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1 Probabilities
Problem 1.1 (Python)

4 pt1. Consider the Python program below.
def foo(J,x):

px = sum(J[x])
res = []
for y in range(len(J[x])):
res.append(J[x][y]/px)

return res

The input 𝐽 represents the joint probability distribution of random variables 𝑋 with domain
{0, … ,𝑚 − 1} and 𝑌 with domain {0, … , 𝑛 − 1} in such a way that 𝐽[𝑥][𝑦] = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦).
The input 𝑥 represents an element in the domain of 𝑋.
Which probability-related operation does the function foo compute?

Solution: The conditional probability distribution 𝑃(𝑌 = 𝑦 ∣ 𝑋 = 𝑥).

4 pt2. Assume a randomvariable𝑋with domain {0, … ,𝑚−1} and distribution𝐷, i.e.,𝐷[𝑥] = 𝑃(𝑋 = 𝑥).
Assume that 𝐷[𝑥] is non-zero for some even value of 𝑥.
Complete the definition of 𝑝 in the program below in such a way that 𝑝(𝐷, 𝑥) returns the condi-
tional probability 𝑃(𝑋 = 𝑥 ∣ 𝑋 is even), i.e., the probability of 𝑋 = 𝑥 under the condition that 𝑋
takes an even value.
def even(x):
return x % 2 == 0

def p(D,x):

Solution:

def p(D,x):
if even(x):
sumEven = 0
for i in range(len(D)):

if even(i):
sumEven += D[i]

return D[x]/sumEven
else:
return 0

1



FAU:AI2exam:SS24:42 1 PROBABILITIES

Problem 1.2 (Calculations)
Assume random variables 𝑋,𝑌 both with domain {0, 1, 2}. For some outcomes𝐴, the probabilities are
known as follows:

𝐴 𝑃(𝐴)

𝑋 = 0 ∧ 𝑌 = 0 𝑎

𝑋 = 0 ∧ 𝑌 ≠ 0 𝑏

𝑋 ≠ 0 ∧ 𝑌 = 0 𝑐

𝑋 ≠ 0 ∧ 𝑌 ≠ 0 𝑑

2 pt1. Give all subsets of the probabilities {𝑎, 𝑏, 𝑐, 𝑑} that must sum to 1.

Solution: Only {𝑎, 𝑏, 𝑐, 𝑑}

2 pt2. In terms of 𝑎, 𝑏, 𝑐, 𝑑, give 𝑃(𝑋 ≠ 0) or argue why there is not enough information to compute
the value.

Solution: 𝑐 + 𝑑

2 pt3. In terms of 𝑎, 𝑏, 𝑐, 𝑑, give 𝑃(𝑋 > 𝑌) or argue why there is not enough information to compute
the value.

Solution: Not enough information. The result is 𝑐 + 𝑃(𝑋 = 2, 𝑌 = 1), but we cannot compute
the latter because there is no data that distinguishes between the values 1 and 2 for 𝑋 or 𝑌.

2 pt4. In terms of 𝑎, 𝑏, 𝑐, 𝑑, give 𝑃(𝑋 = 0 ∣ 𝑌 = 0) or argue why there is not enough information to
compute the value.

Solution: 𝑎∕(𝑎 + 𝑐)

2 pt5. Now assume we additionally know 𝑒 = 𝑃(𝑋 = 𝑌). In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, give 𝑃(𝑋 + 𝑌 = 3).

Solution: 𝑑 − 𝑒 + 𝑎

2



FAU:AI2exam:SS24:42 2 BAYESIAN REASONING

2 Bayesian Reasoning
Problem 2.1 (Basic Rules)
Assume you are trying to relate economic development and your business results. You have collected
the following data:

• The economy does well 40% of the time and badly otherwise.
• If your business does well, the economy does well 50% of the time.
• If the economy does well, your business does well 70% of the time.

You model the problem using two Boolean random variables 𝐸 (economy does well) and 𝐵 (business
does well). You also abbreviate the events 𝐸 = 𝑡𝑟𝑢𝑒 and 𝐵 = 𝑡𝑟𝑢𝑒 as 𝑒 and 𝑏.

2 pt1. By filling in the gaps below, state for each number in the text above, which probability it de-
scribes.
1. 𝑃( ) = 0.4

2. 𝑃( ) = 0.5

3. 𝑃( ) = 0.7

Solution:

1. 𝑃(𝑒) = 0.4

2. 𝑃(𝑒 ∣ 𝑏) = 0.5

3. 𝑃(𝑏 ∣ 𝑒) = 0.7

2 pt2. Calculate the probability that your business does well.

Solution: We have 𝑃(𝑒 ∣ 𝑏)𝑃(𝑏) = 𝑃(𝑏 ∣ 𝑒) ⋅ 𝑃(𝑒). From that, we can calculate 𝑃(𝑏) = 0.7 ⋅

0.4∕0.5 = 0.56

2 pt3. If your business does well, you estimate your earnings to be $100/month, otherwise $60/month.
Calculate your expected utility (in $/month) if the economy does well.

Solution: 0.7 ⋅ 100 + 0.3 ⋅ 60 = 88

3 pt4. Calculate the probability that your business and the economy are doing badly at the same time.

Solution: We need 𝑃(¬𝑏, ¬𝑒). We know that
• 𝑃(𝑏, 𝑒) = 𝑃(𝑏 ∣ 𝑒) ⋅ 𝑃(𝑒) = 0.28

• 𝑃(𝑒) = 𝑃(𝑏, 𝑒) + 𝑃(¬𝑏, 𝑒) = 0.4, i.e., 𝑃(¬𝑏, 𝑒) = 0.12

• 𝑃(𝑏) = 𝑃(𝑏, 𝑒) + 𝑃(𝑏, ¬𝑒) = 0.56 (from previous question), i.e. 𝑃(𝑏, ¬𝑒) = 0.28

• 𝑃(𝑏, 𝑒) + 𝑃(¬𝑏, 𝑒) + 𝑃(𝑏, ¬𝑒) + 𝑃(¬𝑏, ¬𝑒) = 1, i.e., 𝑃(¬𝑏, ¬𝑒) = 0.32
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If the previous question was solved wrongly as 𝑤, the result should be 0.88 − 𝑤.
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Problem 2.2 (Bayesian Networks)
Consider the following situation about a day out.

• If the sun shines, you are out long, and you did not use sunscreen, you may get sunburned.

• If the sun shines or you meet friends, you may stay out long.

You want to model this situation as a Bayesian network using Boolean random variables 𝑆 (sunshine),
𝑂 (staying out long), 𝐵 (sunburn), 𝑈 (sunscreen used), and 𝐹 (meeting friends).

2 pt1. Using a good variable ordering, model this as a Bayesian network.

Solution: Order: e.g., 𝐹𝑆𝑂𝑈𝐵. Network: edges from 𝐹, 𝑆 to 𝑂, and from 𝑂, 𝑆,𝑈 to 𝐵.

2 pt2. Assume you meet your friends and use sunscreen, and you want to determine the probability of
sunburn. What are the query/evidence/hidden variables?

Solution: query: 𝐵, evidence: 𝐹,𝑈, hidden: 𝑆, 𝑂

For the remaining questions, assume your network is 𝐹 ← 𝑆 → 𝑂 ← 𝐵 → 𝑈 (which may or may
not be a correct solution to the previous question).

3 pt3. Which probabilities are stored in the conditional probability table of the node𝑂? Which of those
could be omitted and computed from the others?

Solution: 𝑃(𝑂 = 𝑜 ∣ 𝑆 = 𝑠, 𝐵 = 𝑏) where 𝑜, 𝑏, 𝑓 are Booleans, i.e., 8 entries in total. The entries
for 𝑂 = 𝑓𝑎𝑙𝑠𝑒 can be computed from the ones for 𝑂 = 𝑡𝑟𝑢𝑒.

3 pt4. Give the probability distribution 𝑃(𝑆 ∣ 𝑂 = 𝑜,𝑈 = 𝑢) (for fixed 𝑜, 𝑢) in terms of the entries of
the probability tables of the network.

Solution:

𝑃(𝑆 ∣ 𝑂 = 𝑜,𝑈 = 𝑢) = 𝑃(𝑆 ∣ 𝑂 = 𝑜) = 𝛼
(
𝑃(𝑆, 𝑂 = 𝑜, 𝐵 = 𝑡𝑟𝑢𝑒) + 𝑃(𝑆, 𝑂 = 𝑜, 𝐵 = 𝑓𝑎𝑙𝑠𝑒)

)

where for each Boolean 𝑠

𝑃(𝑆 = 𝑠, 𝑂 = 𝑜, 𝐵 = 𝑏) = 𝑃(𝑆 = 𝑠) ⋅ 𝑃(𝐵 = 𝑏) ⋅ 𝑃(𝑂 = 𝑜 ∣ 𝑆 = 𝑠, 𝐵 = 𝑏)
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3 Markovian Reasoning
Problem 3.1 (HiddenMarkov Models)
Consider the following situation:

• Each year the groundwater level at your location is high or not.
• Each year your harvests are good or not.
• You want to study the groundwater level by observing the harvests.

You choose to model this situation as a stationary first-order hidden Markov model with a stationary
sensor model with Markov property, using two families of year-indexed Boolean random variables.

2 pt1. Give the state and evidence variables and their domains.

Solution: State: 𝐺𝑎 (groundwater level), evidence: 𝐻𝑎 (harvests), all domains are the Booleans

3 pt2. Which probabilities do you need for this model?

Solution: A transition model 𝑇𝑖𝑗 = 𝑃(𝐺𝑎+1 = 𝑗 ∣ 𝐺𝑎 = 𝑖) and a sensor model 𝑆𝑖𝑗 = 𝑃(𝐻𝑎 = 𝑗 ∣

𝐺𝑎 = 𝑖). (Because all variables are Boolean, half of these entries are redundant.)

2 pt3. What would change about the answer to the previous question if the HMMwere not stationary?

Solution: We would need a different 𝑇 for every year.

3 pt4. Assume a sequence 𝑒1, 𝑒2, … of Booleans such that 𝑒𝑎 gives the quality of the harvest in year
𝑎 = 1, 2, …. Then the filtering algorithm can be written in recursive matrix form as

𝐟1∶𝑎 = 𝛼(𝑂𝑎𝑇
𝑡𝐟1∶𝑎−1)

(where 𝑇𝑡 is the transposed transition matrix).
Which probability distributions are represented by the 𝐟1∶𝑎, and how do we obtain the values of
the 𝑂𝑎?

Solution: 𝐟1∶𝑎 = 𝑃(𝐻𝑎 ∣ 𝐺1 = 𝑒1, … , 𝐺𝑛−1 = 𝑒𝑛−1)

𝑂𝑎 is the diagonalmatrixwhose diagonal contains the values of the distribution𝑃(𝐻𝑎 = 𝑒𝑎 ∣ 𝑋𝑎).
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Problem 3.2 (Decision Processes and Utility)
Consider an agent moving along a rectangular grid of 3 × 3 locations.
The agent can stand still, or move 1 location up, down, left, or right except when already at the edge.
A movement step succeeds with probability 90%. In the remaining cases, the agent does not move.
The agent is initially in the bottom-left corner location. Its goal is to move to the top-right location.

5 pt1. Model this situation as a Markov Decision Process ⟨𝑆, 𝐴, 𝑇, 𝑠0, 𝑅⟩. Use a reward function that
uses a constant reward for non-goal states.

Solution: One possible model is
• 𝑆 = {0, 1, 2} × {0, 1, 2}

• Let𝑀 = {(0, 0), (0, 1), (0, −1), (1, 0), (−1, 0)}. Then 𝐴(𝑠) = {𝑚 ∈ 𝑀|𝑠 + 𝑚 ∈ 𝑆} where + is
component-wise addition.

• The transition model is given by
– 𝑎 = (0, 0): 𝑇(𝑠, 𝑎)(𝑠) = 1

– otherwise: 𝑇(𝑠, 𝑎)(𝑠 + 𝑎) = 0.9, 𝑇(𝑠, 𝑎)(𝑠) = 0.1

– 0 for all other probabilities
• 𝑠0 = (0, 0)

• A typical choice is any function 𝑅 that is high for the goal and slightly negative for other
states. E.g., 𝑅((2, 2)) = 1 and 𝑅(𝑠) = −0.1 otherwise.

2 pt2. Give an optimal policy 𝜋∗.

Solution: Any policy is optimal that moves only up and right until at the goal and then stands
still. E.g.: 𝜋∗ maps (2, 2) ↦ (0, 0), (𝑖, 𝑗) ↦ (1, 0) if 𝑖 ≠ 2, and (2, 𝑗) ↦ (0, 1) otherwise

2 pt3. Now assume the agent is unable to tell whether an action resulted in movement. Explain (in
about 2 sentences) how we can still represent this situation as an MDP.

Solution: We define a new MDP whose states are belief states, i.e., probability distribution over
states 𝑠 ∈ 𝑆. All actions are possible in every belief state, and cause transition between belief
states. The reward of a belief state can be calculated as a probability-weighted of states.
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4 Learning
Problem 4.1 (Decision Trees and Lists)
Consider an unknown natural number 𝑁 ∈ {1, … , 10}. You are allowed to ask the following at-
tributes/questions about 𝑁:

A Is 𝑁 prime? (possibly answers: yes, no)

B What is 𝑁 modulo 3? (possible answers: 0, 1, 2)

C Is 𝑁 > 5? (possibly answers: yes, no)

D Is 𝑁 a root of 𝑋2 + 𝑋 − 7? (possibly answers: yes, no)

E What is the result of sin((𝑁 + 0.5)𝜋)? (possibly answers: −1, 1)

F What is 𝑁 modulo 4? (possible answers: 0, 1, 2, 3)

3 pt1. Give the shortest (in terms of tree depth) decision tree for identifying 𝑁 that uses at most the
above questions.

Solution: The tree must use B and F in either order. One possible tree is
B ?

F ? F ? F ?

0 1 2

3 6 9

3 2 1

1 4 7 10

1 0 3 2

2 5 8

2 1 0

Those have 3 × 4 possible answer combinations giving us a chance (but no guarantee) to
disambiguate 10 options. Giving a concrete tree of depth 2 shows that we can indeed do it. No
single question (and no other pair of questions) has ≥ 10 answer combinations, showing 2 is a

lower bound.

3 pt2. We can see each question as a random variable. Give the entropies 𝐼(𝐴), 𝐼(𝐶), and 𝐼(𝐷), i.e., the
number of bits obtained by asking the question. (Simplify as much as possible without introduc-
ing approximate values.)

Solution: 𝐴: 𝐼(⟨2∕5, 3∕5⟩) = −2∕5 log
2
(2∕5) − 3∕5 log

2
(3∕5)

𝐶: 1
𝐷: 0
Counting 1 as a prime number is wrong but was accepted anyway. In that case 𝐼(𝐴) = 1.

3 pt3. Now assume our goal is to learn the function that computes whether any natural number is a
square number, given the answers to the questions A-F, using 𝑁 = 1 and 𝑁 = 2 for training
data. Formally state this situation as an inductive learning problem ⟨ℋ, 𝑇⟩.

Solution: ℋ is the set of functions 𝔹 × {0, 1, 2} × 𝔹 × 𝔹 × {−1, 1} × {0, 1, 2, 3} → 𝔹 where 𝔹 =

8
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{𝑦𝑒𝑠, 𝑛𝑜}. 𝑇 is the set containing (𝑛𝑜, 1, 𝑛𝑜, 𝑛𝑜, −1, 1, 𝑦𝑒𝑠) (for𝑁 = 1) and (𝑦𝑒𝑠, 2, 𝑛𝑜, 𝑛𝑜, 1, 2, 𝑛𝑜)
(for 𝑁 = 2).
Alternatively, any subset of the hypothesis space can be used.
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Problem 4.2 (Classifiers)
Consider a set 𝐸 of examples of the form (𝑥, 𝑦) where 𝑥 ∈ ℝ2 and 𝑦 ∈ {0, 1}.
We want to learn a linear classifier ℎ𝑤 with a hard threshold. For the hard threshold, we use𝒯(𝑢) that
returns 1 if 𝑢 > 0 and 0 otherwise.

2 pt1. Give the general form of such a classifier.

Solution: ℎ𝑤(𝑥) = 𝒯(𝑤 ⋅ 𝑥) where 𝑤 ∈ ℝ3 and we embed 𝑥 intoℝ3 by putting 𝑥0 = 1. Alterna-
tively, we can write this as ℎ𝑤(𝑥) = 𝒯(𝑤1 ⋅ 𝑥1 + 𝑤2 ⋅ 𝑥2 + 𝑤0).

3 pt2. Give a neural network that can be used to represent such a classifier.

Solution: One input cell for each 𝑥1, 𝑥2 and constant bias 𝑥0 = 1. One perceptron output cell
with input weight 𝑤𝑖 for 𝑥𝑖 .

2 pt3. Give the formula for the squared error loss of such a classifier.

Solution: Σ(𝑥,𝑦)∈𝐸(𝑦 − ℎ𝑤(𝑥))
2

1 pt4. Why is gradient descent not applicable to minimize the loss in this case?

Solution: 𝒯 and thus the loss function are not differentiable.

10
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2 pt5. Instead, we can use the perceptron learning rule to update the weights. What is that rule, and
how do we apply it using the examples from 𝐸?

Solution: We start by putting 𝑤𝑖 = 0 for all 𝑖. Then we apply for each example (𝑥, 𝑦) ∈ 𝐸, the
rule

𝑤𝑖 ← 𝑤𝑖 + 𝛼(𝑦 − ℎ𝑤(𝑥))𝑥𝑖 for each 𝑖

where parameter 𝛼 is the learning rate.

2 pt6. Now assume our classifiers are multi-layer neural networks and that gradient descent is appli-
cable. Explain informally (in about 2 sentences) the basic idea of back-propagation.

Solution: Applying gradient descent at the output layer yields updates for the connections from
the last hidden layer. Aggregating these updates for each cell in the last hidden layer yields errors
for the last hidden layer, which are used to recursively apply gradient descent for the preceding
layer.
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Problem 4.3 (Inductive Learning)
Consider the family tree given by the following relations:

couple children
A, B E, F
C, D G
F, G H,I

Assume we already know the predicate 𝚙𝚊𝚛(𝑥, 𝑦) for 𝑥 being a parent of 𝑦. Our goal is to learn the
predicate 𝚐𝚙(𝑥, 𝑦) for 𝑥 being a grandparent of 𝑦, i.e., to find a formula 𝐷 such that ∀𝑥, 𝑦.𝚐𝚙(𝑥, 𝑦) ⇔
𝐷(𝑥, 𝑦).
We do not know 𝐷, but we have the following (counter-)examples for 𝚐𝚙:

person-pair grandparent
A, H yes
B, I yes
A, E no
A, F no
A, B no
A, C no

2 pt1. Give the intended formula 𝐷1, i.e., the correct definition of grandparent.

Solution: 𝐷1(𝑥, 𝑦) = ∃𝑢.𝚙𝚊𝚛(𝑥, 𝑢) ∧ 𝚙𝚊𝚛(𝑢, 𝑦)

2 pt2. Give a formula 𝐷2 that is true exactly for the positive examples.

Solution: 𝐷2(𝑥, 𝑦) = (𝑥 = 𝐴 ∧ 𝑦 = 𝐻) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐼)

3 pt3. Explain (in about 3 sentences) the commonalities and pros and cons of learning the formula 𝐷
as 𝐷1 vs. 𝐷2.

Solution: Both correctly learn the positive and the negative examples. 𝐷2 is easy to learn, but it
is of size 𝑂(𝑛) and overfits to the examples. 𝐷1 is small and captures the intended formula, but
is much harder to learn.
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5 Natural Language Processing
Problem 5.1 (Information Retrieval)

2 pt1. Explain (in about 2 sentences) the connection between tf idf and cosine similarity to relate texts.

Solution: tf idf is a way to represent a text as a vector, relative to a corpus, by measuring the
frequency of terms in some way. Cosine similarity uses the angle between two such vectors as a
measure of how similar the texts represented by the vectors are.

2 pt2. Explain (in about 2 sentences) the difference between information retrieval and information
extraction.

Solution: Information retrieval identifies documents that are likely to contain information that
answers the query. Information extraction obtains structured representations of parts of the
content of a document, which can then be used to answer queries precisely.

3 pt3. Explain (in about 3 sentences) what kind of function is learned in the continuous bag of words
algorithm, as used e.g. in Word2Vec, and how the training proceeds.

Solution: It learns a word embedding, i.e., a function from words to vectors. Going through a
corpus, each word is processed together with the context, i.e., the 𝑛 words before and after. The
neural network is trained to predict the word from its context.
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