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1 Probabilities
Problem 1.1 (Python)

4 Points1. Consider the Python program below where 𝐽 holds the joint probability distribution of two ran-
dom variables such that 𝐽[𝑥][𝑦] = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦). Which probability-related operation does
the function foo compute?
def foo(J):

res = 0
for x in range(len(J)):
for y in range(len(J[x])):
res += (x+y)*J[x][y]

return res

Solution: It computes the expected value of 𝑋 + 𝑌.

5 Points2. Consider a state space {0, … , 𝑛 − 1}, a transition model such that 𝑇[𝑖][𝑗] is the probability of
state 𝑖 transitioning into state 𝑗, and a probability distribution of the current state, i.e., 𝑆[𝑖] is the
probability of currently being in state 𝑖.
Complete the function definition below to return the probability distribution of the state after
one transition.
def next(T,S):

Solution:

def next(T,S):
n = len(S)
res = []
for j in range(n):

pj = 0
for i in range(n):

pj += S[i]*T[i][j]
res.append(pj)

return res

(This is just the matrix product 𝑆 ⋅ 𝑇 with 𝑆 seen as a 1 × 𝑛matrix.)

Problem 1.2 (Working with Distributions)
Assume Boolean random variables 𝑋,𝑌, 𝑍. Their joint probability distribution is given as follows:
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𝑥 𝑦 𝑧 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧)

0 0 0 𝑎

0 0 1 𝑏

0 1 0 𝑐

0 1 1 𝑑

1 0 0 𝑒

1 0 1 𝑓

1 1 0 𝑔

1 1 1 ℎ

2 Points1. What is the sample space Ω here?

Solution: {0, 1}3

2 Points2. Give all subsets of the probabilities {𝑎, … , ℎ} that must sum to 1.

Solution: Only {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ}

2 Points3. In terms of 𝑎,… , ℎ, give 𝑃(𝑋 = 0|𝑌 = 𝑍).

Solution: (𝑎 + 𝑑)∕(𝑎 + 𝑑 + 𝑒 + ℎ)

2 Points4. If 𝑒 = 𝑓 = 𝑔 = ℎ = 0, under what conditions are 𝑋 and 𝑌 independent?

Solution: They are always independent in that case (because 𝑋 is always 0 anyway).

2 Bayesian Reasoning
Problem 2.1 (Basic Rules)
Let 𝐴 and 𝐵 be Boolean random variables (using values 0 and 1) expressing that 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏, re-
spectively, will pass a test. Let 𝐻 be a Boolean random variable expressing that the test will be hard.

You estimate that Alice has a 60% chance to pass in general but only a 30% chance if the test is hard.
8 of the 10 most recent tests were hard, and you expect this to accurately predict the difficulty of the
next test.

2 Points1. Give the following probabilities:

𝑃(𝐻 = 1) = 0.8

𝑃(𝐴 = 1|𝐻 = 1) = 0.3

Solution: filled in above
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3 Points2. Calculate the updated probability that the test was hard after finding out that Alice has passed.

Solution: Bayes’ rule: 𝑃(𝐻 = 1|𝐴 = 1) = 𝑃(𝐴 = 1|𝐻 = 1)⋅𝑃(𝐻 = 1)∕𝑃(𝐴 = 1) = 0.3⋅0.8∕0.6 =

0.4

3 Points3. Now assume you know nothing about Alice, but you know that 𝑃(𝐵 = 1,𝐻 = 1) = 30% and
𝑃(𝐵 = 0,𝐻 = 0) = 5%.
Calculate the probability that Bob passes.

Solution: Marginalization in two ways:

0.2 = 𝑃(𝐻 = 0) = 𝑃(𝐵 = 1,𝐻 = 0) + 𝑃(𝐵 = 0,𝐻 = 0)

𝑃(𝐵 = 1) = 𝑃(𝐵 = 1,𝐻 = 1) + 𝑃(𝐵 = 1,𝐻 = 0) = 0.3 + (0.2 − 0.05) = 0.45

2 Points4. Assume Alice and Bob have only studied together all semester. Explain in about 2 sentences,
how that knowledge affects the probability analysis in this situation.

Solution: For two arbitrary students, it is not guaranteed but reasonable to assume that 𝐴 and
𝐵 are conditionally independent given 𝐻. But now we should not assume that: If they studied
together, there is a higher-than-usual chance that their test results will be the same.

Problem 2.2 (Bayesian Networks)
Consider the following situation about a car:

• Your car is unusable if it is out of gas or if it is broken. These two are the only causes.
• You might be late for work if your car does not work or if you oversleep. These two are the only
causes.

You want to model this situation as a Bayesian network using Boolean random variables.
3 Points1. Give an appropriate set of random variables and their meaning. Give a good variable ordering

and draw the resulting Bayesian network.

Solution: random variablesvariable: 𝐶 (car unusable), 𝐺 (out of gas), 𝐵 (broken), 𝐿 (late for
work), 𝑆 (overslept).
Order: {𝐵, 𝐺}, 𝐶, 𝐿 with 𝑆 anywhere except at the end
Network: 𝐺 → 𝐶 ← 𝐵 and 𝐶 → 𝐿 ← 𝑆

2 Points2. Give the probability of the car being unusable in terms of the entries of the conditional proba-
bility table of your network.

Solution: 𝑃(𝐶+) = Σ𝑏,𝑔∈{𝑡𝑟𝑢𝑒,𝑓𝑎𝑙𝑠𝑒}𝑃(𝐶
+ ∣ 𝐵 = 𝑏, 𝐺 = 𝑔) ⋅ 𝑃(𝐵 = 𝑏) ⋅ 𝑃(𝐺 = 𝑔)

2 Points3. Now you decide to make the car-unusable node deterministic. Explain (in about 2 sentences)
why that choice is justified based on the description above, and how it affects the conditional
probability table of that node.
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Solution: The description says that the car is (rather than e.g., “might be”) unusable if is a
broken or without gas, i.e., that the relation is deterministic and not governed by probability.
Formally: 𝑃(𝐶+ ∣ 𝐺+ ∨ 𝐵+) = 1. Thus, we do not have to store a CPT for 𝐶 and only need to
store the function 𝐶 = 𝐺||𝐵.

3 Points4. Now you decide to make the late-for-work node a noisy disjunction node. Explain (in about 2
sentences) which two properties must hold about its probability distribution for this decision to
be justified. Judge if these are backed by the description.

Solution: Firstly, the two causes must be the only causes, i.e., 𝑃(𝐿+ ∣ 𝐶−, 𝑆−) = 0. This is
explicitly stated in the description.
Secondly, the two causal relationships must be independent of each other. Formally, if both
causes are present, the probability of non-lateness must be the product of the two inhibition
factors: 𝑃(𝐿+ ∣ 𝐶+, 𝑆+) = 1 − 𝑃(𝐿− ∣ 𝐶+, 𝑆−) ⋅ 𝑃(𝐿− ∣ 𝐶−, 𝑆+). This is not commented on by the
description. Common sense background knowledge indicates that the probability of being late
is even higher if both causes are present, e.g., if oversleeping prevents catching a bus.

3 Markovian Reasoning
Problem 3.1 (HiddenMarkov Models)
Consider the following situation:

• Youmake daily observations about your business 𝐵. Each day business is either good (𝑏1) or bad
(𝑏2).

• You know this is caused by the general economic situation 𝐺, which you cannot easily observe,
and which can be getting worse (𝑔1), be stable (𝑔2), or getting better (𝑔3).

• You have previously obtained the following information:
– when the economy gets worse, your business is good 36% of the time,
– when the economy is stable, your business is good 84% of the time,
– when the economy gets better, your business is good 90% of the time,
– half the time, the economy is the same as on the previous day,
– when the economy changes from one day to the next, each change is equally likely.

You want to model this situation as a hidden Markov model with two families of random variables
indexed by day number 𝑑.

2 Points1. Give the state and evidence variables and their domains.

Solution: State variables 𝐺𝑑 ∈ {𝑔1, 𝑔2, 𝑔3}, evidence variables 𝐵𝑑 ∈ {𝑏1, 𝑏2}

1 Points2. How can you tell that the sensor model is stationary here?

Solution: The business-economy relation is the same for each day.

1 Points3. What order does the model have?

Solution: first-order
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2 Points4. Complete the following sentence: The transition model 𝑇 is given by the matrix

𝑇 =
⎛

⎜

⎝

⎞

⎟

⎠

where 𝑇𝑖𝑗 = 𝑃(𝐺𝑑+1 = 𝑔𝑗 ∣ 𝐺𝑑 = 𝑔𝑖).

Solution: 𝑇 =
⎛

⎜

⎝

0.5 0.25 0.25

0.25 0.5 0.25

0.25 0.25 0.5

⎞

⎟

⎠

2 Points5. Complete the following sentence: The sensor model 𝑆 is given by the matrix

𝑆 =
⎛

⎜

⎝

⎞

⎟

⎠

where 𝑆𝑖𝑗 = 𝑃(𝐵𝑑 = 𝑏𝑗 ∣ 𝐺𝑑 = 𝑔𝑖).

Solution: 𝑆 =
⎛

⎜

⎝

0.36 0.64

0.84 0.16

0.9 0.1

⎞

⎟

⎠

1 Points6. Assume you want to apply filtering after observing good business at 𝑡 = 1. Give the diagonal
sensor matrix 𝑂1 to use in this case.

Solution: 𝑂1 =
⎛

⎜

⎝

0.36 0 0

0 0.84 0

0 0 0.9

⎞

⎟

⎠

Problem 3.2 (Decisions and Utility)
You want to calculate the utilities of state sequence 𝑠 = 𝑠0, 𝑠1, … experienced by an agent. You want to
use a reward function 𝑅 from states to real numbers.

2 Points1. In about 1 sentence, explain the problem of naively computing the total reward as𝑅(𝑠) = Σ𝑖𝑅(𝑠𝑖).

Solution: The reward can become unreasonably large for long state sequences and even diverge
to infinity for infinite sequences.

2 Points2. Finite horizon and reward discounting are two possible solutions for this problem.
Explain each in about 1 sentence or 1 formula.

Solution: Finite horizon only considers the next ℎ states: 𝑅(𝑠) = Σℎ
𝑖=1
𝑅(𝑠𝑖). Reward discounting

assigns decreasing rewards to future states: 𝑅(𝑠) = Σ𝑖𝛾
𝑖𝑅(𝑠𝑖) for some 0 < 𝛾 < 1.

4 Points3. Fill in the gaps in the following text:
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Both the value iteration and the policy evaluation algorithms use update rules derived from the
Bellman equation to iteratively recompute the utility of all states.
In each iteration, the utility of each state 𝑠 is recomputed by applying one action and adding the
reward of 𝑠 and the expected utility of the next state (computed using the current utility
values) multiplied by a discount factor 𝛾 .
They differ in which actions are chosen:
The latter considers only one action per state , which is given by a fixed policy .
The former picks the action that maximizes expected utility .

Solution: filled in above

4 Learning
Problem 4.1 (Learning for Data with Attributes)
Consider the following data observed for some patients during a medical trial of a new drug:

Duration of Treatment Dosage Success
1, 2, or 3 weeks 5 or 10mg/week yes/no
1 5 no
1 10 yes
2 5 no
2 10 yes
3 5 yes
3 10 yes

3 Points1. Give the decision tree for the attribute order “duration, dosage” that determines the patient’s
condition given the duration and dosage of the treatment.

Solution:
Duration?

Dosage? yes Dosage?

1 23

no yes

5 10

no yes

5 10

1 Points2. Give the entropy of the attribute “dosage”.

Solution: −3∕6 log 3∕6 − 3∕6 log
2
3∕6 = 1
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1 Points3. Give the entropy of the attribute “duration”.

Solution: −2∕6 log
2
2∕6 − 2∕6 log

2
2∕6 − 2∕6 log

2
2∕6 = log

2
3

To give a logical formulation, we use binary predicate symbols 𝐷𝑢𝑟 and 𝐷𝑜𝑠 and a unary predicate
symbol 𝑆𝑢𝑐. For example, 𝐷𝑢𝑟(𝑝, 2) ∧ 𝑆𝑢𝑐(𝑝) represents that patient 𝑝 was successfully treated for 2
weeks.

2 Points4. Give the shortest first-order formula that correctly represents the treatment results for all pa-
tients 𝑝.

Solution: ∀𝑝.𝑆𝑢𝑐(𝑝) ⇔ (𝐷𝑢𝑟(𝑝, 3) ∨ 𝐷𝑜𝑠(𝑝, 10))

2 Points5. Which clause(s) would inductive logic programming learn to represent the predicate 𝑆𝑢𝑐?

Solution: 𝐷𝑢𝑟(𝑝, 3) ⇒ 𝑆𝑢𝑐(𝑝) and 𝐷𝑜𝑠(𝑝, 10) ⇒ 𝑆𝑢𝑐(𝑝).

Problem 4.2 (Loss)
Our goal is to find a linear approximation ℎ𝑎(𝑥) = 𝑎𝑥 for the series of squares 0, 1, 4, 9, 16 of the
numbers 0, 1, 2, 3, 4.

2 Points1. Model this situation as an inductive learning problem.

Solution: The inductive learning problem is (ℋ, 𝑓) where

• the hypothesis space ℋ is the set containing all functions ℎ𝑎(𝑥) = 𝑎𝑥 with dom(ℎ𝑎) =
{0, … , 4} for 𝑎 ∈ ℝ

• the target function is 𝑓(𝑥) = 𝑥2 with dom(𝑓) = {0, 1, … , 4}

3 Points2. Assuming all 5 possible examples are equally probable, compute the generalized loss using the
squared error loss function.

Solution: Each example (𝑥, 𝑥2) has probability 1∕5. For each 𝑥, the loss is 𝐿2(𝑥2, 𝑎𝑥) = (𝑥2 −

𝑎𝑥)2. Thus for each ℎ(𝑥) = 𝑎𝑥, we have

𝐺𝑒𝑛𝐿𝑜𝑠𝑠(ℎ𝑎) =
∑

𝑥=0,…,4

(𝑥2 − 𝑎𝑥)2 ⋅ 1∕5

= ((1 − 𝑎)2 + (4 − 2𝑎)2 + (9 − 3𝑎)2 + (16 − 4𝑎)2)∕5 = (354 − 200𝑎 + 30𝑎2)∕5

2 Points3. Explain in about 2 sentences how you would continue to eventually determine that ℎ∗(𝑥) =
10𝑥∕3.

Solution: We need to find the 𝑎 that minimizes the loss. The derivative of 𝐺𝑒𝑛𝐿𝑜𝑠𝑠 for 𝑎 is
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(60𝑎 − 200)∕5. So the minimum is at 𝑎 = 10∕3.

2 Points4. What is the error rate of ℎ∗?

Solution: The error rate is 4∕5 because ℎ∗(𝑥) = 10𝑥∕3 predicts 4 out of 5 examples incorrectly.
(E.g., ℎ𝑎(𝑥) = 𝑥 would have better error rate 3∕5 despite having higher generalized loss.)

Problem 4.3 (Bayesian Learning)
Consider an experiment with 2 different results 0 and 1. You repeat the experiment 3 times obtaining
results 𝑑 = (𝑑1, 𝑑2, 𝑑3) = (1, 1, 0).
Your hypothesis space contains the functions ℎ𝛽 given by ℎ𝛽(𝑖) = 𝛽𝑖 for 0 ≤ 𝛽 ≤ 1 where ℎ𝛽(𝑖) is the
probability that the 𝑖-th repetition (starting at 𝑖 = 1) will yield 1.

2 Points1. Calculate 𝑃(𝑑|ℎ1∕2), i.e., the likelihood of the data 𝑑 under hypothesis ℎ1∕2.

Solution: ℎ1∕2(1) ⋅ ℎ1∕2(2) ⋅ (1 − ℎ1∕2(3)) = 1∕2 ⋅ 1∕4 ⋅ (7∕8) = 7∕64

2 Points2. Why does it make sense to exclude hypotheses ℎ𝛽 for 𝛽 > 1?

Solution: Because we would have ℎ𝛽(𝑖) > 1, which cannot be a probability.

2 Points3. Before performing the experiment, you suspected 𝛽 to be large and judged the probability of ℎ𝛽
to be 1 − 𝛽.
Now that you’ve obtained the data 𝑑, state the formula obtained from Bayes’ rule that updates
the probability of ℎ𝛽 .

Solution: 𝑃(ℎ𝛽|𝑑) = 𝛼(𝑃(𝑑|ℎ𝛽) ⋅ 𝑃(ℎ𝛽)) = 𝛼(𝛽𝛽2(1 − 𝛽3)(1 − 𝛽))

2 Points4. Let us call the probability obtained in the previous problem 𝑃(𝛽). Explain in about 2 sentences
how you can choose a hypothesis using the Maximum a Posteriori approximation.

Solution: Find the 𝛽𝑀𝐴𝑃 that maximizes 𝑃(𝛽) (e.g., by setting the derivative of 𝑃(𝛽) to 0 and
solving for 𝛽). The learned hypothesis is ℎ𝛽𝑀𝐴𝑃

.

5 Natural Language Processing
Problem 5.1 (Language Models)
Consider a language 𝐿 over the alphabet with characters 𝑥, 𝑦, and 𝑧 and a corpus for it consisting of
the four words

𝑥 𝑥 𝑥 𝑦 𝑧 𝑥 𝑥 𝑥 𝑦 𝑦 𝑥 𝑥 𝑥 𝑦 𝑧 𝑦 𝑥 𝑥 𝑥 𝑧 𝑦 𝑧

You want to build a 3-gram model using random variables 𝑐1, ….
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2 Points1. Seen as a stationaryMarkov process, what is themeaning of the 𝑐𝑖 and the order of such amodel?

Solution: The random variables are the characters in a word 𝑐1, … , over the language. The order
is 2.

2 Points2. Give the value of 𝑃(𝑐𝑖 = 𝑧|𝑐𝑖−2 = 𝑥, 𝑐𝑖−1 = 𝑦) in the resulting model.

Solution: 2∕3 (3 occurrences of 𝑥𝑦, 2 of which are followed by 𝑧).

2 Points3. Consider the word prefix 𝑥𝑥𝑥. By applying your model twice, which two characters would be
predicted to follow?

Solution: 𝑥𝑥 (𝑥 is the most frequent next character after 𝑥𝑥.)

Problem 5.2 (Information Retrieval)
Consider a corpus of 𝑛 documents. You have already computed the 𝚝𝚏𝚒𝚍𝚏 vector for each document.

2 Points1. Informally, explain in about 2 sentences how can you use the 𝚝𝚏𝚒𝚍𝚏 vectors to choose the 3most
relevant document for the query 𝑞.

Solution: Compute the 𝚝𝚏𝚒𝚍𝚏-vector of 𝑞. Then choose the 3 documents with the highest cosine
similarity to it.

2 Points2. Let TP, TN, FP, FN be the number of true/false positive/negative results to a query.
In terms of those, give the definitions of

1. precision: 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑃)

2. recall: 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁)

Solution: filled in above
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