
Assignment5 – Markov Decision Procedures
Given: May 30 Due: June 6

Problem 5.1 (Markov Decision Processes)
1. Give an optimal policy 𝜋∗ for the following MDP:

• set of states: 𝑆 = {0, 1, 2, 3, 4, 5} with initial state 0
• set of actions for 𝑠 ∈ 𝑆: 𝐴(𝑠) = {−1, 1}
• transition model for 𝑠, 𝑠′ ∈ 𝑆 and 𝑎 ∈ 𝐴(𝑠): 𝑃(𝑠′ ∣ 𝑠, 𝑎) is such that

– 𝑠′ = (𝑠 + 𝑎) mod 6 with probability 2∕3,
– 𝑠′ = (𝑠 + 3) mod 6 with probability 1∕3.

• reward function: 𝑅(5) = 1 and 𝑅(𝑠) = −0.1 for 𝑠 ∈ 𝑆 ⧵ {5}

Solution: 𝜋∗(𝑠) = 1 if 𝑠 ∈ {3, 4} and 𝜋∗(𝑠) = −1 if 𝑠 ∈ {0, 1} and arbitrary for
𝑠 ∈ {2, 5}

2. State the Bellman equation.

Solution: 𝑈(𝑠) = 𝑅(𝑠) + 𝛾max𝑎∈𝐴(𝑠)
∑

𝑠′∈𝑆 𝑈(𝑠
′)𝑃(𝑠′ ∣ 𝑠, 𝑎)

3. Complete the followinghigh-level description of the value iteration algorithm:
• The algorithm keeps a table 𝑈(𝑠) for 𝑠 ∈ 𝑆, that is initialized with

• In each iteration, it uses the

in order to

• 𝑈(𝑠) will converge to the

Solution:
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• The algorithm keeps a table 𝑈(𝑠) for 𝑠 ∈ 𝑆, that is initialized with arbi-
trary values, e.g. all 0 or the rewards.

• In each iteration, it uses the Bellman equation in order to update 𝑈(𝑠).
• 𝑈(𝑠) will converge to the expected utility of 𝑠.

1 per blank; in each case 0.5 if mistake

Problem 5.2 (Bellman Equation)
State the Bellman equation and explain every symbol in the equation and what

the equation is used for and how.

Solution:

𝑈(𝑠) = 𝑅(𝑠) + 𝛾 ⋅ max
𝑎∈𝐴(𝑠)

(
∑

𝑠′
𝑃(𝑠′ ∣ 𝑠, 𝑎) ⋅𝑈(𝑠′))

The meaning of the components is as follows:
• 𝑈(𝑠): the utility of the state 𝑠 (long-term, global)
• 𝑅(𝑠): the reward at state 𝑠 (short-term, local)
• 𝐴(𝑠): the set of actions available in state 𝑠
• max𝑎∈𝐴(𝑠): take the maximum over all available actions in state 𝑠
• 𝑃(𝑠′ ∣ 𝑠, 𝑎): the probability that taking action 𝑎 in state 𝑠 yields state 𝑠′
• 𝑈(𝑠′): the utility in successor state 𝑠′
•
(∑

𝑠′ 𝑃(𝑠
′ ∣ 𝑠, 𝑎) ⋅𝑈(𝑠′)

)
: the expected utility of action 𝑎 by summing over all

possible successor states
The equation is used to compute the utility of every state. The algorithm uses the
equation as an iteration operator that computes new values for every 𝑈(𝑠) by eval-
uating the right hand side for the current values of 𝑈. If this leads to a fixpoint, a
solution for the utilities has been found.

Problem 5.3 (MDP Example)
Consider the following world:
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The world is 101 fields wide (i.e., 203 fields in total). In the 𝑆𝑡𝑎𝑟𝑡 state an agent
has two possible actions, 𝑈𝑝 and 𝐷𝑜𝑤𝑛. It cannot return to 𝑆𝑡𝑎𝑟𝑡 though and the
cannot pass gray fields, so after the first move the only possible action is 𝑅𝑖𝑔ℎ𝑡.

1. Model this world as a Markov Decision Process, i.e., give the components 𝑆,
𝑠0, 𝐴, 𝑃, and 𝑅.

Solution:

• Set of states 𝑆 = {−101,… , 0,… , 101}.
Note that the set of states can be swapped out arbitrarily against any
other set of the same size. The choicemade is practical because it allows
using 0 as the start state and 𝑛 as the state |𝑛| steps away from the start.

• Initial state: 𝑠0 = 0.
• Reward function 𝑅: 𝑅(0) = 0, 𝑅(1) = 50, 𝑅(−1) = −50, 𝑅(𝑠) = −1 for
𝑠 ∈ {2,… , 101}, 𝑅(𝑠) = 1 for 𝑠 ∈ {−2,… ,−101}

• Possible actions in each state: 𝐴(0) = {𝑈𝑝,𝐷𝑜𝑤𝑛}, 𝐴(𝑛) = {𝑅𝑖𝑔ℎ𝑡} for
all 𝑛 ∈ 𝑆 ⧵ {0}

• Transition model 𝑃(𝑠′ ∣ 𝑠, 𝑎): This world is deterministic — the succes-
sor state of each action is uniquely determined. Therefore, all probabil-
ities are either 1 or 0.
– current state 𝑠 = 0: 𝑃(1 ∣ 0, 𝑈𝑝) = 1, 𝑃(1 ∣ 0, 𝐷𝑜𝑤𝑛) = 0, 𝑃(−1 ∣
0, 𝑈𝑝) = 0, 𝑃(−1 ∣ 0, 𝐷𝑜𝑤𝑛) = 1
and 𝑃(𝑠′ ∣ 0, 𝑎) for all 𝑠′ ∈ 𝑆 ⧵ {−1, 0, 1} and 𝑎 ∈ {𝑈𝑝,𝐷𝑜𝑤𝑛}

– current state 𝑠 ≠ 0:

* 𝑃(𝑠+1 ∣ 𝑠, 𝑅𝑖𝑔ℎ𝑡) = 1 for 𝑠 ∈ {1,… , 100}, 𝑃(101 ∣ 101, 𝑅𝑖𝑔ℎ𝑡) =
1

* 𝑃(𝑠−1 ∣ 𝑠, 𝑅𝑖𝑔ℎ𝑡) = 1 for 𝑠 ∈ {−1,… ,−100},𝑃(−101 ∣ −101, 𝑅𝑖𝑔ℎ𝑡) =
1

All other probabilities are 0.

2. Forwhat discount factors 𝛾 should the agent choose𝑈𝑝 and forwhich𝐷𝑜𝑤𝑛?
Compute the utility of each action (i.e., the utility of the successor state) as a
function of 𝛾.

Solution: We have𝑈(𝑠) = 𝑅(𝑠)+𝛾max𝑎
(∑

𝑠′ 𝑈(𝑠
′)
)
, since all transitions are

deterministic. Then

𝑈(1) = 50 + 𝛾(−1 + 𝛾(−1 + …)) = 50 −
100∑

𝑖=1
𝛾𝑖

𝑈(−1) = −50 + 𝛾(1 + 𝛾(1 + …)) = −50 +
100∑

𝑖=1
𝛾𝑖
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and for 𝑖 > 0:

𝑈(𝑖) =
𝑖∑

𝑘=1
𝛾𝑘 𝑈(−𝑖) = −

∑

𝑘=1
𝛾𝑘

So we need to solve the following equation for 𝛾:

50 −
100∑

𝑖=1
𝛾𝑖 = −50 +

100∑

𝑖=1
𝛾𝑖

50 =
100∑

𝑖=1
𝛾𝑖

We get 𝛾 ≈ 0.984397669, and we should go Up if 𝛾 is smaller.

3. What is the optimal policy if the upper path is better?

Solution: The optimal policy 𝜋∗ maps each 𝑠 ∈ 𝑆 to an element of 𝐴(𝑠). Be-
cause most states have only one action, we immediately have 𝜋∗(𝑠) = 𝑅𝑖𝑔ℎ𝑡
for 𝑠 ≠ 0. For 𝑠 = 0, we have 𝜋∗(0) = 𝑈𝑝.

Problem 5.4 (Value Iteration for Navigation)
Implement value iteration for an agent navigatingworlds like the 4x3world from

the lecture notes. The agent has four possible actions: right, up, left, down. The
probability of actually moving in the intended direction is 𝑝 and the probability
of moving in one of the orthogonal directions is 1−𝑝

2
respectively. For example,

if 𝑝 = 0.8 and the chosen action is up, the agent will actually move up with a
probability of 𝑝 = 0.8 and will move left and right with a probability of 0.1 each.
If the agent ends up moving in a direction that has no free adjacent square, it will
remain on its current square instead. For example, if the agent is on square (0, 0)
with the action up, it will end up on square (0, 1)with a probability of 𝑝, on square
(1, 0) with a probability of 1−𝑝

2
and on square (0, 0) with a probability of 1−𝑝

2
.
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Results for 4x3 world with 𝑝 = 0.8, 𝛾 = 0.95, 𝜀 = 0.001.

A skeleton implementationwith technical instructions can be found at https://kwarc.
info/teaching/AI/resources/AI2/mdp/. It also allows the visualization of the computed
utilities and policy (see figure above): Each square is annotated with the coordinates, the
reward, the computed policy and the computed utility. Walls and terminal nodes don’t have
a policy and are marked withW and T respectively.

Hint: You will also have to compute a policy based on the utilities obtained from value iter-
ation. For that, you should pick the actions that maximize the expected utility. A common
mistake is the assumption that the best policy is always to go in the direction of the square
with the maximal utility.

Solution: See https://kwarc.info/teaching/AI/resources/AI2/mdp/
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