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The “solutions” to the exam/assignment problems in this docu-
ment are supplied to give students a starting point for answering ques-
tions. While we are striving for helpful “solutions”, they can be in-
complete and can even contain errors even after our best efforts.

In any case, grading student’s answers is not a process of simply
“comparing with the reference solution”, therefore errors in the “so-
lutions” are not a problem in this case.

If youfind “solutions” youdonot understand or youfind incorrect,
discuss this on the course forum and/or with your TA and/notify the
instructors. We will – if needed – correct them ASAP.

In the course Artificial Intelligence I/II we award bonus points for
the first student who reports a factual error in an old exam. (Please
report spelling/formatting errors as well.)
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1 Bayesian Reasoning
Problem 1.1 (Bayesian Rules) 8 pt

8 minName four of the basic rules in Bayesian inference and explain each with a short
sentence and formula.

Solution:

1. Bayes rule (compute 𝑃(𝐴|𝐵) from 𝑃(𝐵|𝐴),

2. Normalization (Fixing evidence 𝑒, updating the probabilities of all other events
using a normalization constant 𝛼),

3. Marginalization (𝑃(𝐴) =
∑

𝑦 𝑃(𝐴, 𝑦)),

4. Chain rule (𝑃(𝐴1, … , 𝐴𝑛) = 𝑃(𝐴𝑛|𝐴𝑛−1, … , 𝐴1) ⋅ 𝑃(𝐴𝑛−1|𝐴𝑛−2, … , 𝐴1) ⋅ …)

5. Product rule (𝑃(𝐴, 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵))

6. Conditional Independence (Not really bayesian inference, but rather bayesian
networks, but we’ll be lenient)
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Problem 1.2 (Conditional Independence) 6 pt
6 minDefine conditional independence.

Solution: Two events 𝐴, 𝐵 are conditionally independent given 𝐶, if 𝑃(𝐴∧𝐵|𝐶) =
𝑃(𝐴|𝐶)𝑃(𝐵|𝐶).
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Problem 1.3 (Nuclear Test) 14 pt
14 minAssume it is your responsibility tomonitor the Nuclear Test Ban treaty. You receive

data from two different stations (seismometers), 𝑆1 and 𝑆2. Each 𝑆𝑖 is modeled as
a Boolean variable where “true” stands for “I detected a Nuclear test” and “false”
stands for “I did not detect a Nuclear test”. The seismometers are not fully reliable,
however; they may not detect a Nuclear test even though there was one, and they
may mistake an earthquake for a Nuclear test. We model this situation with two
additional Boolean variables: 𝑁 for Nuclear test, and 𝐸 for Earthquake.

Use the algorithm from the lecture to construct a Bayesian network for these 4
variables. More precisely: 6 pt

1. State the exact formal condition for when the algorithm inserts an edge be-
tween two nodes. 8 pt

2. Execute the algorithm for the variable order 𝑋1 = 𝑁, 𝑋2 = 𝐸, 𝑋3 = 𝑆1,
𝑋4 = 𝑆2.

Justify your decisions.

Solution:

(a) 𝑃(𝑋𝑖|𝑋𝑖−1, ..., 𝑋1) = 𝑃(𝑋𝑖|𝙿𝚊𝚛𝚎𝚗𝚝𝚜(𝑋𝑖))

(b) With this variable order, we get the following network:

𝑁 𝐸

𝑆1 𝑆2

𝑋2 = 𝐸 does not need𝑋1 = 𝑁 as a parent because Earthquakes are independent
from Nuclear tests. 𝑥3 = 𝑆1 needs both 𝑋1 = 𝑁 and 𝑋2 = 𝐸 as parents because
each of these may influence the measurement; same for 𝑋4 = 𝑆2, i.e., here we
also need the parents 𝑋1 = 𝑁 and 𝑋2 = 𝐸. However, given the values of𝑁 and
𝐸, themeasurements of𝑋3 = 𝑆1 and 𝑥4 = 𝑆2 are independent. So𝑋4 = 𝑆2 does
not require the parent 𝑋3 = 𝑆1.
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Problem 1.4 (Causal and Diagnostic) 8 pt
8 minState the difference between causal and diagnostic edges in (e.g.) a Bayesian net-

work. Use no more than four sentences.
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2 Decision Theory
Problem 2.1 (Decision Preferences) 8 pt

8 min
1. Name and state three of the axioms for preferences (i.e. ≻).

2. How are preferences related to value functions?

Solution:

1. Pick any three of the following:

Orderability: 𝐴 ≻ 𝐵 ∨ 𝐵 ≻ 𝐴 ∨ 𝐴 ∼ 𝐵

Transitivity: 𝐴 ≻ 𝐵 ∧ 𝐵 ≻ 𝐶 ⇒ 𝐴 ≻ 𝐶

Continuity: 𝐴 ≻ 𝐵 ≻ 𝐶 ⇒ (∃𝑝 [𝑝,𝐴; 1 − 𝑝, 𝐶] ∼ 𝐵)

Substitutability: 𝐴 ∼ 𝐵 ⇒ [𝑝,𝐴; 1 − 𝑝, 𝐶] ∼ [𝑝, 𝐵; 1 − 𝑝, 𝐶]

Monotonicity: 𝐴 ≻ 𝐵 ⇒ (𝑝 > 𝑞) ⇔ [𝑝,𝐴; 1 − 𝑝, 𝐵] ⪰ [𝑞, 𝐴; 1 − 𝑞, 𝐵]

Decomposability: [𝑝, 𝐴; 1−𝑝, [𝑞, 𝐵; 1− 𝑞, 𝐶]] ∼ [𝑝, 𝐴; (1−𝑝𝑞), 𝐵; (1−𝑝(1−
𝑞)), 𝐶]

2. Ramsey’s theorem states that given a set of preferences that obey the con-
straints above, there is a value function 𝑈 with

(𝑈(𝐴) ≥ 𝑈(𝐵)) ⇔ 𝐴 ⪰ 𝐵 and 𝑈([𝑝1, 𝑆1; … ; 𝑝𝑛, 𝑆𝑛]) =
∑

𝑖
𝑝𝑖𝑈(𝑆𝑖)
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Problem 2.2 (Expected Utility) 8 pt
8 minWhat is the formal(!) definition of expected utility? Explain every variable in the

defining equation.

Solution: The expected utility 𝐸𝑈 is defined as

𝐸𝑈(𝑎|𝑒) =
∑

𝑠′
𝑃(𝑅(𝑎) = 𝑠′|𝑎, 𝑒) ⋅ 𝑈(𝑠′)

where

1. 𝑎 is the action for which we want to find out the expected utility, given the
evidence 𝑒.

2. 𝑈(𝑠′) is the utility of a state 𝑠′.

3. 𝑅(𝑎) is the result of the action 𝑎.
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Problem 2.3 (Textbook Decisions) 20 pt
20 minAbbyhas to decidewhether to buyRussell&Norvig for 100$. There are three boolean

variables involved in this decision: 𝐵 indicatingwhether Abby buys the book,𝑀 in-
dicating whether Abby knows the material in the book, and 𝑃 indicating that Abby
passes the course. Additionally, we use a utility node 𝑈.

Abby’s utility function is additive, so𝑈(𝐵) = −100. Furthermore, she evaluates
passing the course with a utility of𝑈(𝑃) = 2000. The course has an open book final
exam, so 𝐵 and 𝑃 are not independent given𝑀.

Assume the conditional probability tables containing the probabilities𝑃(𝑃|𝐵,𝑀),
𝑃(𝑃|𝐵, ¬𝑀), 𝑃(𝑃|¬𝐵,𝑀), 𝑃(𝑃|¬𝐵, ¬𝑀), 𝑃(𝑀|𝐵), 𝑃(𝑀|¬𝐵) are given.

1. Draw the decision network for this problem.

2. Explain precisely how to compute the utility of buying the book.
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Solution:

The above picture has a typo: It should be 𝑃(𝑀), not 𝑃(𝐵) in the table on the
bottom left. The picture includes concrete numbers as examples for how the calcu-
lation would be done. But the problem statement requires only to give the formulas
and explain that we pick the decision that leads to the higher utility.

We set the decision variable 𝐵 to each value and in each case:
• calculate the probability of passing/failing the exam
• use those probabilities to calculate the expected utility of the decision

Then we pick the decision with the higher utility.
Case of buying the book 𝐵 = 𝑇:
P(B=T,P=T,M=T) = P(P=T |M=T,B=T) ⋅P(B=T) ⋅P(M=T | B=T) = 0.9 ⋅1 ⋅0.9

P(B=T,P=T,M=F) = 0.5 ⋅ 1 ⋅ 0.1
P(B=T,P=F,M=T) = 0.1 ⋅ 1 ⋅ 0.9
P(B=T,P=F,M=F) = 0.5 ⋅ 1 ⋅ 0.1

P(B=T,P=T) = 0.9 ⋅ 1 ⋅ 0.9 + 0.5 ⋅ 1 ⋅ 0.1 = 0.86
P(B=T,P=F) = 0.1 ⋅ 1 ⋅ 0.9 + 0.5 ⋅ 1 ⋅ 0.1 = 0.14
→ U(B=T) = 0.86 ⋅ 1900 + 0.14 ⋅ −100 = 1620

Case of not buying the book 𝐵 = 𝐹: P(B=F,P=T,M=T) = P(P=T |M=T,B=F) ⋅
P(B=F)
⋅ P(M=T | B=F) = 0.8 ⋅ 1 ⋅ 0.7
P(B=F,P=T,M=F) = 0.3 ⋅ 1 ⋅ 0.3
P(B=F,P=F,M=T) = 0.2 ⋅ 1 ⋅ 0.7
P(B=F,P=F,M=F) = 0.7 ⋅ 1 ⋅ 0.3

→ P(B=F,P=T) = 0.8 ⋅ 1 ⋅ 0.7 + 0.3 ⋅ 1 ⋅ 0.3 = 0.65
P(B=F,P=F) = 0.2 ⋅ 1 ⋅ 0.7 + 0.7 ⋅ 1 ⋅ 0.3 = 0.35
→ U(B=F) = 0.65 ⋅ 2000 + 0.35 ⋅ 0 = 1300

So in this case, she should buy the book.8



3 Markov Models
Problem 3.1 (Prediction, Filtering, Smoothing) 8 pt

8 minExplain the goals of prediction, filtering and smoothing in terms of conditional prob-
abilities

Solution:

Prediction 𝑃(𝑋𝑡+𝑘|𝑒1∶𝑡)

Filtering 𝑃(𝑋𝑡|𝑒1∶𝑡)

Smoothing 𝑃(𝑋𝑘|𝑒1∶𝑡) for 0 ≤ 𝑘 < 𝑡
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Problem 3.2 (Markov Mood Detection) 16 pt
16 minOn any given day 𝑑, your roommate Moody is in one of two states – either he is

happy (𝐻𝑑) or he is in a bad mood (𝐵𝑑). Usually when he’s in a bad mood, it’s
because he had a fight with his boyfriend and those tend to go on for a couple of
days, so 𝑃(𝐵𝑑+1|𝐵𝑑) = 0.7, but aside from that he’s a cheery guy, so (𝑃(𝐻𝑑+1|𝐻𝑑) =
0.85).

Of course you try to avoid talking to people, but you can hear his music blasting
all day which tends to shift depending on his mood. On a good day he usually
listens to Jazz (i.e. 𝑃(𝐽𝑑|𝐻𝑑) = 0.7), on a bad day he slightly prefers Death Metal
(𝑃(𝐷𝑀𝑑|𝐵𝑑) = 0.6). He has a limited taste in music, so it’s always one of the two.

You know that he was in a good mood at day 𝑑0. Assume he’s been listening to
death metal for 𝑛 days straight since then. Explain how to compute the probability
that he is in a badmood on day 𝑑𝑛+1. State the equations underlying this algorithm
explicitly.

Solution: We have 𝑃(𝐻0) = 1 and

⟨𝑃(𝐻𝑑), 𝑃(𝐵𝑑)⟩ = ⟨𝑃(𝐻𝑑|𝐻𝑑−1)⋅𝑃(𝐻𝑑−1)+𝑃(𝐻𝑑|𝐵𝑑−1)⋅𝑃(𝐵𝑑−1), 𝑃(𝐵𝑑|𝐻𝑑−1)⋅𝑃(𝐻𝑑−1)+𝑃(𝐵𝑑|𝐵𝑑−1)⋅𝑃(𝐵𝑑−1)⟩

which allows us to update using the information 𝐷𝑀𝑑:

⟨𝑃(𝐻𝑑|𝐷𝑀𝑑), 𝑃(𝐵𝑑|𝐷𝑀𝑑)⟩ = 𝛼⟨𝑃(𝐷𝑀𝑑|𝐻𝑑)𝑃(𝐻𝑑), 𝑃(𝐷𝑀𝑑|𝐵𝑑)𝑃(𝐵𝑑)⟩
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Problem 3.3 (Bellman Equation) 8 pt
8 minState the Bellman Equation and explain every symbol in the equation and what the

equation is used for and how.

Solution:

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 ⋅ max
𝑎∈𝐴(𝑠)

(
∑

𝑠′
𝑃(𝑠′|𝑠, 𝑎) ⋅ 𝑈(𝑠′))

The meaning of the components is as follows:
• 𝑈(𝑠): the utility of the state 𝑠 (long-term, global)
• 𝑅(𝑠): the reward at state 𝑠 (short-term, local)
• 𝐴(𝑠): the set of actions available in state 𝑠
• max𝑎∈𝐴(𝑠): take the maximum over all available actions in state 𝑠
• 𝑃(𝑠′|𝑠, 𝑎): the probability that taking action 𝑎 in state 𝑠 yields state 𝑠′
• 𝑈(𝑠′): the utility in successor state 𝑠′
•
(∑

𝑠′ 𝑃(𝑠
′|𝑠, 𝑎) ⋅ 𝑈(𝑠′)

)
: the expected utility of action 𝑎 by summing over all

possible successor states
The equation is used to compute the utility of every state. The algorithm uses the
equation as an iteration operator that computes new values for every 𝑈(𝑠) by eval-
uating the right hand side for the current values of 𝑈. If this leads to a fixpoint, a
solution for the utilities has been found.
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4 Learning
Problem 4.1 (Gradient Descent) 8 pt

8 minExplain a gradient descent algorithm.
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Problem 4.2 (Information Entropy) 6 pt
6 minExplain and define information entropy.

Solution: Information entropy of a (set of) random variable is the average level of
“information”, “surprise”, or “uncertainty” inherent in the variable’s possible out-
comes.

𝐼(⟨𝑃1, ..., 𝑃𝑛⟩) =
𝑛∑

𝑖=1
−𝑃𝑖 log2(𝑃𝑖)
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Problem 4.3 (Home Decisions) 20 pt
20 minEight people go sunbathing. Some of them got a sunburn, others didn’t:

Name Hair Height Weight Lotion Result
Sarah Blonde Average Light No Sunburned
Dana Blonde Tall Average Yes None
Alex Brown Short Average Yes None
Annie Blonde Short Average No Sunburned
Julie Blonde Average Light No None
Pete Brown Tall Heavy No None
John Brown Average Heavy No None
Ruth Blonde Average Light No None
Apply the decision tree learning algorithm on this table to predict whether peo-

ple will get sunburned based on the attributes provided.
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Solution:
𝐸0 ∶= 𝐼(⟨28 ,

6
8⟩) = −28 log2(

2
8) −

6
8 log2(

6
8) ≈ 0.81

𝙶𝚊𝚒𝚗(𝙷𝚊𝚒𝚛) = 𝐸0 −
5
8𝐼(⟨

2
5 ,
3
5⟩)⏟⎴⎴⏟⎴⎴⏟

𝙱𝚕𝚘𝚗𝚍𝚎

− 3
8𝐼(⟨0, 1⟩)⏟⎴⏟⎴⏟
𝙱𝚛𝚘𝚠𝚗

≈ 0.20

𝙶𝚊𝚒𝚗(𝙷𝚎𝚒𝚐𝚑𝚝) = 𝐸0 −
4
8𝐼(⟨

1
4 ,
3
4⟩)⏟⎴⎴⏟⎴⎴⏟

𝙰𝚟𝚎𝚛𝚊𝚐𝚎

− 2
8𝐼(⟨0, 1⟩)⏟⎴⏟⎴⏟

𝚃𝚊𝚕𝚕

− 2
8𝐼(⟨

1
2 ,
1
2⟩)⏟⎴⎴⏟⎴⎴⏟

𝚂𝚑𝚘𝚛𝚝

≈ 0.16

𝙶𝚊𝚒𝚗(𝚆𝚎𝚒𝚐𝚑𝚝) = 𝐸0 −
3
8𝐼(⟨

1
3 ,
2
3⟩)⏟⎴⎴⏟⎴⎴⏟

𝙰𝚟𝚎𝚛𝚊𝚐𝚎

− 3
8𝐼(⟨

1
3 ,
2
3⟩)⏟⎴⎴⏟⎴⎴⏟

𝙻𝚒𝚐𝚑𝚝

− 2
8𝐼(⟨0, 1⟩)⏟⎴⏟⎴⏟
𝙷𝚎𝚊𝚟𝚢

≈ 0.12

𝙶𝚊𝚒𝚗(𝙻𝚘𝚝𝚒𝚘𝚗) = 𝐸0 −
2
8𝐼(⟨0, 1⟩)⏟⎴⏟⎴⏟

𝚈𝚎𝚜

− 6
8𝐼(⟨

2
6 ,
4
6⟩)⏟⎴⎴⏟⎴⎴⏟

𝙽𝚘

≈ 0.12

𝙷𝚊𝚒𝚛has the highest information gain, sowe split here. All table entrieswith 𝙱𝚛𝚘𝚠𝚗
have result 𝙽𝚘𝚗𝚎, so we continue with 𝙷𝚊𝚒𝚛 = 𝙱𝚕𝚘𝚗𝚍𝚎:

𝐸1 ∶= 𝐼(⟨25 ,
3
5⟩) ≈ 0.97

𝙶𝚊𝚒𝚗(𝙷𝚎𝚒𝚐𝚑𝚝) = 𝐸1 −
3
5𝐼(⟨

1
3 ,
2
3⟩)⏟⎴⎴⏟⎴⎴⏟

𝙰𝚟𝚎𝚛𝚊𝚐𝚎

− 1
5𝐼(⟨0, 1⟩)⏟⎴⏟⎴⏟

𝚃𝚊𝚕𝚕

− 1
5𝐼(⟨1, 0⟩)⏟⎴⏟⎴⏟
𝚂𝚑𝚘𝚛𝚝

≈ 0.42

𝙶𝚊𝚒𝚗(𝚆𝚎𝚒𝚐𝚑𝚝) = 𝐸1 −
2
5𝐼(⟨

1
2 ,
1
2⟩)⏟⎴⎴⏟⎴⎴⏟

𝙰𝚟𝚎𝚛𝚊𝚐𝚎

− 3
5𝐼(⟨

1
3 ,
2
3⟩)⏟⎴⎴⏟⎴⎴⏟

𝙻𝚒𝚐𝚑𝚝

− 0⏟⏟⏟
𝙷𝚎𝚊𝚟𝚢

≈ 0.02

𝙶𝚊𝚒𝚗(𝙻𝚘𝚝𝚒𝚘𝚗) = 𝐸1 −
1
5𝐼(⟨0, 1⟩)⏟⎴⏟⎴⏟

𝚈𝚎𝚜

− 4
5𝐼(⟨

2
4 ,
2
4⟩)⏟⎴⎴⏟⎴⎴⏟

𝙽𝚘

≈ 0.17

𝙷𝚎𝚒𝚐𝚑𝚝 has the highest information gain, so we proceed here. All short blondes are
sunburned, all tall blondes are not, hence we only need consider 𝙰𝚟𝚎𝚛𝚊𝚐𝚎...
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