥 to 𝑦

• 𝐺𝑒𝑡𝐼𝑛(𝑥) to get in the boat (at location 𝑥)

• 𝐺𝑒𝑡𝑂𝑢𝑡(𝑥) to get out of the boat (at location 𝑥)

• 𝐶𝑙𝑖𝑚𝑏(𝑥, 𝑦, 𝑧) to climb at position 𝑥 from height 𝑦 to height 𝑧

• 𝐺𝑟𝑎𝑏(𝑥, 𝑦) to grab the banana (at position 𝑥 and height 𝑦)

(a) Properly define the actions 𝐷𝑟𝑖𝑣𝑒(𝑥, 𝑦) and 𝐺𝑒𝑡𝐼𝑛(𝑥)

5

(b) Give the initial state and a solution to this planning problem

Solution:

(a) • 𝐷𝑟𝑖𝑣𝑒(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐵𝑜𝑎𝑡), 𝐴𝑡(𝐵𝑜𝑎𝑡, 𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑜𝑎𝑡, 𝐿𝑜𝑤)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝐵𝑜𝑎𝑡, 𝑦)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝐵𝑜𝑎𝑡, 𝑥)}

for all 𝑥, 𝑦 ∈ {𝐴, 𝐵}.
• 𝐺𝑒𝑡𝐼𝑛(𝑥) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑥), 𝐴𝑡(𝐵𝑜𝑎𝑡, 𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐿𝑜𝑤), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑜𝑎𝑡, 𝐿𝑜𝑤)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐵𝑜𝑎𝑡)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑥)}

• 𝐺𝑒𝑡𝑂𝑢𝑡(𝑥) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐵𝑜𝑎𝑡), 𝐴𝑡(𝐵𝑜𝑎𝑡, 𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐿𝑜𝑤), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑜𝑎𝑡, 𝐿𝑜𝑤)}
𝑎𝑑𝑑 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑥)}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐵𝑜𝑎𝑡)}

for all 𝑥 ∈ {𝐴, 𝐵}.
• 𝐶𝑙𝑖𝑚𝑏𝑈𝑝(𝑥, 𝑦, 𝑧) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑥), 𝐶𝑙𝑖𝑚𝑏𝑎𝑏𝑙𝑒(𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑦), 𝑁𝑒𝑥𝑡(𝑦, 𝑧)}
𝑎𝑑𝑑 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑧)}
𝑑𝑒𝑙 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵}, 𝑦, 𝑧 ∈ {𝐿𝑜𝑤,𝑀𝑖𝑑𝑑𝑙𝑒,𝐻𝑖𝑔ℎ}.
• 𝐶𝑙𝑖𝑚𝑏𝐷𝑜𝑤𝑛(𝑥, 𝑦, 𝑧) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑥), 𝐶𝑙𝑖𝑚𝑏𝑎𝑏𝑙𝑒(𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑦), 𝑁𝑒𝑥𝑡(𝑧, 𝑦)}
𝑎𝑑𝑑 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑧)}
𝑑𝑒𝑙 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵}, 𝑦, 𝑧 ∈ {𝐿𝑜𝑤,𝑀𝑖𝑑𝑑𝑙𝑒,𝐻𝑖𝑔ℎ}.
• 𝑈𝑠𝑒𝐿𝑖𝑎𝑛𝑎() =

𝑝𝑟𝑒 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎,𝐻𝑖𝑔ℎ)}
𝑎𝑑𝑑 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝐿𝑜𝑤)}
𝑑𝑒𝑙 ∶ {𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎,𝐻𝑖𝑔ℎ)}

6

• 𝐺𝑟𝑎𝑏(𝑥, 𝑦) =

𝑝𝑟𝑒 ∶ {𝐴𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑥), 𝐴𝑡(𝐵𝑎𝑛𝑎𝑛𝑎, 𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐶ℎ𝑒𝑒𝑡𝑎, 𝑦), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑎𝑛𝑎𝑛𝑎, 𝑦)}
𝑎𝑑𝑑 ∶ {𝐺𝑟𝑎𝑏𝑏𝑒𝑑()}
𝑑𝑒𝑙 ∶ {𝐴𝑡(𝐵𝑎𝑛𝑎𝑛𝑎, 𝑥), 𝐻𝑒𝑖𝑔ℎ𝑡(𝐵𝑎𝑛𝑎𝑛𝑎, 𝑦)}

for all 𝑥 ∈ {𝐴, 𝐵}, 𝑦 ∈ {𝐿𝑜𝑤,𝑀𝑖𝑑𝑑𝑙𝑒,𝐻𝑖𝑔ℎ}.

(b)

7

	Prolog
	Search
	Adversarial Search
	Constraint Satisfaction Problems & Inference
	Logic
	Planning

