
Name:

Birth Date:

Matriculation Number:

Retake Exam
Künstliche Intelligenz 1

Jul 24., 2017

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 3.1 4.1 4.2 4.3 5.1 Sum grade
total 3 8 5 5 15 5 4 6 18 69
reached

Exam Grade: Bonus Points: Final Grade:

i

The “solutions” to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful “solutions”, they can be incomplete and can even
contain errors.

If you find “solutions” you do not understand or you find incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student’s answers is not a process of simply “comparing
with the reference solution”.

In the course Artificial Intelligence I/II we award 5 bonus points for the first
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully different from the existing ones.

ii

1 Search
Problem 1.1 Does a finite state space always lead to a finite search tree? How about a 3 pt

3 minfinite space state that is a tree? Justify your answers.
Solution:No (there can be cycles). Yes if it’s a tree (no cycles).

Problem 1.2 (Search Strings)
You are given a tree of the following form: 8 pt

8 min
A

B

D

H

P
14

Q
23

1
I
2

13
E

J

R
89

S
23

3
K
4

3

5
C

F

L
5

M
6

34
G

N
7

O
8

12

7

None of the nodes in this tree are goal notes. In what order would the nodes be traversed
for the following search types:

1. breadth-first search
2. depth-first search
3. uniform-cost search
4. greedy search, where you take the “alphabetic distance” (the number of letters) be-

tween the node label and the letter S as the heuristic.
Give the solution as a simple string i.e. ABCDE
Solution:

1. ABCDEFGHIJKLMNOPQRS
2. ABDHPQIEJRSKCFLMGNO
3. ABCEJKDHGINOPSFQLMR
4. ACGONFMLBEKJSRDIHQP

2 Adversarial Search
Problem 2.1 (Game Tree)
Consider the following game tree. Assume it is the maximizing player’s turn to move. The 5 pt

5 minvalues at the leaves are the static evaluation function values of the states at each of those
nodes.

1

A

B C D

E F G H I J K

L M N O P Q R S T U V W X Y Z
4 8 9 3 2 -2 9 -1 8 4 3 6 5 7 1

20 pt
1. Label each non-leaf node with its minimax value. See above 5 pt
2. Which move would be selected by Max? 15 pt
3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). Assume

children of a node are visited left-to-right. 10 pt
4. In general (i.e., not just for the tree shown above), if we traverse a game tree by

visiting children in right-to-left order instead of left-to-right, can this result in a
change to
(a) the minimax value computed at the root?
(b) The number of nodes pruned by the alpha-beta algorithm?

Solution:
1. A:8, B:8, C:2, D:6, E:8, F:9, G:2, H:9, I:8, J:6, K:7
2. B
3. OHRSITUKYZ
4. (a) no, (b) yes

Problem 2.2 (Minimax Restrictions)
Name at least five criteria that a game has to satisfy in order for the minimax algorithm 5 pt

5 minto be applicable.
Solution:Any five of:

• Two-player

• Determininstic

• Fully observable

• Players alternate

• Finitely many / discrete game states

• Zero-sum

• Game ends after finitely many rounds

2

3 Constraint Satisfaction Problems & Inference
Problem 3.1 (Scheduling CS Classes)
You are in charge of scheduling for computer science classes that meet Mondays, Wednes- 15 pt

15 mindays and Fridays. There are 5 classes that meet on these days and 3 professors who will be
teaching these classes. You are constrained by the fact that each professor can only teach
one class at a time. The classes are:

• Class 1 - Intro to Programming: meets from 8:00-9:00am
• Class 2 - Intro to Artificial Intelligence: meets from 8:30-9:30am
• Class 3 - Natural Language Processing: meets from 9:00-10:00am
• Class 4 - Computer Vision: meets from 9:00-10:00am
• Class 5 - Machine Learning: meets from 9:30-10:30am

The professors are:
• Professor A, who is available to teach Classes 3 and 4.
• Professor B, who is available to teach Classes 2, 3, 4, and 5.
• Professor C, who is available to teach Classes 1, 2, 3, 4, 5. 4 pt
1. Formulate this problem as a CSP problem in which there is one variable per class,

stating the domains, and constraints. Constraints should be specified formally and
precisely, but may be implicit rather than explicit. 2 pt

2. Give the constraint graph associated with your CSP (e.g. by giving the edges). 4 pt
3. Show the domains of the variables after running arc-consistency on this initial graph

(after having already enforced any unary constraints). 1 pt
4. Give one solution to this CSP. 2 pt

5. Your CSP should look nearly tree-structured. Briefly explain (one sentence or less)
why we might prefer to solve tree-structures CSPs. 2 pt

6. Name (or briefly describe) a standard technique for turning these kinds of nearly
tree-structured problems into tree-structured ones.

Solution:

1.

Variables Domains
C1 C
C2 B,C
C3 A,B,C
C4 A,B,C
C5 B,C

Constraints: C1 6= C2, C2 6= C3 , C3 6= C4, C4 6= C5, C2 6= C4, C3 6= C5

2. C1

C2

C3

C4
C5

3

3.

Variable Domain
C1 C
C2 B
C3 A,C
C4 A,C
C5 B,C

Note that C5 cannot possibly be C, but arc consistency does not rule

it out.

4. C1 = C, C2 = B, C3 = C, C4 = A, C5 = B. One other solution is possible (where C3 and
C4 are switched).

5. Minimal answer: Can solve them in polynomial time. If a graph is tree structured (i.e. has
no loops), then the CSP can be solved in O(nd2) time as compared to general CSPs, where
worst-case time is O(dn). For tree-structured CSPs you can choose an ordering such that
every node’s parent precedes it in the ordering. Then you can greedily assign the nodes in
order and will find a consistent assignment without backtracking.

6. Minimal answer: cutset conditioning. One standard technique is to instantiate cutset, a
variable (or set of variables) whose removal turns the problem into a tree structured CSP.
To instantiate the cutset you set its values in each possible way, prune neighbors, then solve
the reduced tree structured problem (which is fast).

4 Logic
Problem 4.1 (Propositional Tableaux)
Prove the following formula by exhibiting a closed T0 tableau. 5 pt

5 min
(A ∧ B ∧ C) ⇒ (A ⇒ B ∧ C)

Problem 4.2 (Inference and Entailment)
4 pt

4 min1. Define and briefly explain the entailment and inference relations.
2. How do we write “A entails B” and “from A we can infer/deduce B” in symbolism?
3. What is the difference between the two relations.

Solution:
1. The entailment relation |= is defined via the models: We say A |= B, iff any model M

that makes A true also makes B true. The inference relation ` is defined by a set of purely
syntactic inference rules.

2. “A entails B” is written as A |= B and “from A we can infer/deduce B” as A ` B
3. Both are relations between expressions of the logic that try to model the process of argu-

mentation from statements known to be true to new true statements. But entailment uses
the notion of truth in a model, whereas the inference does this by a set of inference rules
which are “known to preserve truth”. In the best of all cases, the entailment and inference
relations coincide. Then we have the “miracle of logics”.

4

Problem 4.3 (Resolution Calculus)
Use the resolution calculus to prove the validity of the expression: 6 pt

3 min
(X ∧Y)∨ (X ∧¬Y)⇒X

Solution:

5 Planning
Problem 5.1 (Planning Bike Repair)
Consider the following problem. A bicycle has a front wheel and a back wheel installed and 18 pt

18 minboth wheels have a flat tire. A robot needs to repair the bicycle. The room also contains a
tire pump and a box with all the other equipment needed by the robot to repair a bicycle.
The robot can repair a wheel with the help of the box and the tire pump when the robot
and the three objects are at the same position. The bicycle is repaired when the robot has
done a final overall check which requires both tires to be repaired and to be installed on
the bicycle again. For this check, the box is also needed at the same position as the bicycle
and the robot.

The exercise is to model this problem as a STRIPS planning task. In doing so, assume
the following framework. The robot is currently at position “A”, the bicycle is at position
“B”, and the “Frontwheel” and the “Backwheel” are installed on the “Bicycle”. The “Box”
is at position “C” and the “Pump” at position “D”. The actions available for the robot are:

• “Go” from one position to another. The four possible positions A, B, C, and D are
connected in such a way that the robot can reach every other place in one “Go”.

• “Push” an object from one place to another. The bicycle is not pushable and the
wheels are only pushable if not installed on the bicycle; obviously the robot cannot
push itself; every other object is always pushable. “Push” moves both the object and
the robot.

• “Remove” a wheel from the bike.

• “RepairWheel” to fix a wheel with a flat tire.

• “InstallWheel” to put a wheel back on the bike.

• “FinalCheck” to make sure that not only the two wheels are repaired and installed
but also the rest of the bike is in good condition. The box is needed at the same
position for this.

(a) Write a STRIPS formalization of the initial state and goal descriptions.

5

(b) Write a STRIPS formalization of the actions Remove and FinalCheck, and only
these two actions. In doing so, please make use of “object variables”, i.e., write the
actions up in a parametrized way. State, for each parameter, by which objects it can
be instantiated.

In both (a) and (b), make use of only the following predicates:

• At(x, y): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel, Box,
Pump} is at position y ∈ {Bicycle, A,B,C,D}.

• Pushable(x): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel,
Box, Pump} can be pushed.

• Repaired(x): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel,
Box, Pump} is repaired.

• FlatT ire(x): To indicate that object x ∈ {Robot, Bicycle, Frontwheel, Backwheel,
Box, Pump} has a flat tire.

Solution:

(a) Initial state description:

I = {At(Robot, A), At(Bicycle,B), At(Frontwheel, Bicycle),

At(Backwheel, Bicycle), At(Box,C), At(Pump,D), Pushable(Box),

Pushable(Pump), F latT ire(Frontwheel), F latT ire(Backwheel)}

Goal description: G = {Repaired(Bicycle)}

(b) Action descriptions:

• Go(x, y) =

pre : {At(Robot, x)}
add : {At(Robot, y)}
del : {At(Robot, x)}

for all x, y ∈ {A,B,C,D}.
• Push(x, y, z) =

pre : {At(Robot, y), At(x, y), Pushable(x)}
add : {At(Robot, z), At(x, z)}
del : {At(Robot, y), At(x, y)}

for all x ∈ {Robot,Bicycle,Wheel, Box, Pump}, y, z ∈ {A,B,C,D}.

6

• Remove(x, y) =

pre : {At(Robot, x), At(Bicycle, x), At(y,Bicycle)}
add : {At(y, x), Pushable(y)}
del : {At(y,Bicycle)}

for all x ∈ {A,B,C,D}, y ∈ {Frontwheel, Backwheel}.
[Note that the facts Pushable(Frontwheel) and Pushable(Backwheel) can also be initially
given and never deleted because of the way the action “Push" is defined.]

• RepairWheel(x, y) =

pre : {At(Robot, x), At(y, x), F latT ire(y), At(Box, x), At(Pump, x)}
add : {Repaired(y)}
del : {FlatT ire(y)}

for all x ∈ {A,B,C,D}, y ∈ {Frontwheel, Backwheel}.
• InstallWheel(x, y) =

pre : {At(Robot, x), At(Bicycle, x), At(y, x), Repaired(y), Pushable(y)}
add : {At(y,Bicycle)}
del : {At(y, x), Pushable(y)}

for all x ∈ {A,B,C,D}, y ∈ {Frontwheel, Backwheel}.
• FinalCheck(x) =

pre : {At(Robot, x), At(Bicycle, x), At(Box, x),

At(Frontwheel, Bicycle), At(Backwheel, Bicycle),

Repaired(Frontwheel), Repaired(Backwheel)}
add : {Repaired(Bicycle)}
del : {}

for all x ∈ {A,B,C,D}.

7

	1 Search
	2 Adversarial Search
	3 Constraint Satisfaction Problems & Inference
	4 Logic
	5 Planning

