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In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)
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1 Probabilities
Problem 1.1 (Python) 7 pt
Consider the Python program below.

1. Whichmathematical function does the method foo compute?

Solution: The matrix product 𝑎 ⋅ 𝑏.

2. Assume random variables 𝑋 with domain {0, … ,𝑚 − 1} and 𝑌 with domain
{0, … , 𝑛 − 1}. Assume the following Python objects

• 𝐶 holds the conditional probability distribution 𝑃(𝑋 ∣ 𝑌), i.e., 𝐶[𝑖][𝑗] =
𝑃(𝑋 = 𝑖 ∣ 𝑌 = 𝑗).

• 𝐷 holds the probability distribution 𝑃(𝑌), i.e., 𝐷[𝑗] = 𝑃(𝑌 = 𝑗).
Complete the definition of 𝐸 in the program below in such a way that it holds
the probability distribution 𝑃(𝑋), i.e., 𝐸[𝑖] = 𝑃(𝑋 = 𝑖). (Hint: This requires
relatively little code.)
def foo(a,b):

l = len(a)
m = len(a[0])
n = len(b[0])
res = []
for i in range(l):

row = []
for j in range(n):

s = 0
for k in range(m):

s += a[i][k] * b[k][j]
row.append(s)

res.append(row)
return res

E =

Solution: E=foo(C,[[x] for x in D]). We also accepted E=foo(C,D).
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Problem 1.2 (Calculations) 10 pt
Assume threeBoolean randomvariables𝑋,𝑌, 𝑍, whose joint distribution𝑃(𝑋, 𝑌, 𝑍)
is given by

𝑥 𝑦 𝑧 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑍 = 𝑧)
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑎
𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑏
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑐
𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑑
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑡𝑟𝑢𝑒 𝑒
𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑡𝑟𝑢𝑒 𝑔
𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒 ℎ

1. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, give 𝑃(𝑋 = 𝑡𝑟𝑢𝑒, 𝑌 = 𝑓𝑎𝑙𝑠𝑒).

Solution: 𝑃(𝑋 = 𝑡𝑟𝑢𝑒, 𝑌 = 𝑓𝑎𝑙𝑠𝑒) = 𝑃(𝑋 = 𝑡𝑟𝑢𝑒, 𝑌 = 𝑓𝑎𝑙𝑠𝑒, 𝑍 = 𝑡𝑟𝑢𝑒) +
𝑃(𝑋 = 𝑡𝑟𝑢𝑒, 𝑌 = 𝑓𝑎𝑙𝑠𝑒, 𝑍 = 𝑓𝑎𝑙𝑠𝑒) = 𝑐 + 𝑑

2. In terms of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, give 𝑃(𝑋 = 𝑡𝑟𝑢𝑒 ∣ 𝑌 = 𝑓𝑎𝑙𝑠𝑒).

Solution: 𝑃(𝑋 = 𝑡𝑟𝑢𝑒 ∣ 𝑌 = 𝑓𝑎𝑙𝑠𝑒) = 𝑃(𝑋 = 𝑡𝑟𝑢𝑒, 𝑌 = 𝑓𝑎𝑙𝑠𝑒)∕𝑃(𝑌 =
𝑓𝑎𝑙𝑠𝑒) = (𝑐 + 𝑑)∕(𝑐 + 𝑑 + 𝑔 + ℎ).

3. Which of the following are true if 𝑌 and 𝑍 are conditionally independent
given 𝑋?
□ 𝑎 + 𝑏 + 𝑒 + 𝑓 = 𝑎 + 𝑐 + 𝑒 + 𝑔
□✓ 𝑎 = (𝑎 + 𝑏) ⋅ (𝑎 + 𝑐)∕(𝑎 + 𝑏 + 𝑐 + 𝑑)
□✓ 𝑒 = (𝑓 ⋅ 𝑔)∕ℎ
□ 𝑎 = 𝑒

2 Bayesian Reasoning
Whenworking with an upper case Boolean random variable𝑋, youmay abbreviate
the event 𝑋 = 𝑡𝑟𝑢𝑒 by the corresponding lower-case letter 𝑥. If you do that, make
sure the distinction between upper and lower case letters is clear in your writing.

Problem 2.1 (Bayes’ Rule) 8 pt
Assume you are trying to predict whether a particular topic comes up in an exam.
You have collected the following data:
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• 30% of all topics come up in the exam.
• 50% of all topics come up in the assignments.
• If a topic comes up in an exam, it was covered by an assignment 60% of the
time.

• If a topic comes up in an exam, it also came up in a recent exam 80% of the
time.

You model this situation using 3 Boolean random variables 𝐸 (comes up in exam),
𝐴 (covered by assignments), and 𝑅 (came up in a recent exam).

1. By filling in the gaps below, state for each number in the text above, which
probability it describes.
1. 𝑃( E=true ) = 0.3

2. 𝑃( A=true ) = 0.5

3. 𝑃( A=true 𝐸 = 𝑡𝑟𝑢𝑒 ∣=)0.6

4. 𝑃( R=true 𝐸 = 𝑡𝑟𝑢𝑒 ∣=)0.8

2. When modeling this situation, is it reasonable to assume that 𝐴 and 𝑅 are
stochastically independent? Why (not)?

Solution: No. Background knowledge indicates that𝐴 and𝑅 are often highly
correlated (even if the details cannot be ascertained from the data given).

3. The topic you are interested in was covered by an assignment. Using Bayes’
rule, calculate the probability that it will come up in the exam.

Solution: 𝑃(𝐸 = 𝑡𝑟𝑢𝑒 ∣ 𝐴 = 𝑡𝑟𝑢𝑒) = 𝑃(𝐴 = 𝑡𝑟𝑢𝑒 ∣ 𝐸 = 𝑡𝑟𝑢𝑒) ∗ 𝑃(𝐸 =
𝑡𝑟𝑢𝑒)∕𝑃(𝐴 = 𝑡𝑟𝑢𝑒) = 0.6 ∗ 0.3∕0.5 = 0.36

Problem 2.2 (Bayesian Networks) 14 pt
Consider the following situation:

• Covid can cause a sickness and/or fever.
• Fever itself is dangerous and can cause sickness.
• Tests can detect Covid. But a false-positive Covid test may cause sickness via
a kind of Placebo effect.

• There are no other causal relationships.

You want to model this situation using Boolean random variables 𝐶 (Covid infec-
tion), 𝐹 (fever), 𝑆 (sickness), and 𝑇 (positive Covid test).
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1. Give a good variable ordering for forming a Bayesian network for this situa-
tion.

Solution: Causes should occur before effects, so e.g., 𝐶𝐹𝑇𝑆 or 𝐶𝑇𝐹𝑆.

2. Give the resulting network.

Solution: 𝐶 → 𝐹 → 𝑆 and 𝐶 → 𝑇 → 𝑆 and 𝐶 → 𝑆.

3. You have a fever, feel sick, and have tested positive for Covid. Now you want
to determine if you have Covid. What are the query, evidence, and hidden
variables?

Solution: Query: 𝐶, evidence: 𝐹, 𝑆, 𝑇, hidden: none.

4. Assume your network is 𝐶 → 𝐹 → 𝑇 ← 𝑆 (which may or may not be a
correct solution to the above question). Which probabilities are stored in the
conditional probability table of node 𝑇?

Solution: The probability distribution 𝑃(𝑇 ∣ 𝐹, 𝑆), i.e., 𝑃(𝑇 = 𝑥 ∣ 𝐹 = 𝑦, 𝑆 =
𝑧) as a function of Booleans 𝑥, 𝑦, 𝑧.

5. Again using the network 𝐶 → 𝐹 → 𝑇 ← 𝑆, give the formula for

𝑃(𝐶 = 𝑡𝑟𝑢𝑒, 𝑇 = 𝑡𝑟𝑢𝑒, 𝑆 = 𝑡𝑟𝑢𝑒)

in terms of the entries of the conditional probability table of that network.

Solution:
𝑃(𝑐, 𝑡, 𝑠) = 𝑃(𝑐, 𝑡, 𝑠, 𝑓) + 𝑃(𝑐, 𝑡, 𝑠, ¬𝑓)

= 𝑃(𝑐)⋅𝑃(𝑓 ∣ 𝑐)⋅𝑃(𝑠 ∣ 𝑓, 𝑐)⋅𝑃(𝑡 ∣ 𝑐, 𝑓, 𝑠)+𝑃(𝑐)⋅𝑃(¬𝑓 ∣ 𝑐)⋅𝑃(𝑠 ∣ ¬𝑓, 𝑐)⋅𝑃(𝑡 ∣ 𝑐, ¬𝑓, 𝑠)

= 𝑃(𝑐) ⋅ 𝑃(𝑓 ∣ 𝑐) ⋅ 𝑃(𝑠) ⋅ 𝑃(𝑡 ∣ 𝑓, 𝑠) + 𝑃(𝑐) ⋅ 𝑃(¬𝑓 ∣ 𝑐) ⋅ 𝑃(𝑠) ⋅ 𝑃(𝑡 ∣ ¬𝑓, 𝑠)

= 𝑃(𝑐) ⋅ 𝑃(𝑠) ⋅
(
𝑃(𝑓 ∣ 𝑐) ⋅ 𝑃(𝑡 ∣ 𝑓, 𝑠) + 𝑃(¬𝑓 ∣ 𝑐) ⋅ 𝑃(𝑡 ∣ ¬𝑓, 𝑠)

)
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3 Markovian Reasoning
Problem 3.1 (HiddenMarkov Models) 15 pt
Consider the following situation:

• You make daily observations about your business 𝐵. Each day business is
either good (𝑏1) or bad (𝑏2).

• You know this is caused by the weather𝑊, which can be rainy (𝑤1), cloudy
(𝑤2), or sunny (𝑤3).

• You have previously obtained the following information:
– when the weather is rainy, your business is good 36% of the time,
– when the weather is cloudy, your business is good 84% of the time,
– when the weather is sunny, your business is good 90% of the time,
– half the time, the weather is the same as on the previous day,
– when the weather changes from one day to the next, each change is
equally likely.

You want to model this situation as a hidden Markov model with two families of
random variables indexed by day number 𝑑.

1. Give the state and evidence variables and their domains.

Solution: State variables𝑊𝑑 ∈ {𝑤1, 𝑤2, 𝑤3}, evidence variables 𝐵𝑑 ∈ {𝑏1, 𝑏2}

2. How can you tell that the sensor model is stationary here?

Solution: The business-weather relation is the same for each day.

3. What order does the model have?
4. Complete the following sentences:

5. The transition model 𝑇 is given by the matrix

𝑇 =
⎛
⎜
⎝

⎞
⎟
⎠

where 𝑇𝑖𝑗 = 𝑃(𝑊𝑑+1 = 𝑤𝑗 ∣ 𝑊𝑑 = 𝑤𝑖).

Solution: 𝑇 =
⎛
⎜
⎝

0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

⎞
⎟
⎠

6. The sensor model 𝑆 is given by the matrix

𝑆 =
⎛
⎜
⎝

⎞
⎟
⎠

where 𝑆𝑖𝑗 = 𝑃(𝐵𝑑 = 𝑏𝑗 ∣ 𝑊𝑑 = 𝑤𝑖).
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Solution: 𝑆 =
⎛
⎜
⎝

0.36 0.64
0.84 0.16
0.9 0.1

⎞
⎟
⎠

7. Let 𝑇 be as above and let 𝐯 be a 3-dimensional vector whose coefficients sum
to 1What is the intuitive meaning of the property 𝑇 ⋅ 𝐯 = 𝐯?

Solution: 𝐯 is a probability distribution of the weather that is a fixed point of
the transition model, i.e., the distribution will stay the same when predicting
the future.

8. It was sunny yesterday, and your business is good today. You want to use
filtering to obtain the probability distribution of today’s weather.
You proceed as follows:
9. Give the recursive filtering equation for 𝑓1∶𝑑+1.

Solution: We compute 𝑓1∶1 by applying the filtering equation once.
𝑓1∶𝑑+1 = 𝛼(𝑂𝑑+1 ⋅ 𝑇𝑡𝑓1∶𝑑)

10. Give the initial value 𝑓1∶0 to use in this case.

Solution: 𝑓1∶0 = ⟨0, 0, 1⟩

11. Give the diagonal sensor matrix 𝑂1 to use in this case.

Solution: 𝑂1 =
⎛
⎜
⎝

0.36 0 0
0 0.84 0
0 0 0.9

⎞
⎟
⎠

12. Compute the resulting distribution.
Fully compute all values including the normalization. (This does not
require approximations or a calculator.)

Solution: 𝑓1∶1 = 𝛼 ⋅ 𝑂1 ⋅ 𝑇𝑡 ⋅ 𝑓1∶0 = 𝛼⟨0.36 ⋅ 0.25, 0.84 ⋅ 0.25, 0.9 ⋅ 0.5⟩
= 4∕3⟨0.09, 0.21, 0.45⟩ = ⟨0.12, 0.28, 0.6⟩.
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Problem 3.2 (Utility and Decision Processes) 10 pt
Consider an agent moving on an 8 × 8 grid as indicated in the picture below. The
agent canmove up, down, right, and left except where restricted by the edges of the
grid. Every action results in moving one step in that direction with probability 75%
and no move otherwise. The agent’s goal is to get to the location (7, 7).

(0, 7) (7, 7)

(0, 0) (7, 0)

1. Choose an appropriate reward function andmodel this situation as aMarkov
Decision Process.

Solution: One possible model is
• 𝑆 = {0, … , 7}2
• 𝐴((𝑖, 𝑗)) = {𝑢, 𝑑, 𝑙, 𝑟}⧵𝐸𝑖⧵𝐹𝑗 where𝐸0 = {𝑙}, 𝐸7 = {𝑟}, 𝐹0 = {𝑑}, 𝐹7 = {𝑢}
and 𝐸𝑖 = 𝐹𝑗 = ∅ otherwise

• 𝑃(𝑠′ ∣ 𝑎, 𝑠) is 0.75 if 𝑠′ is the result of moving 𝑎 from 𝑠, 0.25 if 𝑠′ = 𝑠, 0
otherwise

• A typical choice is any function 𝑅 that is high for (7, 7) and slightly neg-
ative for other states. E.g., 𝑅(𝑠) = 1 for 𝑠 = (7, 7) and 𝑅(𝑠) = −0.1
otherwise.

2. Give an optimal policy 𝜋∗.

Solution: Any policy that maps state (7, 7) to 𝑑 or 𝑙 and every other state to
any legal action that is 𝑢 or 𝑟. E.g., 𝜋∗(𝑠) = 𝑢 if 𝑢 ∈ 𝐴(𝑠), otherwise 𝜋∗(𝑠) = 𝑟
if 𝑟 ∈ 𝐴(𝑠), otherwise 𝜋∗((7, 7)) = 𝑑.

3. Now ignore the rewards, and assume we use a fixed utility 𝑖 + 𝑗 for the field
(𝑖, 𝑗). Compute the expected utility of moving up once in state (1, 1).

Solution: 𝐸𝑈(𝑢) = 0.75 ⋅ 𝑈((1, 2)) + 0.25 ⋅ 𝑈((1, 1)) = 2.25 + 0.5 = 2.75.

4. Now assume the agent is unable to tell whether an action resulted in a move
or not. Explain informally how that would change the modeling.
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Solution: We would need a POMDP. A state in the POMDP is a so-called
belief state, a probability distribution for the MDP-state that the agent is in.

4 Learning
Problem 4.1 (Decision Trees and Lists) 10 pt
You observe the set of values below for 6 games of a sports team. Youwant to predict
the result based on weather, location, and opponent.

# Weather Location Opponent Result
1 Rainy Home Weak Win
2 Sunny Away Weak Win
3 Sunny Home Strong Loss
4 Sunny Away Weak Win
5 Cloudy Away Strong Loss
6 Sunny Home Strong Loss

1. Draw the decision tree that arises if attributes are chosen according to the
priority 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡.

Solution: The tree is
𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ?

𝑊𝑒𝑎𝑡ℎ𝑒𝑟 ? 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 ?

𝐻𝑜𝑚𝑒 𝐴𝑤𝑎𝑦

𝐿𝑜𝑠𝑠𝑊𝑖𝑛𝐿𝑜𝑠𝑠

𝑆𝑢𝑛𝑛𝑦
𝑅𝑎𝑖𝑛𝑦

𝑆𝑢𝑛𝑛𝑦
𝐶𝑙𝑜𝑢𝑑𝑦

2. Give all minimal sets 𝐴 of attributes such that 𝐴 ≻ 𝑅𝑒𝑠𝑢𝑙𝑡.

Solution: {𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛} and {𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡}
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3. How can such a minimal set 𝐴 be exploited to find a decision tree?

Solution: Only the attributes in𝐴 are needed in the tree. So smaller sets yield
smaller trees.

4. You want to build a decision list for the result using tests with literals of the
form 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 = 𝑛𝑢𝑚𝑏𝑒𝑟. Give the shortest possible decision list.

Solution: If 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑊𝑒𝑎𝑘 then 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝑊𝑖𝑛 else 𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐿𝑜𝑠𝑠.

5. Now stop using the above observations. Instead, assume some set of obser-
vations for which a decision list exists, and assume that the determination
𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ≻ 𝑅𝑒𝑠𝑢𝑙𝑡 holds. In the worst case, what is the number of
tests in the shortest decision list?

Solution: 5 (not longer because we can use the determination and use one
test for every one of the 6 combinations of values (no test is needed for the
last one because we can use the final else-case); not shorter because wemight
indeed need those 6 cases)

Problem 4.2 (Statistical Learning) 6 pt
You observe the values below for 20 games of a sports team. You want to predict
the result based on weather and opponent.

Number of
Weather Opponent wins losses
Rainy Weak 3 1
Cloudy Weak 0 1
Sunny Weak 4 2
Rainy Strong 0 2
Cloudy Strong 2 3
Sunny Strong 0 2

1. What is the hypothesis space for this situation, seen as an inductive learning
problem?

Solution: The set of functions {𝑅𝑎𝑖𝑛𝑦, 𝐶𝑙𝑜𝑢𝑑𝑦, 𝑆𝑢𝑛𝑛𝑦} × {𝑊𝑒𝑎𝑘, 𝑆𝑡𝑟𝑜𝑛𝑔} →
{𝑊𝑖𝑛, 𝐿𝑜𝑠𝑠}.
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2. Explain whether we can learn the function by building a decision tree.

Solution: It does not. Even all attributes together, i.e.,𝑊𝑒𝑎𝑡ℎ𝑒𝑟 and𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡,
do not determine the result. So no decision tree exists.

3. To apply Bayesian learning, we model this situation as a Bayesian network
𝑊 → 𝑅 ← 𝑂 using random variables 𝑊 (weather), 𝑂 (opponent), and 𝑅
(game result). What are the resulting entries of the conditional probability
table for the cases
1. 𝑃(𝑊 = 𝑟𝑎𝑖𝑛𝑦) = 3/10

2. 𝑃(𝑅 = 𝑤𝑖𝑛 ∣ 𝑂 = 𝑤𝑒𝑎𝑘) = 7/11

Solution: 𝑃(𝑊 = 𝑟𝑎𝑖𝑛𝑦) = 3∕10 and 𝑃(𝑅 = 𝑤𝑖𝑛 ∣ 𝑂 = 𝑤𝑒𝑎𝑘) = 7∕11

Problem 4.3 (Support Vector Machines) 6 pt
Consider a set of points 𝐱 = ⟨𝐱1, 𝐱2⟩ in ℝ2 that are classified as either 𝑦 = +1 or
𝑦 = −1.

1. Give the hypothesis space for finding a linear separator.

Solution: The set of functions𝐰 ⋅ 𝐱 + 𝑏 for real numbers𝐰1, 𝐰2, 𝑏. Alter-
natively, one can use ℝ3 with some explanation that it holds the tuples (𝐰1,
𝐰2, 𝑏).

2. Given a linear separator ℎ(𝐱), which formula computes the classification 𝑦 of
a vector 𝐱?

Solution: 𝑦 = 𝑠𝑔𝑛(ℎ(𝐱))

3. What is the point of transforming a dataset into a higher-dimensional space?

Solution: It’s possible that no linear separator exists for the original dataset,
but a linear separator exists for the transformed dataset in the bigger space.

4. In this context, briefly discuss the usefulness of the transformation𝐹(⟨𝐱1, 𝐱2⟩) =
⟨𝐱1, 𝐱2, 𝐱1 + 𝐱2⟩.
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Solution: It is not useful because it is linear. If a linear separator exists after-
wards, one existed before as well.

5 Natural Language Processing
Problem 5.1 (Information Retrieval) 9 pt
Consider the following three texts

• 𝑑1: “The man is tall.”
• 𝑑2: “The tall man sees the woman.”
• 𝑑3: “The woman shouts.”

Let 𝐷 = {𝑑1, 𝑑2, 𝑑3}.
Below we use alphabetical order for the vector components:

is, man, sees, shouts, tall, the, woman

Simplify all results as much as possible without introducing approximate values.
1. What is the idea of cosine similarity for comparing a query against the docu-

ments in 𝐷?

Solution: The query and each document are represented as a vector repre-
senting word frequencies. Vectors pointing in the same directions are con-
sidered similar. So the documents can be ranked by the angle between them
and the query.

2. Give the vector 𝑡𝑓(_, 𝑑2)

Solution: 𝑡𝑓(_, 𝑑2) = ⟨0, 1∕6, 1∕6, 0, 1∕6, 1∕3, 1∕6⟩.

3. Give the vector 𝑖𝑑𝑓(_, 𝐷).

Solution: 𝑖𝑑𝑓(_, 𝐷) = log10(3∕⟨1, 2, 1, 1, 2, 3, 2⟩) = ⟨𝑘, 𝑙, 𝑘, 𝑘, 𝑙, 0, 𝑙⟩ with 𝑘 =
log10 3 and 𝑙 = log10 1.5.

4. For 𝑑 ∈ 𝐷 and a word 𝑡, give the definition of 𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷).

Solution: 𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) ⋅ 𝑖𝑑𝑓(𝑡, 𝐷)
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5. What is the benefit of using 𝑡𝑓𝑖𝑑𝑓 instead of 𝑡𝑓 for using cosine similarity?

Solution: 𝑡𝑓𝑖𝑑𝑓 gives more weight to words that occur in fewer documents.
Otherwise, many documents would falsely appear similar just because the
most common words appear in most of them.
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