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The “solutions” to the exam/assignment problems in this document
are supplied to give students a starting point for answering questions.
While we are striving for helpful “solutions”, they can be incomplete
and can even contain errors even after our best efforts.
In any case, grading student’s answers is not a process of simply “com-
paringwith the reference solution”, therefore errors in the “solutions”
are not a problem in this case.
If you find “solutions” you do not understand or you find incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.
In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)
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1 Bayesian Reasoning

Note: When working with an upper case Boolean random variable 𝑋, you may abbreviate
the event 𝑋 = 𝑡𝑟𝑢𝑒 by the corresponding lower-case letter 𝑥. If you do that, make sure the
distinction between upper and lower case letters is clear in your writing.

Problem 1.1 (Bayesian Rules) 10 pt
0 min
5 pt1. Assume that, in some area, the prevalence of SARS-CoV-2 infections is 1∕10, 000.

Moreover, assume that such an infection causes a cough half the time, and
that in general on any given day 1 person out of 1, 000 is coughing. Apply
Bayes’ rule to determine the probability that someonewho coughs is infected. 5 pt

2. Assume three random variables 𝐴, 𝐵, 𝐶 such that 𝐴 and 𝐵 are conditionally
independent given 𝐶. You know

• the probability distribution of 𝐶,
• the conditional probability distribution of 𝐴 given 𝐶,
• the conditional probability distribution of 𝐵 given 𝐶.

In terms of the above, give the formula for the probability distribution of 𝐶
given the event 𝐴 = 𝑎, 𝐵 = 𝑏.

Solution:

1. We use Boolean random variables 𝐼 for an infection and 𝐶 for coughing. We
have 𝑃(𝑖|𝑐) = 𝑃(𝑐|𝑖) ⋅ 𝑃(𝑖)∕𝑃(𝑐) = 1∕2 ⋅ (1∕10, 000)∕(1∕1000) = 1∕20.

2.

𝑃(𝐶|𝐴 = 𝑎, 𝐵 = 𝑏) = 𝛼⋅𝑃(𝐶,𝐴 = 𝑎, 𝐵 = 𝑏) = 𝛼⋅𝑃(𝐶)𝑃(𝐵 = 𝑏|𝐶)𝑃(𝐴 = 𝑎|𝐵 = 𝑏, 𝐶) =

𝛼 ⋅ 𝑃(𝐶)𝑃(𝐵 = 𝑏|𝐶)𝑃(𝐴 = 𝑎|𝐶)

where 𝛼 is a constant factor that normalizes the distribution.

Grading:
1. usually correct
2. partial credit: 1 point per derivation step; −0.5 for minor mistakes

Problem 1.2 (Bayesian Networks) 15 pt
0 minConsider the following situation:

• You have a rock in your yard, which can feel wet or not.
• Rain may cause humidity in the air.
• Any one of rain, humidity, and whether the lawn was sprinkled may cause
the rock to be wet.

• There are no other causal relationships.
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You want to model this situation using Boolean random variables𝑊 (wet rock), 𝑅
(rain),𝐻 (humidity), and 𝑆 (sprinkling). 2 pt

1. You do not know if it rained today and want to determine that by touching
the rock. Which variables are the evidence, query, and hidden variables? 3 pt

2. Give a good variable ordering for forming a Bayesian network for this situa-
tion. 3 pt

3. Give the resulting network. 2 pt
4. Which of the variables are deterministic? 2 pt
5. Now assume your network is𝑊 → 𝑅 → 𝐻 → 𝑆 (whichmay or may not be a

correct solution to 3. above). How many entries do the conditional probabil-
ity tables of that network have in total? 3 pt

6. Now assume a correct network is𝑊 → 𝑅 ← 𝐻 ← 𝑆. Give the formula for

𝑃(𝑅|𝑊 = 𝑡𝑟𝑢𝑒, 𝑆 = 𝑡𝑟𝑢𝑒)

in terms of the entries of the conditional probability table of that network.

Solution:
1. Evidence𝑊, query 𝑅, hidden𝐻, 𝑆
2. Causes should occur before effects, so e.g., 𝑅𝐻𝑆𝑊, 𝑅𝑆𝐻𝑊, or 𝑆𝑅𝐻𝑊.
3. 𝑅 → 𝐻 →𝑊 ← 𝑆 and 𝑅 →𝑊
4. None
5. Weneed 2 for𝑊: 𝑃(𝑊) and𝑃(¬𝑊). Then 4 for𝑅: 𝑃(𝑅|𝑊),𝑃(𝑅|¬𝑊),𝑃(¬𝑅|𝑊),

and 𝑃(¬𝑅|¬𝑊). Then accordingly for 4 each for 𝐻 and 𝑆. So 14 in total. Be-
cause we can compute the negative probabilities from the positive ones, 7 is
also an acceptable solution.

6.
𝑃(𝑅|𝑤, 𝑠) =

𝛼
(
𝑃(𝑅, ℎ, 𝑤, 𝑠) + 𝑃(𝑅,¬ℎ,𝑤, 𝑠)

)
=

𝛼
(
𝑃(𝑅|ℎ,𝑤, 𝑠)𝑃(ℎ|𝑤, 𝑠)𝑃(𝑤|𝑠)𝑃(𝑠) + 𝑃(𝑅|¬ℎ,𝑤, 𝑠)𝑃(¬ℎ|𝑤, 𝑠)𝑃(𝑤|𝑠)𝑃(𝑠)

)
=

𝛼
(
𝑃(𝑅|ℎ,𝑤)𝑃(ℎ|𝑠)𝑃(𝑤)𝑃(𝑠) + 𝑃(𝑅|¬ℎ,𝑤)𝑃(¬ℎ|𝑠)𝑃(𝑤)𝑃(𝑠)

)

𝛼′
(
𝑃(𝑅|ℎ,𝑤)𝑃(ℎ|𝑠) + 𝑃(𝑅|¬ℎ,𝑤)𝑃(¬ℎ|𝑠)

)

where 𝛼, 𝛼′ are constant factors that normalize the distribution. The penul-
timate line is an acceptable solution too.

Grading:
1. 0.5 points per variable
2. 2 points if minor mistake, 1 point if completely wrong but a variable ordering
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3. Relative to solution of 2. 2.5 points if one edge missing or too much, 2 points if more
mistakes, 1 point if not similar to solution but a Bayesian network.

4. No partial credit
5. Full credit for 14, 7, or any explained answer that partially drops the entries for neg-

ative probabilities. Partial credit if explanation for wrong answer: 1.5 or 1 depending
on severity of mistake.

6. 2.5 points if minor mistake, 2 points if recognizable as the solution but wrong, 1 if
recognizable, 0.5mercy points

2 Markovian Reasoning
Problem 2.1 (HiddenMarkov Models) 15 pt

0 minConsider the following situation:
• Youmake weekly observations about your business with a client. Each week
business is either good or bad.

• You know this is caused by the mood of your client, who feels either opti-
mistic or pessimistic about the economy.

• You have previously obtained the following information:
– when your client is optimistic, they remain optimistic next week 90% of
the time,

– when your client is optimistic, your business is good 70% of the time,
– when your client is pessimistic, they remain pessimistic next week 25%
of the time,

– when your client is pessimistic, your business is bad 80% of the time,
– your client was optimistic two weeks ago with probability 60%.

You want to model this situation as a hidden Markov model with Boolean random
variables indexed by week number 𝑤. 2 pt

1. Give the state and evidence variables. 1 pt
2. Is the model stationary? 1 pt
3. What order does the model have?

4. Complete the following sentences:
3 pt

(a) The transition model is given by the matrix

𝑇 = ( ) where 𝑇𝑖𝑗 = 𝑃( = 𝑗| = 𝑖).

3 pt
(b) The sensor model is given by the matrix

𝑀 = ( ) where 𝑀𝑖𝑗 = 𝑃( = 𝑗| = 𝑖).

To map Boolean values to matrix indices 𝑖, 𝑗, we use 𝑡𝑟𝑢𝑒 = 1 and 𝑓𝑎𝑙𝑠𝑒 = 2.
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5 pt
5. Your business was good last week (𝑤 = 1) and bad this week (𝑤 = 2). Give

the matrix form of the recursive filtering equation and state precisely which
concrete values to plug in to obtain the probability distribution of your client’s
current mood at 𝑤 = 2. (You do not have to actually compute the distribu-
tion.)

Solution:

1. State variables 𝐶𝑤 (true if client optimistic), evidence variables 𝐵𝑤 (true if
business is good)

2. Yes

3. 1

4. (a) 𝑇 = ( 0.9 0.1
0.75 0.25) where 𝑇𝑖𝑗 = 𝑃(𝐶𝑤 = 𝑗|𝐶𝑤−1 = 𝑖)

(b) 𝑀 = (0.7 0.3
0.2 0.8) where𝑀𝑖𝑗 = 𝑃(𝐵𝑤 = 𝑗|𝐶𝑤 = 𝑖)

5. We compute𝑓1∶2 by applying thefiltering equation𝑓1∶𝑤+1 = 𝛼(𝑂𝑤+1⋅𝑇𝑡𝑓1∶𝑤)
twice where

• 𝑂1 = (0.7 0
0 0.2) and 𝑂2 = (0.3 0

0 0.8) are the diagonal sensor matrices

for the observation of good business at𝑤 = 1 and bad business at𝑤 = 2,
• 𝑓1∶0 = ⟨0.6, 0.4⟩ is the prior probability,
• 𝛼 is a constant factor to normalize the distribution.

Grading:
1. 1 point each; −0.5 for minor mistakes
2. no partial credit
3. no partial credit
4. −0.5 per minor mistake
5. 2 points for the filtering equation, 3 points for plugging in values

Problem 2.2 (Markov Decision Processes) 10 pt
0 min

1. Give an optimal policy 𝜋∗ for the following MDP:
• set of states: 𝑆 = {0, 1, 2, 3, 4, 5} with initial state 0
• set of actions for 𝑠 ∈ 𝑆: 𝐴(𝑠) = {−1, 1}
• transition model for 𝑠, 𝑠′ ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠): 𝑃(𝑠′|𝑠, 𝑎) is such that

– 𝑠′ = (𝑠 + 𝑎) mod 6 with probability 2∕3,
– 𝑠′ = (𝑠 + 3) mod 6 with probability 1∕3.
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• reward function: 𝑅(5) = 1 and 𝑅(𝑠) = −0.1 for 𝑠 ∈ 𝑆 ⧵ {5}

2. State the Bellman equation.

3. Complete the followinghigh-level description of the value iteration algorithm:

• The algorithm keeps a table 𝑈(𝑠) for 𝑠 ∈ 𝑆, that is initialized with

• In each iteration, it uses the

in order to

• 𝑈(𝑠) will converge to the

Solution:

1. 𝜋∗(𝑠) = 1 if 𝑠 ∈ {3, 4} and 𝜋∗(𝑠) = −1 if 𝑠 ∈ {0, 1} and arbitrary for 𝑠 ∈ {2, 5}

2. 𝑈(𝑠) = 𝑅(𝑠) + 𝛾max𝑎∈𝐴(𝑠)
∑

𝑠′∈𝑆 𝑈(𝑠
′)𝑃(𝑠′|𝑠, 𝑎)

3. • The algorithm keeps a table 𝑈(𝑠) for 𝑠 ∈ 𝑆, that is initialized with arbi-
trary values, e.g. all 0 or the rewards.

• In each iteration, it uses the Bellman equation in order to update 𝑈(𝑠).
• 𝑈(𝑠) will converge to the expected utility of 𝑠.

3 Learning
Problem 3.1 (Decision Trees) 15 pt

0 minYou observe the values below for 6 different football games of your favorite team.
You want to construct a decision tree that predicts the result.
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# Day Weather Location Opponent Result
1 Monday Rainy Home Weak Win
2 Monday Sunny Home Weak Win
3 Friday Rainy Away Strong Loss
4 Sunday Sunny Home Weak Win
5 Friday Cloudy Home Strong Draw
6 Sunday Sunny Home Strong Draw

4 pt
1. Assume you choose attributes in the order

𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛,𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝐷𝑎𝑦.
Give the resulting decision tree. 1 pt

2. How does the information-theoretic algorithm choose an attribute? 3 pt
3. Without using the above observations, give the formula for the information

gain of the attribute 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡. 3 pt
4. Using the above observations, give the results of

• 𝐼(𝑃(𝑅𝑒𝑠𝑢𝑙𝑡)) =
• 𝑃(𝑅𝑒𝑠𝑢𝑙𝑡 = 𝐿𝑜𝑠𝑠|𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑆𝑡𝑟𝑜𝑛𝑔) =

You do not have to compute irrational logarithms. 2 pt
5. Give a minimal set 𝐴 of attributes such that 𝐴 ≻ 𝑅𝑒𝑠𝑢𝑙𝑡 holds for the above

observations. 2 pt
6. Explain why or why not the determination 𝐷𝑎𝑦,𝑊𝑒𝑎𝑡ℎ𝑒𝑟 ≻ 𝑅𝑒𝑠𝑢𝑙𝑡 holds for

the above observations.
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Solution:

1. The tree is

𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 ?

𝑊𝑖𝑛 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ?

𝐿𝑜𝑠𝑠𝐷𝑟𝑎𝑤

𝑊𝑒𝑎𝑘 𝑆𝑡𝑟𝑜𝑛𝑔

𝐴𝑤𝑎𝑦𝐻𝑜𝑚𝑒

2. The algorithm chooses the attribute with the highest information gain.

3. 𝐺𝑎𝑖𝑛(𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡) = 𝐼(𝑃(𝑅𝑒𝑠𝑢𝑙𝑡))−𝑃(𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑆𝑡𝑟𝑜𝑛𝑔)⋅𝐼(𝑃(𝑅𝑒𝑠𝑢𝑙𝑡|𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 =
𝑆𝑡𝑟𝑜𝑛𝑔)) − 𝑃(𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 =𝑊𝑒𝑎𝑘) ⋅ 𝐼(𝑃(𝑅𝑒𝑠𝑢𝑙𝑡|𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 =𝑊𝑒𝑎𝑘))

4. 𝐼(𝑃(𝑅𝑒𝑠𝑢𝑙𝑡)) = −1∕2 log2 1∕2 − 1∕3 log2 1∕3 − 1∕6 log2 1∕6 and 𝑃(𝑅𝑒𝑠𝑢𝑙𝑡 =
𝐿𝑜𝑠𝑠|𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡 = 𝑆𝑡𝑟𝑜𝑛𝑔) = 1∕3.

5. 𝐴 = {𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡} or 𝐴 = {𝑊𝑒𝑎𝑡ℎ𝑒𝑟, 𝑂𝑝𝑝𝑜𝑛𝑒𝑛𝑡}

6. It does not hold. Games 4 and 6 agree on𝐷𝑎𝑦 and𝑊𝑒𝑎𝑡ℎ𝑒𝑟 but not on𝑅𝑒𝑠𝑢𝑙𝑡.

Grading:
1. −0.5 for a decision list, −0.5 if for missing leaf node labels, or similar representation

errors, −1 for including the redundant attributes, −0.5 for other mistakes; at least 3
points for an essentially correct solution, at least 2 points if recognizably similar to
solution, 1 point if some decision tree

2. 0.5 points if only information gain is mentioned but not highest.
3. 2.5 points if minor mistake, 2 points if clearly recognizable as the solution, 1 point

if some overlap with solution but very wrong, 0.5 mercy points if anything correct is
written.

4. 1.5 points each. −0.5 per minor mistake
5. 1 point if off by one attribute
6. 1 point for the answer (no partial credit); 1 point for the explanation,−0.5 formistakes

Problem 3.2 (Neural Networks) 15 pt
0 minConsider the neural network below where units 1, 2 are inputs, unit 5 is output,

weights are given by the labels on the edges, and units 3, 4, 5 are perceptron units
with activation function 𝑇(𝑥) = 1 for 𝑥 > 0.5 and 𝑇(𝑥) = 0 otherwise.
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1

2

3

4

5

𝑤13

𝑤14

𝑤23

𝑤24

𝑤35

𝑤45

1 pt
1. Is it recurrent? 1 pt
2. How many hidden layers does it have? 3 pt
3. Give the formula for the activation 𝑎3 of unit 3 in terms of the inputs 𝑎1 and

𝑎2 and the weights 𝑤𝑖𝑗 . 2 pt
4. Assume 𝑤𝑖𝑗 = 1 for all weights 𝑤𝑖𝑗 and 𝑎1 = 𝑎2 = 1. What is the resulting

output 𝑎5? 4 pt
5. Assume 𝑎1, 𝑎2 ∈ {0, 1} and 𝑤13 = 𝑤23 = 1. Choose appropriate values for

the other weights such that the network implements the XOR function, i.e.,
𝑎5 = 𝑎1 𝑋𝑂𝑅 𝑎2. 4 pt

6. Complete the high-level description of the back-propagation algorithm on the
next page. To learn a target function 𝑎5 = 𝑓(𝑎1, 𝑎2), do the following for each
input to 𝑓:

• compute the

• determine the error between

and propagate

• use the propagation results to update
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Solution:

1. No

2. 1

3. 𝑎3 = 𝑇(𝑤13𝑎1 + 𝑤23𝑎2)

4. 1

5. 𝑤14 = 𝑤24 = 0.3 (range: each ≤ 0.5 and sum > 0.5), 𝑤35 = 1 (range: > 0.5),
𝑤45 = −1 (range 𝑤35 + 𝑤45 ≤ 0.5)

6. • compute the activations of all units,
• determine the error between network output and target result and prop-
agate it back to all inner units,

• use the propagated values to update all weights.

Grading:
1. no partial credit
2. no partial credit; 2 accepted if they list the 2 nodes in the hidden layer
3. −0.5 forminormistakes,−1 formajormistakes; up to 1.5 points for wrong but vaguely

recognizable solutions
4. solutions with bias accepted if used consistently; 1 point for wrong solution with good

computation
5. solutions with bias accepted if used consistently; −1 for mistakes, at least 2 points if

recognizable/correct intention, 1 point for well-typed solution
6. 1 point per blank;−0.5 formistakes (in particular: missing computation of activations

for all units)

4 Natural Language Processing
Problem 4.1 (TrigramModels) 5 pt

0 min
1 pt1. How many trigrams does a language with 10 words have?
2 pt

2. Explain informally how we can obtain a trigram model for a language 𝐿. 2 pt
3. Name two applications of trigram models.
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Solution:

1. 103 = 1000

2. We need a corpus of words over 𝐿. Then we count how often each trigram
occurs in it and use that to estimate the probability distribution of trigrams.

3. Language identification, genre classification, named entity recognition

Grading:
1. no partial credit
2. 1 point each for mentioning the corpus and the probability distribution of trigram

occurrences
3. 1 point per correct answer (up to 2)

Problem 4.2 (Information Retrieval) 10 pt
0 minConsider the following two texts

• 𝑑1: “Information retrieval is hard.”
• 𝑑2: “Machine learning is very, very hard.”

Let 𝐷 = {𝑑1, 𝑑2}.

Below we use alphabetical order for the vector components:

hard, information, is, learning, machine, retrieval, very

Simplify all results much as possible but without introducing approximate values.
3 pt

1. Give the vector 𝑡𝑓(_, 𝑑2). 3 pt
2. Give the vector 𝑖𝑑𝑓(_, 𝐷). 2 pt
3. Let 𝑞 be the query consisting of theword “retrieval”. Give the value 𝑡𝑓𝑖𝑑𝑓(retrieval, 𝑞, 𝐷).2 pt
4. How can we use 𝑡𝑓𝑖𝑑𝑓 for choosing how to rank the texts in 𝐷 for the query

𝑞?

Solution:

1. 𝑡𝑓(_, 𝑑2) = ⟨1∕6, 0, 1∕6, 1∕6, 1∕6, 0, 1∕3⟩.

2. 𝑖𝑑𝑓(_, {𝑑1, 𝑑2}) = log10(2∕⟨2, 1, 2, 1, 1, 1, 1⟩) = ⟨0, 𝑘, 0, 𝑘, 𝑘, 𝑘, 𝑘⟩ with 𝑘 =
log10 2.

3. 𝑡𝑓𝑖𝑑𝑓(retrieval, 𝑞, 𝐷) = 1∕1 ⋅ 𝑖𝑑𝑓(retrieval, 𝐷) = 𝑘.

4. We compute the angle between the vectors 𝑡𝑓𝑖𝑑𝑓(_, 𝑑𝑖 , 𝐷) and 𝑡𝑓𝑖𝑑𝑓(_, 𝑞, 𝐷).
Lower values are ranked higher.

Grading:
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1. −0.5 per wrong entry
2. −0.5 per wrong entry
3. graded relative to solutions to subproblem 2; −0.5 for minor mistakes, 1 point for

roughly correct attempt
4. 1 point for mentioning the angle between the correct vector, 1 point for the ranking

criterion
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