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The “solutions” to the exam/assignment problems in this document are supplied to
give students a starting point for answering questions. While we are striving for help-
ful “solutions”, they can be incomplete and can even contain errors even after our best
efforts.
In any case, grading student’s answers is not a process of simply “comparing with the
reference solution”, therefore errors in the “solutions” are not a problem in this case.
If you find “solutions” you do not understand or you find incorrect, discuss this on
the course forum and/or with your TA and/notify the instructors. We will – if needed
– correct them ASAP.
In the course Artificial Intelligence I/II we award bonus points for the first student
who reports a factual error in an old exam. (Please report spelling/formatting errors
as well.)
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1 Probabilities
Problem 1.1 (Python)

4 Points1. Consider the Python program below.
# input: two lists of real numbers between 0 and 1
def bar(x, y):

l = len(x)
m = len(y)
res = []
for i in range(l):

row = []
for j in range(m):

row.append(x[i]*y[j])
res.append(row)

return res

Assuming the inputs represent probability distributions, which probability-related operation
does the function bar compute? State any assumptions that need to be made about the inputs.

Solution: The joint probability distribution 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗) = 𝑃(𝑋 = 𝑖) ⋅ 𝑃(𝑌 = 𝑗) of two
stochastically independent variables with distributions 𝑥[𝑖] = 𝑃(𝑋 = 𝑖) and 𝑦[𝑗] = 𝑃(𝑌 = 𝑗).

3 Points2. Assume random variables𝑋 with domain {0,… , 𝑚−1} and𝑌 with domain {0,… , 𝑛−1}. Assume
the Python object𝐶 holds their joint probability distribution 𝑃(𝑋,𝑌), i.e.,𝐶[𝑖][𝑗] = 𝑃(𝑋 = 𝑖, 𝑌 =
𝑗).
Complete the definition of 𝐸 in the program below in such a way that it holds the probability
distribution 𝑃(𝑋), i.e., 𝐸[𝑖] = 𝑃(𝑋 = 𝑖).
# m, n, C are defined as described above

E =

Solution: E = [sum(C[i]) for i in range(m)].

Problem 1.2 (Calculations)
Assume random variables 𝑋,𝑌 both with domain {0, 1, 2}, whose joint distribution 𝑃(𝑋,𝑌) is given by
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𝑥 𝑦 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
0 0 𝑎
0 1 𝑏
0 2 𝑐
1 0 𝑑
1 1 𝑒
1 2 𝑓
2 0 𝑔
2 1 ℎ
2 2 𝑖

2 Points1. Give all subsets of the probabilities {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖} that sum to 1.

Solution: Only {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖}

2 Points2. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 ≠ 0).

Solution: 𝑑 + 𝑒 + 𝑓 + 𝑔 + ℎ + 𝑖

2 Points3. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 + 𝑌 = 2).

Solution: 𝑐 + 𝑒 + 𝑔

2 Points4. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 + 𝑌 = 2|𝑋 > 𝑌).

Solution: 𝑔∕(𝑑 + 𝑔 + ℎ)

2 Bayesian Reasoning
Problem 2.1 (Bayesian Calculations)
Assume you are trying to relate economic development and your business results. You have collected
the following data:

• The economy does well 40% of the time and badly otherwise.
• Your business does well 30% of the time and badly otherwise.
• If your business does well, the economy did well 80% of the time.

You model the problem using two Boolean random variables 𝐸 (economy does well) and 𝐵 (business
does well). You also abbreviate the events 𝐸 = 𝑡𝑟𝑢𝑒 and 𝐵 = 𝑡𝑟𝑢𝑒 as 𝑒 and 𝑏.

2 Points1. By filling in the gaps below, state for each number in the text above, which probability it de-
scribes.
1. 𝑃( ) = 0.4

2. 𝑃( ) = 0.3
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3. 𝑃( ) = 0.8

Solution: 𝑃(𝑒) = 0.4, 𝑃(𝑏) = 0.3, and 𝑃(𝑒|𝑏) = 0.8

2 Points2. Using Bayes’ Rule, compute the probability that your business does well if the economy does.

Solution: 𝑃(𝑏|𝑒) = 𝑃(𝑒|𝑏) ⋅ 𝑃(𝑏)∕𝑃(𝑒) = 0.8 ⋅ 0.3∕0.4 = 0.6

4 Points3. Explain how we can compute all values in the joint distribution of 𝐸 and 𝐵.
(You can omit purelymathematical computations unrelated to probabilities if youmentionwhat
they do.)

Solution: The distribution contains 4 unknown values: 𝑃(𝑏, 𝑒), 𝑃(𝑏,¬𝑒), 𝑃(¬𝑏, 𝑒) and 𝑃(¬𝑏,¬𝑒).
We know 4 properties about them:

• 𝑃(𝑒) = 𝑃(𝑏, 𝑒) + 𝑃(¬𝑏, 𝑒) = 0.4
• 𝑃(𝑏) = 𝑃(𝑏, 𝑒) + 𝑃(𝑏,¬𝑒) = 0.3
• 𝑃(𝑒|𝑏) = 𝑃(𝑏, 𝑒)∕𝑃(𝑏) = 0.8
• 𝑃(𝑏, 𝑒) + (𝑏,¬𝑒) + 𝑃(¬𝑏, 𝑒) + 𝑃(¬𝑏,¬𝑒) = 1

From those we can compute the 4 values.
The result (not needed for full points) is

𝑒 ¬𝑒 Σ
𝑏 0.24 0.06 0.3
¬𝑏 0.16 0.54 0.7
Σ 0.4 0.6 1

Problem 2.2 (Bayesian Networks)
Consider the following situation about a chess game:

• The outcome 𝑂 can be a win for white (𝑤), a win for black (𝑏), or a draw (𝑑).

• The players have experience levels 𝐸𝑤 and 𝐸𝑏, whose possible values are fresh (𝑓), experienced
(𝑒), and professional (𝑝), and that allow making predictions about the result of a game.

• You have placed a bet on the outcome (without knowing the players), and the outcome will
determine if you gain (𝑔) or lose (𝑙) money (𝑀).

You want to model this situation as a Bayesian network.
2 Points1. Give the set of random variables and their domains.

Solution: Variables 𝑂 with domain {𝑤, 𝑏, 𝑑}, 𝐸𝑤 and 𝐸𝑏 both with domain {𝑓, 𝑒, 𝑝}, and𝑀 with
domain {𝑔, 𝑙}.

2 Points2. Give a good variable order and draw the resulting Bayesian network.

Solution: Order: 𝐸𝑤𝐸𝑏𝑂𝑀 or 𝐸𝑏𝐸𝑤𝑂𝑀. Network: 𝐸𝑤 → 𝑂 ← 𝐸𝑏 and 𝑂 → 𝑀.
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2 Points3. Assume your network is 𝐸𝑤 → 𝑂 ← 𝐸𝑏 → 𝑀 (which may or may not be correct). How many
entries does the conditional probability table for 𝑂 have?

Solution: The entries are 𝑃(𝑂 = 𝑧|𝐸𝑤 = 𝑥, 𝐸𝑏 = 𝑦) where 𝑥, 𝑦, 𝑧 range over the respective
domains. So there are 3 ⋅ 3 ⋅ 3 = 27 entries. Exploiting redundancies, we need to store only 18.

2 Points4. Assume again your network is 𝐸𝑤 → 𝑂 ← 𝐸𝑏 → 𝑀. Give the formula for 𝑃(𝑂|𝑀,𝐸𝑏) in terms
of the entries of the probability tables of the network.

Solution: 𝑃(𝑂|𝑀,𝐸𝑏) = 𝑃(𝑂|𝐸𝑏) and 𝑃(𝑂 = 𝑧|𝐸𝑏 = 𝑥) = Σ𝑦∈{𝑓,𝑒,𝑝}𝑃(𝑂 = 𝑧|𝐸𝑏 = 𝑥, 𝐸𝑤 = 𝑦)

2 Points5. You have already placed the bet. What does that mean for the relationship between 𝑂 and𝑀?
How does that affect the memory needed for the conditional probability tables of the network?

Solution: The edge 𝑂 → 𝑀 is deterministic. We do not need to store a probability table for𝑀;
instead we have to store the function that computes the value of𝑀 from the value of 𝑂.

3 Markovian Reasoning
Problem 3.1 (HiddenMarkov Models)
Consider the following situation:

• We make annual observations about the rainfall at a certain location. Each year the rainfall is
high (𝑟1), medium (𝑟2), or low (𝑟3).

• We know this causes a groundwater condition, which is either strong (𝑔1) or weak (𝑔2).
We havemodeled this situation as a stationary and first-order hiddenMarkovmodel with two families
of random variables 𝑅𝑎 (rainfall) and 𝐺𝑎 (groundwater), each indexed by year number 𝑎.

Transition Model Sensor Model

𝑇 =
⎛
⎜
⎝

0.2 0.5 0.3
0.1 0.3 0.6
0 0.1 0.9

⎞
⎟
⎠

𝑆 =
⎛
⎜
⎝

0.4 0.6
0.2 0.8
0.25 0.75

⎞
⎟
⎠

2 Points1. Give the state and evidence variables and their domains.

Solution: Evidence variables 𝐺𝑎 ∈ {𝑔1, 𝑔2}, state variables 𝑅𝑎 ∈ {𝑟1, 𝑟2, 𝑟3}.

2 Points2. Which probabilities are captured by the entries 𝑇𝑖𝑗 and 𝑆𝑖𝑗?

Solution: 𝑇𝑖𝑗 = 𝑃(𝑅𝑎+1 = 𝑟𝑗|𝑅𝑎 = 𝑟𝑖) and 𝑆𝑖𝑗 = 𝑃(𝐺𝑎 = 𝑔𝑗|𝑅𝑎 = 𝑟𝑖).

2 Points3. The rainfall was high last year and is low this year. Give the probability distribution of this year’s
groundwater condition.

4



FAU:AI2exam:SS23:42 3 MARKOVIAN REASONING

Solution: 𝑃(𝐺𝑎|𝑅𝑎 = 𝑟3) = (0.25, 0.75) (Last year’s rainfall is irrelevant because the sensor
model is first-order.)

2 Points4. What is the purpose of the smoothing algorithm?

Solution: To estimate past states based on observations of all the evidence (even after the state
in question).

3 Points5. Given evidence 𝐺1 = 𝑒1,… , 𝐺𝑎 = 𝑒𝑎, the smoothing algorithm can be written in matrix form as
𝑃(𝑅𝑘|𝑒1∶𝑎) = 𝛼𝑓1∶𝑘𝑏𝑘+1∶𝑎. Give the recursive equations for 𝑓 and 𝑏 and explain the values of
the matrices 𝑂.

Solution: 𝑓1∶𝑘+1 = 𝛼𝑂𝑘+1𝑇𝑡𝑓1∶𝑘 and 𝑏𝑘+1∶𝑎 = 𝑇𝑂𝑘+1𝑏𝑘+2∶𝑎
𝑂𝑖 is a diagonal matrix obtained from the column of 𝑆 corresponding to 𝑒𝑖 .

Problem 3.2 (Decision Processes and Utility)
Consider an agent moving along a circular arrangement of 8 locations as indicated below.

0 → 1 → 2 → 3
↑ ↓
7 ← 6 ← 5 ← 4

The agent’s movement is as follows:
• It can move −2, −1, 0, 1, or 2 steps (negative numbers represent backwards movement).
• The double steps result inmoving 2 locationswith probability 60%, and 1 location in the opposite
direction otherwise.

• The single steps result in moving 1 location with probability 90%, and no move otherwise.
• The zero step results in no move.

The agent’s goal is to move to location 7.
4 Points1. Model this situation as a Markov Decision Process ⟨𝑆,𝐴, 𝑃, 𝑅⟩. Use a reward function that uses

a constant reward for non-goal states.

Solution: One possible model is
• 𝑆 = {0,… , 7}
• 𝐴(𝑠) = {2, 1, 0,−1,−2}
• 𝑃(𝑠′|𝑎, 𝑠) is given by

– 𝑎 = 0: 𝑃(𝑠|0, 𝑠) = 1
– |𝑎| = 1: 𝑃(𝑠 +8 𝑎|𝑎, 𝑠) = 0.9, 𝑃(𝑠|𝑎, 𝑠) = 0.1
– |𝑎| = 2: 𝑃(𝑠 +8 𝑎|𝑎, 𝑠) = 0.6, 𝑃(𝑠 −8 𝑎∕2|𝑎, 𝑠) = 0.4

where +8, −8 are addition/subtractions modulo 8. All other probabilities are 0.
• A typical choice is any function 𝑅 that is high for the goal and slightly negative for other
states. E.g., 𝑅(7) = 1 and 𝑅(𝑠) = −0.1 otherwise.

3 Points2. State the Bellman equation for 𝛾 = 0.5. Then using initial utilities 𝑈(𝑠) = 0 for all states,
compute the value of 𝑈(4) after two value iteration steps.
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Solution: 𝑈(𝑠) = 𝑅(𝑠) + 0.5max𝑎∈𝐴(𝑠) Σ𝑠′∈𝑆𝑈(𝑠′) ⋅ 𝑃(𝑠′|𝑠, 𝑎)
First iteration: 𝑈(𝑠) = 𝑅(𝑠). (𝑈(𝑠) must be computed for all states before the second iteration
can be carried out. But if initial utilities are 𝑈(𝑠) = 0, this is trivial.)
Second iteration: 𝑈(4) = 𝑅(4)+0.5max𝑎∈𝐴(4) Σ𝑠′∈𝑆𝑈(𝑠′)⋅𝑃(𝑠′|𝑠, 𝑎) = −0.1−0.1⋅0.5max𝑎∈𝐴(4) Σ𝑠′∈𝑆𝑃(𝑠′|4, 𝑎)
−0.1 − 0.05max𝑎∈𝐴(4) 1 = −0.1 − 0.05 ⋅ 1 = −0.15
Different choices of reward function in the previous subproblem lead to correspondingly differ-
ent solutions with 𝑈(𝑠) = 1.5 ⋅ 𝑟 where 𝑟 is the constant negative reward value.

2 Points3. Give an optimal policy 𝜋∗.

Solution: Single steps are faster on average than double steps, except in state 3where backward
movement is as good as forward movement. However, for states 1, 2, 4, 5, the optimal policy
subtly depends on the discount factor and the reward function because a successful double step
collects a high reward earlier. Therefore, any step towards the goal was accepted as near-optimal
in those states.
Optimal: 𝜋∗(7) = 0, 𝜋∗(0) = −1, 𝜋∗(6) = 1, 𝜋∗(3) ∈ {−2, 2}
Near-optimal: 𝜋∗(2), 𝜋∗(3) ∈ {−1,−2}, and 𝜋∗(4), 𝜋∗(5) ∈ {1, 2}

2 Points4. Now assume we use a POMDP because the agent is unable to tell what move an action resulted
in. Assume we know the agent is initially in location 4. Give the belief state after a double step
forward.

Solution: The belief state 𝐵 is a probability distribution over states 𝑠 ∈ 𝑆. The values are 𝑃(6) =
0.6, 𝑃(3) = 0.4 and 𝑃(𝑠) = 0 otherwise.

4 Learning
Problem 4.1 (Decision Trees and Lists)
Consider an unknown word𝑊 ∈ {𝐼, 𝑦𝑜𝑢, ℎ𝑒, 𝑠ℎ𝑒, 𝑖𝑡, 𝑤𝑒, 𝑡ℎ𝑒𝑦}. You are allowed to ask the following
questions about𝑊:

A length of the word, returning from {1, 2, 3, 4}

B occurrence of the letter ℎ, returning yes/no

C last letter of the word, returning from {𝐼, 𝑢, 𝑒, 𝑡, 𝑦}

D first letter of the word, returning from {𝐼, 𝑦, ℎ, 𝑠, 𝑖, 𝑤, 𝑡}

3 Points1. Draw the decision tree for𝑊 that arises from asking the questions in the order given above. (Do
not ask additional questions if the word can already be identified.)

Solution: The tree is
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A ?

𝐼 B ? B ? 𝑡ℎ𝑒𝑦

1 2 3 4

ℎ𝑒 C ? 𝑠ℎ𝑒 𝑦𝑜𝑢

yes no yes no

𝑖𝑡 𝑤𝑒

𝑡 𝑒

2 Points2. Which choice would the information gain algorithm make first? Justify your answer.

Solution: It would ask D because that already identifies the word completely, i.e., maximizes
information gain.

2 Points3. Give the size of the smallest decision list (measured as the sum of the numbers of literals in all
tests) if tests may use arbitrarily many literals of the form 𝑄𝑢𝑒𝑠𝑡𝑖𝑜𝑛 = 𝐴𝑛𝑠𝑤𝑒𝑟.

Solution: 6. It’s impossible to be smaller because we need to have 7 end points. And it’s straight-
forward to give a list of that size.

2 Points4. Give all minimal sets 𝑄 ⊆ {𝐴, 𝐵, 𝐶, 𝐷} of questions for which the determination 𝑄 ≻ 𝑊 holds?

Solution: {𝐴, 𝐵, 𝐶} and {𝐷}

Problem 4.2 (Support Vector Machines)
Consider the following dataset of points 𝐱 = ⟨𝐱1, 𝐱2⟩ in ℝ2 that are classified as either 𝑦 = +1 or
𝑦 = −1:

𝐱1 𝐱2 𝑦
2 3 1
−2 −2 −1
4 −3 −1

2 Points1. Give the hypothesis space for finding a linear separator.

Solution: The set of functions𝐰 ⋅ 𝐱 + 𝑏 for real numbers𝐰1,𝐰2, 𝑏. Alternatively, one can use
ℝ3 with some explanation that it holds the tuples (𝐰1,𝐰2, 𝑏).
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3 Points2. Give a linear separator ℎ(𝐱) for the dataset.

Solution: An easy choice is ℎ(𝐱) = 𝐱2, i.e., the line 𝑥2 = 0 separates the points according to 𝑦.

2 Points3. Transform the dataset into a 1-dimensional dataset using the transformation 𝑇(𝐱) = 𝐱21 + 𝐱22.

Solution: The transformed dataset is
𝑇(𝐱) 𝑦
13 1
8 −1
25 −1

2 Points4. What does it mean, intuitively, if a linear separator exists for a dataset after this transformation?

Solution: The two categories are the inside and the outside of a circle around the origin.

5 Natural Language Processing
Problem 5.1 (Part-of-Speech Tagging)

2 Points1. Briefly explain what part-of-speech tagging means.

Solution: The process of attributing to every word in a corpus its syntactic category, like noun,
participle, etc.

2 Points2. What is the role of the window width when machine-learning part-of-speech tags?

Solution: The size of the context that is kept around the word that is to be tagged. For example,
with a window width of 5, the two words before and after are added as input to the learning
system.

2 Points3. Explain (in about 2 sentences) the role of word embeddings when learning part-of-speech tags,
and the idea behind 𝑡𝑓𝑖𝑑𝑓.

Solution: A word embedding maps a word to a vector of numbers that can be used as input to a
neural network. 𝑡𝑓𝑖𝑑𝑓 is a specific embedding, whose definition uses the frequency of words in
the documents of the corpus to map words to numbers.

8
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Problem 5.2 (Grammars)
Consider the following probabilistic grammar:

𝑆 → 𝑁𝑃 𝑉𝑃[1]
𝑁𝑃 → 𝐴𝑟𝑡𝑖𝑐𝑙𝑒 𝑁𝑜𝑢𝑛[0.6] | 𝑁𝑎𝑚𝑒[0.4]
𝑉𝑃 → 𝑉𝑒𝑟𝑏[0.5] | 𝑇𝑟𝑎𝑛𝑠𝑉𝑒𝑟𝑏 𝑁𝑃[0.5]
𝐴𝑟𝑡𝑖𝑐𝑙𝑒 → the[0.7] | a[0.3]
𝑁𝑜𝑢𝑛 → stench[0.2] | breeze[0.3] | wumpus[0.5]
𝑁𝑎𝑚𝑒 → John[0.3] | Mary[0.7]
𝑉𝑒𝑟𝑏 → smells[1]
𝑇𝑟𝑎𝑛𝑠𝑉𝑒𝑟𝑏 → sees[0.6] | shoots[0.4]

2 Points1. Using this grammar as an example, explain the difference between grammar rules and lexicon.

Solution: Both are productions of the grammar. Grammar rules define the language in gen-
eral (𝑆 to 𝐴𝑟𝑡𝑖𝑐𝑙𝑒, above), the lexicon defines the specific identifiers used in a context (𝑁𝑜𝑢𝑛 to
𝑇𝑟𝑎𝑛𝑠𝑉𝑒𝑟𝑏 above).

2 Points2. Give the probability of the sentence
John sees the wumpus

(You have to give the expressionwith concrete values plugged in, but you do not have to compute
the result.)

Solution: 0.4 ⋅ 0.3 ⋅ 0.5 ⋅ 0.6 ⋅ 0.6 ⋅ 0.7 ⋅ 0.5 = 0.00756

2 Points3. Now assume we do not know the probabilities of the productions, and our corpus is
John sees the wumpus. The wumpus smells. John shoots the wumpus.

Give the probability that we can learn for 𝑁𝑃 → 𝑁𝑎𝑚𝑒 from this corpus.

Solution: We count all subtrees of type 𝑁𝑃 (𝑁) and among those the ones of type 𝑁𝑎𝑚𝑒 (𝑛),
then we learn the probability 𝑛∕𝑁. That yields 2∕5.
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