Assignment8 - Learning

Given: June 20 Due: June 25

Problem 8.1 (Support Vectors)

Consider the following 2-dimensional dataset

support vector	classification
$\mathbf{x}_{1}=\langle 0,0\rangle$	$\mathbf{y}_{1}=-1$
$\mathbf{x}_{2}=\langle 0,0.5\rangle$	$\mathbf{y}_{2}=-1$
$\mathbf{x}_{3}=\langle 0.5,0\rangle$	$\mathbf{y}_{3}=-1$
$\mathbf{x}_{4}=\langle 1,1\rangle$	$\mathbf{y}_{4}=1$
$\mathbf{x}_{5}=\langle 2,2\rangle$	$\mathbf{y}_{5}=-1$

1. Give a linear separator in the form $h(\mathbf{x})=\mathbf{w} \cdot \mathbf{x}+b$ for the dataset containing only the examples for \mathbf{x}_{1} to \mathbf{x}_{4}.

Solution: Many solutions, e.g., $\mathbf{w}=\langle 1,1\rangle$ and $b=-1$.
2. Explain informally why no linear separator exists for the full dataset of all 5 vectors.

Solution: The points $\mathbf{x}_{1}, \mathbf{x}_{4}, \mathbf{x}_{5}$ lie on a line and the middle one has a different classification than the others. No line can have \mathbf{x}_{1} and \mathbf{x}_{5} on one side and \mathbf{x}_{4} on the other.
3. Transform the dataset into a 3-dimensional dataset by applying the function $F(\langle u, v\rangle)=\left\langle u^{2}, v^{2}, u+v\right\rangle$.

	support vector \mathbf{x}				$F(\mathbf{x})$	classification
Solution:	\mathbf{x}_{1}	$\langle 0,0,0\rangle$	$\mathbf{y}_{1}=-1$			
\mathbf{x}_{2}	$\langle 0,0.25,0.5\rangle$	$\mathbf{y}_{2}=-1$				
\mathbf{x}_{3}	$\langle 0.25,0,0.5\rangle$	$\mathbf{y}_{3}=-1$				
	\mathbf{x}_{4}	$\langle 1,1,2\rangle$	$\mathbf{y}_{4}=1$			
	\mathbf{x}_{5}	$\langle 4,4,4\rangle$	$\mathbf{y}_{5}=-1$			

4. Give a linear separator for the transformed full dataset in the form $h(\mathbf{x})=$ $\mathbf{w} \cdot \mathbf{x}+b$.

Solution: Many solutions, e.g., $\mathbf{w}=\langle-1,-1,2\rangle$ and $b=-1$.

Problem 8.2 (Weight Updates)

We're trying to find a linear separator. Our examples are the set

Example number	\mathbf{x}_{1}	\mathbf{x}_{2}	y
1	2	0	2
2	3	1	2

Our hypothesis space contains the functions $h_{\mathbf{w}}(\mathbf{x})=A(\mathbf{w} \cdot \mathbf{x})$ for 2+1-dimensional vectors \mathbf{w}, \mathbf{x} (using the trick $\mathbf{x}_{0}=1$ to allow for the constant term \mathbf{w}_{0}) and some fixed function A.

As the initial weights, we use $\mathbf{w}_{0}=\mathbf{w}_{1}=\mathbf{w}_{2}=0$.
For each of the following cases, iterate the respective weight update rule once for each example (using the examples in the order listed). Use learning rate $\alpha=1$.

1. Using the threshold function $A(z)=\mathcal{T}(z)$, i.e., $A(z)=1$ if $z>0$ and $A(z)=0$ otherwise. Here we cannot do gradient descent, so we have to use the perceptron learning rule.

Solution: The update rule is $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i}+\alpha\left(y-h_{\mathbf{w}}(\mathbf{x})\right) \mathbf{x}_{i}$. Using the examples, we obtain:

- Example 1: $y-h_{\mathbf{w}}(\mathbf{x})=2-\mathcal{T}((0,0,0) \cdot(1,2,0))=2$, i.e., $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i}+1 \mathbf{x}_{i}$. Thus, $\mathbf{w} \leftarrow(2,4,0)$.
- Example 2: $y-h_{\mathbf{w}}(\mathbf{x})=2-\mathcal{T}((2,4,0) \cdot(1,3,1))=1$, i.e., $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i}+1 \mathbf{x}_{i}$. Thus, $\mathbf{w} \leftarrow(3,7,1)$.

2. Using the logistic function $A(z)=1 /\left(1+e^{-x}\right)$. Here we use gradient descent.

Solution: The update rule is $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i}+\alpha\left(y-h_{\mathbf{w}}(\mathbf{x})\right) h_{\mathbf{w}}(\mathbf{x})\left(1-h_{\mathbf{w}}(\mathbf{x})\right) \mathbf{x}_{i}$.
Using the examples, we obtain:

- Example 1: $h_{\mathbf{w}}(\mathbf{x})=1 /\left(1+e^{0}\right)=1 / 2$, i.e., $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i}+1 / 4(2-1 / 2) \mathbf{x}_{i}$. Thus, $\mathbf{w} \leftarrow(3 / 8,3 / 4,0)$.
- Example 2: $h_{\mathbf{w}}(\mathbf{x})=1 /\left(1+e^{-((3 / 8,3 / 4,0) \cdot(1,3,1))}\right)=1 /\left(1+e^{-21 / 8}\right)$, i.e., (after rounding) $\mathbf{w}_{i} \leftarrow \mathbf{w}_{i}+0.07 \mathbf{x}_{i}$. Thus, $\mathbf{w} \leftarrow(0.44,0.95,0.07)$.

Problem 8.3 (XOR Neural Network)

Consider the following neural network with

- inputs a_{1} and a_{2}
- units $3,4,5$ with activation functions such that $a_{i} \leftarrow \begin{cases}1 & \text { if } \Sigma_{j} w_{j i} a_{j}>b_{i} \\ 0 & \text { otherwise }\end{cases}$
- weights $w_{i j}$ as given by the labels on the edges

1. Assume $b_{3}=b_{4}=b_{5}=0$ and inputs $a_{1}=a_{2}=1$. What are the resulting activations a_{3}, a_{4}, and a_{5} ?

Solution: $a_{3}=1, a_{4}=0, a_{5}=1$
2. Choose appropriate values for b_{3}, b_{4}, and b_{5} such that the network implements the XOR function.

Solution: E.g., $b_{3}=0.5, b_{4}=-1.5, b_{5}=1.5$. More generally, any values work that satisfy $0 \leq b 3<1,-2 \leq b 4<-1$, and $1 \leq b 5<2$.

