Assignment9 - Propositional and First-Order Logic

Problem 9.1 (Calculi Comparison)

Prove (or disprove) the validity of the following formulae in i) Natural Deduction
ii) Tableau and iii) Resolution:

1. PAQ=>(PVQ)

Solution:
1. ND:
1) 1|PAQ Assumption
2 1P NTIHAE; (on 1)
3 1|PvQ NIyVI, (on 2)
4) PAQ=>({PVQ) | NI}=I%(on1and 3)
2. Tableau:
O | PrQ=@VvQ)
) PAQT (from 1)
3) @vQ)y (from 1)
@ PT (from 2)
(5) Q' (from 2)
(6) PF (from 3)

3. Resolution: P A Q= (P V Q): We negate and build a CNF:

PAQA-(PVQ)
=PAQA-PA-Q

yielding clauses {P'},{Q"},{Pf},{QF}

2.(AVB)A(A=>CO)AB=>0)=>C

Solution:

1. ND:



1 1 (AVB)A(A=>C)A(B=>C) Assumption

2 1 AVB NIYAE,; (on 1)

3 1 A=>C)AB=>0C) NIYAE, (on 1)

4 1 A=>C NIyAE; (on 3)

B) 1 B=>C NIYAE, (on 3)

6) 16| A Assumption

(7) 1,6 | C N, =E (on 4 and 6)

8 18 | B Assumption

9 1,8|C NI, =E (on 5 and 8)
(10) 1 C NIVE (on 2,7 and 9)
(11) (AVB)IA(A=>C)AB=>C)=>C | Ny =1%(on 1 and 10)

2. Tableau:
) (AVB)A(A=>C)AB=>C)=C)
) (AVB)A(A=C)A(B=C)) (from 1)
(3) crF (from 1)
(4) (AvB)' (from 2)
(5) A=0) (from 2)
(6) B=0) (from 2)
T T

(7) A B (split on 4)

AT | CT || (split on 5) BF | CT || (split on 6)

3. Resolution:
(AVB)A(A=C)A(B=C)= C: We negate and build a CNF:

(AVB)A(As C)AB=>C)AC
=AVB)A(RAVC)A(=BVC)A-C

yielding clauses {AT,B'},{A",CT},{BF,C"},{CF}.
Resolving yields:

{AF,CT} +{C} = {47}

{BF,CT} +{CF} = {B}

{AT,BT} + {47} = {B}}
{BT}+{Bf} = ¢

3. (P=>Q)=>P)=>P

Solution:

1.

ND:



(1) Pv-P TND
2 2 p Assumption
3) 23 P=>Q)=>pP Assumption
@) 2 (P=Q)=>P)=>P | Ny =I*(on3and 2)
(5) 5 -P Assumption
(6) 5,6 P=>Q)=>P) Assumption
(7) 56,7 | P Assumption
8) 56,7 | F FI(on5and7)
9 56,7 |Q FE (on 8)
(10) 5,6 P=Q Ny =1 (on 7 and 9)
(11) 5,6 P N, =E (on 6 and 10)
(12) 5 (P=Q)=>P)=>P | Ny =1 (on 6 and 11)
(13) (P=>Q)=>P)=>P | NQVE (on1,4and 12)
2. Tableau:
W] w=s=p=p |
) (P=>Q)=>P) (from 1)
(3) PF (from 1)
F
4) P=0Q) P! (split on 2)

(5) | PT || (from4)
3. Resolution:
((P= Q)= P)= P: We negate and build a CNF:
(P=>Q)=>P)A-P
=(-(P=>Q)VP)A-P
=(PA-QVP)A-P
=PVP)A(-QVP)A-P

yielding clauses {P'},{QF, PT},{PF}.

4. Can you identify any advantages or disadvantage of the calculi, and in which
situations?

Problem 9.2 (Equivalence of CSP and SAT)
We consider

« CSPs(V, D, C) with finite domains as before

» SAT problems (V, A) where V is a set of propositional variables and A is a
propositional formula over V.

We will show that these problem classes are equivalent by reducing their instances
to each other.



1. Given a SAT instance P = (V, A), define a CSP instance P’ = (V',D’,C’) and
two bijections:

« f mapping satisfying assignments of P to solutions of P/,
« and f’ the inverse of f.

We already know that constraint networks are equivalent to higher-order CSPs.
Therefore, it is sufficient to give a higher-order CSP.

Solution: We define P’ by V! =V, D, = {T,F}foreveryv € V,and C = {4},

i.e., C contains the single higher-order constraint that holds if an assignment
to V' (seen as an propositional assignment to V) satisfies A.
f and f” are the identity.

2. Given a CSP instance (V, D, C), define a SAT instance (V’, A”) and bijections
as above.

Solution: We define P’ as follows. V' contains variables p,, for everyv € V

and a € D,,. The intuition behind p),, is that v has value a.
A is the conjunction of the following formulas:

« forallv € V with D, = {ay, ..., a,,}, the formula pl’,a1 V..V p{,an (.e.,v
must have at least one value)

« forallv € V, and a,b € D, with a # b, the formula p, = ﬂp")b (ie.,v
can have at most one value)

« forall Cy, and (a,b) & Cyy, the formula =(p;, A p! ) (ie., every con-
straint must be satisfied)

The bijection f maps a solution a of P to a A’-satisfying propositional assign-
ment ¢ for V' as follows: for all v, a, we put ¢(p,,) = Tif a(v) = a and
»(pl,) = F otherwise.

The inverse bijection f’ maps an A’-satisfying assignment ¢ to a solution « of
P as follows: for all v we put a(v) = a where a is the unique value for which

P(pha) =T.

Problem 9.3 (Induction)

Use structural induction on terms and formulas to define a function C that
maps every term/formula to the number of free variable occurrences. For exam-
ple, C(¥Vx.P(x, x,y,y,2z)) = 3 because the argument has 2 free occurrences of y and
one of z.

Hint: Use an auxiliary function C’(V, A) that takes the set V of bound variables



and a term/formula A. Define C’ by structural induction on A. Then define C(A4) =
C'(@,A).

Solution: C' is defined as follows for terms

o variables X: C'(V,X) =0if X € Vand C'(V,X) = 1ifX ¢V

« applications of n-ary function symbol f: C'(V, f(t1,...,t,)) = Z,C"(V, t;)
and for formulas

« applications of n-ary predicate symbol p: C'(V, p(t,...,t,)) = Z;C'(V, t;)

« nullary connectives: C'(V,T) = C'(V,F) =0

« unary connectives: C'(V,=A) = C'(V, A)

« binary connectives: C'(V,4; A Ay) = C'(V,A, VAy) =C'(V,A = A,) =
C,(V’ Al) + C’(V’ AZ)

« quantifiers: C'(V,Vx.A) = C'(V,3x.A) = C'(V U {x}, A)
This definition exhibits the typical pattern of structural induction:
« An additional argument (V) is used to track the bound variables.

« When recursing into a quantifier that argument is updated by adding the
bound variable x. (In general, additional information about could be added,
e.g., whether it is bound by V or 3.)

« At the leafs of the syntax tree (the base cases of the induction, here the vari-
ables), the additional argument is used.

+ The main function is defined by initializing the additional argument (here
with @).

Problem 9.4 (First-Order Semantics)

Let =€ Zé’ ,P e Zf and + € Zg . We use the semantics of first-order logic
without equality.

Prove or refute the following formulas semantically. That means you must show
that I,(A) = T for all models I and assignments ¢ (without using a proof calculus)
or to give some I, ¢ such that I,(4) = F.



1. P(X)

Solution: Not valid. One out of many counter-examples is given by domain
N, I(P) = {0}, and p(X) = 1.

2. VX.VY. = (+(X,Y), +(Y, X))

Solution: Notvalid. A counter-model is J,(=) = ¢ with an arbitrary domain.

3. AX.P(X) = (VY.P(Y))

Solution: Valid:

J,(AX.PX)=> (VY.P(Y) =T
©There is some a € Dy s.t. I,(P(a) = (VY.P(Y))) =T
©There is some a € Dy s.t. I,(~(P(a) A~(VY.P(Y))) =T
©There is some a € Dy s.t. I,(P(a) A~(VY.P(Y))) = L
©There is some a € Dy s.t. I,(P(a)) = L or J,(~(VY.P(Y))) = L
©There is some a € Dy s.t. I,(P(a)) = Lor J,(VY.P(Y)) =T
©There is some a € Dy s.t. J,(P(a)) = Lorforallb € Dy : J,(P(b)) =T

4. P(Y)= (3AX.P(X))

Solution: Now the last statement holds because if the left side does not hold,
then the right side must hold.




