Assignment8 – Learning

Given: June 20 Due: June 25

Problem 8.1 (Support Vectors)

_

Consider the following 2-dimensional dataset	t
--	---

support vector	classification
$\mathbf{x}_1 = \langle 0, 0 \rangle$	$y_1 = -1$
$\mathbf{x}_2 = \langle 0, 0.5 \rangle$	$y_2 = -1$
$\mathbf{x}_3 = \langle 0.5, 0 \rangle$	$y_3 = -1$
$\mathbf{x}_4 = \langle 1, 1 \rangle$	$y_4 = 1$
$\mathbf{x}_5 = \langle 2, 2 \rangle$	$y_5 = -1$

1. Give a *linear separator* in the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$ for the dataset containing only the examples for \mathbf{x}_1 to \mathbf{x}_4 .

Solution: Many solutions, e.g., $\mathbf{w} = \langle 1, 1 \rangle$ and b = -1.

2. Explain informally why no linear separator exists for the full dataset of all 5 vectors.

Solution: The points x_1, x_4, x_5 lie on a line and the middle one has a different classification than the others. No line can have x_1 and x_5 on one side and x_4 on the other.

3. Transform the dataset into a 3-dimensional dataset by applying the function $F(\langle u, v \rangle) = \langle u^2, v^2, u + v \rangle$.

	support vector \mathbf{x}	$F(\mathbf{x})$	classification
	x ₁	$\langle 0, 0, 0 \rangle$	$y_1 = -1$
Solution:	x ₂	$\langle 0, 0.25, 0.5 \rangle$	$y_2 = -1$
	x ₃	$\langle 0.25, 0, 0.5 \rangle$	$y_3 = -1$
	\mathbf{x}_4	$\langle 1, 1, 2 \rangle$	$y_4 = 1$
	\mathbf{x}_5	$\langle 4, 4, 4 \rangle$	$y_5 = -1$

4. Give a *linear separator* for the transformed full dataset in the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$.

Solution: Many solutions, e.g., $\mathbf{w} = \langle -1, -1, 2 \rangle$ and b = -1.

Problem 8.2 (Weight Updates)

We're trying to find a linear separator. Our examples are the set

Example number	\mathbf{x}_1	\mathbf{x}_2	у
1	2	0	2
2	3	1	2

Our hypothesis space contains the functions $h_{\mathbf{w}}(\mathbf{x}) = A(\mathbf{w} \cdot \mathbf{x})$ for 2+1-dimensional vectors \mathbf{w}, \mathbf{x} (using the trick $\mathbf{x}_0 = 1$ to allow for the constant term \mathbf{w}_0) and some fixed function A.

As the initial weights, we use $\mathbf{w}_0 = \mathbf{w}_1 = \mathbf{w}_2 = 0$.

For each of the following cases, iterate the respective weight update rule once for each example (using the examples in the order listed). Use learning rate $\alpha = 1$.

1. Using the threshold function $A(z) = \mathcal{T}(z)$, i.e., A(z) = 1 if z > 0 and A(z) = 0otherwise. Here we cannot do gradient descent, so we have to use the perceptron learning rule.

Solution: The update rule is $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha(y - h_{\mathbf{w}}(\mathbf{x}))\mathbf{x}_i$. Using the examples, we obtain:

- Example 1: $y h_{\mathbf{w}}(\mathbf{x}) = 2 \mathcal{T}((0, 0, 0) \cdot (1, 2, 0)) = 2$, i.e., $\mathbf{w}_i \leftarrow \mathbf{w}_i + 1\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (2, 4, 0)$.
- Example 2: $y h_{\mathbf{w}}(\mathbf{x}) = 2 \mathcal{F}((2, 4, 0) \cdot (1, 3, 1)) = 1$, i.e., $\mathbf{w}_i \leftarrow \mathbf{w}_i + 1\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (3, 7, 1)$.
- 2. Using the logistic function $A(z) = 1/(1+e^{-x})$. Here we use gradient descent.

Solution: The update rule is $\mathbf{w}_i \leftarrow \mathbf{w}_i + \alpha(y - h_{\mathbf{w}}(\mathbf{x}))h_{\mathbf{w}}(\mathbf{x})(1 - h_{\mathbf{w}}(\mathbf{x}))\mathbf{x}_i$. Using the examples, we obtain:

- Example 1: $h_{\mathbf{w}}(\mathbf{x}) = 1/(1+e^0) = 1/2$, i.e., $\mathbf{w}_i \leftarrow \mathbf{w}_i + 1/4(2-1/2)\mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (3/8, 3/4, 0)$.
- Example 2: $h_{\mathbf{w}}(\mathbf{x}) = 1/(1 + e^{-((3/8,3/4,0)\cdot(1,3,1))}) = 1/(1 + e^{-21/8})$, i.e., (after rounding) $\mathbf{w}_i \leftarrow \mathbf{w}_i + 0.07 \mathbf{x}_i$. Thus, $\mathbf{w} \leftarrow (0.44, 0.95, 0.07)$.

Problem 8.3 (XOR Neural Network)

Consider the following neural network with

• inputs a_1 and a_2

• units 3, 4, 5 with activation functions such that
$$a_i \leftarrow \begin{cases} 1 & \text{if } \Sigma_j w_{ji} a_j > b_i \\ 0 & \text{otherwise} \end{cases}$$

٢

• weights w_{ij} as given by the labels on the edges

1. Assume $b_3 = b_4 = b_5 = 0$ and inputs $a_1 = a_2 = 1$. What are the resulting activations a_3, a_4 , and a_5 ?

Solution: $a_3 = 1, a_4 = 0, a_5 = 1$

2. Choose appropriate values for b_3 , b_4 , and b_5 such that the network *implements* the XOR function.

Solution: E.g., $b_3 = 0.5$, $b_4 = -1.5$, $b_5 = 1.5$. More generally, any values work that satisfy $0 \le b3 < 1$, $-2 \le b4 < -1$, and $1 \le b5 < 2$.