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The “solutions” to the exam/assignment problems in this document
are supplied to give students a starting point for answering questions.
While we are striving for helpful “solutions”, they can be incomplete
and can even contain errors even after our best efforts.
In any case, grading student’s answers is not a process of simply “com-
paringwith the reference solution”, therefore errors in the “solutions”
are not a problem in this case.
If you find “solutions” you do not understand or you find incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.
In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)
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1 Probabilities
Problem 1.1 (Python) 7 pt
Consider the Python program below.

1. Which operation does the function foo compute? 4 pt

2. Assume random variables 𝑋 with domain {0,… , 𝑚 − 1} and 𝑌 with domain
{0,… , 𝑛 − 1}. 3 pt
Assume the Python object𝐶 holds their joint probability distribution𝑃(𝑋,𝑌),
i.e., 𝐶[𝑖][𝑗] = 𝑃(𝑋 = 𝑖, 𝑌 = 𝑗).
Complete the definition of 𝐸 in the program below in such a way that it holds
the probability distribution 𝑃(𝑌|𝑋 = 0), i.e., 𝐸[𝑗] = 𝑃(𝑌 = 𝑗|𝑋 = 0).
(Hint: This can be done with relatively little code.)

# input: a list of numbers in the interval [0;1]
def foo(a):

l = len(a)
s = 0
for i in range(l):

s += a[i]
res = []
for i in range(l):

res.append(a[i]/s)
return res

E =

Solution:

1. The normalization 𝛼𝑎 of a vector 𝑎.

2. E = foo(C[0]).

Problem 1.2 (Calculations) 9 pt
Assume random variables 𝑋,𝑌 both with domain {0, 1, 2}, whose joint distribution
𝑃(𝑋,𝑌) is given by
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𝑥 𝑦 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
0 0 𝑎
0 1 𝑏
0 2 𝑐
1 0 𝑑
1 1 𝑒
1 2 𝑓
2 0 𝑔
2 1 ℎ
2 2 𝑖

1. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 = 0). 1 pt

2. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 = 0|𝑌 = 1). 2 pt

3. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, give 𝑃(𝑋 ≠ 0|𝑌 ≠ 1). 2 pt

4. The table above is redundant. How can it be stored using less space? 2 pt

5. Now assume 𝑋 and 𝑌 are stochastically independent. How can the informa- 2 pt
tion in the table be stored using the least space?

Solution:

1. 𝑃(𝑋 = 0) = 𝑃(𝑋 = 0, 𝑌 = 0)+𝑃(𝑋 = 0, 𝑌 = 1)+𝑃(𝑋 = 0, 𝑌 = 2) = 𝑎+𝑏+𝑐

2. 𝑃(𝑋 = 0|𝑌 = 1) = 𝑃(𝑋 = 0, 𝑌 = 1)∕𝑃(𝑌 = 1) = 𝑏∕(𝑏 + 𝑒 + ℎ).

3. 𝑃(𝑋 ≠ 0|𝑌 ≠ 1) = 𝑃(𝑋 ∈ {1, 2}, 𝑌 ∈ {0, 2})∕𝑃(𝑌 ∈ {0, 2}) = (𝑑 + 𝑓 + 𝑔 +
𝑖)∕(𝑎 + 𝑐 + 𝑑 + 𝑓 + 𝑔 + 𝑖).

4. We can remove, e.g., the row for 𝑖 by using 𝑖 = 1−𝑎−𝑏−𝑐−𝑑−𝑒−𝑓−𝑔−ℎ.

5. We can store 𝑃(𝑋 = 0), 𝑃(𝑋 = 1), 𝑃(𝑌 = 0), and 𝑃(𝑌 = 1). Then we can
compute 𝑃(𝑋 = 2) = 1 − 𝑃(𝑋 = 1) − 𝑃(𝑋 = 2) (and accordingly for 𝑌) and
𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥) ⋅ 𝑃(𝑌 = 𝑦).

2 Bayesian Reasoning

Problem 2.1 (Bayes’ Rule) 8 pt
Assume you are trying to predict whether a particular topic comes up in an exam.
You have collected the following data:

• 30% of all topics come up in the exam.
• 40% of all topics come up in the tutorials.
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• If a topic comes up in an exam, it was covered by an assignment 60% of the
time.

• If a topic comes up in an exam, it came up in a tutorial 80% of the time.
You model this situation using 3 Boolean random variables 𝑋 (comes up in exam),
𝑆 (covered by assignments), and 𝑇 (came up in a tutorial).

1. By filling in the gaps below, state for each number in the text above, which
probability it describes. 2 pt

(a) 𝑃( ) = 0.3

(b) 𝑃( ) = 0.4

(c) 𝑃( ) = 0.6

(d) 𝑃( ) = 0.8

2. Assume the topic you are interested in did not come up in the exam. Argue
if and how we can obtain the probability that it was covered by a tutorial. 2 pt

3. The topic you are interested in was covered by a tutorial. Using Bayes’ rule,
calculate the exact probability that it will come up in the exam. 4 pt
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Solution:

1. 𝑃(𝑋 = 𝑡𝑟𝑢𝑒) = 0.3, 𝑃(𝑇 = 𝑡𝑟𝑢𝑒) = 0.4, 𝑃(𝑆 = 𝑡𝑟𝑢𝑒|𝑋 = 𝑡𝑟𝑢𝑒) = 0.6,
𝑃(𝑇 = 𝑡𝑟𝑢𝑒|𝑋 = 𝑡𝑟𝑢𝑒) = 0.8

2. The joint distribution of 𝑋 and 𝑇 contains 4 values: 𝑃(𝑡, 𝑥), 𝑃(𝑡,¬𝑥), 𝑃(¬𝑡, 𝑥)
and 𝑃(¬𝑡,¬𝑥). We know 4 properties about them:

• 𝑃(𝑥) = 𝑃(𝑡, 𝑥) + 𝑃(¬𝑡, 𝑥) = 0.3
• 𝑃(𝑡) = 𝑃(𝑡, 𝑥) + 𝑃(𝑡,¬𝑥) = 0.4
• 𝑃(𝑡|𝑥) = 𝑃(𝑡, 𝑥)∕𝑃(𝑥) = 0.8
• 𝑃(𝑡, 𝑥) + (𝑡,¬𝑥) + 𝑃(¬𝑡, 𝑥) + 𝑃(¬𝑡,¬𝑥) = 1

From those we can compute the joint distribution as

𝑡 ¬𝑡 Σ
𝑥 0.24 0.06 0.3
¬𝑥 0.16 0.54 0.7
Σ 0.4 0.6 1

And from that, we can compute 𝑃(𝑡|¬𝑥) = 𝑃(𝑡,¬𝑥)∕𝑃(¬𝑥) = 0.16∕0.7 =
8∕35 ≈ 0.229.
A direct calculation can be done as follows: 𝑃(𝑡|¬𝑥) = 𝑃(𝑡,¬𝑥)∕𝑃(¬𝑥)
=
(
𝑃(𝑡) − 𝑃(𝑡, 𝑥)

)
∕(1 − 𝑃(𝑥))

=
(
𝑃(𝑡) − 𝑃(𝑡|𝑥) ⋅ 𝑃(𝑥)

)
∕(1 − 𝑃(𝑥))

= (0.4 − 0.8 ⋅ 0.3)∕(1 − 0.3) = 0.16∕0.7 = 8∕35 ≈ 0.229

To get the points, it was sufficient to sketch this procedure. A full calculation
was not required.

3. 𝑃(𝑋 = 𝑡𝑟𝑢𝑒|𝑇 = 𝑡𝑟𝑢𝑒) = 𝑃(𝑇 = 𝑡𝑟𝑢𝑒|𝑋 = 𝑡𝑟𝑢𝑒)⋅𝑃(𝑋 = 𝑡𝑟𝑢𝑒)∕𝑃(𝑇 = 𝑡𝑟𝑢𝑒) =
0.8 ⋅ 0.3∕0.4 = 0.6

Problem 2.2 (Bayesian Networks) 13 pt
Consider the following situation:

• Covid and influenza can cause fever.
• Fever causes stress.
• Tests can detect Covid. But a false-positive Covid-test causes stress as well.
• There are no other causal relationships.

You want to model this situation using Boolean random variables 𝐶 (Covid infec-
tion), 𝐼 (influenza infection), 𝐹 (fever), 𝑆 (stress), and 𝑇 (positive Covid test).

1. Give a good variable ordering for forming a Bayesian network for this situa-
tion. 3 pt

2. Give the resulting network. 3 pt

4



3. You have a fever and have tested positive for Covid. Now you want to de-
termine if you have influenza. What are the query, evidence, and hidden 2 pt
variables?

4. Assume your network is 𝐼 ← 𝐶 → 𝐹 ← 𝑆 → 𝑇 (which may or may not be a
correct solution to the above question). Which probabilities are stored in the 2 pt
conditional probability table of node 𝐹?

5. Again using the network 𝐼 ← 𝐶 → 𝐹 ← 𝑆 → 𝑇, give the formula for

𝑃(𝐶 = 𝑡𝑟𝑢𝑒, 𝐼 = 𝑡𝑟𝑢𝑒, 𝐹 = 𝑡𝑟𝑢𝑒, 𝑇 = 𝑡𝑟𝑢𝑒)

in terms of the entries of the conditional probability table of that network. 3 pt
Youmay abbreviate the event𝑋 = 𝑡𝑟𝑢𝑒 by the lower-case name of the random
variable 𝑋.

Solution:
1. Causes should occur before effects, so e.g., 𝐶𝐼𝐹𝑇𝑆 (𝐶𝐼 can be swapped, and

𝑇 must be anywhere between 𝐶 and 𝑆).
2. 𝐶 → 𝐹 ← 𝐼 and 𝐹 → 𝑆 and 𝐶 → 𝑇 → 𝑆.
3. Query: 𝐼, evidence: 𝐹, 𝑇, hidden: 𝐶, 𝑆.
4. The probability distribution 𝑃(𝐹|𝐶, 𝑆), i.e., 𝑃(𝐹 = 𝑥|𝐶 = 𝑦, 𝑆 = 𝑧) as a func-

tion of Booleans 𝑥, 𝑦, 𝑧.
5.

𝑃(𝑐, 𝑖, 𝑓, 𝑡) = 𝑃(𝑐, 𝑖, 𝑓, 𝑡, 𝑠) + 𝑃(𝑐, 𝑖, 𝑓, 𝑡,¬𝑠)

= 𝑃(𝑐) ⋅𝑃(𝑠) ⋅𝑃(𝑡|𝑠) ⋅𝑃(𝑖|𝑐) ⋅𝑃(𝑓|𝑐, 𝑠)+𝑃(𝑐) ⋅𝑃(¬𝑠) ⋅𝑃(𝑡|¬𝑠) ⋅𝑃(𝑖|𝑐) ⋅𝑃(𝑓|𝑐,¬𝑠)

= 𝑃(𝑐) ⋅ 𝑃(𝑖|𝑐) ⋅
(
𝑃(𝑠) ⋅ 𝑃(𝑡|𝑠) ⋅ 𝑃(𝑓|𝑐, 𝑠) ⋅ +𝑃(¬𝑠) ⋅ 𝑃(𝑡|¬𝑠) ⋅ 𝑃(𝑓|𝑐,¬𝑠)

)

3 Markovian Reasoning
Problem 3.1 (HiddenMarkov Models) 13 pt
Consider the following situation:

• You make annual observations about the rainfall at a certain location. Each
year the rainfall is high (𝑟1), medium (𝑟2), or low (𝑟3).

• You know this is caused by an atmospheric condition, which is either strong
(𝑐1) or weak (𝑐2).

• You have previously obtained the following information:
– when the condition is strong, the rainfall is high 20% and medium 30%
of the time,

– when the condition is weak, the rainfall is high 35% and medium 15%
of the time,

– when the condition is strong, it stays strong next year 70% of the time,
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– when the condition is weak, it becomes strong next year 40% of the time,
You want to model this situation as a hidden Markov model with two families of
random variables 𝑅𝑎 (rainfall) and 𝐶𝑎 (condition), each indexed by year number 𝑎.

1. Give the state and evidence variables and their domains. 2 pt

2. How can you tell that the model is first-order here? 1 pt

3. Complete the following sentences:

(a) The transition model 𝑇 is given by the matrix 2 pt

𝑇 =
⎛
⎜
⎝

⎞
⎟
⎠

where 𝑇𝑖𝑗 = 𝑃(𝐶𝑎+1 = 𝑐𝑗|𝐶𝑎 = 𝑐𝑖).

(b) The sensor model 𝑆 is given by the matrix 2 pt

𝑆 =
⎛
⎜
⎝

⎞
⎟
⎠

where 𝑆𝑖𝑗 = 𝑃(𝑅𝑎 = 𝑟𝑗|𝐶𝑎 = 𝑐𝑖).

4. The atmospheric condition has been strong last year, and the rainfall is low
this year. You want to use filtering to obtain the probability distribution of
this year’s condition.
You proceed as follows:

(a) Give the recursive filtering equation for 𝑓1∶𝑎+1. 1 pt
(b) Give the initial value 𝑓1∶0 to use in this case. 1 pt
(c) Give the diagonal sensor matrix 𝑂1 to use in this case. 1 pt
(d) Calculate the resulting distribution. 3 pt

Fully compute all values including the normalization. (This does not
require approximations or a calculator.)
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Solution:

1. State variables 𝐶𝑎 ∈ {𝑐1, 𝑐2}, evidence variables 𝑅𝑎 ∈ {𝑟1, 𝑟2, 𝑟3}.

2. The probability of the atmospheric condition 𝐶𝑎 only depends on the previ-
ous year 𝐶𝑎−1, not earlier years.

3. (a) The transition model 𝑇 is given by the matrix

𝑇 = (0.7 0.3
0.4 0.6)where𝑇𝑖𝑗 = 𝑃(𝐶𝑎+1 = 𝑐𝑗|𝐶𝑎 = 𝑐𝑖).

(b) The sensor model 𝑆 is given by the matrix

𝑆 = ( 0.2 0.3 0.5
0.35 0.15 0.5)where 𝑆𝑖𝑗 = 𝑃(𝑅𝑎 = 𝑟𝑗|𝐶𝑑 = 𝑐𝑖).

4. We compute 𝑓1∶1 by applying the filtering equation once.

(a) 𝑓1∶𝑎+1 = 𝛼(𝑂𝑎+1 ⋅ 𝑇𝑡𝑓1∶𝑎)
(b) 𝑓1∶0 = ⟨1, 0⟩

(c) 𝑂1 = (0.5 0
0 0.5)

(d) 𝑓1∶1 = 𝛼 ⋅ 𝑂1 ⋅ 𝑇𝑡 ⋅ 𝑓1∶0 = 𝛼⟨0.5 ⋅ 0.7, 0.5 ⋅ 0.3⟩
= 2⟨0.35, 0.15⟩ = ⟨0.7, 0.3⟩.

Problem 3.2 (Utility and Decision Processes) 10 pt
Consider an agent moving along a circular arrangement of 8 locations as indicated
below.

0 → 1 → 2 → 3
↑ ↓
7 ← 6 ← 5 ← 4

The agent’s movement is as follows:
• It can move forward (in arrow direction) or backward (against arrow direc-
tion), and in each case it can move carefully or quickly.

• The careful moves result in moving 1 step in that direction with probability
60% and no move otherwise.

• The quick actions result in moving 1 step in that direction with probability
90% and moving 1 step in the opposite direction otherwise.

The agent’s goal is to move to location 0.

1. Choose an appropriate reward function andmodel this situation as aMarkov
Decision Process. 4 pt
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2. State the Bellman equation relative to your model. 2 pt

3. Give an optimal policy 𝜋∗. 2 pt
Hint: This requires deciding whether careful or quick actions lead to the goal
faster.

4. Now assume we use a POMDP because the agent is unable to tell what move
an action resulted in. Assume we know the agent is initially in location 4.
Calculate the belief state after moving backwards carefully twice. 2 pt

Solution:

1. One possible model is
• 𝑆 = {0,… , 7}
• 𝐴((𝑖, 𝑗)) = {1,−1} × {𝑐, 𝑞}
• 𝑃(𝑠 + 𝑥|(𝑥, 𝑐), 𝑠) = 0.6 and 𝑃(𝑠|(𝑥, 𝑐), 𝑠) = 0.4,
𝑃(𝑠 + 𝑥|(𝑥, 𝑞), 𝑠) = 0.9 and 𝑃(𝑠 − 𝑥|(𝑥, 𝑞), 𝑠) = 0.1,
and all other probabilities are 0.

• A typical choice is any function 𝑅 that is high for 0 and slightly negative
for other states. E.g., 𝑅(0) = 1 and 𝑅(𝑠) = −0.1 otherwise.

2. 𝑈(𝑠) = 𝑅(𝑠) + 𝛾 ⋅max𝑎∈𝐴(𝑠) Σ𝑠′∈𝑆𝑈(𝑠′) ⋅ 𝑃(𝑠′|𝑠, 𝑎)

3. Any policy that maps 0 to (𝑥, 𝑐) for any 𝑥, and 1, 2, 3 to (−1, 𝑞) and 5, 6, 7 to
(1, 𝑞) and 4 to (𝑥, 𝑞) for any 𝑥.

4. The belief state 𝐵 is a probability distribution over states 𝑠 ∈ 𝑆. The values
are 𝑃(𝐵 = 2) = 0.6 ⋅ 0.6 = 0.36, 𝑃(𝐵 = 3) = 0.6 ⋅ 0.4 + 0.4 ⋅ 0.6 = 0.48,
𝑃(4) = 0.4 ⋅ 0.4 = 0.16, and 𝑃(𝐵 = 𝑠) = 0 otherwise.

4 Learning
Problem 4.1 (Decision Trees and Lists) 10 pt
Consider an unknown 3-letter word 𝑊 = 𝐿1, 𝐿2, 𝐿3 ∈ {𝐵𝐴𝑇, 𝐵𝐸𝑇, 𝐶𝐴𝑇, 𝐶𝐴𝑅}.
Each letter 𝐿𝑖 is currently covered (i.e., it cannot be seen) and can be uncovered
individually.

1. Draw the decision tree for 𝑊 that arises from uncovering the letters in the
order 𝐿1, 𝐿2, 𝐿3. (Do not uncover additional letters if the word can already be
identified.) 3 pt

2. Which choice would the information gain algorithm make first in this case?
Justify your answer. 2 pt
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3. Give a decision list in 1-DL for𝑊 using only literals of the form 𝐿𝑖 = 𝑋 for
characters 𝑋. 2 pt

4. Give all minimal sets 𝐴 ⊆ {𝐿1, 𝐿2, 𝐿3} of letters such that 𝐴 ≻ 𝑊. 2 pt

5. How would we have to change the set of possible words so that the determi-
nation {𝐿1, 𝐿2} ≻ 𝑊 holds? 1 pt

Solution:

1. The tree is

𝐿1 ?

𝐿2 ? 𝐿2 ?

B C

BAT BET

A E

𝐿3 ?

A

CAT CAR

RT

2. It would choose 𝐿1. Each letter splits the words into two sets, and only 𝐿1
splits them into equally sized ones, which maximizes information gain. This
could be formally justify by computing the information gain.

3. 𝑊 ∶= if 𝐿3 = 𝑅 then CAR elif 𝐿1 = 𝐶 then CAT elif 𝐿2 = 𝐴 then BAT else
BET

4. {𝐿1, 𝐿2, 𝐿3}

5. Remove or or change CAT or CAR so that there are no two words that agree
in 𝐿1 and 𝐿2.

Problem 4.2 (Neural Networks) 8 pt
Consider the neural networkwithout bias given below where

• units 1, 2 are inputs,
• unit 7 is output,
• weights are given by the labels on the edges, and
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• units 3, 4, 5, 6, 7 are perceptron units with activation function 𝑇(𝑥) = 1 for
𝑥 > 0.5 and 𝑇(𝑥) = 0 otherwise.

1

2

3

4

5

6

7

𝑤13

𝑤14

𝑤23

𝑤24

𝑤35

𝑤45

𝑤36

𝑤46

𝑤57

𝑤67

1. How many hidden layers are there? 1 pt

2. Assume 𝑤𝑖𝑗 = 0.2 for all weights and 𝑎1 = 𝑎2 = 1. What is the resulting
output 𝑎7? 1 pt

3. Assume we remove the edge from 5 to 7. Give two reasons why that would 2 pt
be a bad network to use.

4. Give the formula for the activation 𝑎6 of unit 6 in terms of the inputs 𝑎1 and
𝑎2. 2 pt

5. Assume the inputs 𝑎1, 𝑎2 are in {0, 1}. Choose weights such that the output 𝑎7
is always 1 (no matter what the inputs are), or argue why that is impossible? 2 pt

Solution:

1. 2

2. 0

3. Node 5 is redundant because its output is not used anymore. Node 7 can be
eliminated because it has only one input.

4. 𝑎6 = 𝑇
(
𝑤46𝑇(𝑤14𝑎1 + 𝑤24𝑎2) + 𝑤36𝑇(𝑤13𝑎1 + 𝑤23𝑎2)

)

5. It is impossible. For 𝑎1 = 𝑎2 = 0, the output is always 𝑎7 = 0, no matter what
the weights are (because there is no bias).

5 Natural Language Processing
Problem 5.1 (Language Models) 7 pt
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1. How many different trigrams does a language with 𝑛 words have? 1 pt

2. What is a statistical language model? 2 pt

3. Name two applications of statistical language models. 2 pt

4. Why is it work-intensive in practice to build a good statistical languagemodel
for a natural language? 2 pt

Solution:

1. 𝑛3

2. A probability distribution over words or 𝑛-grams occurring in a corpus of the
language.

3. Language identification, genre classification, named entity recognition, text
generation, spell-checking.

4. Because a representative corpus of texts has to be aggregated that is hard.
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