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The “solutions” to the exam/assignment problems in this document are
supplied to give students a starting point for answering questions. While
we are striving for helpful “solutions”, they can be incomplete and can even
contain errors.

If you find “solutions” you do not understand or you find incorrect, discuss
this on the course forum and/or with your TA and/notify the instructors.

In any case, grading student’s answers is not a process of simply “comparing
with the reference solution”.

In the course Artificial Intelligence I/II we award 5 bonus points for the first
student who reports a factual error (please report spelling/formatting errors
as well) in an assignment or old exam and 10 bonus points for an alternative
solution (formatted in LATEX) that is usefully different from the existing ones.
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1 Prolog
Problem 1.1 (The Zip Function)
The zip function takes two lists with lengths that differ at most by 1, and outputs a list of 4 pt

4 minlists containing one element from the first list and the element with the same index from
the other list, possibly followed by a one-element list with the left-over argument.

Create a ProLog predicate with 3 arguments: the first two would be the two lists you
want to zip, and the third one would be the result. For instance:

?− zip([1,2,3],[4,5,6],L).
L = [[1, 4], [2, 5], [3, 6]].

?− zip([1,2],[3,4,5],L).
L = [[1, 3], [2, 4], [5]].

Feel free to implement any helper functions.
Hint: Remember that you can pattern match a list L as [HEAD|TAIL].

Solution:
zip([L],[],[[L]]).
zip([],[L],[[L]]).
zip([A],[B],[[A,B]]).
zip([H1|T1],[H2|T2],L) :− zip(T1,T2,T), append([[H1,H2]],T,L).

Problem 1.2 (DFS in Prolog)
We want to implement DFS in ProLog using the following data structures for search trees: 12 pt

12 minsubtrees([]).
subtrees([(Cost,T)|Rest]) :− number(Cost),istree(T), subtrees(Rest).
istree(tree(_,Children)) :− subtrees(Children).

Write a Prolog predicate dfs such that dfs(G,T,X,Y) on a tree T returns the path to the
goal G in X and the cost of the path in Y
Solution:
dfs(GoalValue,tree(GoalValue,_),GoalValue,0).
dfs(GoalValue,tree(Value,[(Cost,T)|Rest]),Path,FinalCost) :− T = tree(IV,_), write(IV ),
dfs(GoalValue, T,P,C),string_concat(Value,P,Path),FinalCost is C+Cost; % go down one depth level
dfs(GoalValue,tree(Value,Rest),Path,FinalCost). % next child

2 Bayesian Reasoning
Problem 2.1 (Bayesian Rules)
Name four of the basic rules in Bayesian inference and explain each with a short sentence 4 pt

4 minand formula.
Solution:

1. Bayes rule (compute P (A|B) from P (B|A),
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2. Normalization (Fixing evidence e, updating the probabilities of all other events using a
normalization constant α),

3. Marginalization (P (A) =
∑

y P (A, y)),

4. Chain rule (P (A1, . . . , An) = P (An|An−1, . . . , A1) · P (An−1|An−2, . . . , A1) · . . .)

5. Product rule (P (A,B) = P (A|B)P (B))

6. Conditional Independence (Not really bayesian inference, but rather bayesian networks, but
we’ll be lenient)
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Problem 2.2 (Conditional Independence)
Define conditional independence. 3 pt

3 minSolution:Two eventsA,B are conditionally independent given C, if P (A∧B|C) = P (A|C)P (B|C).
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Problem 2.3 (Medical Bayesian Network 2)
Both Malaria and Meningitis can cause a fever, which can be measured by checking for a 12 pt

12 minhigh body temperature. Of course you may also have a high body temperature for other
reasons. We consider the following random variables for a given patient:

• Mal: The patient has malaria.

• Men: The patient has meningitis.

• HBT : The patient has a high body temperature.

• F : The patient has a fever.

1. Draw the corresponding Bayesian network for the above data using the algorithm
presented in the lecture, assuming the variable order Mal,Men,HBT, F . Explain
rigorously(!) the exact criterion for whether to insert an arrow between two nodes.

2. Which arrows are causal and which are diagnostic? Which order of variables would
be better suited for constructing the network?

3. How do we compute the probability the patient has malaria, given that he has a
fever? State the query variables, hidden variables and evidence and write down the
equation for the probability we are interested in.

Solution:

1. The following graph but with Edges from Mal and Men to F because it is much more
likely that F is the cause of HBT if someone is actually sick.

Let Parents(X) be the minimal set of previous events Y such that P (X|Parents(X)) =
P (X|Y ). We draw an arrow from all events in Parents(X) to X.

We start withMal. Continuing withMen, we don’t insert an arrow, sinceMal andMen are
independent P (Men|Mal) = P (Men). Continuing with HBT , we have Parents(HBT ) =
{Mal,Men}. Continuing with F , we have P (F |HBT ) = P (F |HBT,Men,Mal).
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2. The arrowsMal→ HBT andMen→ HBT are causal, the arrow HBT → F is diagnostic.

3. Query variable: Mal. Evidence: F . Hidden variables: vMen, vHBT . We get:

P (Mal|F ) = α
∑

vHBT ,vMen

P (Mal) · P (vMen) · P (vHBT |Mal, vMen) · P (F |vHBT )
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3 Decision Theory
Problem 3.1 (Expected Utility)
What is the formal(!) definition of expected utility? Explain every variable in the defining 4 pt

4 minequation.
Solution:The expected utility EU is defined as

EU(a|e) =
∑
s′

P (R(a) = s′|a, e) · U(s′)

where

1. a is the action for which we want to find out the expected utility, given the evidene e.

2. U(s′) is the utility of a state s′.

3. R(a) is the result of the action a.
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Problem 3.2 (Decision Network)
You try to decide on whether to take an umbrella to Uni. Obviously, it’s useful to do so if 10 pt

10 minit rains when you go back home, but it’s annoying to carry around if it doesn’t even rain.
You look at the weather forecast, which hast three possible values: sunny, cloudy and rainy.

1. Draw the decision network for bringing/leaving an umbrella depending on whether
it does or doesn’t rain later.

2. Explain formally how to compute whether or not to take an umbrella, assuming you
know P (rain = b|forecast = x) for all b ∈ Bool, x ∈ {sunny, cloudy, rainy}.

Solution:

Let U±r,±u be the base utilities of having an/no umbrella when it rains/doesn’t rain. Assume
the forecast says x, then compute:

U(umb) = P (rain = >|forecast = x)U+r,+u + P (rain = ⊥|forecast = x)U−r,+u

U(¬umb) = P (rain = >|forecast = x)U+r,−u + P (rain = ⊥|forecast = x)U−r,−u

If the former is greater than the latter you should take an umbrella.
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Problem 3.3 (Markov Decision Procedures)
12 pt

12 min1. How do Markov decision procedures differ from (simple) decision networks?

2. How does the value iteration algorithm work? (Give an actual equation and explain
its role in the algorithm)

3. What is the disadvantage of value iteration that is “fixed” by policy iteration?

4. How can we reduce partially observable Markov decision procedures to normal MDPs?

Solution:

1. In Markov decision procedures, the probabilistic model is a Markov Process (i.e. random
variables are indexed over time, Markov Properties)

2. We assing a random utility to each state and update them using the Bellman equation:

U(s) = R(s) + γ ·max
a

(∑
s′

U(s′) · T (s, a, s′)

)

Once this iteration has converged, we can compute the “best” action for each state by
considering the expected utilities of all possible actions.

3. The policy resulting from value iteration can be stable long before the individual utilities
have converged to their precise values.

4. By introducing belief states representing the probability distribution over the physical state
space (i.e. the belief state space has one dimension for each physical state).
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4 Markov Models
Problem 4.1 (Stock Market Predictions)
You bought SpaceY stock recently and try to predict whether to buy more or sell. The 10 pt

10 minstock market is in one of two possible states; bull state or bear state. In a bull state,
it will (in the long term) be advantageous to buy stock; in a bear state it will be more
advantageous to sell.

If the market is in a bull state, the probability it will still be in a bull state tomorrow
is 60%. If it is in a bear state, the probability it will remain so tomorrow is 80%.

If the market is in a bull state, the probability that your stock will rise that day is 90%.
If it is in a bear state, your stock will more likely fall (with 60% probability).

1. Explain what kind of probabilities prediction, filtering and smoothing compute in
this scenario.

2. Give the underlying equations for the first two of these algorithms and explain what
each variable in the equation represents.

Solution:

1. Prediction Given the behavior of the stock market up to time t0, compute the probability
of the state the stock market will be in at time t1 > t0

Filtering Given the behavior of the stock market up to now, compute the probability of
the state the stock market is in right now

Smoothing Given the behavior of the stock market up to t0, compute the probability that
sta stock market was in some state at an earlier point t1 < t0.

2.
P (Xt+1|e1:t+1) = αP (et+1|Xt+1) ·

∑
xt

P (Xt+1|xt, e1:t) · P (xt|e1:t)

Where X represents the state and e the behavior of the stock market.
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5 Learning
Problem 5.1 (Home Decisions)
Eight people go sunbathing. Some of them got a sunburn, others didn’t: 10 pt

10 minName Hair Height Weight Lotion Result
Sarah Blonde Average Light No Sunburned
Dana Blonde Tall Average Yes None
Alex Brown Short Average Yes None
Annie Blonde Short Average No Sunburned
Julie Blonde Average Light No None
Pete Brown Tall Heavy No None
John Brown Average Heavy No None
Ruth Blonde Average Light No None

Explain how the information-theoretic decision tree learning algorithm would proceed on
this table (up to two iterations). Explicitly state how to compute the information gain
(and what that means).

Note that you do not need to compute any actual values; if it is helpful for your
explanation, you may guess any values you might want to use.

Note that Name is only an index, not a (meaningful) attribute!
Solution:

E0 := I(〈2
8
,
6

8
〉) = −2

8
log2(

2

8
)− 6

8
log2(

6

8
) ≈ 0.81

Gain(Hair) = E0 −
5

8
I(〈2

5
,
3

5
〉)︸ ︷︷ ︸

Blonde

− 3

8
I(〈0, 1〉)︸ ︷︷ ︸
Brown

≈ 0.20

Gain(Height) = E0 −
4

8
I(〈1

4
,
3

4
〉)︸ ︷︷ ︸

Average

− 2

8
I(〈0, 1〉)︸ ︷︷ ︸
Tall

− 2

8
I(〈1

2
,
1

2
〉)︸ ︷︷ ︸

Short

≈ 0.16

Gain(Weight) = E0 −
3

8
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Average

− 3

8
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Light

− 2

8
I(〈0, 1〉)︸ ︷︷ ︸
Heavy

≈ 0.12

Gain(Lotion) = E0 −
2

8
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 6

8
I(〈2

6
,
4

6
〉)︸ ︷︷ ︸

No

≈ 0.12

Hair has the highest information gain, so we split here. All table entries with Brown have result
None, so we continue with Hair = Blonde:

E1 := I(〈2
5
,
3

5
〉) ≈ 0.97
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Gain(Height) = E1 −
3

5
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Average

− 1

5
I(〈0, 1〉)︸ ︷︷ ︸
Tall

− 1

5
I(〈1, 0〉)︸ ︷︷ ︸
Short

≈ 0.42

Gain(Weight) = E1 −
2

5
I(〈1

2
,
1

2
〉)︸ ︷︷ ︸

Average

− 3

5
I(〈1

3
,
2

3
〉)︸ ︷︷ ︸

Light

− 0︸︷︷︸
Heavy

≈ 0.02

Gain(Lotion) = E1 −
1

5
I(〈0, 1〉)︸ ︷︷ ︸

Yes

− 4

5
I(〈2

4
,
2

4
〉)︸ ︷︷ ︸

No

≈ 0.17

Height has the highest information gain, so we proceed here. All short blondes are sunburned,
all tall blondes are not, hence we only need consider Average. . .
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Problem 5.2 (Backpropagation)
Explain what Backpropagation means in the context of Neural Networks, when and why 8 pt

8 minwe need it, and how to do it using an example.
Solution:A possible answer:

Backpropagation is an algorithm for training feedforward neural networks for supervised learn-
ing. It computes the gradient of the loss function with respect to the weights of the network for
a single input–output example.

12


	1 Prolog
	2 Bayesian Reasoning
	3 Decision Theory
	4 Markov Models
	5 Learning

