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The �solutions� to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful �solutions�, they can be incomplete and can even
contain errors.

If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.
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1 Bayesian Reasoning

Problem 1.1 (Bayesian Rules) 4 pt

4 minName four of the basic rules in Bayesian inference and explain each with a short sentence
and formula.
Solution:

1. Bayes rule (compute P (A|B) from P (B|A),

2. Normalization (Fixing evidence e, updating the probabilities of all other events using a
normalization constant α),

3. Marginalization (P (A) =
∑

y P (A, y)),

4. Chain rule (P (A1, . . . , An) = P (An|An−1, . . . , A1) · P (An−1|An−2, . . . , A1) · . . .)

5. Product rule (P (A,B) = P (A|B)P (B))

6. Conditional Independence (Not really bayesian inference, but rather bayesian networks, but
we'll be lenient)
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Problem 1.2 (Conditional Independence) 3 pt

3 minDe�ne conditional independence.
Solution: Two eventsA,B are conditionally independent given C, if P (A∧B|C) = P (A|C)P (B|C).
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Problem 1.3 (Medical Bayesian Network 2) 7 pt

7 minBoth smoking and living in a city with high air pollution can cause lung cancer, which can
be indicated by a patient coughing up blood. We consider the following random variables
for a given patient:

� Smoke: The patient is a smoker.

� Smog: The patient lives in a polluted city.

� Blood: The patient is coughing up blood.

� LC: The patient has lung cancer.

1. Draw the corresponding Bayesian network for the above data using the algorithm
presented in the lecture, assuming the variable order Smoke, Smog,Blood, LC. Ex-
plain rigorously(!) the exact criterion for whether to insert an arrow between two
nodes.

2. Which arrows are causal and which are diagnostic? Which order of variables would
be better suited for constructing the network?

3. How do we compute the probability the patient is a smoker, given that they have lung
cancer? State the query variables, hidden variables and evidence and write down the
equation for the probability we are interested in.

Solution:

2 Decision Theory

Problem 2.1 (Markov Decision Procedures) 12 pt

12 min

1. How do Markov decision procedures di�er from (simple) decision networks?

2. How does the value iteration algorithm work? (Give an actual equation and explain
its role in the algorithm)

3. What is the disadvantage of value iteration that is ��xed� by policy iteration?

4. How can we reduce partially observable Markov decision procedures to normal MDPs?

Solution:

1. In Markov decision procedures, the probabilistic model is a Markov Process (i.e. random
variables are indexed over time, Markov Properties)
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2. We assing a random utility to each state and update them using the Bellman equation:

U(s) = R(s) + γ ·max
a

(∑
s′

U(s′) · T (s, a, s′)

)

Once this iteration has converged, we can compute the �best� action for each state by
considering the expected utilities of all possible actions.

3. The policy resulting from value iteration can be stable long before the individual utilities
have converged to their precise values.

4. By introducing belief states representing the probability distribution over the physical state
space (i.e. the belief state space has one dimension for each physical state).

4



Problem 2.2 (Decision Network) 12 pt

12 minYou try to decide on whether to take an umbrella to Uni. Obviously, it's useful to do so if
it rains when you go back home, but it's annoying to carry around if it doesn't even rain.
You look at the weather forecast, which hast three possible values: sunny, cloudy and rainy.

1. Draw the decision network for bringing/leaving an umbrella depending on whether
it does or doesn't rain later.

2. Explain formally how to compute whether or not to take an umbrella, assuming you
know P (rain = b|forecast = x) for all b ∈ Bool, x ∈ {sunny, cloudy, rainy}.

Solution:

Let U±r,±u be the base utilities of having an/no umbrella when it rains/doesn't rain. Assume
the forecast says x, then compute:

U(umb) = P (rain = >|forecast = x)U+r,+u + P (rain = ⊥|forecast = x)U−r,+u

U(¬umb) = P (rain = >|forecast = x)U+r,−u + P (rain = ⊥|forecast = x)U−r,−u

If the former is greater than the latter you should take an umbrella.
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3 Markov Models

Problem 3.1 (Bellman Equation) 4 pt

4 minState the Bellman Equation and explain every symbol in the equation and what the equa-
tion is used for and how.
Solution:

U(s) = R(s) + γ · max
a∈A(s)

(∑
s′

P (s′|s, a) · U(s′)

)
The meaning of the components is as follows:

� U(s): the utility of the state s (long-term, global)
� R(s): the reward at state s (short-term, local)
� A(s): the set of actions available in state s
� maxa∈A(s): take the maximum over all available actions in state s
� P (s′|s, a): the probability that taking action a in state s yields state s′

� U(s′): the utility in successor state s′

� (
∑

s′ P (s
′|s, a) · U(s′)): the expected utility of action a by summing over all possible suc-

cessor states
The equation is used to compute the utility of every state. The algorithm uses the equation as
an iteration operator that computes new values for every U(s) by evaluating the right hand side
for the current values of U . If this leads to a �xpoint, a solution for the utilities has been found.
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Problem 3.2 (Stationary) 3 pt

3 minDe�ne what it means for a Markov model to be stationary, and why we are interested in
stationarity.
Solution: A Markov process is called stationary if the transition model is independent of time,
i.e. P(Xt | Xt−1) is the same for all t.

We like stationary Markov processs, since they are �nite.
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Problem 3.3 (Sleeping Patterns Predictions) 8 pt

8 minYour roommate tends to keep you up by blasting music whenever they are awake. Notably,
they tend to sleep a lot less when they are stressed (binary variable St), but since you don't
talk to each other you never know when they are. You only observe whether they sleep a
lot (Sl) or little (¬Sl). Stress seems to come in phases and last for a couple of days, so
if they are stressed at day t, they will more likely be stressed at day t + 1 as well (and
analogously for ¬St).

1. Model this situation as a Markov Model and explain what the prediction, �ltering
and smoothing algorithms compute in this scenario.

2. Give the underlying equations for the �rst two of these algorithms and explain what
each variable in the equation represents.

Solution:

1. Prediction Given the amount of sleep up to time t0, compute the probability of them
being stressed at time t1 > t0

Filtering Given the of sleep up to now, compute the probability of them being stressed
right now

Smoothing Given the amount of sleep up to t0, compute the probability that they were
stressed at an earlier point t1 < t0.

2.
P (Stt+1|Sl1:t+1) = αP (Slt+1|Stt+1) ·

∑
stt

P (Stt+1|stt, Sl1:t) · P (stt|Sl1:t)
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4 Learning

Problem 4.1 (Over�tting) 4 pt

4 minExplain what over�tting means and why we want to avoid it.
Solution: Over�tting is a modeling error that occurs when the chosen hypothesis is too closely
�t to a sample set of data points. It picks an overly complex hypothesis that also explains
idiosyncrasies and errors in the data. A simpler hypothesis that �ts the data less exactly is often
a better match for the underlying mechanisms.
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Problem 4.2 (Home Decisions) 8 pt

8 minEight people go sunbathing. Some of them got a sunburn, others didn't:

Name Hair Height Weight Lotion Result
Sarah Blonde Average Light No Sunburned
Dana Blonde Tall Average Yes None
Alex Brown Short Average Yes None
Annie Blonde Short Average No Sunburned
Julie Blonde Average Light No None
Pete Brown Tall Heavy No None
John Brown Average Heavy No None
Ruth Blonde Average Light No None

Explain how the information-theoretic decision tree learning algorithm would proceed on
this table (up to two iterations). Explicitly state how to compute the information gain
(and what that means).

Note that you do not need to compute any actual values; if it is helpful for your
explanation, you may guess any values you might want to use.

Note that Name is only an index, not a (meaningful) attribute!
Solution:

E0 := I(〈2
8
,
6

8
〉) = −2

8
log2(

2

8
)− 6

8
log2(

6

8
) ≈ 0.81

Gain(Hair) = E0 −
5

8
I(〈2

5
,
3

5
〉)︸ ︷︷ ︸

Blonde

− 3

8
I(〈0, 1〉)︸ ︷︷ ︸
Brown

≈ 0.20

Gain(Height) = E0 −
4

8
I(〈1

4
,
3

4
〉)︸ ︷︷ ︸

Average

− 2

8
I(〈0, 1〉)︸ ︷︷ ︸
Tall

− 2

8
I(〈1

2
,
1

2
〉)︸ ︷︷ ︸

Short

≈ 0.16

Gain(Weight) = E0 −
3

8
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Average

− 3

8
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Light

− 2

8
I(〈0, 1〉)︸ ︷︷ ︸
Heavy

≈ 0.12

Gain(Lotion) = E0 −
2

8
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 6

8
I(〈2

6
,
4

6
〉)︸ ︷︷ ︸

No

≈ 0.12

Hair has the highest information gain, so we split here. All table entries with Brown have result
None, so we continue with Hair = Blonde:

E1 := I(〈2
5
,
3

5
〉) ≈ 0.97
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Gain(Height) = E1 −
3

5
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Average

− 1

5
I(〈0, 1〉)︸ ︷︷ ︸
Tall

− 1

5
I(〈1, 0〉)︸ ︷︷ ︸
Short

≈ 0.42

Gain(Weight) = E1 −
2

5
I(〈1

2
,
1

2
〉)︸ ︷︷ ︸

Average

− 3

5
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Light

− 0︸︷︷︸
Heavy

≈ 0.02

Gain(Lotion) = E1 −
1

5
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 4

5
I(〈2

4
,
2

4
〉)︸ ︷︷ ︸

No

≈ 0.17

Height has the highest information gain, so we proceed here. All short blondes are sunburned,
all tall blondes are not, hence we only need consider Average. . .

Problem 4.3 (Backpropagation) 8 pt

8 minExplain what Backpropagation means in the context of Neural Networks, when and why
we need it, and how to do it using an example.
Solution: A possible answer:

Backpropagation is an algorithm for training feedforward neural networks for supervised learn-
ing. It computes the gradient of the loss function with respect to the weights of the network for
a single input�output example.

5 Communication with Natural Language

Problem 5.1 (Ambiguity) 5 pt

5 min

1. Explain the concept of ambiguity of natural languages.

2. Give two examples of di�erent kinds of ambiguity and explain the readings.

Solution:

1. Ambiguity is the phenomenon that in natural languages a single utterance can have multiple
readings.

2. Here are some examples

� bank can be a �nancial institution or a geographical feature.

� In I saw her duck the word duck can be a verb or a noun.

� Time �ies like an arrow could be about the preferences of special insects (time �ies)
or about the fact that time passes quickly � e.g. in an exam.

� In Peter saw the man with binoculars, it could be Peter who is using binoculars, or it
could be that Peter saw the man who had binoculars.
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Problem 5.2 (Language Identi�cation) 6 pt

6 minYou are given an English, a German, a Spanisch, and a French text corpus of considerable
size, and you want to build a language identi�cation algorithm A for the EU administration.
Concretely A takes a string as input and classi�es it into one of the four languages `∗ ∈
{English,German, Spanish, French}. The prior probability distribution for the strings
being English/German/Spanisch/French, is 〈0.4, 0.2, 0.15, 0.15〉.

How would you proceed to build algorithm A? Specify the general steps and give/derive
the formula for computing ` given a string c1:N .
Solution:

1. Build a trigram language modelP(ci | ci− 2:i− 1, `) for each candidate language ` by counting
trigrams in a `-corpus.

2. Apply Bayes' rule and the Markov property to get the most likely language:

`∗ = argmax
`

(P (` | c1:N ))

= argmax
`

(P (`) · P (c1:N | `))

= argmax
`

(P (`) ·
N∏
i=1

P (ci | ci− 2:i− 1, `))
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