
Assignment9 – Propositional and First-Order Logic

Problem 9.1 (Calculi Comparison)
Prove (or disprove) the validity of the following formulae in i)Natural Deduction

ii) Tableau and iii) Resolution:
1. 𝑃 ∧ 𝑄 ⇒ (𝑃 ∨ 𝑄)

Solution:

1. ND:
(1) 1 𝑃 ∧ 𝑄 Assumption
(2) 1 𝑃 𝒩𝒟0∧𝐸𝑙 (on 1)
(3) 1 𝑃 ∨ 𝑄 𝒩𝒟0∨𝐼𝑙 (on 2)
(4) 𝑃 ∧ 𝑄 ⇒ (𝑃 ∨ 𝑄) 𝒩𝒟0 ⇒𝐼𝑎 (on 1 and 3)

2. Tableau:
(1) (𝑃 ∧ 𝑄 ⇒ (𝑃 ∨ 𝑄))𝖥

(2) (𝑃 ∧ 𝑄)𝖳 (from 1)
(3) (𝑃 ∨ 𝑄)𝖥 (from 1)
(4) 𝑃𝖳 (from 2)
(5) 𝑄𝖳 (from 2)
(6) 𝑃𝖥 (from 3)

3. Resolution: 𝑃 ∧ 𝑄 ⇒ (𝑃 ∨ 𝑄): We negate and build a CNF:

𝑃 ∧ 𝑄 ∧ ¬(𝑃 ∨ 𝑄)
≡𝑃 ∧ 𝑄 ∧ ¬𝑃 ∧ ¬𝑄

yielding clauses {𝑃𝖳}, {𝑄𝖳}, {𝑃𝖥}, {𝑄𝖥}

2. (𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) ⇒ 𝐶

Solution:

1. ND:

1



(1) 1 (𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) Assumption
(2) 1 𝐴 ∨ 𝐵 𝒩𝒟0∧𝐸𝑙 (on 1)
(3) 1 (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) 𝒩𝒟0∧𝐸𝑟 (on 1)
(4) 1 𝐴⇒ 𝐶 𝒩𝒟0∧𝐸𝑙 (on 3)
(5) 1 𝐵 ⇒ 𝐶 𝒩𝒟0∧𝐸𝑟 (on 3)
(6) 1,6 𝐴 Assumption
(7) 1,6 𝐶 𝒩𝒟0 ⇒𝐸 (on 4 and 6)
(8) 1,8 𝐵 Assumption
(9) 1,8 𝐶 𝒩𝒟0 ⇒𝐸 (on 5 and 8)
(10) 1 𝐶 𝒩𝒟0∨𝐸 (on 2, 7 and 9)
(11) (𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) ⇒ 𝐶 𝒩𝒟0 ⇒𝐼𝑎 (on 1 and 10)

2. Tableau:

(1) ((𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) ⇒ 𝐶)𝖥

(2) ((𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶))𝖳 (from 1)
(3) 𝐶𝖥 (from 1)
(4) (𝐴 ∨ 𝐵)𝖳 (from 2)
(5) (𝐴 ⇒ 𝐶)𝖳 (from 2)
(6) (𝐵 ⇒ 𝐶)𝖳 (from 2)

(7) 𝐴𝖳 𝐵𝖳
𝐴𝖳 𝐶𝖳 (split on 5) 𝐵𝖥 𝐶𝖳 (split on 6) (split on 4)

3. Resolution:
(𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) ⇒ 𝐶: We negate and build a CNF:

(𝐴 ∨ 𝐵) ∧ (𝐴 ⇒ 𝐶) ∧ (𝐵 ⇒ 𝐶) ∧ ¬𝐶
≡(𝐴 ∨ 𝐵) ∧ (¬𝐴 ∨ 𝐶) ∧ (¬𝐵 ∨ 𝐶) ∧ ¬𝐶

yielding clauses {𝐴𝖳, 𝐵𝖳}, {𝐴𝖥, 𝐶𝖳}, {𝐵𝖥, 𝐶𝖳}, {𝐶𝖥}.
Resolving yields:

{𝐴𝖥, 𝐶𝖳} + {𝐶𝖥}⟹ {𝐴𝖥}
{𝐵𝖥, 𝐶𝖳} + {𝐶𝖥}⟹ {𝐵𝖥}
{𝐴𝖳, 𝐵𝖳} + {𝐴𝖥}⟹ {𝐵𝖥}

{𝐵𝖳} + {𝐵𝖥}⟹ ∅

3. ((𝑃 ⇒ 𝑄) ⇒ 𝑃) ⇒ 𝑃

Solution:

1. ND:

2



(1) 𝑃 ∨ ¬𝑃 TND
(2) 2 𝑃 Assumption
(3) 2,3 (𝑃 ⇒ 𝑄) ⇒ 𝑃 Assumption
(4) 2 ((𝑃 ⇒ 𝑄) ⇒ 𝑃) ⇒ 𝑃 𝒩𝒟0 ⇒𝐼𝑎 (on 3 and 2)
(5) 5 ¬𝑃 Assumption
(6) 5,6 (𝑃 ⇒ 𝑄) ⇒ 𝑃) Assumption
(7) 5,6,7 𝑃 Assumption
(8) 5,6,7 𝐹 𝐹𝐼 (on 5 and 7)
(9) 5,6,7 𝑄 𝐹𝐸 (on 8)
(10) 5,6 𝑃 ⇒ 𝑄 𝒩𝒟0 ⇒𝐼𝑎 (on 7 and 9)
(11) 5,6 𝑃 𝒩𝒟0 ⇒𝐸 (on 6 and 10)
(12) 5 ((𝑃 ⇒ 𝑄) ⇒ 𝑃) ⇒ 𝑃 𝒩𝒟0 ⇒𝐼𝑎 (on 6 and 11)
(13) ((𝑃 ⇒ 𝑄) ⇒ 𝑃) ⇒ 𝑃 𝒩𝒟0∨𝐸 (on 1, 4 and 12)

2. Tableau:
(1) (((𝑃 ⇒ 𝑄) ⇒ 𝑃) ⇒ 𝑃)𝖥

(2) ((𝑃 ⇒ 𝑄) ⇒ 𝑃)𝖳 (from 1)
(3) 𝑃𝖥 (from 1)

(4) (𝑃 ⇒ 𝑄)𝖥 𝑃𝖳
(5) 𝑃𝖳 (from 4) (split on 2)

3. Resolution:
((𝑃 ⇒ 𝑄) ⇒ 𝑃) ⇒ 𝑃: We negate and build a CNF:

((𝑃 ⇒ 𝑄) ⇒ 𝑃) ∧ ¬𝑃
≡(¬(𝑃 ⇒ 𝑄) ∨ 𝑃) ∧ ¬𝑃
≡(𝑃 ∧ ¬𝑄 ∨ 𝑃) ∧ ¬𝑃
≡(𝑃 ∨ 𝑃) ∧ (¬𝑄 ∨ 𝑃) ∧ ¬𝑃

yielding clauses {𝑃𝖳}, {𝑄𝖥, 𝑃𝖳}, {𝑃𝖥}.

4. Can you identify any advantages or disadvantage of the calculi, and in which
situations?

Problem 9.2 (Equivalence of CSP and SAT)
We consider

• CSPs ⟨𝑉, 𝐷, 𝐶⟩ with finite domains as before

• SAT problems ⟨𝑉,𝐴⟩ where 𝑉 is a set of propositional variables and 𝐴 is a
propositional formula over 𝑉.

We will show that these problem classes are equivalent by reducing their instances
to each other.

3



1. Given a SAT instance 𝑃 = ⟨𝑉,𝐴⟩, define a CSP instance 𝑃′ = ⟨𝑉′, 𝐷′, 𝐶′⟩ and
two bijections:

• 𝑓 mapping satisfying assignments of 𝑃 to solutions of 𝑃′,
• and 𝑓′ the inverse of 𝑓.

We already know that constraint networks are equivalent tohigher-order CSPs.
Therefore, it is sufficient to give a higher-order CSP.

Solution: We define 𝑃′ by 𝑉′ = 𝑉, 𝐷𝑣 = {𝚃, 𝙵} for every 𝑣 ∈ 𝑉, and 𝐶 = {𝐴},
i.e., 𝐶 contains the single higher-order constraint that holds if an assignment
to 𝑉′ (seen as an propositional assignment to 𝑉) satisfies 𝐴.
𝑓 and 𝑓′ are the identity.

2. Given a CSP instance ⟨𝑉, 𝐷, 𝐶⟩, define a SAT instance (𝑉′, 𝐴′) and bijections
as above.

Solution: We define 𝑃′ as follows. 𝑉′ contains variables 𝑝′𝑣𝑎 for every 𝑣 ∈ 𝑉
and 𝑎 ∈ 𝐷𝑣. The intuition behind 𝑝′𝑣𝑎 is that 𝑣 has value 𝑎.
𝐴′ is the conjunction of the following formulas:

• for all 𝑣 ∈ 𝑉 with 𝐷𝑣 = {𝑎1, … , 𝑎𝑛}, the formula 𝑝′𝑣𝑎1 ∨ … ∨ 𝑝′𝑣𝑎𝑛 (i.e., 𝑣
must have at least one value)

• for all 𝑣 ∈ 𝑉, and 𝑎, 𝑏 ∈ 𝐷𝑣 with 𝑎 ≠ 𝑏, the formula 𝑝′𝑣𝑎 ⇒ ¬𝑝′𝑣𝑏 (i.e., 𝑣
can have at most one value)

• for all 𝐶𝑣𝑤 and (𝑎, 𝑏) ∉ 𝐶𝑣𝑤, the formula ¬(𝑝′𝑣𝑎 ∧ 𝑝′𝑤𝑏) (i.e., every con-
straint must be satisfied)

The bijection 𝑓 maps a solution 𝛼 of 𝑃 to a 𝐴′-satisfying propositional assign-
ment 𝜑 for 𝑉′ as follows: for all 𝑣, 𝑎, we put 𝜑(𝑝′𝑣𝑎) = 𝚃 if 𝛼(𝑣) = 𝑎 and
𝜑(𝑝′𝑣𝑎) = 𝙵 otherwise.
The inverse bijection 𝑓′ maps an𝐴′-satisfying assignment 𝜑 to a solution 𝛼 of
𝑃 as follows: for all 𝑣 we put 𝛼(𝑣) = 𝑎 where 𝑎 is the unique value for which
𝜑(𝑝′𝑣𝑎) = 𝚃.

Problem 9.3 (Induction)
Use structural induction on terms and formulas to define a function 𝐶 that

maps every term/formula to the number of free variable occurrences. For exam-
ple, 𝐶(∀𝑥.𝑃(𝑥, 𝑥, 𝑦, 𝑦, 𝑧)) = 3 because the argument has 2 free occurrences of 𝑦 and
one of 𝑧.

Hint: Use an auxiliary function 𝐶′(𝑉,𝐴) that takes the set 𝑉 of bound variables

4



and a term/formula𝐴. Define𝐶′ by structural induction on𝐴. Then define𝐶(𝐴) =
𝐶′(∅, 𝐴).

Solution: 𝐶′ is defined as follows for terms

• variables 𝑋: 𝐶′(𝑉, 𝑋) = 0 if 𝑋 ∈ 𝑉 and 𝐶′(𝑉, 𝑋) = 1 if 𝑋 ∉ 𝑉

• applications of 𝑛-ary function symbol 𝑓: 𝐶′(𝑉, 𝑓(𝑡1, ..., 𝑡𝑛)) = Σ𝑖𝐶′(𝑉, 𝑡𝑖)

and for formulas

• applications of 𝑛-ary predicate symbol 𝑝: 𝐶′(𝑉, 𝑝(𝑡1, ..., 𝑡𝑛)) = Σ𝑖𝐶′(𝑉, 𝑡𝑖)

• nullary connectives: 𝐶′(𝑉, 𝑇) = 𝐶′(𝑉, 𝐹) = 0

• unary connectives: 𝐶′(𝑉, ¬𝐴) = 𝐶′(𝑉,𝐴)

• binary connectives: 𝐶′(𝑉,𝐴1 ∧ 𝐴2) = 𝐶′(𝑉,𝐴1 ∨ 𝐴2) = 𝐶′(𝑉,𝐴1 ⇒ 𝐴2) =
𝐶′(𝑉,𝐴1) + 𝐶′(𝑉,𝐴2)

• quantifiers: 𝐶′(𝑉, ∀𝑥.𝐴) = 𝐶′(𝑉, ∃𝑥.𝐴) = 𝐶′(𝑉 ∪ {𝑥}, 𝐴)

This definition exhibits the typical pattern of structural induction:

• An additional argument (𝑉) is used to track the bound variables.

• When recursing into a quantifier that argument is updated by adding the
bound variable 𝑥. (In general, additional information about could be added,
e.g., whether it is bound by ∀ or ∃.)

• At the leafs of the syntax tree (the base cases of the induction, here the vari-
ables), the additional argument is used.

• The main function is defined by initializing the additional argument (here
with ∅).

Problem 9.4 (First-Order Semantics)
Let =∈ Σ𝑝2 , 𝑃 ∈ Σ𝑝1 and + ∈ Σ𝑓2 . We use the semantics of first-order logic

without equality.
Prove or refute the following formulas semantically. Thatmeans youmust show

that 𝐼𝜑(𝐴) = 𝑇 for all models 𝐼 and assignments 𝜑 (without using a proof calculus)
or to give some 𝐼, 𝜑 such that 𝐼𝜑(𝐴) = 𝐹.

5



1. 𝑃(𝑋)

Solution: Not valid. One out of many counter-examples is given by domain
ℕ, 𝐼(𝑃) = {0}, and 𝜑(𝑋) = 1.

2. ∀𝑋.∀𝑌. = (+(𝑋, 𝑌), +(𝑌, 𝑋))

Solution: Not valid. A counter-model is ℐ𝜑(=) = ∅with an arbitrary domain.

3. ∃𝑋.𝑃(𝑋) ⇒ (∀𝑌.𝑃(𝑌))

Solution: Valid:

ℐ𝜑(∃𝑋.𝑃(𝑋) ⇒ (∀𝑌.𝑃(𝑌)) = ⊤
⇔There is some 𝑎 ∈ 𝒟ℐ s.t. ℐ𝜑(𝑃(𝑎) ⇒ (∀𝑌.𝑃(𝑌)))) = ⊤
⇔There is some 𝑎 ∈ 𝒟ℐ s.t. ℐ𝜑(¬(𝑃(𝑎) ∧ ¬(∀𝑌.𝑃(𝑌)))) = ⊤
⇔There is some 𝑎 ∈ 𝒟ℐ s.t. ℐ𝜑(𝑃(𝑎) ∧ ¬(∀𝑌.𝑃(𝑌))) = ⊥
⇔There is some 𝑎 ∈ 𝒟ℐ s.t. ℐ𝜑(𝑃(𝑎)) = ⊥ or ℐ𝜑(¬(∀𝑌.𝑃(𝑌))) = ⊥
⇔There is some 𝑎 ∈ 𝒟ℐ s.t. ℐ𝜑(𝑃(𝑎)) = ⊥ or ℐ𝜑(∀𝑌.𝑃(𝑌)) = ⊤
⇔There is some 𝑎 ∈ 𝒟ℐ s.t. ℐ𝜑(𝑃(𝑎)) = ⊥ or for all 𝑏 ∈ 𝒟ℐ ∶ ℐ𝜑(𝑃(𝑏)) = ⊤

4. 𝑃(𝑌) ⇒ (∃𝑋.𝑃(𝑋))

Solution: Now the last statement holds because if the left side does not hold,
then the right side must hold.

6


