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The “solutions” to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful “solutions”, they can be incomplete and can even
contain errors.

If you find “solutions” you do not understand or you find incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student’s answers is not a process of simply “comparing
with the reference solution”.

In the course Artificial Intelligence I/II we award 5 bonus points for the first
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully different from the existing ones.
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1 Bayesian Reasoning
Problem 1.1 (Bayesian Rules)
Name four of the basic rules in Bayesian inference and explain each with a short sentence 4 pt

4 minand formula.
Solution:

1. Bayes rule (compute P (A|B) from P (B|A),

2. Normalization (Fixing evidence e, updating the probabilities of all other events using a
normalization constant α),

3. Marginalization (P (A) =
∑

y P (A, y)),

4. Chain rule (P (A1, . . . , An) = P (An|An−1, . . . , A1) · P (An−1|An−2, . . . , A1) · . . .)

5. Product rule (P (A,B) = P (A|B)P (B))

6. Conditional Independence (Not really bayesian inference, but rather bayesian networks, but
we’ll be lenient)
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Problem 1.2 (Causal and Diagnostic)
State the difference between causal and diagnostic edges in (e.g.) a Bayesian network. Use 4 pt

4 minno more than four sentences.
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Problem 1.3 (Medical Bayesian Network)
Dyspnea (shortness of breath) can be caused by several medical conditions; among them 7 pt

7 minlung cancer, tuberculosis and bronchitis. Tuberculosis and cancer lead to abnormal x-ray
results. Lung cancer and bronchitis can be caused by SMOKING, tuberculosis occurs more
often in asia. We use the following random variables for some given patient:

• Asia: The patient recently visited asia.

• Smoke: The patient is a smoker.

• TBC: The patient has tuberculosis.

• LC: The patient has lung cancer.

• Bron: The patient has bronchitis.

• Xray: The patient’s X-ray result is abnormal.

• Dysp: The patient is short of breath.

Model the dependencies stated above as a bayesian network, choosing a suitable(!) ordering
of the variables. Justify your choices.
Solution:
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Problem 1.4 (Stochastic Wumpus)
Robby lives in Wumpus world and wants to visit field F1. He is pretty confident, that 7 pt

7 minthe Wumpus is not in field F1 (call that event ¬W1); in fact, he is 90% sure. He thinks
the Wumpus is probably in field F2 (call that event W2) with 60% confidence. Robby also
thinks, that places without a Wumpus should rarely stink (in only 20% of cases), whereas
every field with a Wumpus stinks.

Unfortunately, when Robbie approaches F1, he notices a stench (call that event S1).

1. Give that F1 stinks, how should Robbie update his belief that the Wumpus is not in
F1? How does the probability change, that it is in F2? Do not compute actual values
- a formula how to compute them is sufficient!

2. Assume the updated values from the previous subexercise given. Just to be sure,
Robbie takes a slight detour to F2 and notices that it stinks there as well (call that
event S2). Given this new piece of information, how should Robbie update his beliefs,
that a) the Wumpus is in F2 and b) he is not in F1? (Again, a formula is sufficient!)

3. Which random variables in this example are conditionally independent given which
other random variable?

Solution:Let Si,Wi be the random variables expressing that it stinks / the Wumpus is in Field
i respectively.

1.

P (S1) = P (S1 | ¬W1, P (¬W1)) + P (S1 |W1) · P (W1)

= 0.2 · 0.9 + 1, 0.1 = 0.28

P (¬W1 | S1) =
P (S1 | ¬W1, P (¬W1))

P (S1)
=
P (S1 | ¬W1, P (¬W1))

0.28

=
0.2 · 0.9
0.28

≈ 64%

P (W2 | S1) =
P (S1 |W2) · P (W2)

P (S1)
=

0.20.6

0.28
≈ 43%

2. We normalize to S1 (by using the probabilites from 1.) and compute:

P (S2) = P (S2 |W1)P (W1) + P (S2 |W2)P (W2) + P (S2 | ¬W1 ∧¬W2)P (¬W1 ∧¬W2)

= 0.2 · (1− 0.64) + 1 · 0.43 + 0.2 · (1− ((1− 0.64) + 0.43)) = 0.544

P (W2 | S2) =
P (S2 |W2) · P (W2)

P (S2)
=
P (S2 |W2) · P (W2)

0.544

=
1 · 0.43
0.544

≈ 79%

P (¬W1 | S2) = 1− P (W1 | S2) = 1− P (S2 |W1) · P (W1)

P (S2)

= 1− 0.2 · (1− 0.64)

0.544
≈ 87%
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3. S1 and S2 are conditionally independent given W1 (or W2)
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2 Decision Theory
Problem 2.1 (Expected Utility)
What is the formal(!) definition of expected utility? Explain every variable in the defining 4 pt

4 minequation.
Solution:The expected utility EU is defined as

EU(a|e) =
∑
s′

P (R(a) = s′|a, e) · U(s′)

where

1. a is the action for which we want to find out the expected utility, given the evidene e.

2. U(s′) is the utility of a state s′.

3. R(a) is the result of the action a.
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Problem 2.2 (Textbook Decisions)
Abby has to decide whether to buy Russell&Norveig for 100$. There are three boolean 10 pt

10 minvariables involved in this decision: B indicating whether Abby buys the book, M indicating
whether Abby knows the material in the book perfectly anyway and P indicating that Abby
passes the course. Additionally, we use a utility node U .

Abbys utility function is additive, so U(B) = −100. Furthermore, she evaluates passing
the course with a utility of U(P ) = 2000. The course has an open book final exam, so
B and P are not independent given M . Assume the following conditional probabilities as
given:

• P (P |B,M)

• P (P |B,¬M)

• P (P |¬B,M)

• P (P |¬B,¬M)

• P (M |B)

• P (M |¬B)

1. Draw the decision network for this problem.

2. Explain formally how to compute the expected utility of buying the book and of not
buying it.

Solution:(Note that the numbers are wrong/outdated)
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Assuming B:
P(B,P,M) = P(P | M,B) · P(B) · P(M | B) = 0.95 · 1 · 0.85 = 0.8075

P(B,P,¬M) = 0.45 · 1 · 0.15 = 0.0675
P(B,¬P,M) = 0.05 · 1 · 0.85 = 0.0425
P(B,¬P,¬M) = 0.55 · 1 · 0.15 = 0.0825

P(B,P) = 0.8075 + 0.0675 = 0.875
P(B,¬P) = 0.0425 + 0.0825 = 0.125
→ U(B) = 0.875 · 1900 + 0.125 · −100 = 1650

Assuming ¬B:
P(¬ B,P,M) = P(P | M,¬B) · P(¬B) · P(M |¬B) = 0.9 · 1 · 0.6 = 0.54

P(¬B,P,¬M) = 0.2 · 1 · 0.4 = 0.08
P(¬B,¬P,M) = 0.1 · 1 · 0.6 = 0.06
P(¬B,¬P,¬M) = 0.8 · 1 · 0.4 = 0.32

→ P(¬B,P) = 0.54 + 0.08 = 0.62
P(¬B,¬P) = 0.06 + 0.32 = 0.38
→ U(¬B) = 0.62 · 2000 + 0.38 · 0 = 1240

So buying the book has the higher utility.
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Problem 2.3 (Markov Decision Procedures)
12 pt

12 min1. How do Markov decision procedures differ from (simple) decision networks?

2. How does the value iteration algorithm work? (Give an actual equation and explain
its role in the algorithm)

3. What is the disadvantage of value iteration that is “fixed” by policy iteration?

4. How can we reduce partially observable Markov decision procedures to normal MDPs?

Solution:

1. In Markov decision procedures, the probabilistic model is a Markov Process (i.e. random
variables are indexed over time, Markov Properties)

2. We assing a random utility to each state and update them using the Bellman equation:

U(s) = R(s) + γ ·max
a

(∑
s′

U(s′) · T (s, a, s′)

)

Once this iteration has converged, we can compute the “best” action for each state by
considering the expected utilities of all possible actions.

3. The policy resulting from value iteration can be stable long before the individual utilities
have converged to their precise values.

4. By introducing belief states representing the probability distribution over the physical state
space (i.e. the belief state space has one dimension for each physical state).
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3 Markov Models
Problem 3.1 (Stationary)
Define what it means for a Markov model to be stationary, and why we are interested in 3 pt

3 minstationarity.
Solution:A Markov process is called stationary if the transition model is independent of time,
i.e. P(Xt | Xt−1) is the same for all t.

We like stationary Markov processs, since they are finite.
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Problem 3.2 (Sleeping Patterns Predictions)
Your room mate tends to keep you up by blasting music whenever they are awake. Notably, 10 pt

10 minthey tend to sleep a lot less when they are stressed (binary variable St), but since you don’t
talk to each other you never know when they are. You only observe whether they sleep a
lot (Sl) or little (¬Sl). Stress seems to come in phases and last for a couple of days, so
if they are stressed at day t, they will more likely be stressed at day t + 1 as well (and
analogously for ¬St).

1. Model this situation as a Markov Model and explain what the prediction, filtering
and smoothing algorithms compute in this scenario.

2. Give the underlying equations for the first two of these algorithms and explain what
each variable in the equation represents.

Solution:

1. Prediction Given the amount of sleep up to time t0, compute the probability of them
being stressed at time t1 > t0

Filtering Given the of sleep up to now, compute the probability of them being stressed
right now

Smoothing Given the amount of sleep up to t0, compute the probability that they were
stressed at an earlier point t1 < t0.

2.
P (Stt+1|Sl1:t+1) = αP (Slt+1|Stt+1) ·

∑
stt

P (Stt+1|stt, Sl1:t) · P (stt|Sl1:t)
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4 Learning
Problem 4.1 (Tennis Trees)
Consider the following decisions on whether or not to go play tennis. The target is 10 pt

10 min“PlayTennis”.

Outlook Temperature Humidity Wind PlayTennis
Sunny Hot High Weak No
Overcast Hot High Weak Yes
Rain Mild High Weak Yes
Rain Cool Normal Strong No
Rain Mild Normal Weak Yes

Explain how to apply decision tree learning to this table. In particular, define the
notion of information entropy.
Solution:http://courses.cs.tamu.edu/choe/17spring/633/lectures/slide05.pdf

E := I(〈3
5
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5
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5
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5
)

Gain(Outlook) = E − 1

5
I(〈0, 1〉)− 1

5
I(〈1, 0〉)− 3

3
I(〈2

3
,
1

3
)

Gain(Temperature) = . . .

Pick whichever attribute has the highest information gain, split there and build subtrees, iterate...
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Problem 4.2 (Overfitting)
Explain what overfitting means and why we want to avoid it. 4 pt

4 minSolution:Overfitting is a modeling error that occurs when a function is too closely fit to a limited
set of data points. Overfitting the model generally takes the form of making an overly complex
model to explain idiosyncrasies in the data under study rather than the underlying mechanisms.
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