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The �solutions� to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful �solutions�, they can be incomplete and can even
contain errors.

If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.
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1 Bayesian Reasoning

Problem 1.1 (Basic Probability) 6 pt

6 minLet A,B,C be Boolean random variables, and let a, b, c denote the atomic events that
A,B,C, respectively, are true. Which of the following equalities are always true? Justify
each of your answers in one sentence.

1. P (b) = P (a, b) + P (¬a, b)

2. P (a) = P (a|b) + P (a|¬b)

3. P (a, b) = P (a) · P (b)

4. P (a, b|c) · P (c) = P (c, a|b) · P (b)

5. P (a ∨ b) = P (a) + P (b)

6. P (a,¬b) = (1− P (b|a)) · P (a)

Solution:

1. True (marginalization over A)

2. Not true (e.g. P (a|b) = P (a|¬b) = 0.6 would result in P (a) = 1.2)

3. Not true (only true if A and B are stochastically independent)

4. True (using product rule, both sides become P (a, b, c))

5. Not true (general form is P (a ∨ b) = P (a) + P (b)− P (a, b))

6. True (1− P (b|a) = P (¬b|a) and via product rule we get P (a,¬b))

Problem 1.2 (Bayesian Networks) 10 pt

10 minConsider the following Bayesian network with Boolean variables:

A1 A2

X1 X2 X3

2 pt

1. Give the de�nition of conditional independence.
3 pt

2. Which nodes in the network are conditionally independent withX1 given A1? Explain
why.

3 pt

3. Give an example of two nodes from the network above that are stochastically inde-
pendent. Explain why they are stochastically independent.
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2 pt

4. What exactly (formal criterion) does an arrow between two nodes in a Bayesian
network mean for the associated events?

Solution:

1. Two events A,B are conditionally independent given C, if P (A ∧B|C) = P (A|C)P (B|C).

2. Every node in a Bayesian network is conditionally independent of its non-descendants given

its parents. This means that X2, X3 are conditionally independent of X1 given A1

3. The nodes A1 and A2 have no parents, so they are in fact stochastically independent of their

non-descendants. The non-descendants of A1 are A2 and X3, and the non-descendants of

A2 are A1 and X1. This means that the pairs A1 and A2, A1 and X3, A2 and X1.

Note that it would be also correct to say that X1 and X3 are stochastically independent by

D-separation1, but this was not covered in the lectures.

4. We draw an arrow from Xj to Xi if Xj is in the smallest set Parents(Xi) with the property

P (Xi|Xi−1, ..., X1) = P (Xi|Parents(Xi))

Problem 1.3 (Arrows in Bayesian Networks) 2 pt

2 minSuppose that in a Bayesian network N we have variables C1, E1, C2, and E2, such that C1

causes E1 and C2 causes E2.

1. How do we call an arrow going from C1 to E1?

2. How do we call an arrow going from E2 to C2?

Solution:

1. Causal.

2. Diagnostic

2 Decision Theory

Problem 2.1 (Expected Utility) 6 pt

6 min

1. What is the formal(!) de�nition of expected utility? What is the meaning of every
variable in the de�ning equation?

2. How do we use expected utility to make decisions?

Solution:

1https://de.wikipedia.org/wiki/D-Separation
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1. The expected utility EU is de�ned as

EU(a|e) =
∑
s′

P (R(a) = s′|a, e) · U(s′)

where

(a) a is the action for which we want to �nd out the expected utility, given the evidence

e.

(b) U(s′) is the utility of a state s′.

(c) R(a) is the result of the action a.

2. The principle of maximum expected utility says that a rational agent should choose the

action that maximizes the agent's expected utility.

Problem 2.2 (The Value of Information) 4 pt

4 minChef Giordana runs a kitchen that provides food for a large organisation. A salad is sold
for e6 and costs e4 to prepare. Therefore, the contribution per salad is e2. At present
Giordana must decide in advance how many salads to prepare each day (40 or 60). Actual
demand will also be 40 or 60 each day. So Giordana's payo� table looks as follows:

Demand Probability 40 salads 60 salads
40 0.4 e80 e0
60 0.6 e80 e120

Thus, the expected utility for making 40 salads is 80 and the expected utility for making
60 salads is 72. Based on these expected values without additional information, Giordana
would choose to make 40 salads per day with an EU of e80 per day.

She is considering a new ordering system, where the customers must order their salad
online the day before. With this new system Giordana will know for certain the daily
demand 24 hours in advance. She can adjust production levels on a daily basis. How much
is this system worth to her (per day)?

Task: Compute the concrete value in e and explain what you did.
Solution: The value of information is equal to the expected value of best action given the

information minus expected value of best action without information. The corresponding formula

for the value of perfect information is

VPIE(Ej) =
∑
k

P (Ej = ejk|E) · EU(αejk|E,Ej = ejk)− EU(α|E)

In Giordana's case this amounts to

VPI = (0.4 · 80 + 0.6 · 120)− 80 = (32 + 72)− 80 = 24

so the system is worth at most e24 per day.

Problem 2.3 (Decision Network) 6 pt

6 minYou try to decide on whether to take an umbrella to Uni. Obviously, it's useful to do so if
it rains when you go back home, but it's annoying to carry around if it doesn't even rain.
Here are the states you could end up in:
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� happy (or relieved) if it doesn't rain and you did not bring an umbrella,

� annoyed if it doesn't rain and you brought an umbrella,

� wet if it rains and you did not bring an umbrella,

� dry if it rains and you brought an umbrella.

You look at the weather forecast, which has two possible values: sunny and rainy.
You come up with this decision network:

Forecast

Weather

Umbrella

State

2 pt

1. Decision networks are extensions of Bayesian networks, which additional kinds of
nodes do decision networks have? For each kind give an example from the network
above. 4 pt

2. How would you compute whether or not to take an umbrella, assuming you know all
of the probabilities P (state = s|forecast = f, umbrella = u) for all

� s ∈ {happy, annoyed,wet, dry},
� u ∈ Bool, and

� f ∈ {sunny, rainy}.

Solution:

Problem 2.4 (Markov Decision Procedures) 9 pt

8 min
3 pt1. How do Markov decision procedures di�er from (simple) decision networks?
4 pt

2. What do we use the value iteration and policy iteration for? How do they di�er?
2 pt

3. What is the di�erence between partially observable Markov decision procedures and
normal MDPs?

Solution:

1. In Markov decision procedures, the probabilistic model is a Markov process (i.e. random

variables are indexed over time, transitions are subject to the Markov properties).
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2. Value iteration iterates over utilities until they converge, obtaining an optimal policy. Policy

iteration alternates the steps of policy evaluation (computing utilities given the current

policy) and policy improvement (computing a new policy). The policy resulting from value

iteration can be stable long before the individual utilities have converged to their precise

values.

3. In POMDPs the current state is unknown; instead we have observables and a sensor model

O(s, e) := P (e|s) for observables e and states s.

3 Markov Models

Problem 3.1 (Stock Market Predictions) 12 pt

12 minYou bought SpaceY stock recently and try to predict whether to buy more or sell. The
stock market is in one of two possible states; bull state or bear state. In a bull state,
it will (in the long term) be advantageous to buy stock; in a bear state it will be more
advantageous to sell.

If the market is in a bull state, the probability it will still be in a bull state tomorrow
is 60%. If it is in a bear state, the probability it will remain so tomorrow is 80%.

If the market is in a bull state, the probability that your stock will rise that day is 90%.
If it is in a bear state, your stock will more likely fall (with 60% probability).

1 pt

1. What are the observable and unobservable variables in this model? 1 pt

2. If we consider this as a hidden Markov model, what is its transition matrix T?
Remember that we use transition matrices to compute the previous or future states.

6 pt

3. Explain what kind of probabilities prediction, �ltering and smoothing compute in
this scenario. Do not just give formulas.

4 pt

4. Give the underlying equations for the �rst two of these algorithms and explain what
each variable in the equation represents.

Solution:

1.

2. We take Xt to be a discrete random variables with domain {bull, bear}.

T =

(
0.6 0.4
0.2 0.8

)
3. Prediction Given the behavior of the stock market up to time t0, compute the probability

of the state the stock market will be in at time t1 > t0

Filtering Given the behavior of the stock market up to now, compute the probability of

the state the stock market is in right now
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Smoothing Given the behavior of the stock market up to t0, compute the probability that

sta stock market was in some state at an earlier point t1 < t0.

4. We have P (Xt+1|e1:t+1) = αP (et+1|Xt+1) ·
∑

xt
P (Xt+1|xt, e1:t) · P (xt|e1:t) where X repre-

sents the state and e the behavior of the stock market.

Problem 3.2 (Stationary) 3 pt

3 minDe�ne what it means for a Markov model to be stationary, and why we are interested in
stationarity.
Solution: A Markov process is called stationary if the transition model is independent of time,

i.e. P(Xt | Xt−1) is the same for all t.
We like stationary Markov processs, since they are �nite.

4 Learning

Problem 4.1 (Decision List) 10 pt

10 minConstruct a decision list to classify the data below. The tests should be as small as possible
(in terms of attributes), breaking ties among tests with the same number of attributes by
selecting the one that classi�es the greatest number of examples correctly. If multiple tests
have the same number of attributes and classify the same number of examples, then break
the tie using attributes with lower index numbers (e.g., select A1 over A2).

Example A1 A2 A3 A4 y
x1 1 0 0 0 1
x2 1 0 1 1 1
x3 0 1 0 0 1
x4 0 1 1 0 0

Solution:

Problem 4.2 (Information Theory) 2 pt

2 minExplain why it is possible (even common) that the learning curve (example given below)
never gets to 100% correctness, even for large example sets.
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Solution: If the function f we are approximating is not in the hypothesis space, then even the

best approximation can never be 100% correct.

Problem 4.3 (Information Entropy) 4 pt

4 minExplain and de�ne information entropy.
Solution: Information entropy of a (set of) random variable is the average level of �information�,

�surprise�, or �uncertainty� inherent in the variable's possible outcomes.

I(〈P1, ..., Pn〉) =
n∑

i=1

−Pi log2(Pi)

Problem 4.4 (Sunbathing) 8 pt

6 minEight people go sunbathing. Some of them got a sunburn, others didn't:

Name Hair Lotion Result
Sarah Light No Sunburned
Dana Light Yes None
Alex Dark Yes None
Annie Light No Sunburned
Julie Light No None
Pete Dark No None
John Dark No None
Ruth Light No None

2 pt
1. Which quantity does the decision tree learning algorithm use to pick the attribute to

split on? Write down the formula for it.
4 pt

2. Compute it for for the attributes Hair and Lotion. It is enough to give the formula
and insert the correct values for the variables, you do not need to compute the �nal
value. 2 pt

3. Which one would the algorithm pick for the next step? Explain what happens next.

Note that Name is only an index, not a (meaningful) attribute!
Solution:

1. Information gain.

2.

E0 := I(〈2
8
,
6

8
〉) = −2

8
log2(

2

8
)− 6

8
log2(

6

8
) ≈ 0.81

Gain(Hair) = E0 −
5

8
I(〈2

5
,
3

5
〉)︸ ︷︷ ︸

Light

− 3

8
I(〈0, 1〉)︸ ︷︷ ︸
Dark

≈ 0.20

Gain(Lotion) = E0 −
2

8
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 6

8
I(〈2

6
,
4

6
〉)︸ ︷︷ ︸

No

≈ 0.12
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3. Hair has the highest information gain, so we split here. All table entries with Dark have

result None, so we continue with Hair = Light

Problem 4.5 (Over�tting) 3 pt

3 minExplain what over�tting means and why we want to avoid it.
Solution: Over�tting is a modeling error that occurs when the chosen hypothesis is too closely

�t to a sample set of data points. It picks an overly complex hypothesis that also explains

idiosyncrasies and errors in the data. A simpler hypothesis that �ts the data less exactly is often

a better match for the underlying mechanisms.

8


	1 Bayesian Reasoning
	2 Decision Theory
	3 Markov Models
	4 Learning

