
Name:

Birth Date:

Matriculation Number:

Exam

Arti�cial Intelligence 2

July 30., 2019

To be used for grading, do not write here

prob. 1.1 1.2 2.1 2.2 3.1 3.2 3.3 3.4 4.1 4.2 5.1 5.2 Sum grade

total 7 5 4 10 10 4 8 3 10 8 5 6 80

reached

Exam Grade: Bonus Points: Final Grade:

i



The �solutions� to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful �solutions�, they can be incomplete and can even
contain errors.

If you �nd �solutions� you do not understand or you �nd incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student's answers is not a process of simply �compar-
ing with the reference solution�, therefore errors in the �solutions� are not a
problem in this case.

In the course Arti�cial Intelligence I/II we award 5 bonus points for the �rst
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully di�erent from the existing ones.
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1 Bayesian Reasoning

Problem 1.1 (Medical Bayesian Network 2) 7 pt

7 minBoth smoking and living in a city with high air pollution can cause lung cancer, which can
be indicated by a patient coughing up blood. We consider the following random variables
for a given patient:

� Smoke: The patient is a smoker.

� Smog: The patient lives in a polluted city.

� Blood: The patient is coughing up blood.

� LC: The patient has lung cancer.

1. Draw the corresponding Bayesian network for the above data using the algorithm
presented in the lecture, assuming the variable order Smoke, Smog,Blood, LC. Ex-
plain rigorously(!) the exact criterion for whether to insert an arrow between two
nodes.

2. Which arrows are causal and which are diagnostic? Which order of variables would
be better suited for constructing the network?

3. How do we compute the probability the patient is a smoker, given that they have lung
cancer? State the query variables, hidden variables and evidence and write down the
equation for the probability we are interested in.

Solution:

Problem 1.2 (Stochastic and Conditional independence) 5 pt

5 minConsider the following Bayesian network:

A B

C

D E

Find

1. two variables that are stochastically independent, but not conditionally independent
for some condition, and

2. two variables that are not stochastically independent, but conditionally independent
for some condition.
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For both pairs, state the condition explicitly and justify why they are correct answers.
Assume that the conditional probabilities modelled by this network are not degenerate or
exceptional in any way (e.g. no 0 or 1 entries).
Solution:

1. A, B are independent (no arrow between them), but not conditionally independent given

C. For example, suppose that you are �ipping two coins. Let A be the event that your �rst

coin �ip is heads and B the event that your second coin �ip is heads. Let C be the event

that your �rst two �ips were the same. Then A and B here are independent. However, A
and B are conditionally dependent given C, since if you know C then your �rst coin �ip

will inform the other one.

2. D, E are not independent (both are in�uenced by C), but conditionally independent given

C. Now suppose that D and E are again coin �ips (�rst coin �ip is heads and second coin

�ip is heads), and C the event that I gave you a biased coin. D and E here are dependent,

since �ipping a coin once will give you evidence on whether or not the coin is biased. This

evidence will help inform your next �ip. However the �ips are conditionally independent

given C.

2 Decision Theory

Problem 2.1 (Expected Utility) 4 pt

4 minWhat is the formal(!) de�nition of expected utility? Explain every variable in the de�ning
equation.
Solution: The expected utility EU is de�ned as

EU(a|e) =
∑
s′

P (R(a) = s′|a, e) · U(s′)

where

1. a is the action for which we want to �nd out the expected utility, given the evidence e.

2. U(s′) is the utility of a state s′.

3. R(a) is the result of the action a.

Problem 2.2 (Textbook Decisions) 10 pt

10 minAbby has to decide whether to buy Russell&Norvig for 100$. There are three boolean
variables involved in this decision: B indicating whether Abby buys the book, M indicating
whether Abby knows the material in the book perfectly anyway and P indicating that Abby
passes the course. Additionally, we use a utility node U .

Abby's utility function is additive, so U(B) = −100. Furthermore, she evaluates passing
the course with a utility of U(P ) = 2000. The course has an open book �nal exam, so B
and P are not independent given M .

Assume the conditional probabilities P (P |B,M), P (P |B,¬M), P (P |¬B,M), P (P |¬B,¬M),
P (M |B), P (M |¬B) are given.
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1. Draw a good decision network for this problem.

2. Explain precisely how to compute the utility of buying the book.

Solution:

3 Markov Models

Problem 3.1 (Markov Decision Procedures) 10 pt

10 min

1. What are the mathematical components of an unambiguous Markov decision proce-
dure?

2. What is the Bellman equation and what algorithm is it used for? How does that
algorithm work?

3. What is the di�erence between partially observable MDPs and normal MDPs?

Solution:

1. A set S of states, a set As of actions for each state s ∈ S, a transition model T (s1, a, s2) :=
P (s2|s1, a) for a ∈ As1 , and a reward function R : S → R.

2. Value iteration: We assign a random utility to each state and update them using the Bellman

equation:

U(s) = R(s) + γ ·max
a

(∑
s′

U(s′) · T (s, a, s′)

)
Once this iteration has converged, we can compute the �best� action for each state by

considering the expected utilities of all possible actions.

3. Current state is unknown; instead we have observables and a sensor model O(s, e) := P (e|s)
for observables e and states s.

Problem 3.2 (Prediction, Filtering, Smoothing) 4 pt

4 minExplain the goals of prediction, �ltering and smoothing in terms of conditional probabilities
Solution:

Prediction P (Xt+k|e1:t)

Filtering P (Xt|e1:t)

Smoothing P (Xk|e1:t) for 0 ≤ k < t
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Problem 3.3 (Markov Mood Detection) 8 pt

8 minOn any given day d, your roommate Moody is in one of two states � either he is happy
(Hd) or he is in a bad mood (Bd). Usually when he's in a bad mood, it's because he had a
�ght with his boyfriend and those tend to go on for a couple of days, so P (Bd+1|Bd) = 0.7,
but aside from that he's a cheery guy, so (P (Hd+1|Hd) = 0.85).

Of course you try to avoid talking to people, but you can hear his music blasting all
day which tends to shift depending on his mood. On a good day he usually listens to Jazz
(i.e. P (Jd|Hd) = 0.7), on a bad day he slightly prefers Death Metal (P (DMd|Bd) = 0.6).
He has a limited taste in music, so it's always one of the two.

You know that he was in a good mood at day d0. Assume he's been listening to death
metal for n days straight since then. Explain how to compute the probability that he is in
a bad mood on day dn+1. State the equations underlying this algorithm explicitly.
Solution: We have P (H0) = 1 and

〈P (Hd), P (Bd)〉 = 〈P (Hd|Hd−1) + P (Hd|Bd−1), P (Bd|Hd−1) + P (Bd|Bd−1)〉

which allows us to update using the information DMd:

〈P (Hd|DMd), P (Bd|DMd)〉 = α〈P (DMd|Hd)P (Hd), P (DMd|Bd)P (Bd)〉

Problem 3.4 (Stationary) 3 pt

3 minDe�ne what it means for a Markov model to be stationary, and why we are interested in
stationarity.
Solution: A Markov process is called stationary if the transition model is independent of time,

i.e. P(Xt | Xt−1) is the same for all t.
We like stationary Markov processs, since they are �nite.

4 Learning

Problem 4.1 (Home Decisions) 10 pt

10 minEight people go sunbathing. Some of them got a sunburn, others didn't:

Name Hair Height Weight Lotion Result
Sarah Blonde Average Light No Sunburned
Dana Blonde Tall Average Yes None
Alex Brown Short Average Yes None
Annie Blonde Short Average No Sunburned
Julie Blonde Average Light No None
Pete Brown Tall Heavy No None
John Brown Average Heavy No None
Ruth Blonde Average Light No None
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Explain how the information-theoretic decision tree learning algorithm would proceed on
this table (up to two iterations). Explicitly state how to compute the information gain
(and what that means).

Note that you do not need to compute any actual values; if it is helpful for your
explanation, you may guess any values you might want to use.

Note that Name is only an index, not a (meaningful) attribute!
Solution:

E0 := I(〈2
8
,
6

8
〉) = −2

8
log2(

2

8
)− 6

8
log2(

6

8
) ≈ 0.81

Gain(Hair) = E0 −
5

8
I(〈2

5
,
3

5
〉)︸ ︷︷ ︸

Blonde

− 3

8
I(〈0, 1〉)︸ ︷︷ ︸
Brown

≈ 0.20

Gain(Height) = E0 −
4

8
I(〈1

4
,
3

4
〉)︸ ︷︷ ︸

Average

− 2

8
I(〈0, 1〉)︸ ︷︷ ︸
Tall

− 2

8
I(〈1

2
,
1

2
〉)︸ ︷︷ ︸

Short

≈ 0.16

Gain(Weight) = E0 −
3

8
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Average

− 3

8
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Light

− 2

8
I(〈0, 1〉)︸ ︷︷ ︸
Heavy

≈ 0.12

Gain(Lotion) = E0 −
2

8
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 6

8
I(〈2

6
,
4

6
〉)︸ ︷︷ ︸

No

≈ 0.12

Hair has the highest information gain, so we split here. All table entries with Brown have result

None, so we continue with Hair = Blonde:

E1 := I(〈2
5
,
3

5
〉) ≈ 0.97

Gain(Height) = E1 −
3

5
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Average

− 1

5
I(〈0, 1〉)︸ ︷︷ ︸
Tall

− 1

5
I(〈1, 0〉)︸ ︷︷ ︸
Short

≈ 0.42

Gain(Weight) = E1 −
2

5
I(〈1

2
,
1

2
〉)︸ ︷︷ ︸

Average

− 3

5
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Light

− 0︸︷︷︸
Heavy

≈ 0.02

Gain(Lotion) = E1 −
1

5
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 4

5
I(〈2

4
,
2

4
〉)︸ ︷︷ ︸

No

≈ 0.17

Height has the highest information gain, so we proceed here. All short blondes are sunburned,

all tall blondes are not, hence we only need consider Average. . .

Problem 4.2 (Backpropagation) 8 pt

8 min
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Explain what Backpropagation means in the context of Neural Networks, when and why
we need it, and how to do it using an example.
Solution: A possible answer:

Backpropagation is an algorithm for training feedforward neural networks for supervised learn-

ing. It computes the gradient of the loss function with respect to the weights of the network for

a single input�output example.

5 Communication with Natural Language

Problem 5.1 (Ambiguity) 5 pt

5 min

1. Explain the concept of ambiguity of natural languages.

2. Give two examples of di�erent kinds of ambiguity and explain the readings.

Solution:

1. Ambiguity is the phenomenon that in natural languages a single utterance can have multiple

readings.

2. Here are some examples

� bank can be a �nancial institution or a geographical feature.

� In I saw her duck the word duck can be a verb or a noun.

� Time �ies like an arrow could be about the preferences of special insects (time �ies)

or about the fact that time passes quickly � e.g. in an exam.

� In Peter saw the man with binoculars, it could be Peter who is using binoculars, or it

could be that Peter saw the man who had binoculars.

Problem 5.2 (Language Identi�cation) 6 pt

6 minYou are given an English, a German, a Spanisch, and a French text corpus of considerable
size, and you want to build a language identi�cation algorithm A for the EU administration.
Concretely A takes a string as input and classi�es it into one of the four languages `∗ ∈
{English,German, Spanish, French}. The prior probability distribution for the strings
being English/German/Spanisch/French, is 〈0.4, 0.2, 0.15, 0.15〉.

How would you proceed to build algorithm A? Specify the general steps and give/derive
the formula for computing ` given a string c1:N .
Solution:

1. Build a trigram language modelP(ci | ci− 2:i− 1, `) for each candidate language ` by counting
trigrams in a `-corpus.
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2. Apply Bayes' rule and the Markov property to get the most likely language:

`∗ = argmax
`

(P (` | c1:N ))

= argmax
`

(P (`) · P (c1:N | `))

= argmax
`

(P (`) ·
N∏
i=1

P (ci | ci− 2:i− 1, `))
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