
Name:

Birth Date:

Matriculation Number:

Exam

Künstliche Intelligenz 1

Jul 24., 2017

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 3.1 3.2 3.3 4.1 4.2 4.3 4.4 5.1 Sum grade

total 5 5 5 7 8 5 5 6 5 6 5 18 80

reached

Exam Grade: Bonus Points: Final Grade:

i



The �solutions� to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful �solutions�, they can be incomplete and can even
contain errors.

If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.

ii



1 Search

Problem 1.1 (A∗ Theory) 5 pt

3 minWhat is the condition on the heuristic function that makes A∗ optimal? Does a heuristic
with this condition always exist?
Solution:Admissible heuristic - always underestimates the real cost to the goal. This always
exists: h(x) = 0.

Problem 1.2 (A∗ vs. BFS) 5 pt

3 minDoes A∗ search always expand fewer nodes than BFS? Justify you answer.
Solution:No. With a bad heuristic, A∗ can be forced to explore the whole space, just like BFS.

2 Adversarial Search

Problem 2.1 (Minimax Restrictions) 5 pt

5 minName at least �ve criteria that a game has to satisfy in order for the minimax algorithm
to be applicable.
Solution:Any �ve of:

� Two-player

� Determininstic

� Fully observable

� Players alternate

� Finitely many / discrete game states

� Zero-sum

� Game ends after �nitely many rounds

Problem 2.2 (Game Tree) 7 pt

7 minConsider the following game tree. Assume it is the maximizing player's turn to move. The
values at the leaves are the static evaluation function values of the states at each of those
nodes.

A

B C D

E F G H I J K

L M N O P Q R S T U V W X Y Z
4 8 9 3 2 -2 9 -1 8 4 3 6 5 7 1

1



1. Compute the minimax game value of nodes A, B, C, and D
2. Which move would be selected by Max?
3. List the nodes that the alpha-beta algorithm would prune (i.e., not visit). Assume

children of a node are visited left-to-right.
Solution:

1. B = 8, C = 2, D = 6, A = 8
2. B
3. O, H (and R and S), I (and T and U), K (and Y and Z)

3 Constraint Satisfaction Problems & Inference

Problem 3.1 (Constraint Networks) 8 pt

8 minA constraint network is a triple 〈V,D,C〉. Explain the roles of V , D, and C. If you use
the word �constraint� you have to de�ne and brie�y explain it.
Solution:V : a set of variables

D: a set of sets Dv of values for each v ∈ V
C: a set of constraints; i.e. relations on (the domains of the) variables.

Problem 3.2 (Arc consistency) 5 pt

5 minDe�ne the concept of arc consistency.
Solution:A variable u is arc consistent relative to v, if there is either no constraint between u
and v, or for every value d ∈ Du, there is some d′ ∈ Dv such that (d, d′) ∈ Cuv. A constraint
network is arc consistent if all variables are pairwise arc consistent relative to each other.

Problem 3.3 (50 Queens) 5 pt

5 minFormalize the 50 Queens Problem as a constraint network. Hint: You do not have to write
down all the constraints explicitly, but it has to be clear what the exact constraints are.

4 Logic

Problem 4.1 (Inference and Entailment) 6 pt

6 min
1. De�ne and brie�y explain the entailment and inference relations.
2. How do we write �A entails B� and �from A we can infer/deduce B� in symbolism?
3. What is the di�erence between the two relations.

Solution:
1. The entailment relation |= is de�ned via the models: We say A |= B, i� any model M

that makes A true also makes B true. The inference relation ` is de�ned by a set of purely
syntactic inference rules.

2. �A entails B� is written as A |= B and �from A we can infer/deduce B� as A ` B
3. Both are relations between expressions of the logic that try to model the process of argu-

mentation from statements known to be true to new true statements. But entailment uses
the notion of truth in a model, whereas the inference does this by a set of inference rules

2



which are �known to preserve truth�. In the best of all cases, the entailment and inference
relations coincide. Then we have the �miracle of logics�.

Problem 4.2 (First-Order Tableaux) 5 pt

5 minProve the following formula using the �rst-order free variable tableaux calculus. We have
P ∈ Σp

1.
∃X. (P (X) ⇒ ∀Y.P (Y ))

Solution:

(1) ∃X.(P (X) ⇒ ∀Y.P (Y ))F

(2) P (VX) ⇒ ∀Y.P (Y )F (from 1)

(3) P (VX)T (from 2)
(4) ∀Y.P (Y )F (from 2)

(5) P (cY )
F (from 4)

(6) ⊥[cY /VX ]

Problem 4.3 (First-Order Resolution) 6 pt

6 minProve the following formula using resolution.
P ∈ Σp

1, R ∈ Σp
2, a, b ∈ Σf

0

∃X.∀Y.∃Z.∃W. ((¬P (Z) ∧ ¬R(b, a)) ∨ ¬R(a, b) ∨R(W,a) ∨ (P (Y ) ∧R(X, b)))

Solution:We negate:

∀X.∃Y.∀Z.∀W.(P (Z) ∨R(b, a)) ∧R(a, b) ∧ ¬R(W,a) ∧ (¬P (Y ) ∨ ¬R(X, b))

We skolemize:

(P (Z) ∨R(b, a)) ∧R(a, b) ∧ ¬R(W,a) ∧ (¬P (fY (X)) ∨ ¬R(X, b))

This yields the clauses {P (Z)T , R(b, a)T }, {R(a, b)T }, {R(W,a)F }, {P (fY (X))F , R(X, b)F }. We
resolve:

{P (Z)T , R(b, a)T }+ {R(W,a)F }[b/W ] =⇒ {P (Z)T }
{R(a, b)T }+ {P (fY (X))F , R(X, b)F }[a/X] =⇒ {P (fY (a))

F }
{P (Z)T }[fY (a)/Z] + {P (fY (a))

F } =⇒ {}

Problem 4.4 (The Zip Function) 5 pt

5 minThe zip function takes two lists with lengths that di�er at most by 1, and outputs a list of
lists containing one element from the �rst list and the element with the same index from
the other list, possibly followed by a one-element list with the left-over argument.

Create a ProLog predicate with 3 arguments: the �rst two would be the two lists you
want to zip, and the third one would be the result. For instance:

3



?= zip([1,2,3],[4,5,6],L).
L = [[1, 4], [2, 5], [3, 6]].

?= zip([1,2],[3,4,5],L).
L = [[1, 3], [2, 4], [5]].

Feel free to implement any helper functions.

Hint: Remember that you can pattern match a list L as [HEAD|TAIL].
Solution:

zip([L],[],[[L]]).
zip([],[L],[[L]]).
zip([],[],[]).
zip([H1|T1],[H2|T2],L) := zip(T1,T2,T), L = [[H1,H2]|T).

5 Planning

Problem 5.1 18 pt

18 minConsider the following problem. A fused bulb hangs out of reach from the ceiling. A robot
needs to repair the bulb. The room also contains a box. Pushing that box into the correct
position, and climbing onto the box, will bring the bulb into reach for the robot.

The exercise is to model this problem as a STRIPS planning task. In doing so, assume
the following framework. The robot is currently at position �A�, the fused bulb is at position
�B�, and the box is at position �C�. The robot and box are at the same height �Low�, the
fused bulb is at height �High�. By climbing onto the box, the robot changes from �Low� to
�High�; vice versa when climbing o� the box. The actions available for the robot are �Go�
from one place to another (only possible if the robot is at �Low�), �Push� an object from
one place to another (only possible if the robot and object are at �Low�), �ClimbUp� onto
or �ClimbDown� from an object, and �Repair� to �x an object. The robot needs to be at
the same place and height as an object in order to repair it.

Note that the robot can only push an object or climb onto an object if both of them
are at the same location. Furthermore, in case of pushing an object the robot changes to
the destination location as well.

(a) Write a STRIPS formalization of the initial state and goal descriptions.

(b) Write a STRIPS formalization of the �ve actions: Go, Push, ClimbUp, ClimbDown,
and Repair. In doing so, please do make use of �object variables�, i.e., write the
actions up in a parameterized way. State, for each parameter, by which objects it can
be instantiated.

In both (a) and (b), make use of the following predicates: (do not use any other
predicates)

� At(x, y): To indicate that object x ∈ {Box,Bulb, Robot} is at position y ∈ {A,B,C}.

4



� Height(x, y): To indicate that object x ∈ {Box,Bulb, Robot} is at height y ∈
{Low,High}.

� Pushable(x): To indicate that object x ∈ {Box,Bulb, Robot} can be pushed.

� Climbable(x): To indicate that the robot can climb on object x ∈ {Box,Bulb, Robot}.

� Repaired(x): To indicate that object x ∈ {Box,Bulb, Robot} is repaired.

Solution:

(a) Initial state description:

I = {At(Robot, A), At(Bulb,B), At(Box,C),

Height(Robot, Low), Height(Box,Low), Height(Bulb,High),

Pushable(Box), Climbable(Box)}

Goal description: G = {Repaired(Bulb)}

(b) Action descriptions:

� Go(x, y) =

pre : {At(Robot, x), Height(Robot, Low)}
add : {At(Robot, y)}
del : {At(Robot, x)}

for all x, y ∈ {A,B,C}.
� Push(x, y, z) =

pre : {At(Robot, y), Pushable(x), At(x, y), Height(Robot, Low), Height(x, Low)}
add : {At(x, z), At(Robot, z)}
del : {At(x, y), At(Robot, y)}

for all x ∈ {Box,Bulb,Robot}, y, z ∈ {A,B,C}.
� ClimbUp(x, y) =

pre : {At(Robot, y), At(x, y), Climbable(x), Height(Robot, Low), Height(x, Low)}
add : {Height(Robot,High)}
del : {Height(Robot, Low)}

for all x ∈ {Box,Bulb,Robot}, y ∈ {A,B,C}.
� ClimbDown() =

pre : {Height(Robot,High)}
add : {Height(Robot, Low)}
del : {Height(Robot,High)}

5



� Repair(x, y, z) =

pre : {At(Robot, y), At(x, y), Height(Robot, z), Height(x, z)}
add : {Repaired(x)}
del : {}

for all x ∈ {Box,Bulb,Robot}, y ∈ {A,B,C}, z ∈ {High, Low}.

6


	1 Search
	2 Adversarial Search
	3 Constraint Satisfaction Problems & Inference
	4 Logic
	5 Planning

