Assignment7 - Learning

Given: June 13 Due: June 18

Problem 7.1 (Loss)

Our goal is to find a linear approximation $h(x)=a x$ for the series of square numbers $0,1,4,9,16$.

1. Model this situation as an inductive learning problem.

Solution: The inductive learning problem is (\mathcal{H}, f) where

- the hypothesis space \mathcal{H} is the set containing all functions $h(x)=a x$ with $\operatorname{dom}(h)=\{0, \ldots, 4\}$ for $a \in \mathbb{R}$
- the target function is $f(x)=x^{2}$ with $\operatorname{dom}(f)=\{0,1, \ldots, 4\}$

2. Assuming all 5 possible examples are equality probable, compute the generalized loss using the squared error loss function. (This is a function of h.)

Solution: Each example (x, x^{2}) has probability $1 / 5$. For each x, the loss is $L_{2}\left(x^{2}, a x\right)=\left(x^{2}-a x\right)^{2}$. Thus for each $h(x)=a x$, we have

$$
\operatorname{GenLoss}(h)=\sum_{x=0, \ldots, 4}\left(x^{2}-a x\right)^{2} \cdot 1 / 5=\left((1-a)^{2}+(4-2 a)^{2}+(9-3 a)^{2}+(16-4 a)^{2}\right) / 5=\left(354-200 a+30 a^{2}\right) / 5
$$

3. Find h^{*}.

Solution: We need to find the a that minimizes the loss. The derivative of GenLoss for a is $(60 a-200) / 5$. So the minimum is at $a=10 / 3$.
4. What is the error rate of h^{*} ?

Solution: The error rate is $4 / 5=1$ because $h^{*}(x)=10 x / 3$ predicts 4 out of 5 examples incorrectly. (E.g., $h(x)=x$ would have better error rate $3 / 5$ despite having higher generalized loss.)

Problem 7.2 (Overfitting)

Explain what overfitting means and why we want to avoid it.

Solution: Overfitting is a modeling error that occurs when the chosen hypothesis is too closely fit to a sample set of data points. It picks an overly complex hypothesis that also explains idiosyncrasies and errors in the data. A simpler hypothesis that fits the data less exactly is often a better match for the underlying mechanisms.

Problem 7.3 (Decision List)

We want to construct a decision list to classify the data below where result values V depend on 4 attributes A, B, C, D. The tests should be conjunctions of literals.

1. Assume your literals must be of the form attribute $=$ number. Which values of k allow for giving the shortest possible decision list in k-DL (i.e., using at most k literals per test)? Give one such list.
```
Solution: For k=3 (or higher), we can build a list of length 2:
if A=0\wedgeC=1\wedgeD=0 then 0 else
if }A=0\wedgeC=0\wedgeD=1 then 0 els
1 .
Technically not correct but also interesting is the following solution for k=2
with a list of length 3:
if A=1 then 1 else
if C=0\wedgeD=0 then 1 else
if C=1\wedgeD=1 then 1 else
0
```

2. Now assume your literals may also be of the form attribute $=$ attribute . Answer the same question as above.
```
Solution: For k=1, we can build a list of length 2:
if A=1 then 1 else
if C=D then 1 else
0
```

Example	A	B	C	D	V
$\# 1$	1	0	0	0	1
$\# 2$	1	0	1	1	1
$\# 3$	0	1	0	0	1
$\# 4$	1	1	0	1	1
$\# 5$	0	0	1	1	1
$\# 6$	0	1	1	0	0
$\# 7$	0	1	0	1	0
$\# 8$	0	0	1	0	0

