Assignment9 – Propositional and First-Order Logic

Problem 9.1 (Calculi Comparison)

Prove (or disprove) the *validity* of the following *formulae* in i) *Natural Deduction* ii) *Tableau* and iii) *Resolution*:

1. $P \land Q \Rightarrow (P \lor Q)$

Solution:

1. ND:

ſ	(1)	1	$P \wedge Q$	Assumption
	(2)	1	Р	$\mathcal{ND}_0 \wedge E_l \text{ (on 1)}$
	(3)	1	$P \lor Q$	$\mathcal{ND}_0 \lor I_l \text{ (on 2)}$
	(4)		$P \land Q \Rightarrow (P \lor Q)$	$\mathcal{ND}_0 \Rightarrow I^a \text{ (on 1 and 3)}$

2. Tableau:

(1)	$(P \land Q \Rightarrow (P \lor Q))^{F}$	
(2)	$(P \land Q)^{T}$	(from 1)
(3)	$(P \lor Q)^{F}$	(from 1)
(4)	P^{T}	(from 2)
(5)	Q^{T}	(from 2)
(6)	P^{F}	(from 3)

3. Resolution: $P \land Q \Rightarrow (P \lor Q)$: We *negate* and build a *CNF*:

$$P \land Q \land \neg (P \lor Q)$$
$$\equiv P \land Q \land \neg P \land \neg Q$$

yielding clauses $\{P^{\mathsf{T}}\}, \{Q^{\mathsf{T}}\}, \{P^{\mathsf{F}}\}, \{Q^{\mathsf{F}}\}\}$

2. $(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$

Solution:

1. ND:

(1)	1	$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C)$	Assumption
(2)	1	$A \lor B$	$\mathcal{ND}_0 \wedge E_l \text{ (on 1)}$
(3)	1	$(A \Rightarrow C) \land (B \Rightarrow C)$	$\mathcal{ND}_0 \wedge E_r \text{ (on 1)}$
(4)	1	$A \Rightarrow C$	$\mathcal{ND}_0 \wedge E_l \text{ (on 3)}$
(5)	1	$B \Rightarrow C$	$\mathcal{ND}_0 \wedge E_r \text{ (on 3)}$
(6)	1,6	Α	Assumption
(7)	1,6	C	$\mathcal{ND}_0 \Rightarrow E \text{ (on 4 and 6)}$
(8)	1,8	В	Assumption
(9)	1,8	C	$\mathcal{ND}_0 \Rightarrow E \text{ (on 5 and 8)}$
(10)	1	С	$\mathcal{ND}_0 \lor E \text{ (on 2, 7 and 9)}$
(11)		$(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$	$\mathcal{ND}_0 \Rightarrow I^a \text{ (on 1 and 10)}$

2. Tableau:

(1)	$((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C)^{F}$	
(2)	$((A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C))^{T}$	(from 1)
(3)	C^{F}	(from 1)
(4)	$(A \lor B)^{T}$	(from 2)
(5)	$(A \Rightarrow C)^{T}$	(from 2)
(6)	$(B \Rightarrow C)^{T}$	(from 2)
(7)	$ \begin{array}{c c} A^{T} & B^{T} \\ A^{T} & C^{T} & \text{(split on 5)} & B^{F} & C^{T} & \text{(split on 6)} \\ \end{array} $	(split on 4)

3. Resolution:

 $(A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \Rightarrow C$: We *negate* and build a *CNF*:

 $\begin{aligned} (A \lor B) \land (A \Rightarrow C) \land (B \Rightarrow C) \land \neg C \\ \equiv & (A \lor B) \land (\neg A \lor C) \land (\neg B \lor C) \land \neg C \end{aligned}$

yielding *clauses* $\{A^{\mathsf{T}}, B^{\mathsf{T}}\}, \{A^{\mathsf{F}}, C^{\mathsf{T}}\}, \{B^{\mathsf{F}}, C^{\mathsf{T}}\}, \{C^{\mathsf{F}}\}$. Resolving yields:

$$\begin{split} & \{A^{\mathsf{F}}, C^{\mathsf{T}}\} + \{C^{\mathsf{F}}\} \Longrightarrow \{A^{\mathsf{F}}\} \\ & \{B^{\mathsf{F}}, C^{\mathsf{T}}\} + \{C^{\mathsf{F}}\} \Longrightarrow \{B^{\mathsf{F}}\} \\ & \{A^{\mathsf{T}}, B^{\mathsf{T}}\} + \{A^{\mathsf{F}}\} \Longrightarrow \{B^{\mathsf{F}}\} \\ & \{B^{\mathsf{T}}\} + \{B^{\mathsf{F}}\} \Longrightarrow \emptyset \end{split}$$

3. $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$

Solution:

1. ND:

(1)		$P \lor \neg P$	TND
(2)	2	Р	Assumption
(3)	2,3	$(P \Rightarrow Q) \Rightarrow P$	Assumption
(4)	2	$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$	$\mathcal{ND}_0 \Rightarrow I^a \text{ (on 3 and 2)}$
(5)	5	$\neg P$	Assumption
(6)	5,6	$(P \Rightarrow Q) \Rightarrow P)$	Assumption
(7)	5,6,7	Р	Assumption
(8)	5,6,7	F	<i>FI</i> (on 5 and 7)
(9)	5,6,7	Q	<i>FE</i> (on 8)
(10)	5,6	$P \Rightarrow Q$	$\mathcal{ND}_0 \Rightarrow I^a \text{ (on 7 and 9)}$
(11)	5,6	Р	$\mathcal{ND}_0 \Rightarrow E \text{ (on 6 and 10)}$
(12)	5	$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$	$\mathcal{ND}_0 \Rightarrow I^a \text{ (on 6 and 11)}$
(13)		$((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$	$\mathcal{ND}_0 \lor E \text{ (on 1, 4 and 12)}$

2. Tableau:

(1)	$(((P \Rightarrow Q) \Rightarrow P) \Rightarrow P)^{F}$	
(2)	$((P \Rightarrow Q) \Rightarrow P)^{T}$	(from 1)
(3)	P^{F}	(from 1)
(4)	$(P \Rightarrow Q)^{F} \qquad P^{T}$ $(5) \mid P^{T} \parallel (\text{from 4}) \qquad \qquad$	(split on 2)

3. Resolution:

 $((P \Rightarrow Q) \Rightarrow P) \Rightarrow P$: We *negate* and build a *CNF*:

$$\begin{split} & ((P \Rightarrow Q) \Rightarrow P) \land \neg P \\ \equiv & (\neg (P \Rightarrow Q) \lor P) \land \neg P \\ \equiv & (P \land \neg Q \lor P) \land \neg P \\ \equiv & (P \lor P) \land (\neg Q \lor P) \land \neg P \end{split}$$

yielding clauses $\{P^{\mathsf{T}}\}, \{Q^{\mathsf{F}}, P^{\mathsf{T}}\}, \{P^{\mathsf{F}}\}$.

4. Can you identify any advantages or disadvantage of the *calculi*, and in which situations?

Problem 9.2 (Equivalence of CSP and SAT)

We consider

- *CSPs* $\langle V, D, C \rangle$ with *finite domains* as before
- *SAT problems* $\langle V, A \rangle$ where *V* is a set of propositional variables and *A* is a propositional formula over *V*.

We will show that these problem classes are equivalent by reducing their instances to each other.

- 1. Given a SAT instance $P = \langle V, A \rangle$, define a CSP instance $P' = \langle V', D', C' \rangle$ and two *bijections*:
 - *f* mapping satisfying assignments of *P* to solutions of *P'*,
 - and f' the inverse of f.

We already know that *constraint networks* are equivalent to *higher-order CSPs*. Therefore, it is sufficient to give a *higher-order CSP*.

Solution: We define P' by V' = V, $D_v = \{T, F\}$ for every $v \in V$, and $C = \{A\}$, i.e., *C* contains the single *higher-order constraint* that holds if an assignment to *V'* (seen as an propositional assignment to *V*) satisfies *A*. *f* and *f'* are the identity.

2. Given a CSP instance $\langle V, D, C \rangle$, define a SAT instance (V', A') and *bijections* as above.

Solution: We define P' as follows. V' contains variables p'_{va} for every $v \in V$ and $a \in D_v$. The intuition behind p'_{va} is that v has value a. A' is the conjunction of the following formulas:

- for all $v \in V$ with $D_v = \{a_1, ..., a_n\}$, the formula $p'_{va_1} \vee ... \vee p'_{va_n}$ (i.e., v must have at least one value)
- for all $v \in V$, and $a, b \in D_v$ with $a \neq b$, the formula $p'_{va} \Rightarrow \neg p'_{vb}$ (i.e., v can have at most one value)
- for all C_{vw} and $(a, b) \notin C_{vw}$, the formula $\neg (p'_{va} \land p'_{wb})$ (i.e., every constraint must be satisfied)

The bijection f maps a solution α of P to a A'-satisfying propositional assignment φ for V' as follows: for all v, a, we put $\varphi(p'_{va}) = T$ if $\alpha(v) = a$ and $\varphi(p'_{va}) = F$ otherwise.

The *inverse bijection* f' maps an A'-satisfying assignment φ to a solution α of P as follows: for all v we put $\alpha(v) = a$ where a is the unique value for which $\varphi(p'_{va}) = T$.

Problem 9.3 (Induction)

Use structural induction on terms and formulas to define a function *C* that maps every term/formula to the number of *free variable occurrences*. For example, $C(\forall x.P(x, x, y, y, z)) = 3$ because the argument has 2 *free occurrences* of *y* and one of *z*.

Hint: Use an auxiliary function C'(V, A) that takes the set V of bound variables

and a term/formula *A*. Define *C*' by structural induction on *A*. Then define $C(A) = C'(\emptyset, A)$.

Solution: C' is defined as follows for terms

- variables X: C'(V, X) = 0 if $X \in V$ and C'(V, X) = 1 if $X \notin V$
- applications of *n*-ary function symbol $f: C'(V, f(t_1, ..., t_n)) = \sum_i C'(V, t_i)$

and for formulas

- applications of *n*-ary predicate symbol $p: C'(V, p(t_1, ..., t_n)) = \sum_i C'(V, t_i)$
- nullary connectives: C'(V,T) = C'(V,F) = 0
- unary connectives: $C'(V, \neg A) = C'(V, A)$
- binary connectives: $C'(V, A_1 \land A_2) = C'(V, A_1 \lor A_2) = C'(V, A_1 \Rightarrow A_2) = C'(V, A_1) + C'(V, A_2)$
- quantifiers: $C'(V, \forall x.A) = C'(V, \exists x.A) = C'(V \cup \{x\}, A)$

This definition exhibits the typical pattern of structural induction:

- An additional argument (V) is used to track the bound variables.
- When recursing into a quantifier that argument is updated by adding the bound variable *x*. (In general, additional information about could be added, e.g., whether it is bound by ∀ or ∃.)
- At the leafs of the syntax tree (the base cases of the induction, here the variables), the additional argument is used.
- The main function is defined by initializing the additional argument (here with \emptyset).

Problem 9.4 (First-Order Semantics)

Let $= \in \Sigma_2^p$, $P \in \Sigma_1^p$ and $+ \in \Sigma_2^f$. We use the semantics of first-order logic without equality.

Prove or refute the following formulas semantically. That means you must show that $I_{\varphi}(A) = T$ for all models *I* and assignments φ (without using a proof calculus) or to give some *I*, φ such that $I_{\varphi}(A) = F$.

1. P(X)

Solution: Not valid. One out of many counter-examples is given by domain \mathbb{N} , $I(P) = \{0\}$, and $\varphi(X) = 1$.

2. $\forall X.\forall Y. = (+(X, Y), +(Y, X))$

Solution: Not valid. A counter-model is $\mathcal{I}_{\varphi}(=) = \emptyset$ with an arbitrary domain.

3. $\exists X.P(X) \Rightarrow (\forall Y.P(Y))$

Solution: Valid:

 $\begin{array}{l} \mathcal{I}_{\varphi}(\exists X.P(X) \Rightarrow (\forall Y.P(Y)) = \top \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(P(a) \Rightarrow (\forall Y.P(Y)))) = \top \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(\neg(P(a) \land \neg(\forall Y.P(Y)))) = \top \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(P(a) \land \neg(\forall Y.P(Y))) = \bot \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(P(a)) = \bot \text{ or } \mathcal{I}_{\varphi}(\neg(\forall Y.P(Y))) = \bot \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(P(a)) = \bot \text{ or } \mathcal{I}_{\varphi}(\neg(\forall Y.P(Y))) = \bot \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(P(a)) = \bot \text{ or } \mathcal{I}_{\varphi}(\forall Y.P(Y)) = \top \\ \Leftrightarrow \text{There is some } a \in \mathcal{D}_{\mathcal{I}} \text{ s.t. } \mathcal{I}_{\varphi}(P(a)) = \bot \text{ or } for \text{ all } b \in \mathcal{D}_{\mathcal{I}} : \mathcal{I}_{\varphi}(P(b)) = \top \end{array}$

4. $P(Y) \Rightarrow (\exists X.P(X))$

Solution: Now the last statement holds because if the left side does not hold, then the right side must hold.