Assignment8 – Learning

Given: June 20 Due: June 25

Problem 8.1 (Support Vectors)

Consider the following 2-dimensional dataset

support vector	classification
$\mathbf{x}_1 = \langle 0, 0 \rangle$	$y_1 = -1$
$\mathbf{x}_2 = \langle 0, 0.5 \rangle$	$y_2 = -1$
$\mathbf{x}_3 = \langle 0.5, 0 \rangle$	$y_3 = -1$
$\mathbf{x}_4 = \langle 1, 1 \rangle$	$y_4 = 1$
$\mathbf{x}_5 = \langle 2, 2 \rangle$	$y_5 = -1$

- 1. Give a *linear separator* in the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$ for the dataset containing only the examples for \mathbf{x}_1 to \mathbf{x}_4 .
- 2. Explain informally why no linear separator exists for the full dataset of all 5 vectors.
- 3. Transform the dataset into a 3-dimensional dataset by applying the function $F(\langle u, v \rangle) = \langle u^2, v^2, u + v \rangle$.
- 4. Give a *linear separator* for the transformed full dataset in the form $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$.

Problem 8.2 (Weight Updates)

We're trying to find a linear separator. Our examples are the set

Example number	\mathbf{x}_1	\mathbf{x}_2	У
1	2	0	2
2	3	1	2

Our hypothesis space contains the functions $h_{\mathbf{w}}(\mathbf{x}) = A(\mathbf{w} \cdot \mathbf{x})$ for 2+1-dimensional vectors \mathbf{w}, \mathbf{x} (using the trick $\mathbf{x}_0 = 1$ to allow for the constant term \mathbf{w}_0) and some fixed function A.

As the initial weights, we use $\mathbf{w}_0 = \mathbf{w}_1 = \mathbf{w}_2 = 0$.

For each of the following cases, iterate the respective weight update rule once for each example (using the examples in the order listed). Use learning rate $\alpha = 1$.

- 1. Using the threshold function $A(z) = \mathcal{T}(z)$, i.e., A(z) = 1 if z > 0 and A(z) = 0 otherwise. Here we cannot do gradient descent, so we have to use the perceptron learning rule.
- 2. Using the logistic function $A(z) = 1/(1+e^{-x})$. Here we use gradient descent.

Problem 8.3 (XOR Neural Network)

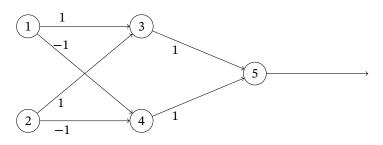
Consider the following neural network with

• inputs a_1 and a_2

• units 3, 4, 5 with activation functions such that
$$a_i \leftarrow \begin{cases} 1 & \text{if } \Sigma_j w_{ji} a_j > b_i \\ 0 & \text{otherwise} \end{cases}$$

٢

• weights w_{ij} as given by the labels on the edges



- 1. Assume $b_3 = b_4 = b_5 = 0$ and inputs $a_1 = a_2 = 1$. What are the resulting activations a_3 , a_4 , and a_5 ?
- 2. Choose appropriate values for b_3 , b_4 , and b_5 such that the network *implements* the XOR function.